Metrics and

QJ SEes
& ‘oo Processes

300 TSTHM lllll!l!ilfl!l

ners |0 9000

Festo Supported by :

University of Technology,Graz

’
|
| Motorola APS Comett
I . European Software Institute (ESI)
| Alcatel Brameur Hibernia UETP
I . . y ISCN
| Objectif Technologie KaM Technologies Ltd
. National Software Directorate
l Siemens Ovum Ltd
| Q-SET Ltd
|

The ISCN seminar and workshop will
benefit all those concerned with
management and improvement of
software quality in their organisations.

Software quality has a marked effect on
the effectiveness of the overall business
processes, irrespective of being a
software developer or a software user.
Process improvement is applicable
equally to manufacture and procurement

of software, and facilitates the attainment
of ISO 9000 certification.

Specifically the seminar and workshop
addresses business development
executives, IT managers, development
managers, quality managers and software
practitioners.

You cannot afford to miss this event.

)ACKGROUND

"Product quality is determined by process
quality.” This is just as true for business
and manufacturing processes involving
software as it applies to traditional
manufacturing industries.

How do you determine the quality of
products and processes involving
software? What underlying techniques are
promising? How do they relate to SEI's
CMM? How can these effectively be
integrated into a business and
organisational framework—and produce a
return on investment? How do these
techniques relate to ISO 9000—and is
there an additional benefit to be gained?

ESPRIT programmes have enhanced the
state-of-the-art, but how usable are the
results? What technology transfer
initiatives are available to industry, and
what is the strategy for Europe?

APPROACHES

ami provides an overall improvement
framework based on the application of
quantitative methods: the Assess-Analyse-
Metricate-Improve paradigm.
BoorsTrAPis a method for assessing and
quantitatively evaluating process quality
attributes. It directly facilitates ISO 9000
certification programmes.

ESI-the EUROPEAN SOFTWARE INSTITUTE
was founded by industry in 1993 with the
specific aim to improve software practice
in European industry by using the
methods presented here as its baseline
technology.

IscN is a network of independent process
improvement consultants supporting
analysis and installation of improvements.
METKIT has developed a training
programme for software metric selection
and installation in an organisation.

Scopk has developed procedures for and
a guide for the evaluation of software
product quality.

Benefits realised by the various
approaches to improving the quality of
software processes and products will be
presented by a variety of speakers from
companies committed to quality
improvement.

In a workshop style atmosphere the
experts for process and product
improvement technology will answer
questions and respond to problems
formulated by the audience. The
respresentatives from industry will act as
referees for industrial relevance and
realism in this part of the workshop.

ective delegates

are invited

to submit issues and queries
with their registration.

OO

Seminar Programme

Day One

Chairman of the Days Proceedings:

Takis Katsoulakos, Lloyds Register, Chairman of ESI
09:30 Official Opening

“Europe — Lacking a Software Strategy”
Barry Murphy, National Software Directorate

“Framework Programme IV for R&D — Best Practise for Software
Engineering”
Rainer Zimmermann, CEC DG III

10:15 “European Strategies for Software Process and Product

Improvement”
Giinter Koch, Managing Director ESI

10:45 Coffee

11:15 “"BOOTSTRAP and ISO 9000: A Quantitative Approach to
Objective Quality Management”
Richard Messnarz, ISCN

12:00 “ami: A New Paradigm for Software Process Improvement”
Christophe Debou, Alcatel

12:45 Lunch
14:15 “SCOPE: A Guide for Software Product Quality Evaluation”
Jorgen Boegh, DELTA Software Engineering

15:00 “METKIT: How to Cope with Software Complexity?”
Horst Zuse, Technische Universitat Berlin

15:30 Coffee
16:00 “Process Improvement: How Much Can the Organisation Endure?”’
Hans-Jiirgen Kugler, ISCN

16:30 Open Forum — “The Improvement Soapbox”
open to seminar participants, 5-10 minutes each

Day Two
Chairman of the Days Proceedings:
Giinter Koch, Managing Director ESI

09:00 “Process and Product Quality Improvement: Approaches, Experience,
Results — Part 1

Christophe Debou, Alcatel

Mike Kelly, Brameur

Roberto Galimberti, BOOTSTRAP Institute
Manfred Koch, FESTO

plus seminar participants

10:30 Coffee

11:00 “Process and Product Quality Improvement: Approaches, Experience,
Results — Part 2

John Sheehy, Motorola
Annie Combelles, Objectif Technologie
Axel Volker, Siemens

plus seminar participants
12:30 Lunch
14:00 “But — will this work for me?”
Discussion and Workshop

Questions and Problems:
seminar participants

Answers and Solutions:
technology experts and industrial users

15:00 Coffee

16:00 Summary and Close of Workshop
Giinter Koch, Managing Director ESI
Hans-Jiirgen Kugler, ISCN

I

BOOTSTRAP and ISO 9000:
A Quantitative Approach to Objective Quality Management

Richard Messnarzt
Hans-Jiirgen Kugler¥
Volkmar Haase 1

Abstract

The aim of the BOOTSTRAP project was to develop a method for software process
assessment, quantitative measurement, and improvement [3]. BOOTSTRAP enhanced
and refined the SEI method ([11], [13]) for software process assessment and adapted it
to the needs of the European software industry including non-defence sectors to make it
applicable to all kinds of SPUs [4]. An SPU (Software Producing Unit [4]) is a small
or middle sized software producing company or a software department of a large
company that runs projects to develop software products. The SPU defines quality
policies and guidelines, estimates and provides resources, manages the training of the
engineers, and defines standards, practices and methods that have to be employed by
the projects. The BOOTSTRAP method assesses both the SPU and the projects of the
SPU: does the SPU provide the necessary resources and how efficiently do the projects
use these resources? A detailed process quality attribute hierarchy ([9], [4]) enhancing
the SEI questionnaire and taking into account ISO 9000-3 guidelines [12] for software
quality assurance and the ESA PSS 05 software engineering standards [6] forms the
basis of the BOOTSTRAP method. The SEI maturity level algorithm [9] was refined to
be able to calculate a maturity level for each of the individual process quality attributes
resulting in a quantitative process quality profile [9] that provides a representation of the
strengths and weaknesses. This quality profile serves as a quantitative basis for making
decisions about process improvements and allows to evaluate the degree of satisfaction
of about 85% of the ISO attributes.

1. Process Measurement Approach

A quality model starts with the definition of a quality goal. Quality attributes are
assigned to this goal, and quality factors are then assigned to each quality attribute.
Quality factors might again recursively consist of quality factors leading to a quality
attribute hierarchy is (Fig. 1, [14]).

If software metrics are assigned to the leaves of this quality attribute hierarchy [14] and
if these quality factors are evaluated according to the defined metrics a set of measured
values will be obtained which represents the quality of the process. As a metric we
assign the BOOTSTRAP maturity level algorithm (section 3, [9]) to each process
quality factor and thus obtain a quantitative process quality/maturity profile (see Fig. 2,
Fig. 3).

t University of Technology, Graz, Austria

b K&M Technologies Ltd, Bray, Ireland

Organisation
ality System
Resource Mangement
Education and Training
Personnel Selection
Technology Introduction

Life Cycle

Independent

Functions
Project Management
Config./Change Mgmt.
Quality Management
Risk Management
Supplier Management

Process

—

Methodology

Life Cycle
Dependent
Functions

Development Model
Special Processes
Specification
Design
Prototyping
Detailed Design
Implementation
Unit Testin
Integration gresLing
Acceptance Testing
Maintenance

\

Technology
for each methodology
attribute there is a
corresponding technology
attribute

Process

Related

Functions
Process Description /
Process Modelling
Process Control
Process Measurement

Fig. 1: BOOTSTRAP's Process Quality Attribute Hierarchy

1SO 9001, ISO 9000-3
ESA PSS 05

PROCESS QUALITY
ATTRIBUTES

A s

SEI A

SCALE
/

BOOTSTRAP

Fig. 2: BOOTSTRAP's Process Quality/Maturity Profile [4], [9]

dddadduuaadunagiauggagyygddaddbgyyuyaouun

Life Cycle Functions

M spUx

B3 pryx1

sd pap 4B 3 ¥ y ¢
§2 4% 28 2 3 E
¢ id Fa 5

Fig. 3: Calculated Maturity Levels for Attribute Cluster "Life Cycle Functions" of SPUy and its
project PRJy1

The CMM model [13] of the SEI (Software Engineering Institute) differentiates
between five different maturity levels of software processes: Initial Process (1),
Repeatable Process (2), Defined Process (3), Managed Process (4), and Optimising
Process (5). The SEI method is based on a questionnaire (see section 2.1) in which all
questions are assigned to maturity levels from 2 to 5. After the assessment the
completed questionnaire is mapped onto a maturity level scale [2] and the calculated
maturity level of an SPU is regarded as an indicator of the SPU’s process quality.
However, a single maturity measure for an entire process does not sufficiently support
a quantitative analysis of all the strengths and weaknesses ([2],[9]).

The ISO 9000-3 guidelines [12] define a number of process quality attributes that are
essential for setting up a quality system within a software management and development
organisation. The SEI’87 questionnaire has only six attributes concerning organisation
and methodology. Taking into account the ISO 9000-3 guidelines and the ESA PSS 05
software engineering standards we identified about 25 additional attributes to be
addressed by a number of additional of questions.

The ISO 9000-3 guidelines check, for instance, if reviews—joint reviews, design
reviews, management reviews, progress control reviews—are conducted. However,
the performance of a review presumes that a standard software engineering process is
already in place so that the reviews can check if the defined methods and procedures
are effectively used and followed within the projects. If there is, for example, no
standard structure and format for design descriptions and if there is no checklist to
investigate the design, the output of a design review will be a matter of discussion, but
not the result of an objective evaluation. You first have to create a software engineering
process model including standards and methods for both management and development
before setting up a quality system that checks whether these standards and methods are
effectively followed and employed. The ESA PSS 05 software engineering standards
[6] describe such a software engineering process model, and the ISO 9000-3 guidelines
specify the attributes required to set up a quality system.

2. The BOOTSTRAP Questionnaire

The questionnaire is based on a process attribute hierarchy (Fig. 1) such that each
elementary attribute has a list of required activities assigned. Based on this structure we
created checklists for each object of the attribute hierarchy, which resulted in the
BOOTSTRAP questionnaire (Fig. 6).

2.1 BOOTSTRAP and SEI’87
There are two major differences in the approaches:

 the SEI’87 questionnaire is organised as a flat sequence of questions with no
detailed process quality attribute hierarchy, and

» the SEI’87 questionnaire only allows a question to be answered by yes or no
(black/white).

BOOTSTRAP, seeking to obtain more detailed and precise results, uses linguistic
variables differentiating between weak or absent, basic or fair, significant or strong,
extensive or complete [4],[9]. The answers are mapped onto a percentage scale using
‘de-fuzzyfication’: absent represents 0%, basic 33%, significant 66%, and extensive
100%, based on a study of the relevant interviewing techniques conducted by a
psychologist in BOOTSTRAP. Some example questions are shown in (Fig. 4).

ATTRIBUTE: RISK MANAGEMENT

Number | Level Text | Answers

2219 3 Adoption of requirements to identify, assess, document risks to project and
product associated with modifying SLC or non-SLC activities.

Answers: absent/basic/significant/extensive

2220 2 Adoption of a requirement for identifying the parts of a specification more
likely to show instability.

Answers: absent/basic/significant/extensive

Fig. 4: Sample BOOTSTRAP Questions

2.2 BOOTSTRAP and CMM (Capability Maturity Model, 1991)

CMM [13] is a comprehensive framework which provides guidelines for improvements
recommended for software organisations wanting to increase their software process
capability. CMM describes the five maturity levels of software processes, for each of
which a number of key process areas are defined. Each key process area contains a
number of key practices that have to be performed. A key practice specifies a key
indicator which directly relates to at least one question of the SEI questionnaire (see
Fig. 5). Thus CMM provides useful guidelines for any organisation wanting to find out
what has to be done to reach the next higher level of maturity.

RA AR AR AR AR AN AARN AR AR AR ARARNARAARANRRN

dHiddddudddanddggbbdggdououguouoougy

(Maturity Level)

indicates contains

=

Process Key Process
Capabili

contains
Area

specifies

—-—- candidates ——({Key Indicator
for

Fig.5: The CMM Structure

CMM’ s Structure

CMM defines different key process areas for each maturity level. The disjunction of the
sets of attributes belonging to different levels is always empty. Each CMM key process
area—corresponding to an attribute—is valid only within one maturity level. Thus it is
not possible to map a single CMM attribute onto a maturity level scale from 2 to 5. This
means that the whole improvement approach is maturity level and not attribute based
(Fig. 5), because CMM’s structure supports the calculation of only one maturity
measure for the entire process. However, an attribute based evaluation is more detailed
in its approach and provides a clearer understanding of strengths and weaknesses.

BOOTSTRAP’s Structure

The BOOTSTRAP method ([4], [9]) evaluates each attribute separately on a five point
maturity scale. For each attribute the BOOTSTRAP assessment team checks a number
of activities that have to be performed on levels 2 to 5 (Fig. 6). Thus BOOTSTRAP can
concentrate on single attributes, evaluate each attribute on a five point maturity level
scale, identify weaknesses and strengths, and establish attribute based improvement
plans (Fig. 3).

Process Maturity —— indicates ——— Process Capability

derived from
|
.@ess c|05|5r@_ measured by — (Kcy Process Clustel)
¥ I
den'\ied from conlans
@ess Attribute @e— measured by— (I(ey Process Attribute)—
contains
Questions «—specifies —-(Key Practice for Maturity Level 2)
Questions «— specifies —G(ey Practice for Maturity Level 3)—
Questions «<— specifies ——(Key Practice for Maturity Level 4)-—
Questions <—specifies ——(Key Practice for Maturity Level 5)_

Fig. 6: BOOTSTRAP s Attribute Based Structure

2.3 BOOTSTRAP and ISO 9000 [12]

The ISO 9000 standard for quality management describes a number of main process
quality attributes such as quality policy, strategic planning, resource allocation, quality
planning, quality control, and quality assurance. For each quality attribute an
organisation has to demonstrate that a method is used and that all projects employ this
method. Additionally ISO 9000 provides a selection procedure for choosing the
appropriate quality system: 1SO 9001 (Design, Development, Production, Installation,
Servicing); ISO 9000-3 (Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software).

We analysed the attribute structures of ISO 9001 and ISO 9000-3 and assigned all
BOOTSTRAP questions to ISO attributes, deriving information about the comparability
of BOOTSTRAP and ISO. As a result we can determine for about 85% of the ISO
9001 and the ISO 9000-3 attributes whether or not they are satisfied.

In Tab. 1 we have mapped all ISO 9001 attributes onto BOOTSTRAP’s attribute
clusters as presented in Fig. 1. For instance, the ISO 9001 attributes quality policy and
responsibility and authority concerning the organisation relate to BOOTSTRAP’s
attribute quality system. And the ISO 9001 attributes verification resources and
personnel and training relate to BOOTSTRAP’s attributes personnel selection and
training. Additionally we assigned all BOOTSTRAP questions to ISO attributes and
thus obtained a coverage measure (Tab. 1).

T AT AT AAAAAAAAAAAANA A AN AN MMM A MMM

ddduvidddnadauuaunaguganaugagaauguguagygnggyyd

BOOTSTRAP_Attributes [ISO 9001 Attributes % Coverage |
Organisation
Quality System Quality Policy 30%
Organisation
Responsibility and Authority 80%
Resource Management Organisation
Verification Resources and Personnel 100%
Personnel Selection Organisation
Verification Resources and Personnel 100%
Training Training 100%
Methodology
Life Cycle Functions
Specification Design Control
Design Input 100%
Design, Detailed Design Design Control
Design Output 100%
Design Verification 100%
Unit Testing Inspection and Testing
Receiving Inspection & Test 100%
Inspection & Test Records 100%
Integration Testing Inspection and Testing
In-Process Inspection & Test 100%
Inspection & Test Records 100%
Acceptance Testing Inspection and Testing
Final Inspection & Test 100%
Inspection & Test Records 100%
Transfer Handling, Storage, Packaging and Delivery
Handling, Storage, Packaging 0%
Delivery 100%
Maintenance Servicing T0%
Life Cycle Independent
Functions
Quality Management Contract Review 50%
Management Responsibility
Management Review 100%
Project Management Design Control
Design and Development Planning 90%
Configuration & Change| Design Control
Mgmt. Design Changes 100%
Document Control
Document Issue 10%
Document Modifications 100%
Product Identification & Traceability 100%
Inspection & Test Status 0%
Supplier Management Purchasing
Assessment of Subcontractors 100%
Purchasing data 100%
Verification of Purchased Product 100%
Purchaser Supplied Product 0%

Tab. 1:1SO 9001 Attributes Mapped onto BOOTSTRAP s Attribute Clusters & Percent

Coverage of 1SO 9001 Attributes (to be continued)

BOOTSTRAP Attributes ISO 9001 Attributes % Coverage
Process Related
Functions
Process Control Process Control
General Processes 100%
Special Processes 100%
Control of Non conforming Product 30%
Corrective Actions 100%
Process Measurement Quality Records 100%
Internal Quality Audits 100%
Statistical Techniques 100%

Tab. 1:1SO 8001 Attributes Mapped onto BOOTSTRAP s Attribute Clusters & Percent
Coverage of I1SO 9001 Attributes (continued)

The assignment of BOOTSTRAP questions to ISO 9001 attributes were also based on
the ISO 9000-3 guidelines to be able to correctly interpret the ISO 9001 attributes.
BOOTSTRAP checks, for example, if contract reviews are performed and if quality
requirements are defined, but it currently does not specifically investigate if the
customer is integrated into this review procedure, although the customer’s integration
into reviews is addressed by the ISO 9000-3 attributes joint reviews, and mutual co-
operation. Thus the coverage measure concerning contract reviews (Tab. 1) we
obtained a value of less than 100%. However, for most of the attributes (e.g. life cycle
functions, process related functions) BOOTSTRAP checks more methods and activities
than it is required for the ISO 9001 certification. Moreover BOOTSTRAP provides
attributes such as risk management which are not covered by ISO.

3. BOOTSTRAP’s Evaluation Method

A mathematical description and analysis of the algorithm was presented at the SPSE’92
conference in Klagenfurt, Austria and is discussed in [4], [9]. The following
summarises a few main points.

Four Point Fuzzy Reply Set

Each question is answered on a four point scale of fuzzy terms that we use instead of a
yes/no option (section 2.1).

Key Attributes

The SEI algorithm uses key questions which have to be satisfied to reach a certain
level [2]. BOOTSTRAP does not use single questions but key clusters of questions
(key attributes). Quality management, for example, is a key attribute evaluated by 10
questions that have to be satisfied by a threshold percentage to fulfil a certain level. This
attribute based evaluation allows to identify weak and strong process attributes and to
establish attribute based improvement plans.

Innovations

The SEI algorithm is strictly sequential. Only if level i is satisfied by a minimum of
about 80 percent, and if nearly all key questions on level i are answered by yes, does

the SEI algorithm take into account the scores on level i+1 [2]. This does not favour
SPUs and projects which plan and phase improvement over a period of time.
BOOTSTRAP takes into account scores which the SPU or project gained on the next
higher level.

Dynamic Step Scale

If the evaluation is only based on percentages, then it would appear as if there were
equal distances between the levels of the maturity scale, although there are different
numbers of questions for each level. This holds for SEI and BOOTSTRAP and is due
to the fact that only few SPUs on levels 4 and 5 have been found and characterised so
far. BOOTSTRAP treats the distances between the levels as variable—expressed by the
number of questions associated with each level.

This ‘step scale’ ensures that we do not obtain a too high a maturity level when taking
into account the scores on higher levels.

4. Quality Profiles [4], [9] and Action Plans [3]

Maturity level 2 means that effective methods are in place, level 3 means that the most
effective methods are documented and standardised across all projects, level 4 means
that the efficiency of these methods, the productivity of major process steps and the
quality of the products are quantitatively measured, and level 5 means that the
quantitative feedback is analysed and action plans to improve the process are
established.

Life Cycle Independent Functions

M SPU x
3 PRJ x1

Fig. 7: Sample Part of a Process Quality Profile of SPUy and its Project PRIy |

All quarters (e.g. 1.75, 2.25, 3.5) can be interpreted in linguistic terms: the method
employed is weak at 1.25, basic at 1.5, significant at 1.75, and effectively employed at
2; the method is effectively used but weakly documented and standardised at 2.25,
basically documented and standardised at 2.5, etc.

Fig. 7 represents a part of BOOTSTRAP process quality profiles of an anonymous
SPUy and one of its projects PRJyx 1. SPUy does not provide a method for risk
management and therefore project PRJx1 lacks a method. Concerning project
management the SPU only provides a very weak method and the project does not use
an effective method either. In quality management the SPU provides an effective
method, but the resources could be better exploited by the project. SPUy provides an
effective method for configuration management and project PRIy 1 is efficiently using
this method as a standard. SPUy has so far not standardised the methods for quality
management and configuration management across all projects (no value above 2).

The SEI method rates technology with A (low) and B (high). However, where is the
difference if an SPU has fulfilled 49% instead of 51% of the technology questions? In
the first case we would achieve technology level A, in the second technology level B.
We tried to solve this problem by detailed comparison of methodology and technology
(Fig. 8). For each methodology attribute there is a technology attribute. Each
methodology attribute is mapped onto a maturity level scale (see left hand scale of
Fig. 8) whereas the technology attribute is mapped onto a percentage scale (see right
hand scale of Fig. 8).

Management Technology Attainment for PRJ x1

Percentage

M N
=
g g
s g
% g

Technology

Fig. 8: Comparison of Management Methodology with Support of Technology

All technology questions are answered in the same linguistic terms as the methodology
questions, but no maturity level is assigned to the technology questions. The calculated
percentages can be interpreted by using linguistic terms, “weak” means below 33%,
“basic” between 33% and 66%, and “complete” above 66%. In Fig. 8 we can see that
although project PRJx] is not using an effective method for project management a
technology is already completely in place. This illustrates that in this organisation the
“technology introduction function” does not work properly. First they bought a
technology and then they started to learn the associated methodology. And if we look at
the project management maturity of the same SPU (Fig. 7), which is about 1.25, we
see that the SPU bought the project management tool without knowing anything about
project management methods and procedures. Concerning configuration and change
management project PRJx 1 uses an effective method which is basically supported by

technology (Fig. 8).

RE AR A AR AR AR AR AR AR AR AR AR ARARAARARAARARAR AN

O

4.1 ISO Certification Profiles
For about 85% of the ISO 9001 and ISO 9000-3 attributes we can evaluate whether or
not they are satisfied. We are currently developing prototype tools that can calculate a
certification level for 85% of the ISO attributes. For each 1SO attribute we calculate a
certification level on a five point scale:

0 for this attribute we cannot calculate a certification level

1 failed the certification

will pass the certification with modifications in the process

2
3 passed the certification
4

expert fulfilling additional BOOTSTRAP issues (note: maturity level 3 is the
goal of an ISO 9001 certification [5]).

A definition of the algorithm used to calculate ISO certification profiles is given in the
appendix. Applying this transformation to the data of the anonymous SPUy we obtain
the ISO 9001 certification profile shown below in Fig. 9.

ISO 9001 Certification Profile for SPU x

W
L

—
L

IS O Certification Level
*

L=}
Il

9 4 81 L ¥ g %z 3 %%
9 % g g £ g . ¥ P oA o n
ggﬁg A% A8 EE ﬂg P ¥8z3 £d:
&8 & S& = 88 S35 3.8
[l o

Fig. 9: Sample Part of an ISO Certification Profile for the anonymous SPUy

There is a direct relationship between the profiles in Figs. 3, 7, 7 and 9. SPUy is weak
in project and risk management (Fig. 7) and therefore it does not fulfil the ISO 9001
attribute design and development planning. SPUx provides an effective method for
requirements analysis (Fig. 3) but does not provide a method for performing the design
based on the specified requirements. Thus the SPU fulfils the ISO 9001 requirement
design input, but fails in the attribute design output.. SPUx provides an effective
method for quality management (Fig. 7) including the performance of reviews, but does
not standardise and document this method across all projects. Thus the ISO 9001
attributes contract review and management review are on certification level 2 and by
standardising the most effective methods for all projects the certification level 3 could be
achieved. SPUy provides an effective method for configuration management (Fig. 7)

and project PRJy 1 is efficiently using this method as a standard. Thus the ISO 9001

attributes document control and configuration identification and traceability are satisfied.
Concerning supplier management SPUy, is not efficient (Fig. 7) and fails the ISO 9001

attribute assessment of subcontractors.

5. Conclusion and Future Outlook

The field testing and benchmarking for BOOTSTRAP was provided by Robert BOSCH
GmbH of Germany, a corporation in the electronics and telecommunications sector with
about 180,000 employees. Additionally we have gathered considerable experience in
the assessment and improvement of software divisions of leading banks,
telecommunications companies, administrative institutions and small or middle sized
software companies.

The BOOTSTRAP method is based on practical experience and feedback from
customers. The recently founded BOOTSTRAP Institute will ensure that the method is
maintained and enhanced, and its consultants are continuously trained. The
BOOTSTRAP Institute actively contributes to the SPICE initiative.

The co-operation with ESPRIT projects in the software metrics field through the
International Software Consulting Network (ISCoN) [1] will have a multiplying effect
on the use of improvement methodologies in the European software industry. In 1993
the European Software Institute (ESI) was founded with aim is to promote technology
transfer and improvement methodologies within Europe. ESI will use BOOTSTRAP as
a strategic tool to assess and analyse software processes and to establish improvement
programmes. Additionally BOOTSTRAP is supported by the European Systems and
Software Initiative (ESSI), a European programme for supporting the introduction of
new methodologies and technologies into industry.

