
Nordic Hall 1 Nordic Hall 2

EuroSPI Conference DAY 1

15.30 - 16.00 Coffee break (in exhibition area)

12.45 - 14.00 Business Lunch

10.45 - 11.15 Coffee break (in exhibition area)

20.30 Social Event

08.30 - 08.45 Welcome
08.45 -09.15

Hakan Wickberg, Head of SPI, IVF, The Status of SPI in Swedisch Industry and Scandinavian Achievements
09.15 -10.45 Key Note Session 1

Tilo Messer, Siemens, Software Process at the Gate to the Top
Paul Rogoway, Motorola, Adding SPICE While Preserving CMM

 11.15 - 12.45 Session 1
(S1) SPI & Systems Development Part I

Dejan Zivkovic, Alcatel, Belgium
Introducing Risk Management

Joern Muenzel, Robert Bosch GmbH, Germany
Standardised Test Programming in SystemTest

Tero Lindholm, Nokia, Finland
Combining Business Process Improvement And

Systems Development

11.15 - 12.45 Session 2
Metrics Driven SPI Part I

Otto Vinter, Bruel & Kjaer, Denmark
Defect Analysis to Initiate SPI

Terttu Orci, DSV, Sweden
Software Metrics Applications in a

European Perspective

14.00 - 15.30 Session 3
Implementation of SPI Part I

Tor Stalhane, SINTEF, Norway
Data Driven Improvement for SME's

Bjarne Mansson, Barco AS, Denmark
Years of SPI Experience

Alessia Billi, Sodalia, Italy
Experience with the Installation of an SEPG

14.00 - 15.30 Session 4
Metrics Driven SPI Part II

Antonios Tsipianitis, TEGEA, Greece
Improving Civil Engineering Through Metrics

Brian Chatters, ICL, UK
Metrics and Risks in SW Systems Integration

Kenneth Kvinnesland, Navia Aviation, Norway
Application of Metrics in Safety Critical Fields

16.00 - 17.30 Session 5
Implementation of SPI Part II

Jorn Johansen, Delta, Denmark, Lars
Mathiassen, Aalborg University, Denmark

Lessons Learned in a Natioal SPI Effort
Bill Culleton, 3S, Ireland

SPI By IPS - Involvement, Planning and
Structure

Seija Komi Sirvio, VTT, Finland
Experiences from Practical SPI

16.00 - 17.30 Session 6
Object Oriented SPI

Paul Sullivan, ESBI, Ireland
Impact on Introducing OO SW Development

Methodologies
Sten Jacobson, Rational, Sweden

The Unified Software Process
Paolo Caricchia, Aeroporti di Roma, Italy

Object Oriented System Integration

EuroSPI Conference DAY 2
Nordic Hall 1 Nordic Hall 2

10.45 - 11.15 Coffee Break (in exhibition area)

11.15 - 12.45 Session 7
SPI Experience from Small Teams

*

Beatrix Barafort, Centre de Recherche,
Luxembourg

A Small Developer's Framework
Joao Battista, ISCAA, Portugal

CMM in a Micro Team
Svein Are Martinsen, Invenia, Norway
Improving Estimation and Requirements

Management

11.15 - 12.45 Session 8
Information and Team Management

Solutions for SPI
*

Richard Messnarz, ISCN,
Ireland + Germany

SPI in network based Quality Assurance
Environments

Atsuo Hazeyama, NEC Corporation, Japan
Promotion of an ISO9001 based quality system

 using the WWW
Janos Ivanios, Memolux, Hungary
The PASS Experiment in Hungary

12.45 - 14.00 Business Lunch

14.00 - 15-30 Session 9
SPI and SW Life Cycle Support

*

Antti Valimaki, Valmet, Finland
Enhancing software configuration management

for a process control system
P.J. King, K. Arthur , Clockworks, Ireland

Project Management and Engineering
Control System

G. Roth, Transaction, Germany
MultiPlatform Configuration Management

14.00 - 15.30 Session10
SPI & systems Development Part II

*

AbrahamPeled, Motorola, Israel
Establishement of Defect Prevention Mechanisms

Malgorzata Warne, Ericsson, Sweden
Practical Implementationof a Cleanbase Process

Reidar Conradi, TELENOR, Norway
Re-Use of SW Development Experience

16.00 -17.30 Session 11
SPI on Personal + Hollistic Level

*

Charalampos Avratoglou, Computer Logic SA,
Greece

Plus Open Places for Contributions from
Attendees

16.00 -17.30 Session 12
SPI Processes and Modeling

*

Ulrich Zanker, Lindenberg aerospace,
Germany

Experience with Dynamic Systems
Modeling in Integrated Tool Support

Christian Zwanzig, AB Bremen, Germany
Modeling and design Guidelines for

Outsourcing Projects
Clemens Gasser, Joanneum, Austria

CCM - A fundamental Process for Improving
Quality

15.30 - 16.00 Coffee Break (in exhibition area)

