
0
4

.0
1

.2
0

1
7

İlgi KESKİN KAYNAK, Evren ÇİLDEN, Selin AYDIN

Sep 18, 2019

Radar and Electronic Warfare Systems Business Sector

2/142019 PROPRIETARY INFORMATION

Agenda

 Introduction

 Continuous Integration Setup

Measurement Automation

 Software Metrics

 Defect Detection Effectiveness

 Defect Density

 Evaluation

 Conclusion

 Future Works

 References

3/142019 PROPRIETARY INFORMATION

Introduction

Continuous Integration (CI) is a development practice that requires

developers to integrate code into a shared repository several times a day.

Each check-in is then verified by an automated build, allowing teams to

detect problems early. By integrating regularly, errors could be detected

quickly, and located more easily.

The Automation Studies, covered in this study, have the following sections:

Compilation, Unit Test, CSCI Test, Static Analysis, Measurement and

Release Management. Process automation is needed to automatize the

measurement process which has the following advantages:

 Repeatability

 Reliability

 Practicality

 Effectiveness

 Efficiency

The process automation over Continuous Integration provides an automated

QA (Quality Assurance) infrastructure.

4/142019 PROPRIETARY INFORMATION

Continuous Integration Setup

To setup the CI infrastructure, a virtual server is allocated to run Jenkins and other

tools required. Jenkins is then customized to our needs by using several plug-ins,

most important ones are listed below:

 Version Control plug-in (e.g.; ClearCase)

 Management plug-ins (e.g.; JIRA)

 Feedback plug-ins (e.g.; Email extension)

 Analysis plug-ins (e.g.; Coverity)

 Test plug-ins (e.g.; JUnit)

2. Fetch Changes

Manager Developer Developer

Continuous Integration Server

Source Control Server3. Build

4. Test
5. Report

6. Notify success or failure

1.Check In Changes

5/142019 PROPRIETARY INFORMATION

Measurement Automation

The process of metric collection is fully-automated with the use of Jenkins, which is

responsible of the tool orchestration within the process.

Jenkins is used for;

 Automating the collection of software metrics

 Continuous integration

 Automated release management

Jenkins

ClearCase Understand Doors

Source Code
Measurement Files

Requirement
Measurement Files

Metrics DB

JasperReports /
HighCharts

Software Metric
Reports

ClearQuest

ClearQuest
Measurement Files

6/142019 PROPRIETARY INFORMATION

Software Metrics
Id Software Metric Source

SM1 # of requirements DOORS

SM2 # of requirements that are implemented

SM3 # of requirements that are verified

SM4 # of requirements for engineering use cases

SM5 # of requirements that are verified by unit tests

SM6 # of requirements that were added/removed/changed since the last baseline

SM7 # of requirements that contain “To Be Determined Later“

SM8 # of requirements that contain vague words

SM9 # of classes Source Codes

SM10 # of source code files

SM11 # of functions

SM12 KSLOC (Source Lines of Code/1000)

SM13 Percentage of Comment/Implementation

SM14 # of functions that have cyclomatic complexity more than 10

SM15 Maximum cyclomatic complexity

SM16 # of components

SM17 Total # of Defects detected in CSCI and system integration tests ClearQuest

SM18 # of defects that were resolved

SM19 Total # of Improvements

SM20 Total # of Improvements that were resolved

SM21 Total # of Defects reported in CSCI Tests

SM22 Total # of Improvements reported in CSCI Tests

SM23 # of release announcements that were delivered for test Release
Automation
DatabaseSM24 # of release announcements that were delivered for system integration test

7/142019 PROPRIETARY INFORMATION

Defect Detection Effectiveness (DDE)

DDE = SM21 (Total # of Defects reported in CSCI Tests) / SM17 (Total # of

Defects detected in CSCI and system integration tests)

For CSCI A, 100% of defects were detected in CSCI tests prior to the system

integration tests. For CSCI B 88% of defects were detected in CSCI tests. As

a result of the process automation based on CI, we realized 12%

improvement in DDE measurement results in CSCI Tests.

60

70

60

80100% 88%

0%

20%

40%

60%

80%

100%

0

10

20

30

40

50

60

70

80

90

CSCI A CSCI B

Total # of Defects in CSCI Tests Total # of Defects DDE

8/142019 PROPRIETARY INFORMATION

Defect Density (DD)

DD is the number of defects detected in CSCI and system integration tests per the size

of the software (in terms of KSLOC).

DD = SM17 (Total # of Defects detected in CSCI and system integration tests) / SM12

(Software Size)

Improvement in DDE and DD measurement results depicts that the CI based process

automation lets the test and QA engineers to be involved in the development,

continuously.