References

[1] Biro M., Feuer E., Haase V., Koch G., Kugler H.J., Messnarz R., Remsz6 T.,
BOOTSTRAP and ISCN - A Current Look at a European Software Quality Network,
in: The Challenge of Networking, Proceedings of the CON93 Conference,
Oldenbourg, 1993

[2] Bollinger T.B., McGowan C.: A Critical Look at Software Capability
Evaluations, IEEE Software, pp. 25-41, July 1991

[3] BOOTSTRAP Team, BOOTSTRAP: Europe’s Assessment Method, in: (ed.) David
Card, IEEE Software, pp. 93-95, July 1993

[4] Cachia R. M., Maiocchi M., Middle Management Briefing, Deliverables 10 and 20,
BOOTSTRAP ESPRIT 5441, Commission of European Communities, 1992

[5] Coallier F., Canada B., How ISO 9001 Fits Into the Software World, JEEE
Software, pp. 98-100, January 1994

[6] ESA Board for Standardisation and Control, ESA PSS 05 Software Engineering
Standards, European Space Agency, Paris, 1991

[7] Grady R. B., Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall, Englewood Cliffs, London, Sydney, Tokyo, 1992

[8] Grady R. B., Caswell D. C., Software Metrics: Establishing a Company-Wide
Program, Prentice Hall, Englewood Cliffs, New Jersey, 1986

MM MO MmN "NMHNNMNTNTMHNHTM|NM"NMNMMHTMHMMNMNMM\AN NPT T N1 T M 1M

[9] Haase V., Messnarz R., Cachia R. M., Software Process Improvement by
Measurement, in: (ed.) Mittermeir R., Shifting Paradigms in Software Engineering,
Springer Verlag, Wien, New York, September 1992

[10] Huber A., A Better Way to Represent BOOTSTRAP Data, /EEE Software, p. 10,
September 1993

[11] Humphrey W. S., Managing the Software Process, (ed.) Software Engineering
Institute (USA), Addison-Wesley Publishing Company, New York, Wokingham,
Amsterdam, Bonn, Madrid, Tokyo, 1989

[12] ISO 9000-3, Quality Management and Quality Assurance Standards, Part 3:
Guidelines for the Application of ISO 9001 to the Development, Supply, and
Maintenance of Software, 1991

[13] Paul M. C., Curtis B., Chrissis M. B., Capability Maturity Model for Software,
(ed.) Software Engineering Institute (USA), Carnegie Mellon University, Pittsburgh,
1991

[14] Schneidewind N. F., Standard for a Software Quality Metrics Methodology,
Unapproved Draft, IEEE Computer Society, September 1991

Appendix: Calculation of ISO Certification Profiles

The definition of the algorithm is as follows:

Q e Set of all BOOTSTRAP questions

L = {1..5} Maturity levels assigned to questions

S = {0, 33, 66, 100} Scoring of questions

BQcQxLxS S Completed BOOTSTRAP Questionnaire
qeBQ a5 Element of B

I - Set of all ISO 9001/9000-3 attributes
iel - Represents an ISO 9001/9000-3 attribute
P(I) S Set of all possible subsets of 1

F is a function which describes the mapping of BOOTSTRAP questions onto ISO
attributes. The result of F(q) is a subset V of I because one and the same BOOTSTRAP
question sometimes relates to more than one ISO attribute (section 2.3).

F:Bg=P(1), F(@ =V, withV c I
We differentiate between three different categories of questions:

C(q) = Cq ... aquestion which is directly related to an ISO attribute and has to be
satisfied to fulfil the ISO certification requirements;

C(q) = C3 ... a question which covers additional issues that are checked by
BOOTSTRAP but are not required for the ISO certification

C(q) = C3 ... a question which is related to an ISO attribute that is not checked
effectively enough by BOOTSTRAP.
E is an evaluation function which maps a setof n ISO attributes {if, iy, .., iy} onto

a set of pairs {(ig, v1), (2, v2), .., (in, vp)} with vj € I = {0..4} and I}, representing
the ISO certification levels.

AeP(I) .. The set of those ISO attributes for which we can calculate a
certification value
(0] AllqEBQwithieF(q)

E is then defined as follows:

E:P(D)= P(IxI1)

E(A) = {(i1, v1), (2, v2), .., (ik, VK)}, with

im € A, v €I -{0}, for m = 1.k, and |Al =k, |Il=n
and

E(A) = {(k+1> Vk+1)> (k+2, Vk+2), - » (i, Vn)}, with

A RAARAAEANI NI AR AR RN m

O

im€A, vy =0, form =k+1..n

where:

E@=G1) if there are questions q € Q; with C(q)=C; which were answered with less
than significant and the total satisfaction percentage for C1 questions is lower
than 50%

E(@) =02) if there are questions q € Qj with C(q) = C1 which were answered with less

than significant and the total satisfaction percentage for C1 questions is

greater than 50%

EM®)=G3) if each question q € Qj of category C1 was answered with significant or

extensive and the total satisfaction percentage for questions of category C» is

below 50%

E() =G4 if each question q € Q; of category C; was answered with significant or

extensive and the total satisfaction percentage for questions of category Cy is

greater than 50%

Questions with C(q)=C3 are related to those attributes for which we cannot calculate a
certification level. Using this first version of a transformation algorithm and based on
the data of the anonymised SPUx we obtain the ISO 9001 certification profile shown in
Fig. 9.

esPriIT5441 BOOTSTRAP

BOOTSTRAP's Goals

1. Design and Development of an Assessment Method Providing
* an assessment process model

* a questionnaire taking into account European approaches
and standards (ISO 9000, ESA PSS 05)

* a detailed quantitative feedback about strengths and
weaknesses (quality/maturity profiles)

* guidelines for action plan generation
2. Design and Development of a European Database
* storing all general data and quality/maturity profiles

* allowing to perform evaluations for certain market segments
sizes, platforms, etc.

-

* providing information about the state of the art

3. Establishment of an Institute (BI) responsible
* for continuing research on software process evaluation
* for managing database service
* for training BOOTSTRAP assessors

* for managing the licensing policy

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

MATURITY LEVELS OF (OPT[MISING)
SOFTWARE PROCESSES
Process
Improvement
(CONTROLLED)
rocess
Measurement & Control
(DEFINED)
/ Process
Definition
(REPEATABLE)
Basic Management
Control
()

Authors: R. Messnarz, H.J. Kugler, V. Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

7 N ' N\
ISO 9001, 1SO 9000-3 SEI
ESA PSS 05
PROCESS QUALITY
A
TTRIBUTES SCALE
k. / L /
BOOTSTRAP

@ Company
= Projed

Quality Attributes

BOOTSTRAP's Process Quality/Maturity Profile

Life Cycle Functions

'gfé g‘ﬂg g% =8 & ég

—_— —
Calculated Maturity Levels for Attribute Cluster "Life Cycle Functions" of SPUyy and its

project PRIy 1

Authors: R. Messnarz, H.J. Kugler, V., Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

Organisation

Life Cycle
Attributes

Education & Tranung

Process Layer Model / Key Process Attributes

Process
— —‘_"__--_F’_F__-J-_--_F-_F E-HEH__""---_
Organisation Tecl;iﬁology
ity System for each methodolo
gy
o it st hr s
Personnel Selection Methodology = corresponding techmology
Technology Introduction P \\
/ i 0
,-/ R
4 o
/ \\\,

Life Cycle Independent Life Cycle Functions Process Related
Functions Development Model Functions
Project Management Special Processes Process Description /
Config. and Change Mgmit. Spef:iﬁcahon Process T_/‘lodelling
Qual 1ty Managen]ent Desngn . Process Control
Risk Management Prou_)typmg _ Process Measurement
Supplier Management Detailed Design

Implementation

Unit Testing

Integration Testing

Acceptance Testing

Maintenance

BOOTSTRAP s Process Quality Attribute Hierarchy

Authors: R. Messnarz, H.J. Kugler, V. Haase

L JO O O O O S S S T O B T O R R I B R O R

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

e
PROCESS ‘
— i il h" e ST
Attribute (}‘Iuster1 Attribute Cluster2 — Attribute Cluster
Rij“a-h_x TN 1%
/ g Eme
;/ \.\\ xh_ﬁm“w-.‘_w
Aftribut Cluster,, Atiribut Cluster,, ~ Attribut Clusteryp
R _/T\\ /] Y% 1
\\\:H_H_%H“ . / . i
Attributy 4 4 AR 14 B AR 110y
Activities 444
Choeklislﬂ.l
Attribute Based Software Process Model
ATTRIBUTE: RISK MANAGEMENT
Number Level Text / Answers
2219 3 Adoption of requirements to identify, assess, document risks to project

and product associated with modifying SLC or non-SLC activities.
Answers: absent/basic/significant/extensive

2220 2 Adoption of a requirement for identifying the parts of a specification
more likely to show instability.
Answers: absent/basic/significant/extensive

Sample BOOTSTRAP Questions
BOOTSTRAP Version2.22 187 _
process quality attribute hlerarchy flat sequence of questlons
(more than 30 attributes) (6 attributes)
4 point fuzzy reply set & n.a. yes/no
key attributes key questions
takes into account innovations the evaluation is strictly sequential
attributes are as much as possible dependencies between the attributes
independent from each other

U I U A

Authors: R. Messnarz, H.J. Kugler, V. Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective

Quality Management

@nlurily Level)
it

mdicates contains

i \
Frocess Key Process
Capability Area

- achieves { Key Practice)

contains

specifies

— candidates Key Indicator
for

The CMM Structure

Process Maturity)— indicates—— (Process Capability

derived from
1
|@css Cluslcr@* measured by — (I(ey Process Clusler)
: I
derived from contains
| |
@ccss Aﬂribu!c@« measured by — (Key Process Attribute)"

L 3

contains

Questions <—specifies (Kcy Practice for Maturity Level 2)

Questions «— specifies (Key Practice for Maturity Level 3)—

Questions «— specifies (Key Practice for Maturity Level 4)—'

Questions <—specifies ——(Key Practice for Maturity Level 5)—“—'

BOOTSTRAP's Attribute Based Structure

Authors: R. Messnarz, H.J. Kugler, V. Haase

m oYy oY WM WY WE WmE WE WE M WW Ml W O wr M1 Ay Y @l WN WY T Wl %R O WwT O wml wE O ww Sm O wE A MY WY AT oy

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

Quality Quality
Policy System

Control

The ISO 9000 Improvement Cycle

ISO 001 T DeSIgn, Development, Production, Installation, Servicing
ISO 9000-3 Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software

ISO Quality Systems Applicable for Software Management & Development

Authors: R. Messnarz, H.J. Kugler, V. Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

Organisation
Quality System Quality Policy 2 30%
Organisation
Responsibility and Authority 15 80%
Resource Management Organisation
Verification Resources and 10 100%
Personnel
Personnel Selection Organisation
Verification Resources and 10 100%
Personnel
Training Training 4 100%
Methodology
Life Cycle Functions
Specification Design Control
Design Input 12 100%
Design, Detailed Design Design Control
Design Output 10 100%
Design Verification 25 100%
Unit Testing Inspection and Testing
Integration Testing In-Process Inspection & Test | 10 100%
Acceptance Testing Inspection and Testing
Final Inspection & Test T 100%
Inspection & Test Records 4 100%
Transfer Handling, Storage, Packaging and
Delivery
Handling, Storage, Packaging |0 0%
Delivery 2 100%
Maintenance Servicing 13 70%
Life Cycle Independent
Functions
Quality Management Contract Review B 50%
Management Responsibility
Management Review 5 100%
Project Management Design Control
Design and Development 34 90%
Planning
Configuration & Change Design Control
Mgmt. Design Changes 10 100%
Document Control
Document Issue 2 10%
Document Changes 10 100%
Product Identification & 18 100%
Traceability
Inspection & Test Status 2 0%

Authors: R. Messnarz, H.J. Kugler, V. Haase

mmMAmARNRARA AR AR R R R R R R R R R R R AR R AR R

HHHUURUEHAEAORRON ooy Nugoggy

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective

Quality Management
Supplier Management Purchasing
Assessment of Subcontractors |2 100%
Purchasing data 2 100%
Verification of Purchased |2 100%
Product
Inspection and Testing 4 100%
Receiving Inspection& Test 0 0%
Purchaser Supplied Product
Process Related Functions
Process Control Process Control
General Processes 23 100%
Special Processes 14 100%
Control of Nonconforming Product |3 30%
Corrective Actions 20 100%
Process Measurement Quality Records 13 100%
Internal Quality Audits 4 100%
Statistical Techniques 33 100%

ISO 9001 Attributes Mapped onto BOOTSTRAP's Attribute Clusters & Percent Coverage of
ISO 9001 Attributes

Authors: R. Messnarz, H.J. Kugler, V. Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

___ Correct Interpretation of ISO 9001 Attributes through 1SO 9000-3

ISO 9000-3 Attributes that
represent an interpretation
of ISO 9001 attributes

ISO 9001 Attributes
Related to the ISO
9000-3 Attributes

Meaning

joint reviews,
mutual cooperation

contract reviews
management reviews
design verification

* more emphasis on cooperation with the
customer

* the customer is to be integrated into
contractual, design, and management
reviews

* the cooperation with the customer is
explicitely taken into account when
planning the project

purchaser’s management
responsibility

responsibility and
authority

* the customer is part of the organigram
* the role of the customer within the
project must be defined

contract items on quality

contract reviews

* each contract must clearly define the
quality of the product which will be
developed

* a list of quality items should be part of
the contract

purchaser’s requirements
specification

design input

* IS0 9001 directly starts with design

* software business demands a closer
cooperation with the customer (see above)
and thus a specification of the customer's
wishes is required before the design
phase starts

development planning

design and
development planning

* ISO 9001 demands an "activity
assignment” and the definition of the
"organisational and technical interfaces"

* ISO 9000-3 refines this requirement by
including the issues:

- Phases

- Input to Phases

- Output to Phases

- Management

- Methods and Tools

- Progress Control

quality system documentation

* to provide a quality manual

quality plan, quality planning

* to establish a quality plan for each
project based on the quality manual

* quality planning covers the contents of a
quality plan

acceptance planning and
testing

inspection and testing

* test plan, test
documentation

specification, test

field testing

inspection and testing

* testing on the user’s site

maintenance

servicing

* the ISO 9001 attribute "servicing" shall
also include:

- maintenance plan

- differentiation between types of
maintenance activities

- maintenance records and reports

Authors: R. Messnarz, H.J. Kugler, V. Haase

O L U

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

| 5‘3 — .SPUXXI
EE EPRJxx1|
- S, |
|
0--@ . . — . |
2 ¥ 5 E £E 2E |

%’5‘ 5& ¥ & = EE

U= i

‘Sample Part of a Process Quality Profile of SPUyy and its Project PRIy

Management Technology Attainment for PRJ XX1
5 1 g
0,75 E
. Mcthodology
— | [C] Technology
= (}_ n
=
- B
i 2% p &
i 34 @5"
L

Comparison of Management Methodology with Support of Technology

Authors: R. Messnarz, H.J. Kugler, V. Haase

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective
Quality Management

ISO 9001 Certification Profile for SPU XX

ISO Certification Level
(%]

Sa_¥ B BE 3 b B ad B
TH I AN IR ETYE R
LR Y- S% =°& 28 S§4§ i’

R <0

Sample Part of an ISO Certification Profile for the anomysed SPUyy

Authors: R. Messnarz, H.J. Kugler, V. Haase

ddidudugugugduaugudunuugduouodugugugggyouUggggya

PRJ Maturity

BOOTSTRAP ESPRIT 5441: A Quantitative Approach to Objective

Quality Management

A Methodology e Organisation
4
3.5-]:- X=y
.1'.
31
£ 25 |
£ |
; 2
167
1 = im— =
J + ... multiple points
0.5+ ® ... single points
01 ;B})—p ;—+1j5—4 2r +2r5 } 31—; 3;5_._44_’

Comparison of the Maturity Levels for Organisation and Methodology
(Refined Evaluation of 23 SPUs, 49 projects, Jan. 94, [3], [10])

» Design versus Maintenance

4
35 X=Yy

£ ol

5.1

r

%]

= 15
1)

f + ... multiple points
05 e ... single points
0 .0,5.1. '1‘5'2| 12.15‘:,‘, l3‘5‘4= >
Architectural Design Maturity

Comparison of the Maturity Levels for Design and Maintenance Methodology
(Refined Evaluation of 49 projects, Jan. 94 [3], [10])

Authors: R. Messnarz, H.J. Kugler, V. Haase

O

ami:
a new paradigm for software process improvement

Christophe Debou
Alcatel Austria AG
Ruthnergasse 1-7
A-1210 Vienna
Tel : (+431) 39 16 21 268
Fax : (+431) 39 14 52
e-mail : C.Debou @ aaf.alcatel.at

"The maturity movement®. The title of the July 1993 issue of |IEEE software
demonstrates the growing interest of software engineering experts towards
continuous software process improvement. Organizations put in place process
improvement programmes to achieve mature software process development i.e.
process for consistently and predictably producing high quality products.
Measurement is an essential component of process improvement for
understanding the process, monitoring the changes and evaluating the return on
investment. ami (Application of Metrics in Industry) proposes an improvement
paradigm based on the application of quantitative techniques. This paper
describes the process improvement trend and the ami paradigm illustrated with a
real case study.

Keywords:Assessment, Measurement, Software Process Improvement,
Software Quality

1. Introduction

Software process improvement is certainly the keyword of the nineties within the software
engineering community. Conferences, journals make their headlines with this subject though
process improvement has always been implicitly performed, maybe not in an orderly way.
Increased competition and the growing complexity of software systems and surrounding
infrastructure to build it, is forcing more software organizations to improve their processes.
People are aware that not only should the technological aspects of software engineering (e.g.
CASE tool) be addressed but the process issues as well. Before you can automate software
engineering, you must first define and streamline the software process.

Process improvement has its roots in manufacturing mainly from Japan (Kaizen movement)
and from a few American quality Gurus such as W.E. Deming [Dem82], J.M. Juran [Jur88]
or P.B. Crosby [Cro79], who advocate continuous process improvement for improving
products quality. The Shewhart cycle (Plan-Do-Check—Act) made popular by Deming is now
referenced by many software process improvement initiatives [Hum92] [ami92].

The aim of this paper is to introduce a new paradigm for software process improvement which
considers measurement as the principal component of an improvement approach. After a
brief presentation of the necessary requirements for a process improvement approach, the
ami paradigm is developed according to the following frame: origin, paradigm, underlying
theory, organization and pros & cons. The stepwise paradigm is illustrated with a continuous
case study.

2. Software process Improvement: State of the Practice

2.1. The necessary components for a successful software process improvement
approach

By analyzing successful existing software process improvement approaches, necessary
activities/components can be defined:

® Assessing: The current development process has to be assessed to point out the
problems and areas to be improved. The assessment can be conducted against a
written process model or a process maturity model (SEI CMM). Many assessment
procedures have been developed from the SEI CMM such as Trillium [CoD92] (Bell
Canada) or BOOTSTRAP [Koc92]. Therefore, an assessment procedure and
optionally an evolutionary maturity model or a best practices list or a generic
software development model is needed.

® Modelling: Process improvement requires a basis for defining and analysing
processes. In that context, process modelling can fulfill many roles [CKO92] such
as the detection of problem areas, estimation of impact of potential changes to the
software process (simulation), comparison of alternative software processes, ... A
process modelling formalism is needed.

® Improving: Improvement actions resulting from the assessment are implemented
and monitored (measuring). An improvement framework for quantitative
evaluation of improvement goals is needed.

® Measuring: Measurement is considered as a monitoring or controlling tool on the
one hand and as a support for decision making with respect to process improvement
on the other hand. A measurement framework (guidelines for measurement plan
production and implementation) is needed.

mn L a) ww mma mn wn

T

oo oooroDogggLgggoogg

Beside these components, an improvement organization should be put in place for
sponsoring, coordinating, implementing and promoting the improvement initiative.

All those components are drawn on Figure 1 to build the
Modelling/Assessing/Measuring/Improving paradigm. The coverage of the ami paradigm is
indicated as well i.e. the quantitative aspect and the assessment and improvement
procedures. The next chapter briefly surveys existing software process improvement
approaches.

o

£

© 2
S| E 5|
£l S t|s
ol w o|@
=Y oo
ol 8 S| E

Process Product Resource (77 -1
N
K g
! b (1]
mprovement 2 g Assessing
Improvement actions - ssessment procedure
X,
identify @&
P
)
Theoretical Model Modemrg @b"o
(modelling) Process Model
Process maturit

Figure 1: The Modelling/Assessing/Measuring/Improving paradigm

2.2. Taxonomy of software process improvement approaches

D. Card [Car92] identified two basic approaches to process improvement namely the
analytic approach and the benchmarking approach.

1) The analytic approach relies on quantitative evidence to determine where improve-
ments are needed and whether improvement initiative has been successful e.g. She-
whart cycle [Dem82] or the Software Engineering Laboratory (SEL) approach [BCM92].
The SEL has conducted successful experiments during the last 17 years evaluating
promising technologies like Ada, Cleanroom, OO, ...The SEL combines a quality im-
provement paradigm with a measurement framework namely the Goal/Question/Metric
paradigm[BaR88]. In addition, the concept of experience factory [Bas92] covers the re-
use of experience and collective learning. Improvement means are determined through
controlled experiments.

2) The benchmarking approach depends on identifying an “excellent’ organisation and
documenting its practices and tools. The most famous benchmarking approach is the
Software Engineering Institute (SEI) Capability Maturity Model [CMM93a, CMM93b]
which will be roughly described in the ami presentation (Chapters 4. and 3.4.). It works
under the assumption that an organization who will adopt these practices and tools will
become also excellent: "Learn from the best”.

To this taxonomy, a mixed approach (e.g. the ami approach) can be added considering
measurement as the basis for improvement but relying on a evolutionary model of
development process capability and maturity.

3. ami: a quantitative approach to process Improvement

3.1. Origin

ami (Application of Metrics in Industry)? is a two-year program which started in December
1990 under sponsorship of DG XllI of the Commission of the European Communities through
the ESPRIT programme promoting the use of measurement in software development. The
goal of the project was to develop a practical approach and to validate it on a variety of
projects all over Europe . This approach is described in the so—called ami handbook [ami92].
ami was not a purely theoretical work but reused and adapted existing technologies such as
the SEI CMM [Hum89,CMM93a,CMM93b] and Goal/Question/Metric paradigm from Basili
and Rombach [BaR88] to build the ami paradigm: Asses-Analyse—Metricate—Improve.
The ami approach is similar to the Shewhart cycle (Plan-Do-Check-Act) for process
improvement. ami has taken this cycle, based on common sense principles, and developed
it for software measurement.

3.2. Process improvement paradigm

The ami method of introducing and conducting a software measurement programme
[DLP92, DLS93] is a twelve—step, iterative, incremental, goal—oriented procedure coupling
together a model-based process assessment technique with a quantitative approach to
software development issues from the viewpoints of process, products and resources. The
twelve steps are grouped by three in activities. A schematic description of the ami paradigm
is given on Figure 2 and all steps are described in chapter 4.

Why to consider ami as a process improvement paradigm? ami can be applied for many
purposes when measurement is used for management or decision making and therefore
also for process improvement. The whole approach offers a complete framework for process
improvement while fulfilling the main requirements for such approach: lterative (continuous),
goal-oriented, quantitative, involvement of everyone, necessary management commitment.
This paradigm encompasses the main components for process improvement as defined in
chapter 2. However, some of them have to be instantiated (e.g. assessment procedure,
process modelling technique).

1. The ami consortium comprises: GEC Marconi Software Systems (UK), Alcatel Austria Forschungszentrum (Austria),
Bull AG (Germany), Objectif Technologie (France), GEC Alsthom (France), ITS (Spain), Olivetti Group (ltaly), RWTUV (Ger-
many) and South Bank Polytechnic (UK).

R R EEE R EEEEEEEE'E

SEI CMM

Primary goals Improvement actions

References to

g goals
Measurement data

Figure 2: The four activities of the ami paradigm

3.3. Organization

It is necessary to identify the participants in the improvement initiative and then to assign
responsibilities. Besides concerned project members, two main roles are considered in ami.
The Metrics initiator is responsible for the organization, allocating the budget and
establishing the strategical orientation. He is likely to be a senior manager. The metrics
promoter has the responsibility for the coordination and organization of the initiative on a
day-to—day basis.

3.4. Underlying "theory”

The ami paradigm is a combination between a software process definition in terms of entities
of the process, product and resources and their related attributes, and an improvement
framework illustrated by the SEI CMM and the Goal/Question/Metric paradigm. ami attempts
to cover the whole improvement cycle (alike the Shewhart cycle Plan/Do/Check/Act
described in [Dem82]). It is slightly different from the SEL approach since a maturity model
is advised for validating the feasibility of a goal.

The relationships between ami and other process improvement approaches are twofold:

® ami integrates and enhances to its purpose existing approaches (SEI CMM,
Goal/Question/Metric paradigm). Concerning the CMM, the measurement scope is
extended to support extensively, decision making at all maturity levels.
e amiis a "tool" for controlling (and improving afterwards) the conduct of process
model techniques, i.e. a given phase, the passage from a maturity level to another
(SEI CMM) or the introduction of ISO 9000.
One the hand, ami would like to stay generic and let the user choose his own model of
software process development or process maturity improvement. But too much abstraction
does not lead to a DE facto acceptance of the approach. Therefore, the SEI CMM is
advocated mainly for validating the primary goals. The relationships between the CMM and
the ami model is depicted in Figure 3.

c ami |
M

™ Area of
improvement
entity /attributes — m

mple-

mentation | &
l

SEl questions / |

Decisions |

Figure 3: Coupling ami with SEI CMM

ami runs top—down i.e. the primary goals are mainly management goals and are broken
down into more manageable goals until directly quantifiable goals (directly definable with
metrics) are defined. The goal tree whose leafs are metrics stimulates decision making
necessary for improving the process. On the other hand, from the SEI questionnaire,
weaknesses and area of improvement are highlighted, the latter being related with the key
process areas. This is used as input to the definition of the primary goals whose ambition
level has to relate with the global level of the maturity of the software development process.
An empirical relationship between the goal and the level of maturity is established. The
higher the level of maturity is, the more ambitious the goals can be. Two classes of goals are
considered: Knowledge goals (to evaluate, to monitor, to understand,...) requiring SEl level
2 upwards and Change goals (to increase, to reduce, to achieve, to change,to improve)
requiring at least level 3.

4. "Assess” activity: assessing the project environment.

To illustrate the description of each step, a continuous case study is added. This project is
one of the 20 validation projects performed during the ami project. This is a real-time
embedded software project in a maintenance phase.