08.30 -10.45 Key Note Session 2

Giselle Roesems, CEC DG III, A Summary of ESSI (European Systems and
S o f t w a r e I n i t i a t i v e) E x p e r i e n c e i n E u r o p e

Keith Dyne, Ericsson System Software Initiative (ESSI), Benetits from Continuous Software Improvement

17.30 - 18.30 Closing Panel
Remember to use the Strengths as SPIi Drivers

Software Process Improvement as an Important Factor in Business Success
Bo Balstrup, Danfoss, Denemark, Anne Mette Jonasen Haas, Jorn Johansen, Delta, Denemark, Richard Messnarz,
ISCN, Ireland, Risto Nevalainen, STTF, Finland, Tor Stalhane, SINTEF, Norway, Hakan Wickberg, IVF, Sweden

 Page 1.1 of 1.43

Session 1 – Systems

Development Part I

Introducing Risk Management in Alcatel SSD S12

Dejan Zivkovic, S12 SSD SEPG

Alcatel SSD, Antwerp

Risk Management Council Chairman

Improving the System Test Process

Jörn Münzel

Bosch Telecom, Frankfurt, Germany

Implementing SPI: Combining business process

improvement and system development at Nokia
Tero Lindholm

Nokia, Salo Finland

 Page 1.2 of 1.43

Introducing Risk

Management in Alcatel

SSD S12

Dejan Zivkovic, S12 SSD SEPG

Alcatel SSD, Antwerp

Risk Management Council Chairman

Introduction

Alcatel SSD (Switching Systems Division) S12 organisation develops and maintains

2000K lines of code big public switching system and several surrounding products of

smaller size. It runs in parallel tens of releases and projects across more than 10

development sites on 4 continents for customers all over the world. Typical project

takes several tens of person-years of effort.

The organisation has planned and executed a series of CMM-based software process

assessments in all its locations. A main SPI program has been put together and

budgeted for the period of 3 years. The objective was to significantly increase the

process maturity level of the SSD organisation, using CMM as the guidance.

Risk management has been recognised for its improvement from the very beginning

of the SPI initiative. A separate activity within Project Management Working Group

has been started up with the task to investigate and propose risk management (RiMa)

process.

The purpose of this article is to share the experience of the introduction of this subtle

process into the large organisation such as Alcatel SSD.

Piloting

Initial Process Definition

Since the organisation did not have much of experience about RiMa, the activity

started by collecting published articles and books about RiMa. There were contacts

Improving the System Test Process

 Page 1.3 of 1.43

made with several consulting companies. After brief evaluation, based on the

collected information, one was contracted with the request to help the organisation in

developing its own risk management process.

The process has been described within 3 months after the start of the activity. It was

based on simplified Charette’s model [1] and included the following steps: identify,

analyse, prioritise, plan, monitor and resolve (figure 1).

The purpose of the introduction of this specific process is to improve project

management. In particular, the predictability of the project quality, milestones and

cost had to be improved. In the long run, a better communication with customers,

transparency of our processes and customer satisfaction must be achieved.

Two projects have been chosen for piloting starting several months one after the

other. Both were run in the same location. The two differed in the priority given to

them, departments and line management that was in charge.

Choice of Pilot Projects

The first of the 2, referred to as X1, was a typical example of a good pilot. It was a

project for one of the organisation’s main customers, critical for both customer and

supplier. It got one of the first priorities, all the required management attention and it

was able to make use of all the other early SPI results, such as improved requirements

management, focused inspections of software work products, advanced module test,

improved and automated test process, newly defined internal qualification test.

The other, X2, was X1’s opposite. It was run with far less attention, was accepted

from the beginning to be late and it was not consistently stimulated to use SPI results.

As both projects were approaching their hand over dates, some results could be

outlined:

 X1

 Overall project performance was good.

 very important risks were successfully mitigated.

 An observation has been made that X1 project leader was “born to be a

risk manager”.

 X2

 Project performance was (expectedly) poor.

 RiMa process did not perform according to the process description and

quite often did not sustain its activities faced with overall project

difficulties.

 However, some risks were reasonably mitigated.

Figure ZIVKOVID.1: Risk Management Process

Improving the System Test Process

 Page 1.4 of 1.43

Lessons Learned

After the pilots, the local SEPG organisation was given the task to investigate RiMa

performance in both projects. Particularly the question was raised “what went wrong

with X2”.