The e-mail feedback informs the test and QA engineers about the current status of the

developed software throughout SDLC. The relevant QA process and product audits are

triggered meanwhile. Those QA activities are carried out to evaluate the process

performance by the help of process automation.

CSCI tests are carried out by software test engineers regarding the software product

quality. The introduced framework provides a basis for software QA and test teams

synchronously. For that reason, all the defects are detected till the end of CSCI tests for

CSCI-A.

Software

SM12

(KSLOC)

SM17

(Total # of Defects)

Software

Defect Density

CSCI-A 66,5 60 0,9

CSCI-B 42,2 80 1,9

9/142019 PROPRIETARY INFORMATION

Evaluation based on SPI Manifesto (1/2)

An evaluation is made based on SPI (Software Process Improvement)

Manifesto principles:

1. Know the culture and focus on needs: The needs were elicited from all

relevant stakeholders (i.e.; Software developers, software test engineers,

software quality engineers).

2. Motivate all people involved: Teamwork is carried on with the

participation of all stakeholders. Periodical meetings were conducted to

keep all the team motivated.

3. Base improvement on experience and measurements: The

improvement is observed in a quantitative manner by means of

measurement and analysis (via DDE and Defect Density metrics).

4. Create a learning organization: Other development teams are informed

about the study in the in-house design technology conferences.

5. Support the organization’s vision and business objectives: To satisfy

the customer needs and expectations, it is important to release bug-free

software. This improvement study aims to establish an automated

DevOps infrastructure for this purpose.

10/142019 PROPRIETARY INFORMATION

Evaluation based on SPI Manifesto (2/2)

6. Use dynamic and adaptable models as needed: Scrum is applied in

this study.

7. Apply risk management: Risks are identified and mitigated regarding

their severity and likelihood.

8. Manage the organizational change in your improvement effort: The

study is carried on regarding the Unfreeze-Move-Freeze model. Initially,

the need for automation is realized. Then the CI based process

automation is implemented. Then the development, test and QA activities

are conducted on the framework, further.

9. Ensure all parties understand and agree on process: All the relevant

stakeholders (i.e.; development, test and QA engineers) are involved.

10.Do not lose focus: The concentration on the main focus is kept by

means of the measurements. Measurement results provided a

quantitative monitoring approach to the improvement team.

11/142019 PROPRIETARY INFORMATION

Conclusion

Process Automation based on Continuous Integration brought the following

benefits to ASELSAN:

 Improvement in the measurement results depicts that the CI based

process automation lets the test and QA engineers to be involved in the

development, continuously.

 Increased visibility among the relevant stakeholders

 Caught issues earlier

 Spent less time debugging and more time adding features

 An objective approach for quantitative evaluation of software progress

 Reduced integration problems

 Provided detailed insight from management perspective

 Increased software quality

 Decreased paperwork

12/142019 PROPRIETARY INFORMATION

Future Works

 We plan to spread the improvement study to all software

products.

 We intend to improve the software process and product quality

in a quantitative manner.

 A systematic QA approach is needed to work in line with the

software development and test teams.

 This improvement study results will be considered to establish a

software quality improvement guideline.

13/142019 PROPRIETARY INFORMATION

References

1. Integrating Quality Assurance into the Software Development Life Cycle,

Leslie Tierstein, STR LLC and Hilary Benoit, W R Systems, Ltd.

2. M.Fowler, “Continuous Integration”, Thoughtworks, 2006,

http://www.martinfowler.com/articles/continuous integration.html

3. Ö.Acar, “Exteme Programming”, 2008, http://www.kurumsaljava.com

4. Continuous Integration,

https://en.wikipedia.org/wiki/Static_program_analysis

5. Regression Testing, www.softwaretestingclass.com

6. T. DeMarco, “Controlling Software Projects, Management, Measurement

& Estimation, 1982, p.3

7. IEEE Standard for Software Reviews and Audits - IEEE Std 1028™-2008

8. Software Development Process Audits - A General Procedure, Stewart G.

Crawford & M. Hosein Fallah, AT&T Bell Laboratories, Holmdel, New

Jersey 07733. USA

9. Survey on Impact of Software Metrics on Software Quality, Mrinal Singh

Rawat, Arpita Mittal, Sanjay Kumar Dubey, Boeing. USA

10.SPI Manifesto version A.1.2.2010, Jan Pries-Heje, Jørn Johansen

http://www.martinfowler.com/articles/continuous integration.html
http://www.kurumsaljava.com/
https://en.wikipedia.org/wiki/Static_program_analysis
http://www.softwaretestingclass.com/

0
4

.0
1

.2
0

1
7

İlgi KESKİN KAYNAK, Evren ÇİLDEN, Selin AYDIN

Sep 18, 2019

Radar and Electronic Warfare Systems Business Sector