4.1. Step 1: Assessing the project environment

The aim of this step is to point out weak areas, critical and problematic parts of the
development process. The ami consortium advises the use of Capability Maturity Model
[CMM93a, CMM93Db] defined by the Software Engineering Institute. The outcome of this
particular procedure is not only the scaled result of the assessment in terms of a maturity level
(from 1 to 5), but an overview of critical items that serve as an input for defining the primary
goals for improvement of the process and measurement of their characteristics. Although
recommended, the assessment is not restricted to the SEI CMM procedure. A quality audit
or similar investigation is valid as long there is a guarantee of getting an objective and
sufficiently exhaustive view of the development process. A European variant of the SE| CMM

- - - - . L e - - - -

rwa

O IO T

has also been developed during the ESPRIT project 5441 BOOTSTRAP [Koc92] which
includes ISO 9000 issues in the assessment method.

Case study:

The project is a real-time embedded software project in the maintenance phase. The
management perceived a number of risk areas that the use of metrics would aid in controlling
and monitoring e.g. productivity, estimating, software quality. According to those areas, a
budget was agreed with the project manager and the senior engineer was allocated to the
task of metrics promoter. The SEI CMM was used to assess the project involving the project
manager, the project quality manager and the department quality manager. The results of
the assessment confirmed the underlying feeling of where the weak areas of the project lay.
The assessment also indicated other weak areas like training but these were in fact to be
addressed at a higher level of management.

4.2. Step 2: Defining primary goals for metrication

The knowledge of status quo within the development environment allows one to express the
objectives of participating subjects in terms of primary goals. They can include business
objectives, environment-specific objectives, goals resulting from the assessment step etc.
At the beginning a reasonable number is 1 or 2 per project.

4.3. Step 3: Validating primary goals

This is a very important and sensitive step which may result into success or failure of the
entire improvement programme. Goals established in the previous step are to be validated
in order to ensure their consistency in terms of:

e Consistency between goals and your assessment conclusions,
® Consistency between selected goals and time scales,
® Consistency between goals and budget.

The degree of ambition of the goals should also be checked in two ways:

® Check the difficulty of the goal against the ability of the development environment
to fulfil it. From this viewpoint, there are two classes of goals: knowledge goals (to
evaluate, to monitor, to understand, to predict...) and change goals (to increase, to
reduce, to achieve, to change, to improve...). The first class is applicable from matu-
rity level 2 upwards, the other requires at least level 3. Therefore, metrication has
to be first supported by knowledge goals before making use of improvement goals.

® Check the timeliness (short/mid/long term) of the goals resolving inconsistencies
and giving priorities based on agreement of all participants.

Case study:

Interviews with the main project actors allowed the identification of primary goals. At the start,
there was a great temptation to go straight for improvement goals. But, it became apparent
that one need first to establish baselines against which improvement could be measured.
This was reinforced by the level of maturity. From an initial set of 10 goals, 6 were selected
from project members at different levels and areas of interest. In examining them, certain
goals were identified as being sub-goals of other goals. So a goal tree could be produced
in anticipation. We will focus on the following goal: G1 To gain a better understanding of
project software quality?

5. "Analyse” activity: Defining goals and metrics.

5.1. Step 4: Breakdown of goals to sub—goals

This step is a simplified adaptation of Basili's Goal/Question/Metric paradigm [BaR88), a
flexible method for refining goals of any level to metrics using process and product related
questions. The thinking process for decomposing goals into sub—goals is documented with
a table of questions and a list of related entity-attribute pairs. The decomposition process
runs as follow:
goal_level = primary
Repeat

define the list of entities related to each goal of goal_level

For each entity of the 1list

Ask qguestions related to the goal

Decomposition in sub-goals

decrement goal_level
Until quantifiable sub-goals are attained

Case study:

The metrics promoter collected a lot of information on goals at a number of levels in the
organisation. The project perceived that there were three areas that we needed to consider
in the context of quality:

1. Where did the errors occur in the code? Did some software parts cause more errors than
others?

2. What about test coverage? Were some code parts missed during testing?

3. What sort of turn around were given to report software errors?

Other issues could have been raised to gain further insight into this goal e.g. to measure the
complexity of each module. But, it was decided to restrict on these three sub—goals because
they could be achieved with little change to the project organization and little additional load.
One sub-goal is considered for our purpose:

G1.1 Provide information on the location of software errors?

5.2. Step 5: Verifying the goal tree
The verification includes checks of:

® Homogeneity of levels of detail in each branch of the tree,

® the internal consistency of the tree i.e. no contradiction between goals and sub—
goals.

® the external consistency of the tree i.e. the relevance of the goal tree to primary
goals.

5.3. Step 6: Identification of metrics by questions

An additional questioning procedure with the aim to describe sub—goals in a quantitative way
is applied on a validated goal tree with elementary sub—goals (expressible with metrics) on
the leaf level. The outcome is a set of metrics covering the goals selected in the appropriate
step of the measurement programme. ami offers a so—called basic metrics set which has
been proved as useful if starting a measurement programme for the first time.

Case study:
The questions derived from the sub—goal G1.1 are:

HdHUdUdUdAA AN NdduuduuuyuuuyG

Q1.1.1 In which modules are software errors located and what type are they?
Q1.1.2 In which functions are software errors located and what type are they?
The derivation of the metrics was quite simple:

M1: Software error location function and module reference.

M2: Software error classification

6. "Metricate” activity: Implementing the measurement plan.

6.1. Step 7: Writing the measurement plan

The measurement plan should contain all information of interest for the metric data collection
procedure as objectives of the measurement plan, metrics definitions, metrics analysis
procedures, responsibilities, timescales, references and a logbook for recording
measurement activities. In addition of being a plan for the collection of data, the
measurement plan records information of the software development environment, the
software development process, the strengths and weaknesses of the environment and
process, and a standard for communication between the participants. The Handbook
includes precise templates for the measurement plan and metrics definition.

6.2. Step 8: Collecting primitive data

Collection is performed manually (e.g. using collection forms) or automatically by support of
tools for static analysis (size, structure of code, documents, etc.), dynamic analysis
(statement coverage during testing, etc.), configuration management (number of faults, run
times, change requests, etc.), project management (schedule, costs, etc.) and data
management (measurement data). A metrics database (or simple spreadsheet) belongs to
the kernel of the system.

Case Study:

The majority of data was collected manually and drawn from existing sources within the
projects such as library systems, quality assurance reports and configuration control.
Overall, there was a feeling that using tools to automate the collection process would have
reduced the collection effort and increase the data accuracy.

6.3. Step 9: Verifying the primitive data

The metrics data should be verified as they become available in order to allow corrections
and additions. Furthermore, the accuracy of the data collection process may be quantified.
Motivating feedback to the data collectors can be provided. During data verification any
obviously unusual data (outliers) should be detected and the reasons should be identified.

7. "Improve” activity: Exploiting the measures.

7.1. Step 10: Data presentation and utilisation

Any controlling, changing and/or improvement activity starts with an appropriate
presentation of the measurement data. Advantages of graphical presentation aids against
statistical techniques are robustness (because of no underlying statistical assumptions) and
their user-friendliness as information is conveyed in a more clear way.

7.2. Step 11: Validating metrics

Validation of metrics means showing that they are adequate for the purpose required for
them. This can be done through a procedure that is either objective or subjective. For an

objective validation we compare the measurement data with an expected trend or with an
expected correlation to other data. In a subjective validation people who are involved in the
process give an opinion as to whether the metrics corresponds to the sub—goal.

7.3. Step 12: Relating the data to goals

Goals for metrics within the knowledge class are categorized between evaluation
(understanding) and prediction goals. When dealing with prediction goals, the interpretation
of data may require a model (e.g. cost, reliability, quality models) to relate an inherent
property of the software (metrics) and the final performance of the product.

By relating data to goals, the objective is to determine if goals are fulfilled, how quickly they
are fulfilled and if not fulfilled, then why. This last step involves producing an action plan based
on the collected data which can involve improvements to the development process. From this
action plan, this step will also include a modification of the primary goals. In the case of
improvement actions, new goals will cover the monitoring of those actions.

Number of errors .
found during integration o Degree of module testing o
6 2
Dlogical
5
Ialgorithmic
4
3 1
2
1
e 0 i b i ! MDdUIBS
ml m2 m3 méd mS§ mé6 m7 Modules mi m2 m3 m5 mé m7

Figure 4 : Organization of the measurement process

Case Study:

The metrics promoter assembled the results and presented them to the project manager in
a combination of tabular and graphical diagrams. This was prepared 6 months after the start
of the initiative when results were sufficient to show trends. At this early stage,the project
realised from the reports that some of the metrics were not as valuable as initially thought.
Some of them were dropped while others were collected in a modified form. This number
could have been greater if the verification steps had not been carried out. A simple example
of interpretation is given on Figure 4. The left chart provides the distribution of errors (logical
and algorithmic) within modules (a significant sample). It shows which parts of the system
are particularly error-prone and the types of errors and therefore give insights for the goal
G1.1. This can be also related with another goal dealing with the identification of well-tested
part in the software. A comparison can then be made to see if the more poorly tested parts
ofthe software are the part where the most errors are found. The right chart gives per module
the degree of module test (0 means minimum testing, 1 average testing and 2 maximum
testing). It appears that more errors, essentially algorithmic, occurred in less tested modules.
Finally, a better view of the software in terms of error-proneness and testing was provided
and will drive the implementation of improvement actions mainly concerning the module test
phase.

=10

MR nRneBnnnBe BNl M

O

The step 12 is the last step of the ami loop, often seen as a feedback step, since the method
is iterative and incremental in its nature. The Figure 5 summarizes the 12 steps.

After stepping through the loop, it is worth quantifying the initial benefits of the improvement
programme. The iterative aspect of the method permits either, by a reassessment, the
refinement of goals and metrics set, but also the improvement of the metrication process
(data collection, storage, analysis...). Having an appropriate degree of experience and an
appropriate amount of information from the measurement process, improvement action can
be taken depending on the goals fulfilled.

Inputs Support
Enterprise plans & :
Business driven goals ﬁf;btl::rﬂaabr::tly ::Isatumy Mociel
Environmental information Assess Exrreion ot yrima i
Past measurement data P P e
Quality audits

1. Assessing the project environment
2. Defining primary goals for metrication
3. Validating primary goals

Entity table template

Primatymeticaion gosis Analyse | set of example goals and metrics

4, Breakdown of goals to sub—goals
5. Verifying the goal tree
6. Identification of metrics by questions

Goal tree, questions
Metrics specifications

Measurement plan template
Metrics definition template

7. Writing the measurement plan
8. Collecting primitive data
9. Verifying the primitive data

Measurement plan

Colected dafa Presentation and information guidelines

10. Data presentation and utilisation
11. Validating metrics
12. Relating the data to goals

Figure 5: The Structure of the ami Method

=

8. Pros &Cons

@ Pragmatic and economic approach for software measurement & process
improvement

The ami approach is an excellent means for selling software measurement and its necessity
for process improvement. This goal-oriented approach is rather straight-forward to apply
and self-contained. The efficient use of measurement is demonstrated through a wide range
of examples and case studies [DLS93]. Several experiences have already been published
in the telecommunications [DPF92, DeS93, DFS93] and Defense [PFS92] areas.

This was necessary to convince management to introduce the measurement activity. The
scope of applying ami was not only the measurement aspect but also the software project
management issues and internal decision making.

As an approach for introducing measurement, ami has the following advantages against
other approaches like a bottom-up approach (First collect data then think what you can do
with them!):

® Ease of implementation of a measurement programme; easy-to-use and
pragmatic approach described in a structured sequence of necessary actions

® Minimal cost impact, predictable costs with a limited variance; Selection of the
appropriate metrics for the appropriate goals with a clear link to decision making.

® Motivation of the project staff; Address directly the user’s needs by providing him
a goal-oriented and customized set of metrics.

© Abstraction - validation

So far, the ami users are satisfied with the 12 steps. Comments were given by some
members of the Software Engineering Laboratory mainly saying that these 12 steps are
somehow too abstract. Further validations are claimed to ensure that the 12 steps are really
needed. New experiments will certainly lead to a refinement and a periodic actualization of
the method (specially for the assessment activity). The ami approach is more higher level
compared to SEI and SEL. It needs to be further documented with new experiences. A
necessary activity is to build an ami experience database (goal trees, ...). The ami tool
already includes many examples of goal trees.

9. Conclusion

ami is more than a process improvement approach because of its generic aspect. It can be
applied for software project management whenever data is needed for decision making. The
intensive use of the SEI CMM makes ami in its current status a process oriented approach.
Therefore, ami will have to follow the standardization initiative in this area, mainly SPICE
(ISOJTC1/SC1/WG10) which was approved to develop international standards for Software
Process Improvement and Capability Determination. Even quality management system
standards (new ISO 9000 foreseen for 1996) will reenforce their process view and the
necessity of a Total Quality Management approach and continuous process improvement.

Intensive promotions are currently being conducted to gain the status of de facto standard.
The 12 steps of ami will remain since their acceptance is big. The contents of each step will
have to be enhanced and instantiated. For instance, the use of a process modelling technics
would facilitate the assessment activity.

A critical point which is not addressed by ami is the management of knowledge and
experiences within an organization. Improvements of the process are to be documented and
promoted across the company. Bill Curtis, former director of SEI software process program

=12 =

RN

raised this issue and considers that sharing the knowledge within an organization is a
dominant factor in increasing the software development productivity. The SEL experience
factory is certainly the best existing example of organizational knowledge database.

At least, ami users are able to share their experiences in the ami newsletter and very soon
through an ami user group. Even a mailing list has been recently set up (send subscription
to ami-request@aaf.alcatel.at).

Acknowledgments:

The author would like to thank all partners involved in the ami project who permits this work
to be carried out. Thanks also to all ICSN reviewers who helped in the refinement of this
paper. ami was partly supported by the Austrian Innovations und Technologiefonds”

10. References

[AMI92] Esprit I 5494 ami: ami Handbook, Published version, March 1992.

[Art93] L.J. Arthur, Improving software quality, an insider’s guide to TQM, Wiley series in sofiware engineering
practice, 1993

|BaR88| Basili, V., Rombach, H.: The TAME Project: Towards Improvement—Oriented Software Environments,
IEEE Transactions on Software Engineering, Vol 14, Number 6, June 1988.

[Bas92] V.R. Basili, The experience Factory: Can it make you a 5 ?, proceedings of the 17th annual software
engineering workshop dec 1992, Goddard NASA center, Maryland (USA).

[BCM92] Basili V., G. Caldiera, F. McGarry and al.: An Operational Software Experience Factory, Proceedings of
the 14th International Conference on Software Engineering (ICSE 92, May 1992,

[Car91] Understanding process improvement, D. Card, IEEE software, July 1991,

[CMM93a] Paulk M C, Curtis B, Chrissis M B: Capability Maturity Model for Software, version 1.1, CMU/
SEI-93-TR-24, February 1993.

[CMM93b] Paulk M C, Weber C V, Garcia S M, Chrissis M : Key practices of the Capability Maturity Model, version
1.1, CMU/SEI-93-TR-25, February 1993.

[CoD93] F. Coallier, J-N Drouin, Bell Canada, Developing an assesment method for telecom software system:
an experience report, Proceedings of 3rd european conference on software quality, Madrid, Nov 1992.

[Cro79] P.B. Crosby, Quality is free, McGraw-Hill, 1979

[CKO92] B. Curtis, M. Kellner, J. Over, Process modelling, Communication of the ACM, September 92, vol 35,
No 9.

[DeS93] Debou C, Stainer S.: Improving the maintenance process: a quantitative approach, In: Proceedings of
the 6th intemnational conference on software engineering and its application, Paris, Nov 1993.

[DFS93] C.Debou, N. Fuchs, H. Saria, Selling believable technology, IEEE Software, Nov 1993.

[DLP92] Debou C, Liptak J, Pescoller L: Managing Software Process by Applying ami. In: Proceedings of the

MSP-92 IFAC ~ annual review in Automatic programming, volume 16, Graz, May 1992.

[DLS93) Debou C, Liptak J, Shippers H.: Decision making for software process improvement: a quantitative
approach, In: Proceedings of the 2nd internation conference on "achieving quality in software” ACQUIS
93, Venice (Italy), pp 363-377, Oct 1993.

[DPF92] Debou, C., Pescoller, L. and Fuchs, N.: Software Measurements on telecom systems — Success stories
? : Proceedings of the 3rd European conference on software quality, Madrid, November 1992,

[Fen91] Fenton, N.: Software Metrics: A Rigorous Approach, Chapman Hall, 1991

[HumB9] Humphrey, W.: Managing the Software Process, Addison-Wesley, Reading, Mass., 1989.

[Hum92] W.S. Humphrey, Introduction to software process improvement, SEI technical report, CMU/
SEI-92-TR-7, June 1992

[Jur88] J.M. Juran, Juran on planning for quality, MacMillan, 1988

[Koc92] G. R. Koch, THe bootstrap initiative - reported benefits for the industry, Proceedings of the IPSS—Eu-
rope International conference on lean software development, Oct 1992, Stutigart (Germany).

[PFS92] |. Perez, P. Ferrer, A. Fernandez: Application of Metrics in Industry : Proceedings of the 3rd European

conference on software quality, Madrid, November 1992,

e

SCOPE: A guide for Software
Product Quality Evaluation

Jgrgen Bgegh,
DELTA,
Venlighedsvej 4, DK-2970 Hgrsholm, Denmark
tel. +45 42 86 77 22 fax. +45 42 86 58 98

1. Introduction

The methods and techniques developed to support process analysis and assessment are
very usefull in order to achieve software products of good quality. However, with our
present knowledge it is not sufficient to control the process. It is also necessary to
control the product, both the intermediate products and the end product. Methods for
software quality measurement are therefore a necessary supplement to process measu-
rement. This paper describes a scheme for independent third party demonstration of
software product quality.

The scheme for quality evaluation of software products was developed by the ES-
PRIT II Project 2151 SCOPE (Software CertificatiOn Programme in Europe). The
main results from SCOPE has been adopted by ISO and is currently in the process of
becomming international standards.

2. International standard ISO/IEC 9126

Currently the relevant international standard for software evaluation and metrics is
ISO/IEC 9126: Information technology - Software product evaluation - Quality cha-
racteristics and guidelines for their use [1]. The main purpose of the standard is to
identify the six important software quality characteristics:

Functionality - A set of attributes that bear on the existence of a set of functions and
their specified properties. These functions are those that satisfy stated or implied
needs.

Reliability - A set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time.

Usability - A set of attributes that bear on the effort needed for use, and on the in-
dividual evaluation of such use, by a stated or implied set of users.

Maintainability - A set of attributes that bear on the effort needed to make specified
modifications.

Portability - A set of attributes that bear on the ability of software to be transferred
from one environment to another.

Efficiency - A set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under stated condi-
tions.

In order to apply ISO/IEC 9126 in practice guidance is needed on how to state qua-
lity requirements and specifications, how to develop and select indicators and metrics,
and how to interpret and report evaluation results. This information will be provided
in guidelines to the standard. The most important guide in this context is the evalua-
tors guide [2]. It takes a quantitative approach to evaluation and makes use of rigor-
ous metrics. The evaluation metrics are structured in evaluation modules. They are
described in the guide to producing evaluation modules [3].

In the following the SCOPE evaluation scheme as described in the evaluators guide
and the guide to producing evaluation modules is introduced. A more thorough des-
cription can be found in [4] and [5].

3. The Evaluators Guide

The evaluators guide guidance for those who perform independent software product
evaluation professionally and those who demand independent quality evaluation. It
defines a procedure for obtaining a quantitative statement about the quality of a
software product. The quality aspects refered to are those identified in the standard
ISO/IEC 9126. The evaluation procedure described in the evaluators guide is intended
for:

" testing laboratory evaluators, when they provide software product evalua-
tion services,

* software producers, when they plan independent evaluation of their pro-
ducts,
" software customers, when they specify acceptance evaluation in their

contracts with software producers,
» software users, when they study evaluation reports.

The evaluation procedure divides the evaluation into discrete activities which are
performed by the evaluator. The first step is the analysis of the requirements of the
evaluation. In the next step the evaluation specification is developed. The third step is
the design of the evaluation plan including the selection of evaluation modules and
the fourth step is the conduct of the evaluation. The final step collects the results of
applying the evaluation modules in an evaluation report. Figure 1 gives an overview
of the evaluation procedure.

4. Analysis of evaluation requirements

Before the evaluation can start the quality requirements of the software product must
be carefully analysed. This analysis must take into account the demands of the en-
vironment where the software is to be used. Also relevant laws and regulations must
be considered. The quality requirements are formulated in terms of the quality charac-
teristics in ISO/IEC 9126.

All six characteristics are not equally relevant for all software products. Therefore, all
characteristics need not be evaluated for all products. For example, in mission critical
software reliability is most important whereas efficiency is a major concern for time-
critical, real-time systems. Interactive end-user software has high requirements to usa-

M & M T T T T M T T T T O FF T T T WL T T O WE L O 'FI W W I W Wl AT W el e e mew sew

O

applications

1

and standards

ANALYSE evaluation
EVALUATION items
REQUIREMENTS
I
SPECIFY evaluation
~—| THE techniques
evaluation EVALUATION
requirement s ‘m———— |
DESIGN evaluation
— THE modules
evaluation EVALUATION
specificationms—
CONDUCT
THE
evaluation EVALUATION
plan
evaluation
results

1 II \I T 1
| REPORT EVALUATION RESULTS I

FIGURE 1: The information flow and main activities of the evaluation.

bility. For most types of software the functionality and maintainability characteristics
must be evaluated.

The needed stringency of the evaluation will depend on the criticality of the applica-
tion of the software product. This includes safety, security, economic and environ-
mental considerations. It is part of the analysis to decide the right evaluation level.
There are four levels, named A, B, C and D. The levels constitute a hierarchy with A
as the highest level (the most stringent evaluation). At the D level less stringent
evaluation techniques are used The selected quality characteristics need not all be
evaluated at the same level. Figure 2 gives some guidance on how to select evalua-
tion level.

5. Specification of the evaluation

The evaluation specification is derived from the evaluation requirements. Thus the
evaluator needs to perform a careful analysis of the documentation submitted for the
evaluation. First the documentation is formally identified. The identification includes
document identifier, title, special characteristics and legal implications of their han-
dling such as confidentiallity requirements.

level Safety Security Economic Environment

D No risk to No specific Negligible No environ-
people risk economic loss | mental risk

C Few people Protection Significant Local polution
disabled against error economic loss

B Threath to Critical data Large eco- Recoverable
human lives and services nomic loss damage

A Many people Strategic data Financial Unrecoverable
killed and services disaster damage

FIGURE 2: Guidelines for selecting evaluation level.

Then the submitted items must be divided into the following categories:

£

product parts which has been produced during the development project
(e.g. executable code, source code, requirements specification, user docu-
mentation),

product information parts which describes the software product under
evaluation (e.g. review reports, test reports),

other information parts which shall not be evaluated but will provide
necessary information (e.g. programming language manuals).

This categorisation is useful when deriving quality attributes. Quality attributes are
quality properties of the software product. Examples are specific functionality or
reliability properties, general properties of the code and its documentation implying
good workmanship, or conformance to a particular standard.

The evaluation specification must state unambigously the quality attributes to be
evaluated. They should be ordered according to the quality characteristics identified in
the evaluation requirements. The evaluation specification comprises

*

characteristics to be evaluated,
the level of evaluation,
attributes of the product to be evaluated formulated as exact references

to the product, to relevant standards and/or supplementary quality re-
quirements.

Finally it must be checked that the product parts, product information parts and other
available informations are sufficiently detailed for conducting the evaluation.

idddduuududguguududdguuduuuuooLLyG

6. Design of the evaluation

The software characteristics identified in ISO/IEC 9126 and the four evaluation levels
are related to evaluation techniques as shown in figure 3.

Charac- Level D Level C Level B Level A

teristic

Functionality || functional + review of + component | + formal
testing documents testing proof
(black box) (glass box)

Reliability programming | + fault + reliability + formal
language tolerance growth proof
facilities analysis model

Usability user + interface + laboratory + user
interface standards testing mental
inspection conformity model

Efficiency execution + benchmark | + algorithmic | + perfor-
time testing complexity mance
measurement profiling

Main- inspection of | + static + analysis of | + traceability

tainability documents analysis development | evaluation
(checklists) process

Portability analysis of + program- + constraints | + program
installation ming rules evaluation design

conformity evaluation

FIGURE 3: Relation between quality characteristics, evaluation levels and evaluation
techniques.

The evaluation techniques identified in the table of figure 3 are used to select a set of
evaluation modules. They are chosen from a library of evaluation modules. This
involves searching the library for evaluation modules which can be applied in the
evaluation of the relevant attribute of the software product. In particular, each selected
evaluation module must be applicable to the product part it is to be used on.

At the moment no publicly available evaluation module libraries exists. It is the
responsibility of the testing laboratory to develop and maintain such libraries. How-
ever, it is envisioned that ISO will take the responsibility of producing a set of stan-
dardised evaluatin modules. Evaluation modules are discussed more detailed in sec-
tions 9 and 10.

When the relevant set of evaluation modules has been identified the final evaluation
plan is produced. This includes allocation of manpower and other resources and
fixing the time schedule for performing the evaluation. At this point it is also possible
to derive a precise cost estimate for the evaluation.

7. Conducting the evaluation

Conducting the evaluation means applying the selected evaluation modules according
to the evaluation plan. Results of applying the modules must be documented, both for
the evaluation report and for the internal records of the evaluator. For independent
testing laboratories the reporting must be in accordance with ISO Guide 25 [6].

8. Reporting of results

The evaluation report represents the major deliverable to be supplied by the evaluator.
The table of contents of the report closely reflects the steps of the evaluation proce-
dure. Each of the main steps is documented separately. The recommended table of
contents is the following:

1. Preface
Identification of producer and evaluator

2. Evaluation requirements
Product overview, quality characteristics, evaluation level

3. Evaluation specification
Identification and classification of items, detailed specification

4. Evaluation plan
Selected evaluation modules, evaluation process planning

5. Evaluation results
Results of applying the individual evaluation modules

6. Conclusion
Evaluation result

9. Evaluation modules

The evaluation procedure described relies extensively on evaluation modules. Evalua-
tion modules provide a flexible and structured approach to making software indicators
and metrics applicable for evaluation of processes, products and intermediate products
as described in the guides to ISO/IEC 9126. The use of evaluation modules produced
and validated according to the evaluation module guide ensures that software evalua-
tions can be repeatable, reproducible and impartial.

