Overview

2017

Establishment

Kineton emerged from a unique partnership of academia and industry, leveraging diverse expertise.

2022

Società Benefit

This status reflects our continuous commitment to creating a positive impact for community.

2025

Today

Operating with a total of 8 branches across Italy, UK, Albania, Germany, and USA.

Kineton Immobiliare

Employee-owned company, owning offices in Milan, Naples, and Turin. 2024

EcoVadis

This recognition showcases our commitment to sustainability and corporate responsibility.

Why Kineton?

- Expertise (20+ OEM's / TIER1's prjs) & innovation (no corporate constraints)
- Reactiveness: change response & task forces < 3 days
- Efficiency: reusable artifacts, virtualization, right mix of seniority
- Cost predictability & geopolitical stability and trust

- 10+ vehicle and component plants
- Extreme flexibility on timing and location
- 100+ launches
- 50+ field engineers and flying doctors

Innovation & R&D Plan requirements and properties System regs analysis System FIEA, HARA, arch & regs of location Plant requirements and properties Instrumented platform Testbench assembly Simulation Instrumented platform Ops Cortrols & S.WY regs Cortrols & S.WY regs Space Cortrols & S.WY regs Space A Modeling architecture A Mod

run-time observers Data Analysis

Presentation, launch, quality & field support

AUTOMOTIVE SPICE®

Pragmatic approach enabling sustainable compliance.

Deep expertise, innovation & flexibility to support all along the product life cycle.

ASA Certified Automotive Cybersecurity tester

Partnership

Collaboration between <u>companies</u>, <u>universities</u> and certification provisors.

Domain

<u>Automotive cybersecurity</u> requires dedicated testing procedures.

Vision

Maintain a <u>continuously evolving set of skills</u>. Address need for <u>certified Automotive Cybersecurity testers</u>.

Project Background Automotive Cybersecurity Tester challenges

Increased connectivity

Attack surfaces in continuous evolution.

Technology evolution

Autonomous and connected vehicles technologies.

Attack sophistication

Low foot-print attacks.
Al as an attack medium.

Defense sophistication

Al as a defense medium. Big Data processing.

Automotive Landscape

Regulations mandates OEM to establish proper testing.

Professional reliability

Cyber testers to be officially recognized.

Project Milestones

Main deliverables and advancement status

Project core

Knowledge areas and project outcomes

Curriculum Structure

Norms and Vehicle Architecture

- Automotive Standards for Cybersecurity
- Modern Vehicle Architectures
- Typical HAD 3-5 (Highly Autonomous Drive) vehicle assumptions and vulnerabilities

Cybersecurity Architecture

- Communication at ECU & HPC Level
- Defense-in-Depth Architectures at ECU & HPC Level
- Norm for Security Certificate of a vehicle PKI at ECU & HPC Level

Essentials for Cybersecurity

- Cryptography essentials
- Automotive recommendations and guidelines (NIST)
- Intrusion Detection Systems (IDS) & Firewall

V&V Approach

- Verification Strategy
- Test Case Design
- Al driven test case generation

V&V Methodologies

- · Verification as SW coding level
- SW/System Integration Verification for Cybersecurity Use Cases
- Linux architecture - Service Layer specific verification approach
- Verify SW Build of Material (SUMS) - SW Update Verification
- Verification and Validation Reporting
- Typical Verification Environments (different examples, awareness level)

Free training available at European level

Full certification course upon subscription

Tests

Project impacts Benefits and dissemination strategy

Expected Benefits

Offer new carrier opportunities with certified skills for future professionals

Automotive cybersecurity will benefit from qualified personnel

A new standardized approach for training with a focus on hands-on methodology

Dissemination

Publication of the produced documents on the Erasmus+ Platform

Publication of **M**assive **O**nline **O**pen **C**ourse at the European level

Dissemination through conferences, papers and among working groups

Stay tuned

- Project Link, access the project results and monitor for progress. Interact with us if any proposal
- How to be involved, keep in touch to get pilot phase trials and initial free access for testing and refining
- Contacts

Automotive security shift Stringent norms and increased attack surface

Automotive Cybersecurity EU Standards & Norms

- Regulations mandates OEM to maintain security management systems
- Cyber testers should perform tests to prove OEM compliance and help assessing OEM cyber position

Modern vehicle architectures

- Shift in vehicle architectures, increase in HPCs deploy
- Cyber V&V methods well established for ECU zone, project focus will be on HPC zone
- HAD 3-5 assumption implies additional cyber risks

High Performance Computer (HPC) security versus ECU security

HPC Testing scenario Exercise set up and tools

HPC Emulation: Install a Linux QNX server on a RasBeberry PI

Attack emulation : Attacker programs in Kali Linux

Al driven reconnaissance: Use of SmartSPI Al interface to extract attack vectors.

Al as a defense medium Use of Al to assist cyber testing

Assisted AI Agent for Automotive Cybersecurity Testing

- Test code generation & test execution
- Test results analysis
- Human in the loop

