
IEC 62304 compliant Software Development for
Medical devices using Container Hardening

Rajasegar Rajendhiran Shanthi

Nova Leah, Dundalk, Co Louth,

& National College of Ireland

Dublin, Ireland

Anita Finnegan

Nova Leah,

Dundalk, Co Louth, Ireland

Vikas Sahni

School of Computing,

National College of Ireland,

Dublin, Ireland
Fergal McCaffery

Nova Leah &

Regulatory Software Research Center,

(Lero)/Dundalk Institute of Technology,

Dundalk, Co Louth, Ireland

Background

Internal Testing:

 Web Application Penetration
Testing

Research Area:

 Docker Container security

Security Assessment at Nova Leah Ltd.

Problem Identified

Container Security: Hardening
Containers

Research Question: How can
container-based applications used in
medical device software
development be hardened.

Literature Review

Focus of the literature review was on articles:

 Docker Container Vulnerabilities and Attacks

 Container Security

 Medical Device Software Lifecycle Regulation and

Containerization

 Research paper published by (Matelsky, J., Kiar, G., Johnson, E., Rivera, C., Toma,
M., & Gray-Roncal, W. 2018) Containers and their use in the medical imaging
industries as the complexity and computational requirements for the analysis are
increasing.

 Use case: Integrating Docker as a containerization platform into a Clinical workflow.

 This article did not discuss security and regulatory compliance in Container based
clinical solutions which is the key area for this research work.

Literature Review:

Significant Paper :
Container-Based Clinical Solutions for Portable and Reproducible
Image Analysis: Journal of Digital Imaging (2018)

Container Security Vulnerabilities and Threats

Action Research Methodology: Container Security

1. Identify the Problem

2. Develop a Plan of Action

3. Collect Data

4. Analyze and form Conclusions

5. Implement the solution

6. Review and Share Feedback

1. Container Security

2. Hardening Containers

3. Scanned results

4. Manual analysis using Standard
benchmarks.

5. Provide the 1st iteration of solution to
developers.

6. Feedback from development team for
performing 2nd iteration.

Implementation Container Hardening Flow

Software

Medical Device

Current Work

Future Work

Updated Roadmap for IEC 62304:

Software Configuration Management

Software Safety Classification

Risk Management System ISO 14971

Quality Management System

Software Risk Management Process

Change Request Process

1

2

3

4

8

15

16 14

13

5

6

12

10

9

Software

Maintenance Process

Software Problem

Resolution Process

7

11

Software Release

Software System Test

Software unit implementation

and verification

Software integration

and integration testing

Software Detailed

Design

Software

Architectural Design

Software Requirement

Analysis

Software Development

Planning

Time

Software Security Management Process (Container Environment) 17

Docker Image

Docker Bench for Security tool

Checks and Scores

CIS Benchmark Docker bench for security tool

Docker
Image

Docker - Linux
Linux Host OS

Docker Engine - Enterprise

Level 1

Manual
Hardening

Level 2

HIGH Priority Issues

LOW Priority Issues

[PASS]

Hardened
Image

[PASS]

[WARN]
or

[INFO]

RE-SCAN

CIS Benchmark

[WARN]
or

[INFO]

CIS Benchmark: Docker bench for security tool

Implementing Container Hardening Flow

CIS Docker Benchmark guidelines Dockerfile with
Hardening
parameters

Hardened
Docker Image

Docker build

Hardening Actions Performed
Sl.

No.

Hardening Actions Performed

1  Update NGINX system and base system

 Add custom user profile and setup home directory.

 Add-in post installation file for providing permissions

 Make sure system dirs are owned by root and not writable by anybody else.

 Disable password login for everybody.

2  Removed apk configs. by commented out as it is needed for apk to install other stuff, temp shadow,

passwd, group and selective admin commands.

 Removed world-writeable permissions except for /tmp/, unnecessary accounts, excluding current

app user and root, interactive login shell for everybody.

3  Removed the following functions and packages: suid & sgid files, dangerous commands, init

scripts since we do not use, kernel tunables, root home dir, fstab, any symlinks that we broke

during previous steps.

Container Scan using Qualys Container Scanner

Docker Auditing and Hardening
Demo tool

Docker Auditing and Hardening Tool V1.1
 Go to the tool directory “ICT Solution docker_tool_tv4_FINAL CODE”/

Run this command “./mscript_v2.sh”.

1. Show the current running Docker Images & Checks
1. Figure 1

1. Show the current running Docker Images & Checks

1. Figure 2

2. Show all available Docker Images

2. Figure 1

2. Show all available Docker Images

2. Figure 2

3. Show all available Docker Images

3. Figure 1

3. Show all available Docker Images

3. Figure 2

4. Build New Docker Image

4. Figure 1

4. Build New Docker Image

4. Figure 2

4. Build New Docker Image: Server started

4. Figure 3

 The command used to run the Nginx server is:
$ docker run -p 80:8080 <Image_Name:tag>

5. Docker bench for security

5. Figure 1

5. Docker bench for security
5. Figure 2

5. Docker bench for security

5. Figure 3

5. Docker bench: Server stopped Checks and Score
5. Figure 4

5. Docker bench: Server started Checks and Score

5. Figure 5

CIS Docker Benchmark Scoring System
Checks are assessed based on success and failure compliances with the
following scoring statuses:

 “Scored” recommendations.

 “Not Scored” recommendations.

Scored Not Scored

89 27

Success Compliance – Impacts Benchmark

Score

Success Compliance – Does not Impact Benchmark

Score

Failure Compliance – Impacts Benchmark Score Failure Compliance – Does not Impact Benchmark

Score

6. Options to Add more functions to the tool

6. Figure 1

Conclusion and Future Works

Current Work:
 Proving Container security to organization’s Development region

 Container Security through hardening technique using In-House tool

Future Work:

Implementing IEC 62304 (MEDICAL DEVICE SOFTWARE -
- SOFTWARE LIFE CYCLE PROCESSES)

Implement Regulatory compliance within Docker Images

Adaptable in other industries software development
process (i.e Automobile)

This paper is supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement
No 732242 (DEIS project).