The definition of an evaluation module is short: "A structured set of instructions and
data used for evaluation." An evaluation module specifies an evaluation method
applicable to evaluate a quality characteristic and identifies the evidence needed. It
also identifies the elementary evaluation procedure and the format for reporting the
measurements resulting from the application of the technique.

10. Format of evaluation modules
An evaluation module has six parts each serving different purposes. Part 1 is used for

administrative purposes. Part 2 gives the high level selection criteria and part 3 provi-
des information for the selection of evaluation modules in actual evaluations. Part 4

HHUHUUUUNUEUUUUNUUUUUUUDUOUDUOUUWOOOWWmm

defines the data to be collected and the metrics to be calculated. Part 5 explains how
to interpret the measurement results and finally part 6 contains detailed procedures for
applying the evaluation module. The format is as follows:

EM1: Identification
Name, Version, Author, Status

EM2: Type of evaluation
Evaluation object, Quality model

EM3: Evaluation requirements
Characteristics, Evaluation level, Technique, Input

EM4: Evaluation specification
Definitions, Principles, Scope, Data, Metrics, Specializations

EMS: Interpretation of results
Mapping of metrics, Acceptance criteria, Reporting, Specializations

EM6: Application procedure
Definitions, Resources, Procedures, Documentation

11. Experiences with software quality evaluations

In the SCOPE project 27 trial evaluations were conducted. The main objectives were
to demonstrate the practical feasibility of the evaluation method and to obtain some
feedback from real evaluations. The trial evaluations covered a wide range of applica-
tions including administrative and technical systems, software tools, communication
protocols, and embedded systems. Furthermore, commonly applied development
approaches were covered such as standard third generation life-cycles, prototypes and
systems developed in 4GL. The set of trial evaluations includes the applications listed
in figure 4.

Process control Accounting

Electronic mail Traffic control

Medico Stock management

Phone exchange Operating systems
Desktop publishing Management info systems
EPOS Process monitoring
Picture generation Compiler

Message handling Image processing
Graphical analysis Fire alarm

Figure 4: Application areas in trial evaluations.

The trial evaluations gave useful information on many aspects of the evaluation
procedure. The efficiency and effectiveness of the evaluation method was assessed by

- monitoring the effort incurred from applying the evaluation modules as well as their

impact on the result of the evaluation.

In general, all companies involved in the trial evaluations were positive towards the
evaluation process, the results, and the experience they had gained through their
participation. The experiment showed that it is feasible to carry out software product
evaluation according to the evaluators guide.

Based on the evaluators guide DELTA has implemented a software product evalua-
tion service called MicroScope. This service is offered as an independent third party
evaluation. As part of MicroScope DELTA has developed and maintains a set of
evaluation modules. These evaluation modules are primarily improved versions of
those applied in the SCOPE trial evaluations, and they have all been used in commer-
cial evaluations. The current evaluation module library used by MicroScope is shown
in figure 5. It is planned to extend the coverage of evaluation modules concurrently
with market demands.

Functionality - Requirements specs. Reliability - Source code
Functionality - Test documentation

Functionality - Safety Maintainability - Source code
Functionality - prEN 54 Maintainability - Design document

Functionality - Petri net

Efficiency - Source code
Usability - Users manual
Usability - ISO 9241 Portability - Source code

FIGURE 5: MicroScope evaluation modules.

A MicroScope evaluation of e.g. a fire alarm, which is a typical example of a small
evaluation, will require in the order of two to four weeks effort. Such an evaluation
will usually require the application of the following five evaluation modules: Usabi-
lity - User manual, Maintainability - Design document, Maintainability - Source code,
Functionality - Safety, and Functionality - prEN 54. The purpose of the last evalua-
tion module is to demonstrate compliance with the standard prEN 54: Components of
automatic fire alarm detection systems: Part 2: Control and indicating equipment.

Similar evaluation services have also been set up by other European companies.

12. Conclusion

The approach to software product evaluation described here provides a baseline for
improving software quality and for setting up a software product evaluation and
certification scheme. It provides a useful supplement to the schemes for process
measurement and certification.

The introduction of MicroScope as a commercial service based on this scheme has
been very successful. The rapid growth in the number of customers shows that there
is a real market need for independent third party quality evaluation of software pro-
ducts.

— e b

O IOVt

References

(1]

[2]

(3]

(4]

[5]

[6]

ISO/IEC 9126, Information technology - Software product evaluation -
Quality characteristics and guidelines for their use, International Stan-
dards Organisation, Interational Electrotechnical Commission, 1991.

CD 9126-6, Guide to software product evaluation - The evaluators gui-
de, Editor P. Robert, International Standards Organisation, 1993.

Guide to producing evaluation modules, draft technical report, Editor J.
Bgegh, Interational Standards Organisation, 1993.

J. Bgegh, H.-L. Hausen, D. Welzel, A practitioners guide to evaluation
of software, IEEE Software Engineering Standards Symposium, Septem-
ber 1993.

J. Bgegh, Standardisation of evaluation modules for software evaluation,
Sixth International Conference on Software Engineering & Its Applica-
tions, November 1993.

ISO/IEC Guide 25, General Requirements for the Competence of Cali-
bration and Testing Laboratories, International Standards Organisation,
International Electrotechnical Commission, 1990.

AU UdEU NN UOUUDUUOUUUOURU DU LLTYd

How to Cope with Software Complexity?
Horst Zuse

Technische Universitat Berlin (FR 5-3)
FranklinstraBe 28/29
10587 Berlin
Germany
Phone: +49-30-314-73439
Fax: +49-30-314-21103
E-mail-Internet: zuse at tubvm.cs.tu-berlin.de

Abstract

Since the seventieth software measurement has
received much attention as a tool supporting soft-
ware quality. In this paper we give a brief history
of software measures, discuss the goal of the
ESPRIT Project METKIT, discuss several meas-
ures in order to analyze software complexity, dis-
cuss some foundations of measurement and show
the idea of complexity which is hidden behind soft-
ware complexity measures. Finally, foundations
of the validation of software measures are dis-
cussed.

Keywords

Software measures, measurement theory,
METKIT, software complexity, history.

1 Introduction

The groundwork for software measures was es-
tablished in the sixties and mainly in the seven-
ties, and from these earlier works, further results
have emerged in the eighties and the beginning of
the ninetieth. It may be, that the earliest paper
about software complexity was published by
Rubey et al. (Rubey, Hartwick, 1968) in 1968.

Today, we agree to the statement of Dieter Rom-
bach, who said at the Eurometrics 1991 in Paris:
we should no longer ask if we should measure,
the question today is how.

For this reason we show some aspects of soft-
ware measurement. We give a brief overview of
the history of software measures, show, how we
can analyze software complexity, discuss the term
complexity related to software measures and
present some foundations of the validation of soft-
ware measures.

In detail, we consider the following: Section 2
gives a brief overview into the history of software
measures, Section 3 presents the philosophy of
the ESPRIT Project METKIT which was a three
year collaborative research project funded by the
European Commission under their ESPRIT Il pro-
gramme from 1989-1992, Section 4 discusses
several software measures in order to analyze the
complexity of programs and whole software sys-
tems, Section 5 shows the foundations of software
measurement, Section 6 discusses the idea of
software complexity behind the measures and il-
lustrates this with the Measures of McCabe and
LOC, Section 7 gives foundations the validation of
software measures, Section 8 gives the conclu-
sions and in Section 9 a list of references can be
found.

2 History of Software Complexity Measure-
ment

During the past more than 500 software (com-
plexity) measures were proposed by researchers
and practitioners, and till today more than 1000
papers about software complexity have been pub-
lished. An overview of published papers can be
found the following books or papers: (Conte,
Dunsmore, Shen, 1986), (Grady, Caswell, 1987),
(Ejiogu, 1991), (Dumke, 1992) (Mills, 1988),
(Perlis, Sayward, Shaw, 1981), (Fenton, 1991),
(Fenton, Littlewood, 1990), (Kitchenham, Little-
wood, 1989), (Mdller, Paulish, 1993), (Shepperd,
1993), (Shepperd, Ince, 1993a), (Jones, 1991),
(Goodman, 1992), (Samadzadeh-Hadidi, 1987),
(Grady, 1992), (DeMarco, 1982), (AMI, 1992),
(Card, Glass, 1990), (Hetzel, 1993), (Shooman,
1983), (Mayrhauser, 1990 (Sommerville, 1992),
(Pressmann, 1992), (Zuse, 1991) and (Zuse,
1994a). We only discuss some "milestones" in
the development of software (complexity) meas-
ures.

The groundwork for software measures was es-
tablished in the sixties and mainly in the seven-
ties, and from these earlier works, further results
have emerged in the eighties and the beginning of
the ninetieth.

There is a confusing situation using the terms
software "measures" or software "metrics". Using
the terminology of measurement theory we use
the term "measures”. In literature the terms me-
tric and measure are used as synonyms. A metric
is here not considered in the sense of a metric
space.

The earliest software measure is the Measure
LOC, which is discussed and used till today (Park,
1992). In 1974 Wolverton (Wolverton, 1974)
made one of the earliest attempts to formally
measure programmer productivity using lines of
code (LOC). He proposed object instructions per
man-month as a productivity measure and sug-
gested what he considered to be typical code
rates. The basis of the Measure LOC (Shepperd,
1993), p.3, is that program length can be used as
a predictor of program characteristics such as reli-
ability and ease of maintenance. Despite, or pos-
sibly even because of, simplicity of this metric, it
has been subjected to severe criticism. In 1983
Basili and Hutchens (Basili, Selby, Phillips, 1983)
suggested that the Metric LOC should be re-
garded as a baseline metric to which all other me-
trics be compared. We should expect an effective
code metric to perform better than LOC, and so,
as a minimum, LOC offers a "null hypothesis" for
empirical

It may be, that the earliest paper about software
complexity was published by Rubey et al
(Rubey, Hartwick, 1968) in 1968. In 1979 Belady

(Belady, 1979) mentioned a dissertation of Van

Emden (Van Emden, 1971). The work of Van
Emden was based on the concept of conditional
probabilities on the formalism of information
theory, and appeared suitable to model com-
plexity of interconnected systems, such as pro-
grams built of modules.

Two other software complexity measures (Inter-
val-Derived-Sequence-Length (IDSL) and Loop-
Connectness (LC)) were proposed in 1977 by
Hecht (Hecht, 1977) and are discussed in (Zuse,
1991), p.221. They are based on the reducibility
of flowgraphs in intervals. However, they are not
well known. The works of Rubey, Van Emden
and the Measures of Hecht have been largely for-
gotten. However, in 1992 the Measure of Van
Emden was used as a basis of a complexity
measure by Khoshgoftaar et al. (Khoshgoftaar,
Munson, 1992).

In 1977 Gilb (Gilb, 1977) published a book entitled
"Tom Gilb: Software Metrics" which is one of the
first books in the area of software measures.

The most famous measures, which are continued
to be discussed heavily today and which were cre-
ated in the middle of the seventies are the Meas-
ures of McCabe (McCabe, 1976) and of Halstead
(Halstead, 1977). McCabe derived a software
complexity measure from graph theory using the
definition of the cyclomatic number. McCabe in-
terpreted the cyclomatic number as the “minimum
number of paths" in the flowgraph. He argued
that the minimum number of paths determines the
complexity (cyclomatic complexity) of the pro-
gram: The overall strategy will be to measure the
complexity of a program by computing the number
of linearly independent paths v(G), control the
"size" of programs by setting an upper limit to v(G)
(instead of using just physical size), and use the
cyclomatic complexity as the basis for a testing
methodology. The Measures of Halstead are
based on the source code of programs. Today the
most used Measures of Halstead are the Meas-
ures Length, Volume, Difficulty and Effort.

In 1978 software design measures were proposed
by Yin et al. (Yin, Winchester, 1978) and Chapin
(Chapin, 1979). These measures maybe the first
measures which could be used in the software de-
sign phase. From 1983 software measures,
which can be used in the design phase, were pro-
posed among others by Bowles (Bowles, 1983),
McCabe et al. (McCabe, Butler, 1989), Card et al.
(Card, Glass, 1990) and Ligier (Ligier, 1989).

In 1979 Albrecht (Albrecht, 1979) proposed the
Function Point method. Function points are de-
rived from requirements specification. This
method, which can be used in the specification
phase of the software life-cycle, is today widely
used in USA and UK.

Aslo in 1979, Belady (Belady, 1979) proposed the
Measure BAND which is sensitive to nesting.

In 1980 Oviedo (Oviedo, 1980) developed a
"Model of Program Quality*. This model treats
control flow complexity and data flow complexity
together. Oviedo defines the complexity of a pro-
gram by the calculation of control complexity and
data flow complexity with one measure.

Based on the works of Stevens, Myers and Con-
stantine (Stevens, Myers, Constantine, 1974)
much work has been done to create software
complexity measures for the interconnectivity
analysis of large software systems. Software sys-
tems contain multiple types of interrelations be-
tween the components, like data, control, and se-

LW T IO TR T T T T T O T I T O T T T T O O T

M UdUUNUNUNNUOEUUUNUOUUUOOOOUOOUOUOUOOUOODDDD D

quencing among others. In 1981 the
"Interconnectivity Metric" of Henry and Kafura
(Henry, Kafura, 1981) was proposed. This
measure is based on the multiplication of the
fan-in and fan-out of modules. At the end of the
eighties a modification of this measure (Henry,
Wake, 1988) was proposed by creating a hybrid
measure consisting of a intra-modular measure,
like the Measures of Halstead and McCabe and
the "Interconnectivity Metric". Other approaches,
for example of Selby et al. (Selby, 1992) and
Hutchens et al. (Hutchens, Basili, 1985) base on
the early works of Myers (Myers, 1976) and Ste-
vens et al. (Stevens, Myers, Constantine, 1974),
and propose software measures based on data
binding.

In 1981 Harrison et al. (Harrison, Magel, 1981)

presented software complexity measures which
are based on the decomposition of flowgraphs
into ranges. Using the concept of Hamison et al. it
is possible to determine the nesting level of nodes
in structured and especially unstructured flow-
graphs. This is an important extension of the
Measures of Dunsmore, Belady, etc. (Zuse,
1991), p.269, p.362, which were only defined for
flowgraphs consisting of D-Structures (Dijkstra-
Structures). In 1982 Piwowarski (Piwowarski,
1982) suggested a modification of the Measures
of Harrison et al. because these measures have
some disadvantages, for example unstructured
flowgraph can be less complex than structured
flowgraphs.

Troy et al. (Troy, Zweben, 1981) proposed in 1981
a set of 24 measures to analyze the modularity,
the size, the complexity, the cohesion and the
coupling of a software system. Measures for co-
hesion, which are based on the concept of slices

of Weiser (Weiser, 1982), were discussed in 1984 -

by Emerson (Emerson, 1984), in 1986 by Long-
worth et al. (Longworth, Ottenstein, Smith, 1986)
and in 1991 by Ott et al. (Ott, Thuss, 1991).

In 1981 a Study Panel (Perlis, Sayward, Shaw,
1981) consisting of people of the industry and uni-
versities (Victor Basili, Les Belady, Jim Browne,
Bill Curtis, Rich DeMillo, Ivor Francis, Richard
Lipton, Bill Lynch, Merv Miller, Alan Perlis, Jean
Summet, Fred Sayward, and Mary Shaw) dis-
cussed and evaluated the current state of the art
and the status of research in the area of software
measures. During this panel DeMillo et al. (DeM-
illo, Lipton, 1981) discussed the problem of meas-
uring software compared to other sciences. They
discussed the problem of meaningfulness. How-
ever, they did not give conditions for the use of
software measures as an ordinal and a ratio
scale.

In 1984 Basili et al. (Basili, Weiss, 1984) pro-
posed the GQM (Goal-Question-Metric) paradigm.
GQM is used for defining measurement goals.
The basic idea of GQM is to derive software
measures from measurement goals and ques-
tions. The GQM approach supports the identifica-
tion of measures for any type of measurement via
a set of guidelines for how to formulate a goal
comprehensiblly, what types of questions to ask,
and how to refine them into questions. The idea
that the use of software measures depends on the
view of the humans is also supported by Fenton
(Fenton, 1991a), p.253 (called: user-view), and
Zuse et al. (Zuse, Bollmann, 1989) (called: a
viewpoint of complexity).

Based on articles of Bollmann and Cherniavsky
(Bolimann, Cherniavsky, 1981), and Bollmann
(Bollmann, 1984), in which measurement theory
was applied to evaluation measures in the area of
information retrieval systems, in 1985 Bolimann
and Zuse (Zuse, 1985), (Bollmann, Zuse, 1985)
transfered this measurement theoretic approach
to software complexity measures. They used
measurement theory, as described by Roberts
(Roberts, 1979), Krantz et al. (Krantz, Luce,
Suppes, Tversky, 1971) and Luce et al. (Luce,
Krantz, Suppes, Tversky, 1 which give conditions
for the use of measures. In (Bollmann, Zuse,
1985), (Zuse, 1985), (Zuse, Bollmann, 1987),
(Zuse, Bollmann, 1989), (Zuse, 1991), and (Zuse,
Bollmann-Sdorra, 1992) the conditions for the use
of software complexity measures on certain scale
levels, like ordinal, interval or ratio scale were pre-
sented. Additionally, measurement theory gives
an empirical interpretation of the numbers of soft-
ware measures by the hypothetical empirical rela-
tional system and conditions for concatenation
and decomposition operations, which are major
strategies in software engineering. This concept
is also applied in (Zuse, 1991) for more than 80
software measures. In 1993 followed papers
which gave the foundations of prediction and soft-
ware measures (Bollimann-Sdorra, Zuse, 1993)
and about the validation of software measures
(Zuse, 1994).

Similar approaches of using measurement theory
followed from 1987 by the Grubstake Group
(Baker, Bieman, Gustafson, Melton, Whitty, 1987),
(Baker, Bieman, Fenton, Gustafson, Melton,
Whitty, consisting of Norman Fenton (City Univer-
sity, London), Robin Whitty (CSSE, South Bank
Polytechnic, London), Jim Bieman (Colorado
State University), Dave Gustafson (Kansas State
University), Austin Melton (Kansas State Univer-
sity), and Albert Baker. The Grubstake Group
used measurement theory to describe the ranking
order of programs as created by software meas-

ures. Measurement theory is also proposed as an
appropriated theory for software measures by
Fenton (Fenton, 1991), p.16.

In the eighties several investigations in the area of
software measures were done by the Rome Air
Development Center (RADC) (RADC, 1984). In
this research institute the relationships of software
measures and software quality attributes (us-
ability, testability, maintainablity, etc.) were inves-
tigated. The goal of these investigations is the de-
velopment of the Software Quality Framework
which quantifies both user- and management-ori-
ented techniques for quantifying software product
quality.

In 1986 a research project started (Alvey-Project
SE/069) entitled "Structured-Based Software
Measurement” (Elliott, Fenton, Linkman,
Markham, 1988). This project was intended to
build on existing research into formal modelling,
analysis and measurement of software structure.
It was carried out at South Bank Polytechnic's
Centre for Systems and Software Engineering in
London, UK. Among others, results of this project
can be found in Fenton (Fenton, 1991).

From 19889 till 1992, the Project METKIT (Metrics
Educational Toolkit 2384) (METKIT, 1993) of the
European Community was created. METKIT was
a collaborative project part-funded by the Euro-
pean Commission under their ESPRIT pro-
gramme. The aim of METKIT was to raise aware-
ness and increase usage of software measures
within European industry by producing educa-
tional material aimed to both industrial and aca-
demic audiences. An outcome of METKIT was
the book of Fenton (Fenton, 1991) which gives an
excellent overview of the area of software meas-
ures.

In the Project METKIT and by Fenton (Fenton,
1991), p.44, a simple classification of software
measures was introduced. They classified soft-
ware measures in resource, process and product
measures. This classification can be also found in
(IEEE Guide, 1989) and (IEEE, 1989a). It should
be noted here that in literature many different
classifications of software measures can be
found. It would be beyond this article to mention
all the classification schemes, but some of them
can be found in (Zuse, 1991), Chapter 3.

Till the middle of the eighties mostly intra-modular
software measures (Measures which are applied
to modules or programs) were applied in the
coding phase of the software life-cycle. From the
middle of the eighties more attention has been di-
rected to the measurement in the early phases of
the software life-cycle, like the design phase. The
idea of applying software measurement in the

early phases of the software life-cycle is to im-
prove software development in the software de-
sign phase by a feedback process controlled by
software measures in order to get a better imple-
mentation of software in the coding phase and a
less complicated and expensive maintenance.

In the middle of the eighties, researchers, like Ka-
fura et al. (Kafura, Canning, 1988) and the NASA
(NASA, 1984) tried to verify the hypothesis that
there exists a correlation between software meas-
ures and development data (such as errors and
coding time) of software. In order to verify this hy-
pothesis they used the data from the SEL-Lab
(NASA, 1981). Similar investigations can be
found in (NASA, 1984) and (NASA, 1986). Rom-
bach (Rombach, 1990) summarized some of the
results doing measurement in the early phases of
the software life-cycle. He points out that there is
a high correlation (0.7, 0.8) between the architec-
tural design documents and the maintainability
(factors of maintainability). Architectural design
can be captured with “architectural measures”,
(inter-modular measures) like system design and
modularity measures. There is a low correlation
between “algorithmic measures" (intra-modular
measures: code complexity, like McCabe) and
maintainability. There is also a high correlation
(0.75, 0.8) between "hybrid measures" (algor-
ithmic and architectural measures). From these
results the idea is derived to get measurement
values of the early phases of the software life-
cycle in order to get a less complicated and less
expensive maintenance. Other studies can be
also found in (Conte, Dunsmore, Shen, 1986),
Chapter 4.

Considering the software life-cycle and software
measures many researchers proposed desireable
properties for software complexity measures.
Such desired properties can be found among
others in Fenton (Fenton, 1991), p.218, Weyuker
(Weyuker, 1988), Kearney et al. (Kearney, Sedim-
eyer, Thompson, 1986), and Lakshmanan et al.
(Lakshmanan, Jayaprakash, Sinha, 1991). Many
of these required properties are contradictory.
Some of them are identical with the conditions of
the extensive structure in measurement theory
(See also Section 4.2). A discussion of some of
the desired properties can be found in (Zuse,
1991), Chapter 6.

At the end of the eighties two IEEE-Reports (IEEE
Guide, 1989), (IEEE, 1989a) appeared which pro-
pose standardized software measures. Unfortu-
nately, most of the discussed software measures
in these reports are process measures and meas-
ures for the maintenance phase of the software
life-cycle. Only some software complexity meas-
ures can be found there.

N

From 1989 the use of factor analysis in order to
analyze the properties of existing software com-
plexity measures and new dimensions of program
complexity were used by Munson et al. (Munson,
Khoshgoftaar, 1989) and Coupla et al. (Coupal,
Robillard, 1990).

At the beginning of the nineties software meas-
ures for analyzing the complexity of object ori-
ented systems were proposed. Four of the few au-
thors are Bieman (Bieman, 1991), Lake et al.
(Lake, Cook, 1992), and Rocacher (Rocacher,
1988), Chidamber et al. (Chidamber, Kemerer,
1993), and Morris (Morris, 1989). However, in the
area of object oriented systems it is not clear what
makes an object oriented program difficult or easy
to understand, to test or to maintain.

3 METKIT

In order to promote the use of software measure-
ment in industry and at unversities, among other
ESPRIT-Projects, METKIT (METKIT, 1993) (Me-
trics Educational Toolkit) was founded in 1989.
METKIT was a three year collaborative research
project funded by the European Commission
under their ESPRITII programme from
1989-1991.

Other ESPRIT Project dealing with software engi-
neering measurement were:

. AMI: Nov. 1990-92 (Applications of Metrics
in Industry)

. MUSIC: Nov. 1990-93 (Metrics for Us-
ability Standards in Computing)

. MUSE: 1987-90 (Software Quality and -

Reliability Metrics for Selected Domains:
Safety Management and Clerical Systems).

. PYRAMID: Oct 1990-82 (Promotion for
Metrics), Improvement of quality and pro-
ductivity of European software-intensive
systems development and maintenance by
the use quantitative methods ... in the appli-
cation of metrics by 1995.

. COSMOS: Febr. 1989-94 (Cost Manage-
ment with Metrics of Specification)

- MERMAID: Oct. 1988-92 (Metrication and
Resource Modelling Aid).

The primary objective of METKIT was to promote
the use of measurement throughout Europe. The
project developed an integrated set of educational
materials to teach managers, software developers

and academic students how to use measurement
to understand, control and then improve software
developments.

METKIT has produced, among others, the fol-
lowing material.

1. A set of 17 industrial modules.

. IMMT: Measurement as a manage-
ment tool.

. 1ISM: Introduction to software engi-
neering measurement.

. IWDH: What can we measure in
software engineering and how?

- IPSS: Procuring software systems.

. ISMI: Software engineering meas-
urement in industry.

. IIMP: How to implement a meas-

urement programme?

. IECD: Estimating the cost of soft-
ware development.

- IPRB: Process benchmarking.

. ISMQ: Specifying and measuring
software quality.

. ICSP: Case study - setting up a
measurement programme.

= ICEM: Establishing a cost estima-
tion measurement programme.

. ICES: Cost estimation strategy.

. IPOM: Process optimization meas-
ures.

. IUSA: Usability assessment.

. IDFA: Defect analysis.

. IWBS: The case for a standard
work breakdown structure.

. IFPA: Principles of function point
analysis.

2. A set of 7 academic modules.

s AMO: Introduction to software engi-
neering measurement.

. AM2: What is measurement?

. AM3: Principles of software engi-
neering measurement.

. AM4: Software engineering meas-
urement in industry.

. AM2.4. Experimental design for
software engineering.

. AM3.2: Software
measures and models.

. AM3.4: PODS: A software engi-
neering measurement case study.

. AM4 3: Tool sampler.

engineering

3. A Computer Aided Instruction System

(CAl).

4, A prototype tool sampler

D A text book: Fenton, N.: Software Me-
trics: A Rigorous Approach, Chapman &
Hall, 1991, (Fenton, 1991).