Not surprisingly, the investigation confirmed that what went wrong with X2 could not

be attributed to the failure of RiMa process in particular, nor to any other subprocess.

On the contrary, to the degree of the RiMa process application, both projects may say

that they performed RiMa reasonably.

Other experiences:

 Given the environment, investment in RiMa in later development phases has little

sense. Projects are still diving in day-to-day problem management and there is

little time and attention for a proper RiMa. Nevertheless, some “sanity checking”

may be continued:

 Follow up and closure of open actions

 A question “what more could we do to prevent later problems” is always

reasonable.

 Common feeling is that RiMa is a good practice. However, any trial to put any

hard figure on that is easily challenged and disputed.

First Institutionalisation Trial

Based on overall success of X1 and its good experiences with risk management and

not a bad RiMa performance of X2, a decision has been taken soon after the

evaluation of the pilots to put the infrastructure in place in order to institutionalise

RiMa across corporate locations. This has taken place within the following months

and RiMa Business Subsystem was structured according to the given figure 2.

On the left side of the organisation one may observe a set of PRiMaTs (PRiMaT =

Project Risk Management Team). A team of (typically 2-4 people) had to be

nominated to drive and execute RiMa process. The team would be typically

composed as a subset of project staff, although this would be not a pre-requisite.

RiMa Council, on the right side of figure 2, was at that time nominated from at least a

coach per location and a coordinator at the corporate level.

The task of coaches was primarily to guide local PRiMaTs in applying RiMa process.

Figure ZIVKOVID.2: Risk Management Business Subsystem, with PRiMaT’s and a Council

Improving the System Test Process

 Page 1.5 of 1.43

Secondly, coaches had to re-direct risks based on their scope: low-level risks were

communicated to the individuals and functional groups which were expected to deal

with them; high-level risks (which on their turn could have been cross-project risks

and cross-location risks) had to be communicated to senior management, possibly

with proposed action plan. Those which were judged to be at middle, project level,

had to be treated by the PRiMaTs and project participants.

These agreements were negotiated and confirmed and a preliminary list of projects to

run RiMa was made. The criterion used was “all the new projects which are not later

than in high level design phase”. That meant practically that 11 new projects in 8

locations needed to “join the club”. This was to a certain extent achieved within 3

months. A 2 day training course for 16 participants was organised in January

(coaches, PRiMaT leaders and members). They were expected to disseminate the

process, e.g. to organise training along the kick-off meetings for PRiMaTs when a

new project would be started. In the months to come more projects joined.

What Has Happened?

The most of the projects that exercised RiMa, have started doing it quite

enthusiastically. The principles of RiMa were judged to be the right ones and helpful

to the project. Doing it was perceived also to be maintaining the good atmosphere

throughout the project.

However, the world of S12 is ever-changing world where not only many projects

compete for scarce resources, but also several initiatives for process improvements

are being launched in parallel. Given the nature of the RiMa process, in order to

sustain it or to get the most benefit out of it, different projects have taken different

tactics.

 Some projects tried to identify and mitigate as many risks as possible.

 Some projects tried to do something without formally logging what they were

doing.

 The most of the projects tried to cope with the risks largely on their own (within

the scope of the project organisation).

 Some were following the actions stemming from RiMa through the RiMa process,

others have incorporated the follow-up in the “normal” project management and

reporting.

More than a half of the projects was not able to sustain the RiMa activities throughout

the project life cycle.

Common to all the projects was a high number of “short term” risks, which were in

essence known-to-be problems from the past experience.

Management who sometimes was inpatient to get an answer to the question of ROI of

this process was either left with no answer, or they considered the examples of

calculated ROI that were provided to them as inadequate.

Examples

Project X3 started RiMa activities in February. It stopped RiMa in May during design

with the following results:

 28 risks identified and tracked

 1 successfully mitigated

 3 turned to obsolete

Improving the System Test Process

 Page 1.6 of 1.43

 9 other triggered with no evidence of results

Project R81 started in January. It stopped in August during TLD with the following

results:

 48 risks identified and tracked

 1 successfully mitigated

 11 risks materialised as problems

 11 risks became obsolete

 14 others were triggered and some of the corresponding actions were

closed; no further evidence is provided about the outcome

This kind of picture was similar in the several other projects.

A better example is a project Y1 which started in later the same year. After more than

a year of successful activity, the project still continued with RiMa through the first

implementation phase. The status in before hand-over:

 17 Risks were identified and tracked

 14 Risks were successfully mitigated

 3 Risks are triggered

The rest of the projects fall somewhere between the above examples.