6. A Bibliography.

7 A Term Glossary.

More informations of the Project METKIT can be
found in (METKIT, 1993).

4 Software Measures

We now give examples of software measures. In
the past more than 500 software measures in
order to analyze software complexity, effort for
software maintenance, effort for writing programs
and estimating project costs were proposed. We
discuss some of these measures, like the COCO-
MO-Model, the Function-Point-Method (FPM), in-
tra- and inter-modular software complexity meas-
ures.

4.1 The COCOMO-Model

In 1981 Boehm (Boehm, 1981) introduced the
basic COCOMO-model (Constructive-Cost-Model)
which is defined as:

EFFORT(P) = a LOC (P)°,

where EFFORT (P) is the effort to write a program
P, a is a constant, LOC is the Measure LOC
(Lines of Code), b>1 for an increasing and b<1 for
a decreasing function. The COCOMO-Model is a
model for prediction, it is not only a measure. The
predicted variable EFFORT (we call this an ex-
ternal variable) is EFFORT und the measure is

LOC. The relation between the measure and the

external variable is given by the formula above.

The COCOMO-Model recognizes three types of
development environment and provides different
variations of the basic model for each environ-
ment.

1. The organic environment is essentially
that of a small scale, non-bureaucratic
project and for this environment the model
takes the form:

EFFORT(P) = 2.4 LOC (P) "%,

2. The embedded environment is the oppo-
site of the organic in that it relates to a
very bureaucratic, tightly controlled and
formal organization. For this environment
the model takes the form:

EFFORT(P) = 3.6 LOC (P) 2.

3. The so-called semi-detached environment
is one that falls between the two ex-
tremes, and for this the model takes the
form:

EFFORT(P) =3.0 LOC (P)""2,

The COCOMO-Model has been criticized several
times, one argument is that the COCOMO-Model
may be acceptable for predicting coding, neither
are capable of dealing with complete software
projects. For large software systems, coding is
only the 4th greatest element of expense: in rank
order, defect removal, paperwork, meetings, and
coding are the top cost elements.

4.2 Function-Point Method

In 1979 Albrecht (Albrecht, 1979) suggested the
Function-Point Method (FPM), which is a measure
based upon a count of "function points" in order to
make predictions. We will not explain the FPM in
detail because this would be beyond the scope of
this paper. We only give an idea how this
methods works.

The total number of function points for a specifica-
tion is given by:

UFC =4*A +5°B +4°C +10°D + 7'E
where
A = Number of external input types.
B = Number of external output types.
C = Number of inquires.
D = Number of external files (program interfaces).

E = Number of internal files (i.e. those generated)
used and maintained by the program.

To compute the adjusted function points, FP, we
need first to compute TCF. Having identified the
various types of items, each is given a subjective
complexity rating of either simple, average or
complex.

The "Unadjusted Function Count" for a Project P
can be calculated by

UCF(P)= X, Y(Number of items variety |) *
(weight)

UCF(P) = 3, >(NDi*Wi)

Finally, the adjusted function count FP is derived
from UCF by the multiplication of a so-called
Technical-Complexity-Factor TCF:

FP = UFC * TCF.

dMddUddduddddddNNddR DN D aud

TCF is calculated by fifteen factors F1-F15. For
more informations see (Albrecht A.J, Gaffney,
1983), (Fenton, 1991), p.165 , Shepperd (Shep-
perd, 1993) or Goodman (Goodman, 1992). Fi-
nally, the TCF is calculated as:

TCF = 0.65 + .13, SFi.
The FPM is a widely used method in UK and US.

However, both the COCOMO-Model and the FPM
have completely different assumption to predict
effort. In (Bollmann-Sdorra, Zuse, 1993) and
(Zuse, 1994a) it is shown that the COCOMO-
Model assumes a ratio scale for the external vari-
able effort while the Function-Point Method does

not assume a ratio scale. Further investigations

have to show what are the consequences of these
different methods.

4.3 Inter- and Intra-modular Software Meas-
ures

We now discuss software measures which are
based on source code, flowgraphs and structured
charts. An example shall illustrate this.

A: P1

13 ¢

Figure 4.1: A flowgraph P1 and a structure chart’

D-BM of Bowles (Bowles, 1983).

Measures which are based on modules are called
intra-modular measures. Following Page-Jones
(Page-Jones, 1988) a module is here a collection
of program statements with four basic attributes:
input and output, function, mechanics, and in-
ternal data. Measures which are based on whole
software systems are called inter-modular meas-
ures. Modules can be represented by flowgraphs.
A flowgraph G=(N,E,st) is a directed graph,
where N is the set of nodes, E the set of edges, s
the start-node and t the exit-node. Every node is
reachable from the node s and t is reachable from
every node. That means, the flowgraph is con-
nected. The structure chart D-BM represents the
calling hierarchy of the modules, shows the
coupling between the modules by parameters and
the interactions of parameters and global vari-

ables among the modules.

We now consider some measures which analyze
the calling hierarchy and coupling between the
modules.

4.3.1 The Measures of Henry and Kafura

The Measures of Henry et al. (Henry, Kafura,
1981) are well known and were proposed at the
beginning of the eighties. They are sensitive to
the interactions between modules and the use of
global variables. Hence, they can be used as
software measures to analyze excessive coupling
between modules via parameters, global variables
and calls of modules. The Measures of Henry et
al. are based on structure charts and use the
fan-in and tan-out of modules.

We now give the definition of the Measures of
Henry and Kafura, which are based on structure
charts. Firstly, we give the definition of fan-in and
fan-out, as defined by Henry et al. Fan-in and
Fan-out are defined as:

. Fan-out: the number of local flows out a
procedure/module plus the number of
global data structures from which a proce-
dure retrieves informations.

. Fan-in: the number of local flows into a
procedure/module plus the number of
global data structures which the procedure
updates.

Local flows represent the flow of information to or
from a routine through the use of parameters and
return values from function calls. Combining
these with access to global data structures give all
possible flows into or out of a procedure.

The Measures D-FO and D-Fl are introduced by
the author. The Measure D-FI| captures the fan-in
and the Measure D-FO captures the fan-out as
defined by Henry et al.

D-Fl = fan-in of all modules,
D-FO = fan-out of all modules.

The Measure D-INFO has been introduced by
Henry et al. The complexity of an entire

%tructured design is calculated by the measure
-INFO:

D-INFO = (D-FI * D-FO)°.

It can be shown that the multiplication with **2 is
useless in order to compare the complexities of
entire software systems. We can use the Measure

D-INFO' = (D-FI * D-FO).

The advantage of the Measure D-INFO' is that we
get smaller numbers.

At the end of the eighties a modification of this
measure (Henry, Wake, 1988) was proposed by
creating a hybrid measure consisting of a intra-
modular measure, like the Measures of Halstead
(See Section 4.4) and McCabe and the Measure
D-INFO. The hybrid Measure D-INFO-LOC is de-
fined as:

D-INFO-LOC = LOC * (D-FI * D-FO}z.

In general we can say that the Measures D-INFO
and D-INFO' are very rough measures because
D-FI and D-FO do not distinguish the types of
tan-in and fan-out.

For this reason we propose the Measures of
Bowles which allow a more detailed analyzation of
the coupling between modules and the access to
global variables.

4.3.2 Measures of Bowles

Bowles (Bowles, 1983) proposed in 1983 an inter-
esting approach for calculating the complexity of
single modules and the entire software system.
Bowles considered the coupling of modules and
the connections of modules by global variables.

Bowles (Bowles, 1983) considers the complexity
at two structural levels.

T, The first level is the internal complexity of
a module, that means in our terminology
the intra-module complexity.

2. The second level is the complexity of the
relationships between a given module and
all other modules in the system. This is

the inter-modular complexity of a software _

system.
In the next Section we consider the module level.
4.3.2.1 Complexity of a Single Module

The complexity CM of an individual module is cal-
culated by the following factors.

. a = number of formal parameters.

. b = number of global variables shared with
superordinate modules.

. ¢ = number of parameters passed between
this module and its subordinate modules.

. d = number of global variables shared with
subordinates.

Finally, the complexity CM of a module is calcu-
lated with the formula

CM=1-1/(1+a+2b+c+2d).
This measure takes into account the increased

difficulty associated with remembering information
associated with global data and the effort to un-
derstand subroutines. The Initial Scope com-
plexity IS of a module is defined as

IS=1a+2b+1c + 2d.

The Measure D-B-IS is the sum of the Initial Com-
plexity of each module m:

D-B-IS=X,_ 'S 1

The Measure D-B-IS can be interpreted as a
measure which analyzes the complexity of a
module related to the environment of the system.

4322 Complexity of the Entire Software
System

We now consider the software complexity meas-
ures at the system level.

System Complexity Matrix SC

Bowles now introduces a system complexity ma-
trix SC = {(P,G), where P is the set of parameters,
and G is the set of global variables. For the ma-
trix SC the following holds:

SC is the System Complexity matrix
and its size is M x M, where M is
the set of modules in the structure
chart.

shows the relationship of module i
to module j.

number of parameters p passed
from module i to module j + 2 *
number of global data items g
shared by these modules.

for i=j is 0, unless module i is in-
voked recursively.

The next figure shows an example of the system
complexity matrix SC for the structure chart D-BM.

SCi,j

SCi,j =

SCi,j

STROCTURE CHART....cvcn.u.i D=BM
BASIC MODULE COMPLEXITY MEASURES OF BOMLES 1983:

MODULENAME w a b e 1s =]

13.00 0.93
i1.00 0.92

8.00 0.89
5.00 o0.83
2.00 0.67
3.00 0.75
3.00 0.75
4.00 0.80
3.00 0.75
0.00 5.00 0.93
0.00 2.00 0.67
0.00 §.00 0.086
0.00 3.00 0.75
$.00 2,00 0.00 1,00 0.00 3.00 0,75
5.00 1.00 o0.00 1.00 0.00 2,00 ©0.67
5.00 1.00 0,00 1.00 0.00 2.00 0.67

- o.00 0.00 1.00 0.50
la 6.00 1.00 0.00 0.00 0.00 1.00 0.50

Figure 4.2: The values of the discussed meas-
ures above related to the structure chart D-BM.

The explanation of the column headings is as fol-
lows: LV is the level of the module in the structure
chart D-M, A, B, C, D, IS and CM are the dis-

C000000000O00
cooooo
88882888 |a

a
s
R R R e e DO WD
oooooooc
coccooo
oo
oo
88

o
cococoooocooooo
o
-3
o

NOEEEMUMEOMNO O
-]
o
o
-
Q'D
-X-1

s
M A LN DS S e

-
-
o
-
o
o
-
o
o
o
o
o

O

cussed measures above for each module of the
structure chart D-BM.

STRUCTURE CHART......00000 1 D-BM
COMMUNICATIONS BETWEEN THE MODULES
L] MODULEL MODULE2

n
0

GLOB

BN EOVE U WA O ®] U R
NOEEFHERGUHENOODONEEE > >

b

R ERENOERNODNN S SoDO N W E

WA WOVOEZOOTFHORLUANIOEUMANOOND
CCOCOOOOO0 OO0 0O b b bt
MR RN e

0 D R I 8 B s e e
w

o
Flgure 4.3: The system complexity matrix SC for
the structure chart D-BM.

The table above shows the values of the matrix
SC related to the structure chart D-BM. It also
shows the number of parameters (PARAM)
shared among MODULE1 and MODULEZ2, the
number of global variables (GLOB) and the
Measure SC, which shows the coupling of a
MODULE1 to MODULE2. Column SC shows the
intensity of coupling between the modules. It also
shows that Module A has a very high coupling to
other modules and global variables. For example,
in # 1, Module A is coupled with module B by 3
parameters, 1 global variable and the value of SC
is 5.

Measures for System Complexity

From the System Complexity matrix SC Bowles
derives some software complexity measures.
These are the Measures Entire System Com-
plexity D-B-SCC, Average System Complexity D-
B-ASC, Minimum System Complexity D-B-MI and
Maximum System Complexity D-B-MA. M is the
set of modules and m is an individual module. The
measures are defined as:

p-B-ss¢c = /', scij
p-B-asc = 5,5 M sciym

D-B-MA = MAX(SC),
D-B-MI = MIN(SC).
Aggregated System Complexity Measure AS:

Additionally, Bowles introduces the so-called
Aggregated System complexity AS(m) which is
the complexity of each module m related to the
other modules dependent on the use of global

variables and parameters among the modules.
The idea behind the Measure AS is the following:

. The complexity AS of a module m is the
sum of the non-normalized (initial) complex-
ities IS of the modules in the structure chart
which communicate via parameters and
global variables among each other.

. The AS complexity may be used as a guide
to detect subsystems which are more com-
plex than the average subsystem. Modules
with high fan-out will be detected, as will
collections of modules which are highly
coupled, contrary to the edicts of structured
design.

. The Measure AS can be easily computed
and can be used in the design phase to
identify subsystems which should be simpli-
fied before coding.

Considering the conditions above, the Measure
Aggregated System complexity AS(m) is defined
for each module meM as:

AS() = Zoe K * 1S(M),

where k=0 in the case that module i is not con-
nected via global variables or parameters with
modules me M, else k_=1. The next figure shows
the complexity AS of each module for the
structure chart D-BM.

ACCRECATED COMPLEXITIES:

L MODULE IMOD Is A8 AGGR—MODULES

P
] no
-

R - N TR S e
FONOEIFrNU~EOMRO O S
e DR R R R W R RS D e e
HERMRODAN e W RN WSS
FORNOEIFMLGHEONMNON B
EEFOTXOXIWE 0O mMEOW
o o
L]

EHEUCAAR e AD RN

e s e

SUM OF AGGREGATED COMPLEXITY: 77.00
AVERAGE AGCREGATED COMPLEXITY: 2.81
MINIMAL AGGREGATED COMPLEXITY: 1
MAXIMAL AGGREGATED COMPLEXITY: a

MEASURES OF BOWLES

MEASUREMENT VALUES

D-B-SA 24.000
D-B-35B 6.000
D-B-5C 29.000

D-8-8D 6.000
D-B-18 77.000
D-B-88C 47.000
D=B=AV 2.611
D-B-MI 1.000

F_Igure 4.4: Aggregate S}stem Complexity AS cal-
culated for each module m of the structure chart
D-BM.

MODULE is the considered module, IMOD is the
number of modules which are related to MODULE
via parameters or/and global variables. IS is the
Initial System complexity of each module. AS is
the aggregated system complexity of each
module. AGGR--MODULES are the names of the
modules which are connected with MODULE. For
example, Module A is connected with the modules
A, B, C, D and E via global variables and parame-
ters. The Initial Complexity IS of module A is
IS(A)=13 and the Aggregated System Complexity
AS(A)=39.

The example above shows that Module A has the
strongest coupling to other modules via parame-
ters and global variables. However, Module H
has a low module complexity of 4 but a high com-
plexity AS(H) related to the other modules. The
reason is a high coupling via parameters and
global variables. The values of the Measure AS
can be used to figure out complicated modules
and modules which have complicated interactions
among each other. These modules can be ana-
lyzed again by an inspection team.

4.4 Intra-modular
Measures

We now present intra-modular software measures
which are based on modules. For a study in detail
of the presented intra-modular measures the book
of Zuse (Zuse, 1991) and (Zuse, 1992a) are re-
commended. :

The most famous measures are the Measures of
Halstead.

Software Complexity

4.4.1 Measures of Halstead

We propose four Measures of Halstead (Halstead,
1977). in order to measure the complexity of pro-
gram based on the source code. The Measures
of Halstead are defined as:

n1 Number of distinct operators,
n2 Number of distinct operands,
N1 Total number of operators,
N2 Total number of operands.

Measure Program Length N (HALST-N)
N = N1+ N2
Measure Program Vocabulary n (HALST-VC)

10

n=n1+n2

Measure Volume V (HALST-V)
V=N*LOG2n

V = (N1+N2) LOG2 (n1+n2)
Measure Difficulty D (HALST-D)
D = (n1/2) * (N2/n2)

Measure Effort E (HALST-E)

n1* N2 (N1+N2) * LOG 2 (n1+n2)
E=

2°n2
and that is:
E=D*V.

Example 4.1
We present an example as presented by Halstead
(Halstead, 1977):

Program N1 N2

IF A=0 THEN
GCD=B; RETURN; END;

IF 520 THEN DOY 3
GCD=A; RETURN; END;
HERE: G=A/B;

R=A-B*G;
IF R=0 THEN GOTO LAST:
A=B;B=R;GOTO HERE;
9;,n2=6; N1=31; N2=21;
203,16
15,75
3199774

O b L) s Ladtn L
o el Lo BRI RORS L

1

mo<=g

Figure 4.5: An example of the calculation of the
Measures N, V, D and E as given by Halstead
(Halstead, 1977).

The Measures of Halstead can be seen as com-
plexity measures in general because they are
based on source code.

44.2 Intra-modular Software Complexity

Measures Based on Flowgraphs

We now give the definitions of intra-modular soft-
ware complexity measures which are based on
flowgraphs of programs. We denote D as the set
of decision nodes, and M as the set of primes
which are subflowgraphs with only one-entry and
one-exit.

4.4.2.1 Measures LOC, PRIMES and the

Measures of McCabe
Measure LOC

The Measure LOC is well known and is defined
as:

LOC = |N|

L O O I L O O T R T O

U AU RLd

N is here the set of nodes in a flowgraph. The
very important question is: what is a line of code?
This question is discussed by Park et al. (Park,
1982). A good overview of size measurement
(LOC is a size measure) can be found by MacDo-
nell (MacDonell, 1991). Following MacDonell five
sub-techniques are widely employed to indicate
understandability or complexity in lines of code:

1. Total lines (TLOC) which include all lines
excluding blank lines.

2. Executable lines (ELOC) which quantifies
all occurences of program verb clauses.

3. Non-commentary lines (NLOC) which
count all lines except blank and comment
lines.

4, Lines as separated by code delimiters

5. Statement count - this is usually has the
same form as the ELOC or delimiter sep-
arated counting method.

Other definitions of a line of code can be found in
Conte et al. (Conte, Dunsmore, Shen, 1986):

A line of code is any line of program text that is
not a comment or blank line, regardless of the
number of statements or fragments of statements
on the line. They specifically includes alle lines
containing program headers, declarations, and ex-
ecutable and non executable statements.

Levitin (Levitin, 1986) considers four types meas-
uring the size of software:

. Source lines of code.

. The number of statements.

. Software Science of Halstead: Length and
Volume (Halstead, 1977).

. The number of tokens in the program.

Another modification of the Measure LOC is the
Measure SBSM-V of Bache et al. (Fenton, 1991),
(Zuse, 1991).

Measures of McCabe:

The Measures MCC-V, MCC-V2, MCC-D,
MCC-EV, MCC-EV0 of McCabe (McCabe, 1976)
are based on the number of edges, the number of
nodes and the number of primes (1-entry and
1-exit subflowgraphs (Zuse, 1991), p. 296) in a
flowgraph.

McCabe (McCabe, 1976) used the definition of
the cyclomatic number for strongly connected
flowgraphs as a software complexity measure.
McCabe denoted it as the cyclomatic complexity.
fThe original Measure MCC-V of Mccabe is de-
ined as:

MCC-V(G) = |E| - IN| + 2p, where
p is the number of connected components and G

b

1

a flowgraph. For the calculation of the complexity
of a module it holds p=1. Connected components
are in the case of software complexity measure-
ment the number of subprograms in a software
system. That means, intra-modular complexity of
a single module is:

MCC-V(G) = |E| - IN| + 2.

McCabe presented a modified definition of the
Measure MCC-V and that is Measure MCC-V2,
The Measure MCC-V2 of McCabe is a strictly
monotonic transformation of the Measure MCC-V
and it is additive to a sequential concatenation
BSEQ of flowgraphs (Zuse, Bollmann, 1989),
(Zuse, 1991), p.167. It is defined as:

MCC-V2(G) = |E| - IN| + 1,
MCC-V2(G)=MCC-V(G) - 1

For structured programs (Decision nodes with an
out-degree of 2) the result of the Measures
MCC-V is equal to MCC-D which is defined as:
MCC-D(G) = |D| + 1.

Following the discussion of the Measures of
McCabe in (Zuse, 1991), p.151, the Measure
MCC-D'=MCC-D - 1 can be used as a ratio scale.
However, the Measure MCC-D is identical to the
Measure DEC, which is defined as:

DEC = |D|.

In order to capture unstructured components of a
flowgraph, McCabe defined the Measure "Essen-
tial Complexity” MCC-EV, which is sensitive to the
unstructuredness of flowgraphs. Firstly, we intro-
duce the Measure PRIMES because the Measure
MCC-EV is based on this measure.

PRIMES = |M|,
where M is the set of primes in a flowgraph.

Primes are 1-entry and 1-exit subflowgraphs
(Zuse, 1991), p.296.

The Measure MCC-EV is defined as:
MCC-EV(G) =|D|- M| +1.

The author introduces the Measure MCC-EV0
which is defined as:

MCC-EVO(G) = D] - |M|.

The Measure MCC-EVO0 is additive related to a
sequential concatenation operation BSEQ.

4.4.2.2 Measures for Nesting

We now introduce measures which capture
nested constructs in flowgraphs.

Measure SCOPE

The Measure SCOPE was introduced by Harrison
et al. (Harrison, Magel, 1981). It is defined by the
sum of the adjusted complexity of the nodes. It is
sensitive to nested structures in unstructured and
structured flowgraphs. The Measure SCOPE is
defined as:

SCOPE = IN| + X, |”Cardinalty of the
Ranges(d).

Ranges are explained below.

Measure PEN

The Measure PEN is defined as:

PEN = SCOPE - |N|.

That means, only nodes which are predicated by

decision nodes contribute to the complexity of the
flowgraph.

Measure SCOPE-MN

The Measure SCOPE-MN captures the maximal
nesting depth of a node.

Measure SCOPED:

The Measure SCOPED captures the sum of the
nesting levels of the decision nodes in a flow-
graph.

Measure AVG

The Measure AVG of Howatt and Baker capture
the average nesting depth in the flowgraph: It is
defined as

AVG = SCOPE/|N|.

We now give some examples of the Measure
SCOPE.

Az P1
W: Pl
R: Author
C: Exsaple
sU: 8

FLOWCRAPH: F1 FLOMGRAPH: Pl
N NDBC(N) N PRED(N)

e D RS S R R b e e
-
CUm s e

L e - -2 -

-
"o

HMEASUREMENT VALUES

31

Loc 12.000
SCOPE 16.000

12

BCOP E-MN 2.000
SCOPE-D 0.000
SCOPE-NL 0.000
SCOPED 2.000
PEN 4.000

WL ©0.000

Figure 4.6: Nesting depth of the nodes of flow-
graph P1. NDSC(N) is the nesting depth of
node n for the Measure SCOPE and PRED(n) is
the nesting depth of node n for the Measure PEN.

The next example shows the nesting depths of the
nodes for an unstructured flowgraph P6.

A1 PE
Hi PE
Ri Author
C: Example
s0: U
1
v
2
v FTLOMGRAPH: PE FLOWGRAPH: PE
asdaas W ND3C(N) W PRED(N)
v v 1 1 1 o
4 5 2 1 2 o
. 3 1 3 0
»6x. . 4 2 4 1
. 5 2 5 1
v] 1 L] 0
s 7 1 7]
. [} 3 L] 2
v v L] 2 9 1
9 i< 10 2 10 1
. 11 2 11 1
wa>10e, 12 1 12 [
v
lecosss
v
12 ¢t
MEASUREMENT VALUES
PE
Loc 12.000
SCOPE 19.000
SCOPE-MN 3.000
SCOPE-D 1.000
SCOPE-NL 1.000
SCOPED 4.000
PEN 7.000
WL 3.000

Figure 4.7: Nesting debth of the nodes of flow-
graph P6.

The next example shows the nesting depths of the
nodes for an unstructured flowgraph P6F.

A: PEF
Wi PET
R: Author
Ci Example
30: 0
1
v
2
v
saedans ¥ 'H1 P6T F Hi PET
N NDIC(N) N PRED(N)
v v
4 5 1 1 1 o
2 1 2]
>6a. 3 1 3 L]
. 4 2 4 1
v 5 2 5 1
asTansn 1 1 & L]
. 7 1 7 []
v v 8 2 L] 1
L] .. 9 2] 1
. . 10 3 10 2
+>10<.. 11 1 11 Q
. 12 1 12]
v
b 1 A
v
12 ¢
MEASUREMENT VALUES
PEF
Loc 12.000
SCOPE ie.000
~ SCOPE-MN 3.000
SCOPE-D 0.o000

SCOPE-NL 0.000

BCOPED 4.000
rEN 6.000
0.000

Figure 4.8: Nesting depth of the nodes of flow-
graph P6F.

There are different complexities between the flow-
graphs P6 and P6F. The reason is that P6 has a
backward edge from the nodes 11 to 8 and flow-
graph PF has a forward edge.

4.4.2.3 Measures for Loops

We now discuss software measures which ana-
lyzes loops in flowgraphs.

Measure MWD-HB

The Measure MWD-HB is an extension of the
Measure MCC-V2 (Zuse, 1991), p.234, and is de-
fined as:

MWD-HB = MCC-V2 + L],
where L is the set of loops in the flowgraph.
Measure SCOPE-NL

The Measure SCOPE-NL captures the number of
loops with one-entry and one-exit in a flowgraph
and is defined as:

SCOPE-NL = |L|.
Measure NL

The Measure NL is similar to the Measure PEN.
The difference to the Measure PEN is that are
only nodes contributes to the complexity if they lie
in a loop. It holds PEN=NL if are only loops in a
flowgraph.

We present three example with the flowgraphs
P6, P8 and P4.

4

A: P6
N: P6
R: Author
C: Example
sU: U
1s
v
2
v FLOWGRAPH: P6
anaduiaie N PREDL(N)
v v 1 0
4 L] 2 0
. 3 0
. .>6< 4]
. 5]
v 6 o
S - 7 o
.] 1
v 9 0
0 1
1 1
2 a

12 ¢

Figure 4.9: Flowgraph P6. PREDL shows of how
many loop predicates a node n is predicated. For
example, the nesting level related to a loop predi-
cate of the nodes 8, 10 and 11 is 1, that means

13

this node is predicated by one loop-predicate. It
holds here: NL(P6)=3.

A: PB

H: P8

R: Author

C: Example
U

FLOWGRAPH: P8
e N PREDL(N)

. FLOWGRAPH: P4
v . N PREDL(N)

N-HOYE-Johude Wl

wg
N T
el et

Figure 4.11: Flowgraph P4. It holds: NL(P8)=10.
Measure SCOPE-D:

The Measure SCOPE-D captures structured and
unstructured loops. Unstructured loops are such
with more than one entry to the loop body. It
holds always: SCOPE-D > SCOPE-NL. If holds
SCOPE-D = SCOPE-NL then there are only
structured loops in the flowgraph.

4.4.2.4 Measures for Unstructuredness

We now discuss measures which capture unstruc-
turedness. As a basis for measures for unstruc-
turedness the concept of overlapping ranges is
considered. Ranges were introduced with the
Measure SCOPE. The Measures PIWO, UN, RU,
UOV, CPIWO and MCC-EV0 analyze nested and
unstructured constructs in a flowgraph.

Measure UOV

The Measure UOV counts the number of overiap-
ping ranges (see the examples below) and is de-
fined as:

UOV = |0V,

where OV is the set of overlapping ranges. See
also (Zuse, 1991), p.458.

Measure PIWO

The Measure PIWO was introduced by Piwo-
warski in 1982 (Piwowarski, 1982) and are dis-
cussed in detail in (Zuse, 1991), p.458. It cap-
tures nested and unstructuredness in a flowgraph.
It is defined as:

PIWO = MCC-D + 3,15, 1 ”'Piil),

where MCC-D is a Measure of McCabe and P(i,))
are pairs of ranges. P(i,j) has the value one if one
range is properly nested in another range, and
P(i,j) has the value 2 if two ranges are overlapped,
else it is zero. We illustrate this by an example.

;" - a0 Y - -
"o o " "o o =
W I At Lo A1 bt ey B b
"o — = m——yis 4 S—s " Busyis " me—is
- - - - - -

MEASURES OF FINORARSET

n

LLH

oRc
wco-0
FEINES
I
Ll
wov

1.00
3.00
1.00
3.e0
b.00
o.00
o.00

.00
3.00
.00
4.00
1.0
e.00
1.00

3.0
“n
3.00
600
2.00
o0
200

.00
[N 1)
4.00
s.00
4.0
a.00
.00

3.00
4.0
a.00
T.00
1.00
1.00
2.80

3.08
4.0
2.00
.00
0,00
1.00
1.08

Figure 4.12: lllustration of the Measure of Piwo-
warski and a comparison to some other meas-
ures.

Flowgraphs P1, P2, P3, and P31 consist of prop-
erly nested structures. The Measure UOV, PIWO,
CPIWO and UN show the differences of the

14

structure of the flowgraphs. Flowgraphs P5 and
P7 consist of overapped ranges (Value of
Measure UQV is 1). In flowgraph P5 the ranges
of decision nodes 2 and 7 are overlapped. Over-
lapping ranges cause unstructuredness in a flow-
graph. In flowgraph P7 ranges 2 and 3 are over-
lapped. The difference of the values of the
Measures PRIMES and DEC of the flowgraphs P5
and P7 cause from the unstructured components
in the flowgraphs.

Measure CPIWO

The Measure CPIWO is derived from the Measure
PIWO of Piwowarski, but only the part P(i) is
considered.
cpwo =3 P, 1Plp(i;

=3 4 EI- P(i,j).
The Measure CPIWO and UN should be consid-
ered together. The values of both measures are
identical in the case that the flowgraph consists
only of properly nested constructs.

Measure UN

Measure UN is a modification of the Measure of
Piwowarski by Zuse (Zuse, 1991), p.491. It ana-
lyzes pairs of properly nested ranges in a flow-
graph. The value is zero in the case when there
are no nested structures in the flowgraph and it is
1 if one range is properly nested in another one.

It is defined as:
IDl< 1D]

UN=Z2. Ej=1 N(i,j),

where N(i,j) increases by one if range i is properly
nested in range |, else it is zero.

Measure RU

The Measure RU is introduced by the author and
analyzes unstructuredness in flowgraph. It is de-
fined as:

RU = MCC-EVO/MCC-V.

The value is zero in the case of a structured flow-
graph and 1 in the case of a complete unstruc-
tured flowgraph.

Measure MCC-EV0

The Measure MCC-EVO0 is a modification of the
Measure MCC-EV of McCabe by the author and it
is defined as:

MCC-EVO(G) = |D|] - |[M|, and MCC-EV was
originally defined as:

MCC-EV(G) = |D|- M| +1.

The Measure MCC-EV0 gives the value zero for a
structured flowgraph.

muanonnNnanInRnIRAIRIRMITEMIET NP NnNmneEmnPo oo nonmnmmnmmese n o n

REHHEUNHBUEEAEHUEEE U ORUOOaOnd

5 Foundations of Measurement

In this Section we want to introduce the central
Idea of measurement and give a brief introduction
in measurement theory which deals with the con-
nection of empirical and numerical conditions by a
homomorphism. We present measurement as it
is seen by Roberts (Roberts, 1979), Krantz et al.
(Krantz, Luce, Suppes, Tversky, 1971) and Luce
et al. (Luce, Krantz, Suppes, Tversky, 1990) very
briefly. In (Zuse, 1991), (Zuse, Bolimann-Sdorra,
1992), (Zuse, 1992a) and (Zuse, 1994) the appli-
cation of measurement theory fo software metrics
is described in detail.

Firstly, we give a definition of measurement:
Measurement is a mapping of empirical objects to
numerical objects by a homomorphism. That
means, measurement is based on a homomorp-
hism what is also called a representation.

In 1988 Kriz (Kriz, 1988) showed that measure-
ment is always connected with an empirical view.
Kriz introduced the following picture.

Measurement

Reality Mathe-
matics (Numbers)

| |

| |
Intelligence
Barrier

| |

v v

Statistics/Mathematics

Result Result
(Empirical) (Numerical)
Relevant

Figure 5.1: The measurement process as pre-
sented by Kriz. The empirical and formal rela-
tional systems are explained below.

Users want to have relevant empirical results of
problems in reality. For example, users want to
have relevant empirical statements about the
complexity of programs. However, our human
brain, in many of the cases, is not able to produce
directly relevant empirical results. An exception
is, for example, the length of wooden boards. In
this case humans can make clear relevant empir-
ical statements. Such statements could be:
wooden board A is longer than wooden board B.
We can make this statement without using a
measure.

However, considering the complexity of programs,

15

the human brain is very often not able to make
such statements. The relevant empirical state-
ments related to software complexity can change
over the time and people have different ideas of
complexity. In many cases the human brain is un-
able to make relevant empirical decisions. Kriz
calls this problem the “intelligence barrier". That
means, in many cases, the human brain is not
able to reduce informations without certain help.

In order to overcome the problem of the intelli-
gence barrier measurement is introduced. Meas-
urement is a mapping of empirical objects (Re-
ality) to numerical objects (Mathematics
(Numbers) by a homomorphism. Mathematics is
used to process the informations. Doing this we
get mathematical results ("Result (Numerical)".
Now, the important step is to give the mathemat-
ical results an empirical meaning or empirical in-
terpretation in order to be able to make relevant
statements of the objects in reality. The most im-
portant point of measurement is to give an inter-
pretation of the numbers. In this case without an
interpretation of the numbers it is not possible to
make empirical statements. Measurement theory,
as presented by Roberts (Roberts, 1979), Krantz
et al. (Krantz, Luce, Suppes, Tversky, 1971) and
Luce et al. (Luce, Krantz, Suppes, Tversky, 1990)
gives the (relevant) empirical interpretation of the
numbers by empirical conditions.

In order to give an empirical relevant interpretation
of the numerical results we introduce measure-
ment theory and translate numerical conditions
(i.g. measures) back to empirical conditions.

First of all we want to introduce the notion of an
empirical, a numerical relational system and a
scale. Let

A= (A 2 0)

be an empirical relational system, where A is a
non-empty set of empirical objects (in our case
programs, flowgraphs or structure charts), ¢> is
an empirical relations on A (in our case: equal or
more complex) and o a binary operation on A

According to Luce et al. (Luce, Krantz, Suppes,
Tversky, 1990), p.270, we assume for an empir-
ical relational system A that there is a well-estab-
lished empirical interpretation for the elements of
A and for each relation Si of A. We also assume
the same for the binary operations.

Let further
B=(Rz2+)

be a formal relational system, where R are the
real numbers, > a relation on R, and + a binary
operationon R.

A measure u is a mapping WA -> B such that
the following holds for all a,be A:

a ez b <=>p(a) 2 u(b)
and
u(a o b) = p(a) + p(b)

Then the Triple (A, B, p) is called a scale. Ac-
cording to this definition we see that measurement
assumes a homomorphism. A homomorphism.
preserves all relations between the empirical and
numerical relational system.

We see that a scale does not consist only of num-
bers. It is more. A scale consists of a homomorp-
hism between the relational systems A and B.

There is very often a confusion between scales
and scale types. The definition of a scale was
given above. A scale type is defined by admissible
transformations. Common scale types are the fol-
lowing:

Name of the Scale Transformation g
Nominal Scale Any one to one g
Ordinal Scale

Interval Scale gx)=ax+b,a>0
Ratio Scale gix)=ax, a>0
Absolute Scale g(x) = x

Figure 5.2: Scale types of real scales. It is a hier-
archy of scale types. The lowest one is the nom-
inal scale and the highest one is the absolute
scale.

The table above can be found in many books and
papers which deal with software measures, exam-
ples are (Card, Glass, 1990), p.116, (Conte,
Dunsmore, Shen, 1986), p.129, (Fenton, 1991),
p.30, (Mayrhauser, 1990), p.561.

However, the major question for the user is: how -
does he know what scale type is assumed using
measures and what are the conditions for the use
of a measure on a certain scale level. Or equiva-
lently, how does a measure and reality look like
which creates numbers which can be transforma-
tionI by a certain admissible transformation of
scales.

We now illustrate this with the measurement of
the length of wooden boards.

Empirical Relational System Formal Relational
System

Wooden Boards R (Real Numbers)

Relation:
equal or longer than: > Equal or

greater than: >

16
-
e
be>a <=> p(b)zp(a)
Binary Operation o:
Concatenation: Addition +
aob K(a o b)= p(a) + p(b)

Figure 5.3: Example of measuring the length of
wooden boards a and b.

If we measure the length of wooden boards with a
ruler, then we have a homomorphism and an ad-
ditive homomorphism. The homomorphism is

b > a <=> pu(b) 2 u(a)

If the measurement of the length of wooden
boards would not be a homomorphism, our world
would crash.

Considering the example above, we have the em-
pirical relation > "equal or longer than" and a bi-
nary operation o, which combines two wooden

g: Strictly increasing function boards to a new one. In (Zuse, 1991) and (Zuse,

Bollmann-Sdorra, 1992) it is shown that an addi-
tive property of a measure, like the ruler, leads us
to the ratio scale. The measurement of the length
of wooden boards takes place on the level of a
ratio scale. We know this from our daily life be-
cause we can transform the numbers from KM to
miles and back without changing the meaning of
length.

We now consider measurement in the area of
software measures and complexity measurement.

6 Software Complexity

We now want discuss the term software com-
plexity. Although in literature ideas of software
complexity can be found like cohesion, coupling,
we do not give a definition of software complexity.

We use another way to talk about software com-
plexity. We discuss the idea of complexity which
is hidden behind software complexity measures.
We explain the term complexity with empirical
conditions that we derive from measurement
theory in form of axioms. These conditions can
be seen as "Gedankenexperiments".

The derivation of the empirical conditions from
software measures is shown in detail in Roberts
(Roberts, 1979) and related to software com-
plexity in Zuse et al. (Zuse, Bollmann-Sdorra,
1992), (Zuse, 1992a), (Zuse, 1992b).

It should be mentioned here that similar conditions
can be also found by Weyuker (Weyuker, 1988)

LU O T T O I T O T I T T

HHHUEHNUNENUEERNMN NNVl d by y

and Fenton (Fenton, 1991). However, these au-
thors do not use measurement theory, the give
mathematical conditions.

Firstly, we want to introduce some notations. As
an empirical relation we introduce e= which
means “equal or more complex”, That means, for
example, having two programs P1, P2eP, where
P is the set of all programs,

P1e> P2

is interpreted that P1 is more complex than P2
and

P1 = P2
means that P1 and P2 are equally complex.

Many of the empirical conditions are based on
concatenation operations of programs, flowgraphs
or structure charts. In order to show these condi-
tions we have to define a concatenation operation.
Weyuker, for example, (Weyuker, 1988) p.1359,
gives a definition of a concatenation operation of
programs:

A program can be uniquely decomposed into a set
of disjoint blocks of ordered statements having the
property whenever the first statement in the block
is executed, the other statements are executed in
the given order. Furthermore, the first statement
of the block is the only statement which can be
executed directly after execution of a statement in
another block. Intuitively, a block is a chunk of
code which can be always executed as a unit.

In Bolimann et al. (Bolimann, Zuse, 1985), (Zuse,
Bolimann, 1989) and Zuse (Zuse, 1991) (Zuse,
1992a) the sequential concatenation operation for
flowgraphs and structure charts was introduced
and denoted with BSEQ or DSEQ.

R

& D o

Figure 6.1: Sequential concatenation operation
BSEQ=P1 o P2 of two flowgraphs P1 and P2, and
the sequential concatenation operation DSEQ of a
structure chart.

Two arbitrary programs P1 and P2 or flowgraphs
are sequentially concatenated with BSEQ. The
arbitrary programs or flowgraphs P1 and P2 are
so-called primes because they have only one
entry and one exit. Weyuker calls this chunks or
blocks. D1 and D2 are sub-designs which are

17

concatenated to a new structure chart by the root-
node R. We denote DSEQ=D1 0 D2 as the se-
quential concatenation operation of a structure
chart.

The empirical conditions are derived, among
others, from the extensive structure in measure-
ment theory. The extensive structure gives an em-
pirical interpretation of concatenation operations if
holds for the measures:

w(P1 o P2) = u(P1) + u(P2)

The formula above describes the additive property
of a measure. This is the case for the Measure
LOC=|N|, where N is the set of nodes in a flow-
graph, and the Measure of McCabe MCC-V2=|E| -
IN] + 2 where E is the set of edges in the flow-
graph: It holds:

LOC(P1 0 P2) = LOC(P1) + LOC(P2)
and
MCC-V2(P1 0 P2) = MCC-V2(P1) + MCC-V2(P2)

In the next Section we show several empirical
conditions. These conditions give hypotheses
about reality and give the user the possibility to
talk about the term software complexity which is
hidden behind the software complexity measures.

6.1 Independence Conditions

Firstly we consider the independence conditions.
These conditions are related to the sequential
concatenation operation BSEQ of flowgraphs. Let
P be the set of all flowgraph, a,b,c,deP, ¢>an
empirical relation like "equal or more complex"
and o the concatenation operation BSEQ. The
conditions C1-C4 are denoted as independence
conditions and are described in detail in (Zuse,
1992a) (The figures only show the left part of the
independence conditions).

Condition C1:
a=b=s>aoc=boc,anda=b=>coa=cob,

for all a, b,CEP_.
FO
J
)
P
~ a

R @

Figure 6.2: Independence condition C1.

Condition C1 is the weakest condition for indepen-
dence between two components of a program.

Behind this condition is hidden a very important
concept of software complexity and software
measurement. Verbally formulated means inde-
pendence: Is it possible to determine the com-
plexity of a whole system from the complexities of
the components of the system via a function F.
More formally means that: Exists an F such that

WP o P) = F(u(P), u(P"))

holds? The Measures LOC, MCC-V, MCC-V2
have this property, but the Measure
NMCCABE=(|E|-|N|+1)/|N| does not have this
property.

This formal statement is not yet discussed by au-
thors in literature. However, it is discussed by
verbally formulated statements, for example, by
Fenton (Fenton, 1991), who writes: The com-
plexity of a sequential flowgraph should be
uniquely determined by the complexities of the
components. Generally, we can say that the inde-
pendence condition C1 for program complexity is
not widely accepted.

Condition C2:
a=b<=>aoc=boc<=>coa=cob,foralla,

e
2"

Figure 6.3: Empirical condition C2.

Condition C2 is stronger than condition C1. While
condition C1 assumes an => condition C2 as-
sumes <=>.

Condition C3:

ae2b=>ao0c e2boc,andas>b=>co0a e>¢
ob,foralla,b,ceP.

BN

\/
P
0 ¢ D

0

>

Flgure 6.4: Empirical condition C3.

18

Condition C3 is also not generally accepted as an
empirical condition for program complexity.

Condition C4:
ae>be=>aoce>boc<=>co0a e>cob,for

alla,b,ceP.
Fao "
EBI AR

Figure 6.5: Empirical condition C4.

Condition C4 is stronger than condition C3. While
condition C3 assumes an => condition C4 as-
sumes <=>.

Conditions C1-C4 are denoted as independence
conditions. That means they consider whether
there are interactions between the components of
a program. We illustrate the consequences of
these conditions with the following example which
is called the substitution property:

Figure 6.6: Substitution property.

Assume that P consists of the components P1
and P2 and it holds P2e>P2'. P2 is a well
structured program and P2 is written in spaghetti
code. That means, P2' is less complex than P2.
Let us replace P2 by P2'. What should happen
with the overall complexity of program P? Is now
P less complex than before? If we agree then at
least the empirical condition C4 has to be fulfilled.

We now give an example from Page-Jones
(Page-Jones, 1988), p.307, where we show the
importance of the independence conditions very
clearly related to team work.

m 1 T T T OT T OO T O R OO O TR WL 'L W ML O ML MR AWl P B MR AL sl @Rl TEn mw

Flgure 6.7: Physical Package Depiction.

Physical Package Depiction means the following:
Assume the complexity or understandability of the
structure chart above should be measured by the
teams who have developed the physical packages
A, B, C, D and E, and/or F and G. If the teams
measure the complexity/understandability of the
physical package consisting of the modules B, C,
D and E, and F and G with a measure u it is im-
portant to know what the complexity of the whole
system should be. What shall happen with the
complexity of the whole system if you decrease
the complexity of the modules B, C, D and E re-
lated to a measure p? We assume, people would
agree that the complexity of the whole system
should also decrease. However, only software
measures which fulfil the independence condition
C4 have such properties.

6.2 Conditions for Program Complexity De-
rived from the Extensive Structure

In measurement theory (Krantz, Luce, Suppes,
Tversky, 1971), p.74, (Zuse, 1991), (Zuse, Boll-
mann-Sdorra, 1992), (Zuse, 1992a) we can find
empirical conditions which are denoted as the ex-
tensive structure. They also can be interpreted as

conditions for program complexity. These condi- -

tions (axioms) are the following:

g 7 A1': Weak order

2 A2': Axiom of weak associativity.
3. A3': Axiom of weak commutativity.
4 A4': Axiom of weak monotonicity.

5. A5'": Archimedian axiom.

The weak order considers the ranking order of ob-
jects, in our case flowgraphs.

We now consider the empirical conditions A2'-A5'
in detail. This conditions are based on concatena-
tion operations and are hidden behind software
measure which are additive related to the concat-
enation operation BSEQ. Let P1,..P4 P are

19

flowgraphs and P1 o P2 the sequential concat-
enation operation BSEQ. The first condition is the
axiom of associativity.

pY.

~

Flgure 6.8: Axiom of weak associativity:
A2': P10 (P20 P3)=(P10P2)oP3.

The axiom weak associativity is not discussed in
literature as a condition for program complexity.
This empirical condition is not questionable be-
cause both flowgraphs are identical, and identical
flowgraphs should have the same complexity.

Figure 6.9: Axiom of weak commutativity:
A3': P10 P2=~P2o P1.

This empirical condition is questionable because
many author require this condition and other au-
thors reject this condition for program complexity
(Zuse, 1991), p.534.

Wy

222
(P2

Figure 6.10: Axiom of weak monotonicity:
A4':P1 «2P2=>P10P3 «>P20 P3.

This empirical condition is identical to Condition
C3. In literature this axiom is discussed contro-
versly. We will illustrate the consequences if a
measure do not have the property of the axiom of
weak monotonicity.

In order to show the fatal consequences if the
axiom of monotonicity does not hold in reality, we

V@ Gor

W®

give the following example (Zuse, 1991). We
show that the Measure WHIT of Whitworth and
Szulewski does not have the property of the
axiom of monotonicity.

A1 MEITAZ A: WMEITBI A: GSEQLO

A

HLWwEeWE JE Mt g A W NE -

LR AR R
e
o

<
- o

iz ¢

Axiom of monotonieity:

Binary oparation BSEQ:

Ml = MEITAZ o GSEQLO

M2 = WAITBl o GSEQLO

MEASURES OF WHITMORTE AND SIULEWMSKI:

RESULTS OF THE MEASURE(3)

WHITAZ WMWHITB! GSEQILO Ml M2

WHIT 16.68 13.2% 10.00 32.53 36.51

Figure 6.11: Axiom of weak monotonicity for the
binary operation BSEQ.

The example shows, that the Measure WHIT does
not have the property of the axiom of monoton-
icity. A sequence GSEQ10 of 10 nodes is added
by the binary operation BSEQ to the flowgraphs
WHITA2 and WHITB1. The relation of the com-
plexities is:

WHIT (WHITA2) > WHIT (WHITB1).
But, it holds:

WHIT (WHITA2 o GSEQ10) < WHIT (WHITB1 o
GSEQ10).

That means, adding a sequence of nodes causes
that the left flowgraph gets a lower complexity
than the right flowgraph.

It is intersting that the Measures HALST-V,
HALST-D and HALST-E of Halstead do not have
the property of the axiom of monotonicity. This
has consequences related to statistical opera-
tions.

In Section 7 we will see that such a behaviour of a
software complexity measure has consequences
related to the validation of software measures.

20

13) > L

Figure 6.12: Archimedian axiom.:

AS' If P1 > P2 then for any P3,P4 there exists a
natural number n, such that nP1 o P3e> nP2 o
P4.

We explain the Archimedian axiom with two
checking accounts which we denote with CH1 and
CH2. Assume, account CH1 has 10 Dollars, and
account CH2 has 100 Dollars. If we deposit n-
times 2 Dollars to CH1 and deposit 1 Dollar to
CH2, then there will be after n-times more money
in account CH1 than in CH2.

The Archimedian axiom related to software meas-
urement is not discussed in literature.

However, we can find many measures which do
not have the property of the Archimedian axiom
(Zuse, 1991).

6.3 Weyuker's View of Program Complexity

In this Section it is shown that there are more
ideas of program complexity in literature. In
(Zuse, 1992a) a complete overview of require-
ments of program complexity in literature is given.

We only discuss here the Weyuker properties be-
cause they are the most famous one. Weyuker
(Weyuker, 1988) discusses desireable properties
for software complexity measures. She discusses
the properties of software measures in a mathe-
matical way. This is an advantage because it is
not possible to give them different interpretations.

Following our approach (Zuse, Bollmann-Sdorra,
1992), (Zuse, 1992a) we translate the Weyuker
properties back into empirical properties by an im-
plication =>, where o is again the sequential con-
catenation operation BSEQ. We only discuss the
four most important requirements of Weyuker.
The first property is called weak positivity and P,
Q and R are programs.

6.3.1 Weak Positivity
Weyuker requires weak positivity. It is defined as
P<ePoQ,
and
Q<ePoQ.

-

The idea behind this condition is that Weyuker
means adding something to a program makes it
more complex.

6.3.2 Rejectlon of Condition C1

Weyuker rejects the independence condition C1
and requires

P=Q=>-(RoP=RoQ).

Doing this Weyuker also rejects the conditions
C2-C4 and the extensive structure as conditions
for program complexity. As we will see in Section
7 has this consequences related to the validation
of software measures.

6.3.3 Rejection of Weak Commutativity

Weyuker also rejects the axiom of weak commu-
tativity which is also an axiom of the extensive
structure. The axiom of weak commutativity is de-
fined as

PoQ=QoP,
for all P, Qe P.
Weyuker requires
PoQ-=QoP,

Rejecting the axiom of weak commutativity means
also rejecting the extensive structure.

6.3.4 Requiring Wholeness

Weyuker requires wholeness which is defined as:
p(P10oP2)>pu(P1)+pu(P2),

where 1 is a software complexity measure.

Wholeness seems to intuitive for the user be-‘

cause it supports the idea of modularization.
However, in (Zuse, 1991), Chapter 6, it is shown
that it is not possible to combine wholeness, C1
and weak commutativity. The reason is that
wholeness requires a ratio scale. In Bollmann et
al. (Bollmann-Sdorra, Zuse, 1993) and Zuse
(Zuse, 1994) it is shown that wholeness is a pseu-
do-requirement and it can be modified back to ad-
ditive measures.

6.4 Required Conditions by Bache

Bache (Fenton, 1991), p.218, suggests axioms of
program complexity. Bache formulates his
axioms numerical, but using measurement theory
it is possible to translate the numerical conditions
back to empirical conditions by the implication =>.
Again, o is the sequential concatenation operation
BSEQ. Bache denotes F, H, G as arbitrary flow-

21

graphs and P1 as an trivial flowgraph consisting of
one edge and two nodes. For his considerations
Bache assume that holds

H(H)>p(G)=>He>G.

That means flowgraph H is always more compli-
cated than flowgraph G. p is a software com-
plexity measure. We always show the original
condition and then the translation back to an em-
pirical condition by an implication =>.

Axiom 1:
F£P1 => u(F) > u(P1) => F o> P1

F g % .|/

Flgure 6.13: Axiom 1.

Axiom 1 means, that every arbitrary flowgraph F is
more complex than a trivial flowgraph P1.

Axiom 2:
WFoG) > max (u(F),u(G)) => Fo G e> max

(F.G)
D),
o> M
Figure 6.14: Axiom2.

Axiom 2 says that a sequence is more complex
than the maximal single component.

Axiom 3:
HFoGQG)=w(GoF)=>FoG=GoF.

g5

Figure 6.15: Axiom 3.

Axiom 3 is the weak axiom of commutativity. It is
required by Bache.

Axiom 4:
WFoH)>p(FoG)=>FoHe>FoG.

o>

Figure 6.16: Axiom 4.

Axiom 4 is another type of the axiom of monoton-
icity than the axiom of weak monotonicity as de-
fined in the extensive structure. Bache requires
here > but does not consider the case of =.

Axiom 5:
w(F(F1 on a)) = p (F(F1 on b)) => F(F1 on a) =
F(F1 on b), where F(F1 on b) means F1 is nested

in F on node b.

) -

Figure 6.17: Axiom 5.

Axilom 6:

W(F(H,F2,..,Fn)) > WF(G,F2,...Fn))=>
(F(H,F2,..,Fn)) > (F(G,F2,..,Fn)),

where F(G......) means G is nested in F.

Flgure 6.18: Axiom 6.

Axiom 6 says that the complexity of a program is
independent of the node where a flowgraph is
nested in another one.

Axlom 7:

22

WH(F))>1(G(F))=> (H(F)) o > (G(F)),
where H(F) means that F is nested in H on an ar-
bitrary node.

H@ >6@

Figure 6.19: Axiom 7.

With axioms 6 and 7 Bache discusses nesting
properties.

Axiom 8:
wWF(G)) > p (FoG), that immediately implies
WF(G)) > max (u(F),u(G))=> (F(G)) *> max (F,G)

= . > o @

Figure 6.20: Axiom 8.

Axiom 8 says that a nested flowgraph is more
complex than the maximum of the single parts.

Axiom 9:
K(H(G)) > WG(H)) => H(G) *> G(H).

H@>@

Figure 6.21: Axiom 9.
Axiom 9 is also a condition for nested structures.

The Axioms 1-9 show that program complexity
can be described by empirical axioms. Bache
(Fenton, 1991) presents the VINAP measures
which fulfil the axioms above. It is important to no-
tice that the VINAP measures also assume the
extensive structure. This shows again that in the
area of software metrics many empirical condi-
tions about program complexity can be found.

6.5 Program Complexity behind the
Measure of McCabe and LOC

We showed that discussing software measures
measures implicitly empirical conditions for soft-
ware complexity are assumed. Using measure-
ment theory and assuming a homomorphism we
can interpret the idea of program complexity be-
hind a software complexity measure. We illustrate
this with the Measure of McCabe and the
Measure LOC.

6.51 Idea of Complexity behind the
Measure of McCabe related to the
Ranking Order

The idea of program complexity behind the
Measure MCC-V2s|E|-|N|+1 of McCabe related to
the ranking order is the following (Zuse, 1991),
(Zuse, Bolimann-Sdorra, 1992). Let assume that
P and P' are arbitrary flowgraphs.

el: If P results from P' by inserting an edge,
then P is more complex than P'.

e2: If P results from P' by inserting an edge and
a node, then P and P' are equally complex.

e3: If P results from P' by transfering an edge
from one location to another location, then
P and P' are equally complex.

The conditions e1, 2, and e3 describe the
ranking order of the Measure of McCabe related
to the term complexity by operations on the flow-
graph. This shows that the Measure of McCabe
only measures a very simple aspect of program
complexity.

6.5.2 idea of Complexity behind the

Measure of McCabe related to Addi-
tivity

We now show the idea of program complexity be-
hind the Measure MCC-V2=|E|-|N|+1 of McCabe
related to the concatenation operation BSEQ. It is
easy to see that for the Measure MCC-V2 holds:

MCC-V2(P10P2) = MCC-V2(P1) + MCC-V2
(P2).

If a measure is additive related to a concatenation
operation then the measure assumes the empir-
ical conditions (axioms) of the extensive structure
(Zuse, 1991), p.50:

1 A2': Axiom of weak associativity.

2. A3': Axiom of weak commutativity.

23

3. A4': Axiom of weak monotonicity.

4, A5': Archimedian axiom.

We now can easily see that the Measure of
McCabe analyzes a very small aspect of software
complexity. This aspect of complexity has been
described by the conditions e1-e3 and the empir-
ical conditions (axioms) of weak associativity,
axiom of weak commutativity, axiom of weak mon-
otonicity, and the Archimedian axiom.

We now show the idea of complexity behind the
Measure LOC.

6.5.3 Idea of Complexity behind the
Measure LOC related to the Ranking
Order

We now consider the idea of complexity behind
the Measure LOC. Let be P the set of all flow-
graphs. P, is the flowgraph which contains ex-
actly one node and no edges. The idea of com-
plexity behind the Measure LOC is:

0% P~y P iff P=P'=P,,

el If P results from P' by inserting an edge,
then P and P' are equally complex.

e2'" If P results from P' by transfering an edge
and a node, then P and P' are equally
complex.

ed" If P results from P' by inserting an edge
and a node, then P is more complex than
P

The conditions e0', e1', e2', and e3' describe the

idea of complexity behind the Measure LOC re-

lated to the ranking order.

6.5.4 Idea of Complexity behind the
Measure LOC related to Additivity

For the Measure LOC holds:
LOC (P1 o P2) = LOC(P1) + LOC(P2).

The idea of complexity behind the Measure LOC
related to additivity is identical to the Measure of
McCabe.

We see that the Measures of McCabe and LOC
have different properties related to the ranking
order but they identical properties related to the
concatenation operation BSEQ.

The properties of a software measure related to
concatenation operations are also very important
in the context of validation of software measures.

7 Validation of Software Measures

The acceptance of software measures depends
on whether a software measure can be validated
and that the measure can be used as a predictor.
The terms validation and prediction have to be
considered together. Bieman et al. (Bieman,
Fenton, Gustafson, 1992), p.49, define validation
of a software measure as follows:

A software measure is only valid if it can be
shown to be an accurate predictor of some soft-
ware aftribute.

Considering the definition of validation of Bieman,
validation of a software measure related to an ex-
ternal variable V assumes that there exists a rela-
tionship (function) between the measure and the
external variable V. This kind of validation is
called external validation of a measure. An in-
ternal validation of a measures means, for ex-
ample, that the idea of complexity behind the
measure corresponds with the experience.

In order to validate a measure the property of the
external variable has to be investigated and from
this the property of the software complexity
measure is derived.

7.1 Properties of an External Variable

We now discuss the properties of an external vari-
able. We consider the external variable costs (C).
The question is whether the external variable
costs can be used as a ratio scale. For this
reason we have to consider the concatenation op-
eration BSEQ=P10 P2 between two programs
with P1, P2eP, where P is the set of programs.

The simple question is whether for the external

variable costs holds:
C(P1 0 P2) = C(P1) + C(P2),

where C are costs and o is the sequential concat-
enation operation BSEQ.

) @)
Dte)

Figure 8.1: The question is whether the costs for
maintenance of the two programs P1 and P2
which are combined to P1 o P2 is the sum of the
costs of maintenance for P1 and P2.

This question includes the following property
which is derived from the axiom of monotonicity.

C

24

*

() >)

C>(

Ay

Figure 7.2: Costs of maintenance.

The question is whether for the costs of mainte-
nance holds:

C(P1) = C(P2) => C(P1 0 P3) = C(P2 0 P3).

If users agree to the statement above, they con-
sider the external variable as a ratio scale. The
consequences are that only software measures,
which are additive, like LOC and McCabe, are
proper software measures for prediction of an ex-
ternal variable V.

The only possible function between the software
measure and the external variable V, which has to
be validated, is the following:

V(P) = a M(P)",

where P is a program, V(P) is the external vari-
able, a is a constant, M is a software complexity
measure which is additive.

This is a surprising result because this is exactly
the COCOMO-model. That means, Boehm
(Boehm, 1981) assumes that the external variable
can be used as a ratio scale. The Measure LOC
can be used as a ratio scale, too. More about the
foundations of validation and prediction can be
found in (Bollmann-Sdorra, Zuse, 1993) and
(Zuse, 1994).

In this case the Weyuker properties are not appro-
priated properties for software measures.

8 Concluslon

It is no question that software measurement is an
important method in order to get higher quality of
software. Dieter Rombach said at the Eurome-
trics 1991 in Paris: we should no longer ask if we
should measure, the question today is how. We
agree to this statement.

Although in the past much research has been
done in the area of software measurement, there
are many open questions. Among others, today
there is still no standardization of software meas-
ures. The proposed software measures in (IEEE
Guide, 1989) are not widely accepted. Validation
of software measures in order to predict an ex-

"W e oW - - B] rwa - e - e

. - e L] e

.

- - -

ternal variable is still a research topic for the fu-
ture.

9 References

Albrecht, A.J.(1979):

Measuring Applications Development Productivity.
Proc. of IBM Applic. Dev. Joint SHARE/GUIDE
Symposium, Monterey, CA, 1979, pp.83-92.

Albrecht A.J.; Gaffney, S.H.(1983):

Software Function, Source Lines of Code and De-
velopment Effort Prediction: A Software Science
Validation. |EEE Transactions of Software. Engi-
neering Vol. 9, No. 6, 1983, pp. 639-648.

AMI(1992):

AMI Handbook - Applications of Metrics in In-
dustry. Centre for Systems and Software Engi-
neering, South Bank Polytechnic, Borough Road,
London, SE1 OAA, UK, 1992.

Baker, AL.; Bieman, JM.; Gustafson, D.A.:
Metlton, A.; Whitty, R.A.(1987):

Modeling and Measuring the Software Develop-
ment Process, Proc. of the Twentieth Annual In-
ternational Conference on System Sciences,
1987, pp. 23-29.

Baker, A.L.; Bieman, J.M.; Fenton, N.; Gustafson,
D.A.; Meiton, A.; Whitty, R.A.(1990):

A Philosophy for Software Measurement. The
Journal of Systems and Software, Vol. 12, No 3,
1990, pp.277-281.

Basili, V.; Selby, R.W.; Phillips, T.Y.(1983):

Metric Analysis and Data Validation across For-
tran Projects. IEEE Transactions on Software En-
ggise;ring. Vol. 9, No. 11, pp. 652-663, November
1983.

Basili, V.R.; Weiss, D.M.(1984):

A Methodology for Collecting valid Software Engi-
neering Data. IEEE Transactions on Software En-
gineering, Vol. SE-10, No 3, Nov. 1984,
Pp.728-738.

Belady, L.A.(1979):

On Software Complexity. In: Workshop on Quan-
titative Software Models for Reliability, pp.90-94,
1979.

Bieman, James M.(1991):

Deriving Measures of Software Reuse in Object
Oriented Systems. Technical Report #CS-91-112,
July 1991. Colorado State University, Fort Col-
lins, Colorado 80523, USA.

Bieman, James; Fenton, Norman: Gustafson,
David(1992):

Moving From Philosophy to Practice in Software
Measurement. In: Proceedings of the Interna-
tional BCS-FACS Workshop (Formal Aspects of

25

Computer Software), May 3, 1991, South Bank
Polytechnic, London, UK", by T.Denvir, R.Herman
and R.Whitty (Eds.), ISBN 3-540-19788-5.
Springer Publisher, 1992.

Boehm, B.W(1981):
Software Engineering Economics. Prentice Hall,
1981

Bollmann, P.; Cherniavsky, V.S.(1981):
Measurement-Theoretical Investigation of the MZ-
Metric. In: R.N. Oddy; S.E. Robertson: C.J. van
Rijsbergen; P.W. Williams (ed.), Information Re-
trieval Research, Butterworth, 1981.

Bolimann, Peter(1984):

Two Axioms for Evaluation Measures in Informa-
tion Retrieval. Research and Development in In-
formation Retrieval, ACM, British Computer So-
ciety Workshop Series, pp. 233-246, 1984.

Bolimann, Peter; Zuse, Horst(1985):

An Axiomatic Approach to Software Complexity
Measures. Proceedings of the Third Symposium
on Empirical Foundations of Information and Soft-
ware Science Ill, Roskilde, Denmark, October
21-24, 1985. Reprinted in: Empirical Foundations
of Information and Software Science I, Edited by
Jens Rasmussen and Pranas Zunde, Plenum
Press, New York and London, 1987, pp.13-20.

Bollmann-Sdorra, P.; Zuse, H.(1993):

Prediction Models and Software Complexity
Measures from a Measurement Theoretic View.
Accepted by the 3rd Intemational Software Quality
Conference. Lake Tahoe, Nevada, October 4-7,
1993.

Bowles, Adrian John(1983):

Effects of Design Complexity on Software Mainte-
nance. Dissertation, Northwestern University, Ev-
anston, lllinois, USA, June 1983.

Card, David, N.; Glass, Robert L.(1990):
Measuring Software Design Quality. Prentice
Hall, Englewood Cliffs, New Jersey, 1990.

Chapin, N.(1979):

A Measure of Software Complexity. AFIPS Na-
tional Computer Conference Spring 1979,
pp.995-1002.

Chidamber, Shyam, R.; Kemerer, Chris, F.(1993):
A 'Metrics Suite for Object Oriented Design. M.L.T.
Sloan School of Management, E53-315, 30 Wads-
worth Street, Cambridge, MA 02139, CISR
Working paper No. 249, February 1993, 31 pages.

Conte, S.D.; Dunsmore, H.E.; Shen, V.Y.(1986):
Software Engineering Metrics and Model. Benja-
min/Cummings Publishing Company, Menlo Park,
1986.

Coupal, Daniel; Robillard, Pierre(1990):

Premilary Results of Factor Analysis of Source
code Metrics. 2nd Annual Workshop Oregon
Workshop on Software Metrics, Portland UNiver-
sity, Oregon, March 19-20, 1990.

DeMarco, Tom(1982):

Controlling Software Projects Management,
Measurement and Estimation. Englewood Cliffs,
N.J.: Prentice Hall, 1982

DeMillo, Richard A.; Lipton, Richard J.(1981):
Software Project Forecasting. In: Software Me-
tics - An Analysis and Evaluation. The MIT
Press, 1981, p.77-94.

Dumke, Reiner(1992):
Softwareentwicklung nach MaB - Schatzen -
Messen - Bewerten. Vieweg Verlag, 1992.

Ejiogu, L.(1991):
Software Engineering with Formal Metrics. QED
Technical Publishing Group, 1991.

Elliott, J.J (Editor); Fenton, N.E.; Linkman, S.;
Markham(1988):

Structure-Based Software Measurement. Alvey
Project SE/069, 1988, Department of Electrical
Engineering, South Bank, Polytechnic, 103 Bor-
ough Road, London, SE1 OAA, UK.

Van Emden, M.H.(1971):
An Analysis of Complexity. Mathematical Centre
Tracts, 1971.

Emerson, Thomas J.(1984):
Program Testing, Path Coverage, and the Cohe-
sion Metric. IEEE COMPSAC, 1984, pp. 421-431

Fenton, Norman(1991):
Software Metrics: A Rigorous Approach. City Uni-
versity, London, Chapman & Hall, 1991.

Fenton, Norman(1891a):

The Mathematics of Complexity in Computing and

Software Engineering. In: The Mathematical Rev-

olution Inspired by Computing. J.H. Johnson &

M.J. Looms (eds), 1991, The Institute of Mathe-

g'latics and its Applications, Oxford University
ress.

Fenton, Norman; Littlewood, B(1990):
Software Reliability and Metrics. Elsevier Applied
Science, 1990.

Gilb, T.(1977):
Software Metrics. Winthrop Publishers, Cam-
bridge, Massachusetts, 1977.

Goodman, Paul(1992):
Practical Implementation of Software Metrics.
McGraw Hill Company, 1992.

Grady, Robert B.; Caswell, Deborah L(1987):
Software Metrics: Establishing a Company-Wide

26

Program Prentice Hall 1987

Grady, Robert B.(1992):

Practical Software Metrics for Project Manage-
ment and Process Improvement. Prentice Hall
1992.

Halstead, M.H.(1977):
Elements of Software Science. New York, El-
sevier North-Holland, 1977.

Harrison, Warren; Magel, Kenneth(1981):

A Complexity Measure Based on Nesting Level.
ACM SIGPLAN Notices, Vol. 16, No. 3, pp. 63-74,
1981.

Hecht, M.(1877):
Flow Analysis of Computer Programs. Elsevier,
New York, 1977.

Henry, S.; Kafura, D.(1981):

Software Metrics Based on Information Flow,.
IEEE Transactions on Software Engineering Vol.
7, No. 5, 1981.

Henry, Sallie.; Wake, Steve(1988):

Predicting Maintainability with Software Quality
Metrics. TR88-46, 1988, Department of Computer
Science, Virginia Polytechnic, Blacksburg, Vir-
ginia, USA.

Hutchens, D.H.; Basili, V.R.(1985):

System Structure Analysis: Clustering with Data
Bindings. |EEE Transactions on Software Engi-
neering 11(8), August 1985.

Hetzel, Bill(1993):
Making Software Measurement Work - Building an
Effective Measurement Program. QED, 1993.

IEEE Guide(1989):

IEEE Guide for the Use of IEEE Standard Dic-
tionary of Measures to Produce Reliable Software.
IEEE Computer Society. 345 East 47th Street,
New York, NY 10017, USA.

IEEE(1989a):

IEEE Standard Dictionary of Measures to Produce
Reliable Software, IEEE Computer Society. 345
East 47th Street, New York, NY 10017, USA.

Jones, C.(1991):

Applied Software Measurement: Assuring Produc-
1i\éist;y and Quality. McGraw Hill, New York, NY,
1991.

Kafura, Dennis; Canning, James(1988):

Using Group and Subsystem Level Analysis to
Validate Software Metrics on Commercial Soft-
ware Systems. TR 88-13, 1988, Polytechnic,
Blacksburg, Virginia, USA.

Kearney, Joseph K.; Sedimeyer, Robert L.;
Thompson, William(1986):

M Ow O NOWOWOm O M om m

ws WE W1 Wl Wl Wl

- - we Wk R

AU UOUOUOUUUOOUNUUONUUUUODLODUOD U YW

Software Complexity Measurement. Communica-
tions of the ACM Vol. 29,No. 11, 1986.

Khoshgoftaar, T.M.; Munson, J.C.(1992):

An Aggregate Measure of Program Module Com-
plexity. Annual Oregon Workshop on Software
Metrics, March 22-24, 1992, Silver Falls, Oregon,
USA.

Kitchenham, B.; Littlewood, B.(1989):
Measurement for Software Control and Assur-
ance. Elsevier, 1989.

Krantz, David H.; Luce, R. Duncan; Suppes, Pat-
rick; Tversky, Amos(1971):

Foundations of Measurement - Additive and Poly-
nomial Representation. Academic Press, Vol. 1,
1971.

Kriz, Jurgen(1988).

Facts and Artefacts in Social Science: An Ephis-
temological and Methodological Analysis of E Re-
search Techniques. McGraw Hill Research, 1988.

Lake, Al; Cook, Curtis(1992):

A Software Complexity Metric for C++. Proceed-
ings of the Annual Oregon Workshop on Software
Metrics, March 22-24, 1992, Silver Falls, Oregon,
USA. Lakshmanan, K.B.; Jayaprakash, S.; Sinha,
P.K.(1991):

Properties of Control-Flow Complexity Measures.
IEEE Transactions on Software Engineering, Vol.
17, No.12, December, 1991, p.1289-1295.

Levitin, Anany V(1986):
How To Measure Software Size, And How To Do
Not pp. 314-818, COMPSAC 86

Ligier, Yves(1989):

A Software Complexity Metric System Based on
Intra- and Inter-modular Dependencies. IBM RC
14831 (#65457) November 5, 1989.

Longworth, H.D.; Ottenstein, L.M.; Smith,
M.R.(1986):

The Relationship between Program Complexity
and Slice Complexity During Debugging Tasks.
IEEE COMPSAC, October 1986, pp.383-389.

Luce, R. Duncan; Krantz, David H.; Suppes, Pat-
rick; Tversky, Amos(1990):

Foundations of Measurement - Representation,
Axiomatization, and Invariance. Vol 3, Academic
Press, 1990.

MacDonell, Stephan(1991):
Reliance on Correlation Data for Complexity Me-
tric Use and Validation. ACM SIGPLAN Notices,
Vol. 26, No. 8, August 1991.

Mayrhauser, Anneliese von(1990):
Software Engineering Methods and Management.
Academic Press, Inc., 1990

27

McCabe, T.(1976):

A Complexity Measure. |IEEE Transactions of
Software Engineering. Vol. SE-1, No. 3, pp.
312-327, 1976.

McCabe, T; Butler, Charles W.(1989):

Design Complexity Measurement and Testing.
Communications of the ACM, Vol. 32, No. 12, Dec
89, pp. 1415-1424,

METKIT(1993):

METKIT - Metrics Educational Toolkit. Informa-
tion and Software Technology, Vol 35, No. 2, Feb-
ruary 1993.

Mills, Everald, E.(1988):

Software Metrics. SEI Curriculum Module
SEI-CM-12-1.1, December 1988, Software Engi-
neering Institute, Pittsburg, PA, USA.

Mbller, K.H.; Paulish, D.J.(1993):
Software Metrics. Chapman & Hall, 1993.

Morris, Kenneth, L.(1989).

Metrics for Object-Oriented Software Develop-
ment Environments. Massachusetts Institute of
Technlogy, Master of Science in Management,
May 1989.

Munson, J.C.; Khoshgoftaar, T.M.(1989):

The Dimensionality of Program Complexity. Pro-
ceedings of the 11th Annual International Confer-
ence on Software Engineering, Pittsburg, pp.
245-254,

Myers, G.J.(1976):
Software Reliability - Principles and Practices.
Wiley & Sons, 1976.

NASA, National Aeronautics and Space Adminis-
tration(1981):

Software Engineering Laboratory (SEL), Data
Base Organization and User's Guide, Software.
Engineering Laboratory Series SEL-81-002, Sept,
1981.

NASA, National Aeronautics and Space Adminis-
tration(1984):

Software Engineering Laboratory (SEL), Meas-
ures and Metrics for Software Development. En-
gineering Laboratory Series SEL-83-002, March
1984.

NASA, National Aeronautics and Space Adminis-
tration(1986):

Software Engineering Laboratory (SEL), Meas-
uring Software Design. Engineering Laboratory
Series SEL-86-005, November 1986.

Ott, Linda M.; Thuss, Jeffrey J.(1991):

Sliced Based Metrics for Estimation Cohesion.
Technical Report #CS-91-124, November 1991,
Colorado State University, Fort Collins, Colorado
80523, USA.

Oviedo, Enrique 1.(1980):

Control Flow, Data Flow and Programmers Com-
plexity. Proc. of COMPSAC 80, Chicago IL,
pp.146-152, 1980.

Page-Jones, Meilir(1988):
The Practical Guide to Structured Systems
Second Edition, Yourdon Press, 1988

Park, Robert, e.(1992):

Software Size Measurement: A Framework for
Counting Source Statements (Draft). Software
Engineering Institute, Pittsburg, May 1992.

Perlis, Alan; Sayward, Frederick; Shaw,
Mary(1981):

Software Metrics - An Analysis and Evaluation,
The MIT Press, 1981.

Piwowarski, Paul(1982):
A Nesting Complexity Measure. SIGPLAN No-
tices, pp. 44-50, Vol. 17, No. 9, 1982.

Pressmann, Roger S.(1992):
Software Engineering: A Practitioner's Approach,
Third Edition, McGraw Hill, 1992.

RADC, Rome Air Development Center(1984):
Automated Software Design Metrics.
RADC-TR-54-27, 1984, Air Force System Com-
mand, Griffies Air Force Base, NY 13441.

Roberts, Fred S.(1979):

Measurement Theory with Applications to Deci-
sionmaking, Utility, and the Social Sciences. En-
cyclopedia of Mathematics and its Applications
Addison Wesley Publishing Company, 1979.

Rocacher, D.(1988):
Metrics Definition for Smalltalk. ESPRIT Project
1257, Januar 1988.

Rombach, D.(1990):
Design Measurement - Some Lessons Learned.
|EEE Software, March 1990, pp.17-24.

Rubey, R.J.; Hartwick, R.D.(1968):

Quantitative Measurement Program Quality.
ACM, National Computer Conference pp.
671-677, 1968.

Samadzadeh-Hadidi, Mansur(1987):

Measurable Characteristics of the Software Devel-
opment Process Based on a Model of Software
Dissertation, University of Southwestern Loui-
siana, USA, May 1987

Selby, Richard, W.(1992):

Interconnectivity Analysis Techniques for Error
Localization in Large Systems. Annual Oregon
Workshop on Software Metrics (AOWSM), Port-
land State University, March 22-24, 1992,

Shepperd, Martin (Editor)(1993):

28

Software Engineering Metrics - Volume |: Meas-
ures and Validations. McGraw Hill Book Com-
pany, International Series in Software Engi-
neering, 1993.

Shepperd, Martin; Ince, Darrel(1993a):
Derivation and Validation of Software Metrics.
Clarendon Press - Oxford., 1993.

Shooman, Martin L.(1983):
Software Engineering. McGraw Hill, 1983.

Sommerville, lan(1992):
Software Engineering. Fourth Edition, Addison
Wesley, 1992,

Stevens, W.P.;, Myers, G.J.; Constantine,
L.L.(1974):

Structural Designs. IBM System Journal, 13(2),
pp. 115-139, 1974.

Troy, Douglas; Zweben, Stuart(1981):

Measuring the Quality of Structured Design The
Journal of System and Software. Vol. 2, 113-120,
1981, pp.113-120.

Weiser, M.D.(1982):

Programmers Use Slices When Debugging.
Communications of the ACM Vol. 25, No. 7, July
1982, pp. 446-452.

Weyuker, Elaine J.(1988):

Evaluating Software Complexity Measures. |EEE
Transactions of Software Engineering, Vol. 14,
No. 9, Sept. 1988.

Wolverton, R.W.(1974):
The Cost of Developing Large-Scale Software.
IEEE Transactions on Computer, Vol. C-23, No. 6,
pp. 615-636, June 1974.

Yin, B.H.; Winchester, J.W.(1978):

The Establishment and Use of Measures to Eval-
uate the Quality of Software Designs. In: Pro-
ceedings of the ACM, Software Quality Assurance
Workshop, pp. 45-52, |IEEE Computer Society,
1978.

Zuse, Horst(1985):
MeBtheoretische Analyse von statischen Softwar-
ekomplexitadtsmaBen. Dissertation, (Ph. D.
Thesis). TU-Berlin 1985, Department of Com-
puter Science, FranklinstraBe 28/29, FR 5-3, 1
Berlin 10, Germany,

Zuse, Horst; Bollmann, Peter(1987):
Using Measurement Theory to Describe the Prop-
erties and Scales of Static Software Complexity
Metrics. IBM Thomas Watson Research Center,
Yorktown Heights, RC 13504, 1987.

Zuse, Horst; Bollmann, Peter(1989):

1 wr WY e W1 T W OWI WY W Wl M BFOWE OWOWlOWONT O O OWOW O W1 W OW 8T Wl W OWlOFF OWMOETOm

Using Measurement Theory to Describe the Prop-
erties and Scales of Static Software Complexity
Metrics. SIGPLAN Notices, Vol. 24, No. 8, pp.
23-33, August 1989.

Zuse, Horst(1991):
Software Complexity - Measures and Methods.
DeGruyter Publisher, 1991, Berlin, New York, 605
pages, 498 figures.

Zuse, Horst; Bollmann-Sdorra, Peter(1992):
Measurement Theory and Software Measures. In:
Proceedings of the International BCS-FACS
Workshop (Formal Aspects of Computer Soft-
ware), May 3, 1991, South Bank Polytechnic,
London, UK, by T.Denvir, R.Herman and R.Whitty
(Eds.), ISBN 3-540-19788-5, October 1992,
Springer Publisher, Springer Verlag London Ltd,
Springer House, 8 Alexandra Road, Wimbledon,
London SW19 7JZ, UK.

Zuse, Horst(1992a):

Measuring Factors Contributing to Software Main-
tenance Complexity. Proc. 2nd International
Conference on Software Quality, Triangle Re-
search Park, NC, October 4-7, 1992, ASQC
(American Society for Quality Control) 611 East
Wisconsin Avenue, Milwaukee, Wisconsin 53202,
USA, pp. 178-190.

Zuse, Horst(1992b):

Properties of Software Measures. Software
Quality Journal, Vol 1, December 1992, pp.
225-260.

Zuse, Horst(1994):

Foundations of Validation, Prediction, and Soft-
ware Measures. Accepted by the AOSMW94 (An-
nual Oregon Software Metric Workshop, Portland,
April 20-22, 1994,

Zuse, Horst(1994a):

Software Complexity Metrics/Analysis. John

Wiley Publisher: "Encyclopedia of Software Engi-
neering” (Contains 300 articles, 1800 pages, three
volumes), Will appear Spring 1994.

About the Author:

Horst Zuse received his B.S. degree in electrical
engineering from the Technische Universitat of
Berlin, Germany, in 1970, the Diploma degree in
electrical engineering from the Technische Univer-
sitat in 1973, and the Ph.D. degree in computer
science from the Technische Universitat of Berlin
in 1985. Since 1975 he is senior research scien-
tist with the Technische Universitat Berlin. His re-
search interests are information retrieval systems,
software engineering, software measures and the
measurement of "complexity” and "quality” of soft-
ware during the software life-cycle. From 1987 to
1988 he was for one year with IBM Thomas J.

29

Watson Research in Yorktown Heights. His re-
search work there was software measures, too.
In 1991 he published the book: Software Com-
plexity - Measures and Methods (De Gruyter Pub-
lisher). From 1989 till 1992 he was with the
ESPRIT Il Project 2384 METKIT (Metric-Educa-
tional- Toolkit) of the European Commission.
Since 1990 he gives several times a year semi-
nars about software measures for people of the
industry within the scope of DECollege. He also
gave many presentations and seminars about
software measurement on conferences in US and
Canada. Now, his research interests are valida-
tion of software measures and application of soft-
ware measures in the whole software life-cycle.

Process Improvement:
How Much Can the Organisation Endure?

Hans-Jiirgen Kugler
International Software Consulting Network
and
KgM Technologies Limited
Ireland

Abstract

Process improvement and the supporting techniques are often viewed from a technological
perspective. This paper emphasises the organisational and human aspects of process
improvements. Successful process improvement has to be supported by results from
disciplines other than information technology.

The question is asked as to whether technological and social process engineering

techniques apply equally well to organisations of widely differing size and from different
industrial sectors.

© Copyright KgM Technologies Limited, 1994

2 ISCN'94

1. Introduction

Process improvement involves considerably more than the technical aspects of software
development processes. According to Curtis’ “Orange Peel Model” one has to look at the
influence of the nested environments a software producing unit is operating in: the overall
organisation and its objectives, the business sector, the market or regulatory environment,
and so on.

Obviously process improvement has to deal with and reflect nested, interacting
organisational structures of increasing size, in which human interrelationships generally
play a more important role than technology.

Let us start by looking at the “quality challenge” — or ‘problem’, depending on your view
— that software developers are faced with today, and examine whether it really is a
problem to be solved by information technology.

1.1. The Problem

In recent years, the concept of quality has moved to the forefront of the challenges faced by
system developers. There are many different aspects of quality that affect the design,
development and delivery of systems in today’s competitive world. These include:
. Satisfied Customer:
— receives what was asked for
— at the right time

— at the price that was quoted

- Functional Correctness:

—_ ship a system that works correctly from day one

Delivery of the system on time, and correct costing of the system demand that the developer
estimate at an early stage, and with some degree of confidence, the development effort
which will be required to produce the system.

Industry trends indicate that an increasing proportion of the functionality of today’s
systems is being realised in software. High-quality systems rely to an ever-growing extent
on high-quality software.

In the current state of software practice, quality objectives as cited above are met only in
rare cases. Software developments are all too often characterised by budget overrun,

ISCN'94 3

schedule overrun, dissatisfaction with some features or performance, or total write-off in
some extreme cases.

With a growing emphasis on quality, system developers will need to avoid these
shortcomings in order to survive in the tomorrow’s business environment.

It is worth noting that all these comments apply to an environment which is managed by
humans, in which decisions are made by humans, and in which even the implementation of
these decisions is driven more by humans than by technology.

1.2. Why Process is Important

Traditional approaches to quality have relied on intensive testing, aimed at detecting and
eliminating defects prior to shipping. This somewhat restricted approach does not seek to
prevent the re-occurrence of those same defects in future products. Detecting and
eliminating the source of defects is necessary in order to achieve sustained high-quality in
product development. This points out the need for a repeatable process in the first place,
with constant monitoring to drive a program for continuous improvement.

The development process itself, therefore, is targeted as a key contributor to quality. A
quality product can only be produced using a development process which itself adheres to
high quality standards. Such a quality process minimises the introduction of defects into the
product, and ensures that it will be built in predictable and manageable time, using
predictable and manageable resources.

This perspective on quality is recognised by the ISO 9000 series of quality standards
(applicable to hardware and software developments) and, in the US and Europe, by the SEI
Capability Maturity Model and BOOTSTRAP (applicable to software developments).
Assessment under either of these programmes focuses on the extent to which the
development process is managed. Process monitoring with continuous improvement are
also emphasised in these programmes.

A manageable, repeatable process can be monitored systematically and the sources of
defects identified and eliminated. Through constant improvement, the process is refined to
deliver consistently increasing levels of quality and reliability in the final product. It is
important again to note that the monitoring is conducted by human teams—it is generally
not inherent in a purely technological system.

1.3. Management of Change and Management for Change

Every business/industry has to adapt to change, or be faced with declining sales/profits.

Evolution in business is induced by:

4 ISCN‘94

. development of markets

. new products / services

. change of technology

. change of business environment, e.g. political, regulatory, legal, ...

A business/industry can be characterised by products, services, markets, etc., but the most

pertinent—and generally most closely guarded—are its processes, the embodiment of the
organisations “know-how”.

Aim: To manage the development of organisational structures and its
associated processes in a planned and purposeful way.

The average workload tends to increase, requiring higher productivity at the same or better
quality. Productivity increase has been sought by “automating” activities by using the
support of information technology. However, you need to know what to support, before
being able to determine how to support it!

Without precise and unambiguous understanding of the requirements placed by the
business—i.e. its processes—on the support system one may develop—or acquire—a

support system, “doing things the right way”, but it cannot be guaranteed that this will lead
to “doing the right thing”.

The support system needs to fit the process, and the process needs to fit the business.

Generally well co-ordinated teams are the secret of “good business”; here the team
members act as players complementing each other to form one balanced (interacting) unit.

Process improvement obviously has a “social engineering” component. Technology can be
used to support this, but it is not the primary driver for successful change. The efficiency
(productivity and quality) of an organisation can be improved by studying and managing
the co-ordination of elements of teamwork. This has been shown, for example, to reduce
cycle time.

An approach to this is to examine the underlying process and identify those interactions or
co-ordination points which involve “buffering”, a potential cause for delays and
complexity. Group interactions themselves also require analysis—once recorded as
elements of the process. Both of these are candidates for process improvement or tuning.

ISCN‘94 5

2. Process Improvement and the Organisation

The process modelling part of process improvement aims at capturing the functional
architecture of an organisation, i.e. who does what, when, and with whom.

Top-down analysis of the business should emphasise the link between:

. business objectives
. strategic goals

. operational goals

. processes

. tasks

. activities

Organisational charts help to identify actors and roles, and this helps to relate the human
element of the organisation and the technological support. Procedures, quality manuals,
etc., provide the source of information for relationships and sequencing of activities—and
help identify more actors and roles.

An organisation is modelled as a collection of processes involving interacting role

(performed by actors or agents), e.g. a review role/agent interacting with a component
design role/agent.

The integration of process modelling and its results into the organisation as part of process
improvement needs to be controlled:

Process Specification:

The quality objectives for the process are defined. The current process followed
by the organisation is analysed and mapped into the chosen process framework.
Quality gaps and shortcomings are identified and, by reference to the framework,
appropriate activities are added to the process to eliminate the gaps (e.g.
management, review and measurement activities).

Process Deployment:

The specified process is installed within the organisation. Suitable training must
be provided to ensure effective take-up of the process throughout the
organisation—training in the process itself, and in the methods, techniques and
tools that are invoked as part of the process.

6 ISCN'94

Process Improvement:

The process is monitored and evaluated—based on information provided by the
measurement activities. Problems areas are identified and the process is modified
to overcome the problems. Note: Process Improvement is a continuous activity.
The development process must allow for evolution and constant improvement to
cope with changing quality demands and more demanding resource and time
constraints.

Fs “Social” Engineering

The above discussion shows that technological issues are actually a minor part of
successful process improvement. The concerns of the organisation and how its members
work to achieve the organisation’s goals are the major area for improvement—yielding the
greatest benefit if combined with the right technology, but also providing the potentially
greatest obstacle.

Total Quality Management programmes are being implemented by ever increasing numbers
of organisations. However, recent surveys quoted by [Buzan 1994] indicated that 80% of
these quality programmes were considered failures by those who were involved in them.
Figures on software process improvement attempts are likely to show similar tendencies—
because they were technology driven, rather than by concern for the organisation and its
individual members.

The sliding scale of effectiveness of process improvement deployment can be illustrated
best by the degree of congruence between what is said, and what is actually done
[Weinberg 1992]:

oblivious We don’t even know that we are performing a process.
variable We do whatever we feel like at the moment.

routine We follow our routines (except when we panic).

steering We choose among our routines by the results they produce.

anticipating We establish our routines by our past experience with them.

congruent Everyone is involved in improving everything all the time.

MU NN NN NN Nl D DD D 0D

ISCN*94 7

3.1. Deming’s Principles

Deming’s fourteen quality principles have influenced TQM and certainly also the software
process movement. To illustrate the importance of “social” process engineering the
following four of Deming’s principles are to be discussed further in the remainder of this

paper:
* constantly improve every process in the system
* reduce and eliminate fear
« eliminate numerical quotas

* institute organisation-wide education and re-training programmes

3.2. Key Barriers

After the stages of analysing existing processes, modelling and specifying improved
processes the ‘real’ problems are only about to begin. To effectively deploy and maintain
the improved process requires support and commitment from all those involved. However,
there is always a resistance to change, and the resistance grows with the amount of change
(non-linear!). Systems and organisations develop by themselves, as stated so well in
“Boulding’s Backward Basis” [Weinberg 1986]:

“Things are the way they are because they got that way.”
This emphasises the often less than logical change a system or organisation experiences
over time. The manifestations of resistance are therefore often also more psychological than
based on logical reasoning. Key barriers to overcome include:

* lack of management commitment; lack of continued management support

 improvement is just perceived as “flavour of the month” that will surely go
away if ignored

* people perform best to what they are measured against, i.e. measurement
changes behaviour

» general resistance to change

 short term management priorities—this is just another task that does not have
immediate implications

» skill shortage, which may indicate lack of timely and appropriate training

8 ISCN‘94

» poor communication, resulting in lack of understanding

3.3. Technology Transfer Issues

“When the thinking changes, the organization changes, and
vice versa.”

[Weinberg 1992]

3.3.1. Right Understanding

A prerequisite for successful technology transfer is that the transferring and the receiving
party get the right understanding

* Intention: it must be clear, based on company goals, why the steps proposed are
being undertaken

* Communication: the plans and the intentions must be communicated to all
involved—circulars and memos are messages, but do not imply communication

* Perception: it must be recognised that the perception of what is being proposed
may differ depending on the role of the individual in the organisation, e.g. “is
this measurement intended to be used to improve the process or to assess my
performance”

3.3.2. Early Adopters and Opponents

The same—right—understanding will not be created throughout the organisation
uniformly. There will be those who will react sooner than others. These are likely to be
individuals or groups who have been suggesting changes in the past.

These potential early adopters can be used for spreading understanding much better through
show piece applications. Such early adopters can become process champions, if they have
the right level of technical or management standing in the organisation. Such process
champions are needed at management and engineering level. They will drive themselves to
whip up support for the changes being planned.

Besides such visionary individuals there are those who can become process bashers. They
are likely to insist that the chosen course of action cannot work and is domed to failure.
Together with ‘fear of failure’ (see below) these people can be singularly de-motivating.
Empowerment of adopters (see also below) or even re-deploying such individuals are the
most effective means of handling such situations.

mMnonunmnunnmnmnminmouninnauonininnnnuunnaonunernmnm

ISCN‘94 9

Early recognition of ‘procedural fiefdoms’ is essential—buy-in needs to be created here or
top level management intervention may be required.

3.3.3. “Buy-In”

Buy-in is necessary to widen the base of the technology transferred. The rationale for the
introduction of the improvement steps needs to be understandable—ideally quantifiable
based on objective data:

* What can I gain—now and later?
* What is the risk—in particular: now?

Generally changes that promise gains of 20% or more have a significant chance of being
adopted, provided the risk element is taken care of. The risk element can only be controlled
or eliminated by empowerment to take risk, i.e. management backing for chan ge
deployment.

3.4. The Process Champions
Process champions are required for various activities:

Process Definition Group Following the analysis phase champions of the
process improvement are needed to produce a
realistic overall process model.

Process Support Group The teams must be involved in the definition of
the improvement of the processes they are taking
part in—this in turn must be supported effectively
and with enthusiasm.

Process Owners in projects In the development projects process champions
must support and track the execution of the
defined process for the project. This is also a
valuable source for feedback.

Process champions play ‘tutor’ or ‘mentor’ roles in their respective organisations. They
help the growing process improvement movements. However, small to medium sized
organisations are at a distinct advantage here, because it may be difficult to spare such a
valuable resource, or even contract such a resource in the first place.

10 ISCN‘94

3.5. Deming’s Principles Re-Visited

3.5.1. Continuous Improvement and Measurement

One of Deming’s principles is to constantly improve all aspects of the processes in the
organisation. However, goals become concrete and reachable when they can be
quantified—continuous improvement is too vague to qualify. A plan with measurable
milestones is required, and this may conflict with Deming’s principle of elimination of
numerical quotas.

This does not mean that the principles are wrong, but that it is important in which way they
are applied within the organisation, and in which way they are presented to the individuals
making up this organisation.

Another aspect of the continuous improvement principle is that it seems to suggest that
there will be steady improvement, no decline at any time. Improvement means learning,
and learning—at individual and organisational level—means experimenting, making
mistakes, and learning from these mistakes. This suggests that there will be not “smooth”
improvement curve that one can ride on, but that it will look rather “jagged” with ups and
downs—however, with an overall improvement trend.

3.5.2. Fear of Failure

Admission and acceptance of failure is necessary, but this can only work if individuals are
empowered to take risks and fail, without fear for their career (within reason). This touches
on one of the other principles of Deming: elimination of fear. The above discussion makes
it clear that in a continuous improvement situation the likelihood of increasing fear is
actually greater than in a static environment. This must be countered pro-actively by
improved training and education about the way progress is made, and complemented by
supporting management behaviour.

Metrics programmes that include “observation of the individual” may contribute to the
creation of fear, unless there is a clear understanding that the process and not the individual
is being measured. Trust and non-obtrusive interference is required in order to be able to
collect objective data.

3.5.3. Training and Education

All of the previous points imply a significant education and training programme for the
organisation. It is relatively easy to generate the necessary team spirit to implement the
required changes given a good training and education programme. However, this cannot be
a once-off effort, if the improvement is to be maintained.

LI S I R S I L S I AL L L L S L

ISCN‘94 11

The translation from theory to practice requires constant re-enforcement, and studies of
human memory indicate that a trainee will ‘forget’ about 80% of the detail of what was
being learned within 24 hours, and about 99% within two weeks—unless countermeasures
are taken.

This means that appropriate learning and review and application cycles must be established
as part of a continued training programme.

3.6. Position of the Organisation

The previous discussion in this section has outlined significant implications of process
improvement for the organisation and vice versa. But can process improvement with all its
implications be recommended for all organisations, irrespective of their size, product or
service and market sector?

Can one quantify minimum required investment in terms of percentage of available
resources? Do the risks increase with decreasing organisation size? Do these paradigms
work in all industrial and service sectors? And can one quantify potential return on
investment?

There are no real answers, yet—only a few examples and case studies.

4. Conclusion

There are more questions than answers. And for most improvement paradigms, as soon as
they involve organisational changes, there is a lot of ‘woolly’ argumentation, but little
quantitative evidence (at least in the public domain).

However, it is certain that the—positive or negative—impact of organisational issues on the
success of process improvement is greater than that of any supporting technology.
Management ignorance of facts—“we are doing all of this already, aren’t we”—or
management impatience—"we want level 4 within six months” are probably among the
foremost contributors to the failure of improvement programmes.

“Poor management can increase software costs more rapidly
than any other factor.”

[Boehm 1981]

But—where are the guarantors for success?

12 ISCN‘94

Selected References

Framework for Success — A Guide to Quality in Software Development and Support.
Dublin: National Centre for Software Engineering, 1992b.

Akima, Noboru and Fusatake Ooi. “Industrializing Software Development: A Japanese
Approach.” IEEE Software 1989 (March 1989): 13 ff.

Bollinger, Terry and Clement McGowan. “A Critical Look at Software Capability
Evaluations.” IEEE Software 1991 (July 1991): 25 ff.

Boehm, Barry W. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ,
1981

Buzan, Tony. “A New approach to Quality—Mental Literacy.” CSM, March 1994

Cusumano, Michael A. Japan's Software Factories: A Challenge to US Management.
Oxford, 1991.

Debou, Christophe. “AMI: A New Paradigm for Software Process Improvement.” In

ISCN"94, Practical Improvement of Software Processes and Products, Dublin, May 1994

Humphrey, Watts and Bill Curtis. “Comment on "A Critical Look".” IEEE Software 1991
(July 1991): 42 ff.

Humphrey, Watts, Terry Snyder, and Ronald Willis. “Software Process Improvement at
Hughes Aircraft.” IEEE Software 1991 (July 1991): 11 ff.

Humphrey, Watts S. Managing the Software Process. SEI Series in Software Engineering,
Readig, MA: Addison-Wesley, 1989.

Huczynski, Andrzej and David Buchanan. QOrganizational Behaviour. Prentice-Hall, New
York, 2nd ed., 1991.

Messnarz, Richard. “BOOTSTRAP and ISO 9000: A Quantitative Approach to Objective

Quality Management.” In ISCN’94, Practical Improvement of Software Processes and
Products, Dublin, May 1994

Raghavan, Sridhar A. and Donald R. Chand. “Diffusing Software-Engineering Methods.”
IEEE Software (July 1898 1989): 81-90.

Weinberg, Gerald M. The Secrets of Consulting. Dorset House Publishing, New York,
1986

I

ISCN*94 13

Weinberg, Gerald M. Quality Software Management—Systems Thinking. Dorset House
Publishing, New York, 1992

Sunsarul U 2ABY SN 127 TUNOIIE OIUT UIYEL I8 ¢ ARy UO Youn| as0jaq sindut [Ty “awnrerford doysyiom U Ut uoisnjouT J0J sIouauadya Jo ‘sTUs WIS

HEuuuyueduduiaEauaduyianaEsinanunuemuaieyyuuuwinnesguuwuuwoeaomuanano

B30y I'H

$52001d sty ul noK dj2y [[eys (samp200id js0m ok ur siuswAcsdul 2jqissod 1n0qe UM sAem[Y ‘jsuonnjos pue swa[qoid INOQE YU 01 UMG) LIZIEY ‘SUOISSAOSIP [AFIIRY puw dogsyiom

1goad ‘sanss} ‘suor

b yrwqns o1 payse 21 nok anis o uonensidal o YU

SIOJINIY 3q ST [[U pUe DFD 3 Aq paidasoe

aq st M Zs192foxd ueadomy 21 i aje12do-00 0 Juem oym supred g Aue azay) a1y 4, yoeoidde ue yons o} nqnuod (OIS ‘LAMDIL "8-2) sardojopoyjow

pue saururesSoxd 1230 wes moH (JJ0IS ‘LILLAN ‘dVILSIO0M ‘Ture) saSojopoyoul Juaiafjip uaamiaq AS1oufs e ssnosip 0 sain p6NOST 19212 A81udg '
{SUOTBSTURFIO POZIS WINIPSI PUR [[BUIS 10] YI0M

os[e ("9 WIND ‘dVALSI004d ‘Ture) saidojouyae) pue sardojopoyiaut * (NOSI ‘I83) saururexdoid pajuasaid oy [[e [[1p :SuonesIuRSIo [[ews J0J juswRA0IdWI] 59001 ‘b
¢@oeqd jaxrew ot ur puw ‘AFojouysa) ‘ASo[opoljaW U SPUSI) S} 21e JRYM '€

{ UDATE 3q JJeS 3 p[noys Sururen jo pury 1eyp ‘7

A[[eal s)nsal a1 Ak ‘Y UOIESUERSIO UB 10] PIJENn[BAd 21 samseawt asatf J] ;, sountrerSoxd jusuraaoxdun ssasord woly pauted usoq aAey s)1jauaq 2[qRMmSBIW 1BUYM ‘|

{, soamosa1 o1y saptaoxd [SSH (UM jiem A[[eal Jojoenuoo surud ai Jo 1awoisna e s20(] /, 2um Suof e yons Aauour 2 Joj jiem 0] aary pue (9401 Jajsuedy,
Auo Jo 2qer 1 e i) s[esodold un syjuow ewr 7 Uey) 210Ul JS2AUI 0) 2AeY sanreduros 1 aanseme A[[ear 1ajsten ASojouysa) 1oy 1S sunuridord ueadomy ap ST °| ASojouyda g,
Jewep g s ueadomy Suueduios uayam aaey am op swia[qold Yoryp /2ouaIdJIp Jueanusis Aue 212t S| jsouo g 2 0} pareduiod aq synsar ueadomyy ayy ued MOf 7 sanssy
¢, smuonmoeid £q uapum sipuonnaeld 1oy seonouid justmaaoiduur ssaso1d aremyjos uo Surjiom 2010] YSE] [BUOHBLLISIUL UB JARY 0) [NJasn 2 10U 11 POM ‘| [ea1uydaf,
i U FRURUT UOHEMSIJU0) BIA SjudtaAodur ayew o) sdojs m:ES 2Iv SjoyIeW
pue sanedwos Yoryan /PIASIYOE 2q e S)[NSaI SSaursng anrads jeypy 7 jueuSeweur uonem3ijuod eia juaumaoidun ssasord poddns o) aouapias Jo Juayxa a1 st jRYM ‘7
(gamyej 0 Sanssy
H0JJ2 Ue [ans Woop Je Hejs 0} sAeam Jood a1a1) a1y :Arenuo)) ¢, uonestuedio ue ur juswaaroidun ssaooxd arem1jos je Pojja onewaisAs e ues o) Aeas 1s9q B 2Ia1]) ST °[SUETHER T 7|
{, JJe1s 21 20utAu0d 0 ssasoxd s1010e 4
1motip A124 &1 st 1o e 1d2908 £ [T 4 WLt wolj peyoadxa oI sSNIANOR 1eYM pue paystiqeisa st aurureiSord juawamseat oy Aym puejsiapun jjes 2y sao [| [BI130[0Y24S]
£21qensap 1] g2[qssod ([ppowr 2[1jo1d Arjenb sqVULSIOOE 10 ‘WIND SIS JO asuas 3y ur) juawaaoidut ss3001d SNOURUOD JO UMM € 10 ,UONESIEUOTISUI,, S| ' s10108q
J, SI2UI0 UT J0U JNq S2INJ[N9 JO SSLNUNOD JWOS UT A[U0 J1oMm [[Im 181} sanbiuyaa) a1ay) ale 1) j[ennau femyna sawurerfoud juswoaordun Lrenb ary °| jeanjn)
J NVMIVL Se 4ons soLqumod '32 ut paonpoid st AH U3 JO JSOU 213Um IBMPIRY 10] S8 UOIBTIS WIS) 0} PBa] SIY) [[IM /, AJifenb [enba pue saoud 1amo[
1e sponpoxd [pim jaxTew g pue ueadons 2y 0] 2UI0d 0} Qe 2q NI tRIpu] Y} [[IA sisny Aipenb axemijos aanoe LA aaey (0] noqe) soruedwod ueIpu] DIY)0
AuA] 'sIeak g 1SB[91} UI pauLiojsuen) Aj2jo[duIoa sey sus9s [BLSNPUI 2Y], *¢ [2A2] AUMjeWl poASIIL Sey RIpU] Ul Y IOYOLOW 2Usds ueipu] 3y ‘5'9 - spuan Pymp '€
{, suus) ajqeynuenb w pojeis pue s[eos ssaursng mo o) pausie sunirerSord juswamseaur e Jo sjeod a1 a1y 7
J suonjestues1o Jo spury juasajyip uo puadap Aydny jusuaoidun aip sa0(] (¢ uonesiuesio oo Aue 10] a[qesn s100eq

ssauisng

SI

C Avy Avpsany J < dosy10 A £6NODST