Lessons Learned

 Project leader’s feeling and understanding of the process are keys to success.

 Starting too wide (in terms of number of triggered risks and actions) will almost

guarantee failure.

 Each risk and the corresponding actions need a proper level of escalation and

reporting.

 Calculating ROI (Return on Investment), in spite of some courageous trials, was

next to impossible, given the required tracking that was not always in place.

Corrections to the Process

Realising that RiMa process was facing difficulties, SPI Management agreed to

organise a tour through the main European locations in order to collect the

experiences in the initial process institutionalisation, to try to understand the

difficulties and to collect the suggestions for improvements. We assessed the degree

of institutionalisation that RiMa had reached. After doing so, the management and the

RiMa Council came up with the improved process. The improvements are

summarised in the following subsections.

T ra in ing 61 %

C O MP LIAN C E 58 %

P ro je c t Im p lem en ta tio n 56 %

D ec is ion s 50 %

E F F E C T IVE N E S S 56 %

Im pa c t o n P ro je c t 61 %

Im pa c t o n O rga n is a tio n 53 %

VALU E 62 %

C us to m e r B en e fit 72 %

Estimated Degree of RiMa

Institutionalisation

0%

50%

100%

Training

COMPLIANCE

Project

Implementation

Decisions

EFFECTIVENESSImpact on Project

Impact on

Organisation

VALUE

Customer Benefit

Figure ZIVKOVID.3: Estimated Institutionalisation Level

Improving the System Test Process

 Page 1.7 of 1.43

Improved Understanding of Scoring System and Expected ROI

The scoring system was based on 3 simple values for impact (high, medium, low) and

probability given as percentage [0-100%]. We have learned that each participant in

the process had his own understanding of the meaning of the 3 (high, medium, low),

not necessarily similar to that of the others. More embarrassing was communicating

the scored values to managers; that led often to unnecessary discussions where

nobody could prove or explain anything. Also the percentage as the means to express

probability seemed to be to detailed.

For those reasons, probability was also described in terms of the simple (high,

medium, low) categories, and the 2 extremes (negligible, almost certain) were added

for completeness.

Impact on each of the possible categories was described in a document called “RiMa

Impact Model”, giving a firm, tabular definition to the (high, medium, low). The

possibly impacted project category “climate” was replaced by “commercial cost”.

Similarly, categories “difficulty” and “cost” were defined to allow scoring the

proposed mitigation actions. Those definitions are supposed not only to

 largely line-up the understanding of PRiMaTs, and

 make their communication towards the management straightforward and

understandable,

but also they

 serve as an up front estimation of the savings that might be achieved if the risk

would really pose a threat to the project.

The final evaluation of the RiMa performance and likely-to-be achieved ROI are left

to the project final (“post mortem”) review. No further questions asked.

This approach was piloted in 3 projects throughout the next half a year and accepted

for wide use lately.

Finding the Right Level of Escalation and Reporting

Our experience, in several projects, showed that there were cases where project teams

were dealing with rather less critical risks, mostly technical ones. Real managerial

risks were left intact until they materialised as problems. More dangerously, those

were many times not reported to the management in charge.

This behaviour was possible due to the following reasons.

 Agreed criterion for prioritisation of “Top 10” risks. The prioritisation of the

identified risks took place based on 2 different criteria, i.e. “risk exposure” and

“risk reduction leverage”. The first was used as an intermediate product, based on

probability and impact, to judge which risks were possibly the most damaging

ones. The second took also the identified actions into consideration and was a

measure of the achieved leverage if the actions were successfully executed. Both

theoretically and practically, some of the important risks with high exposure

would never appear on the “Top 10” prioritised list due to inadequate or

impossible to define actions.

 Reluctance from some project teams to report on risks. Due to prevailing state of

the mind that RiMa was “an internal project business” and due to some

misunderstandings during some of the project reviews, some of the projects

simply stopped reporting on RiMa.

We have worked both with managers and practitioners to overcome this.

Managers were explained more details about scoring principles. This was also

Improving the System Test Process

 Page 1.8 of 1.43

combined with explanation and build up of the previously mentioned impact model.

With project staff we worked through our coaches. We have agreed to monitor

carefully the difference between the intermediate “Top 10” risks list based on “risk

exposure” and the final one based on “risk reduction leverage”. For the items that

were dropped from the intermediate list (and consequently finished on 11
th
 or more

position) we have agreed to make a separate list that should be shown during the

project reviews with management. The most important item (possibly two or three of

them) would get more detailed explanation. In this way the toughest items would be

calling for the management attention and a decision on how to treat them, or possibly

ignore them, would be taken at the appropriate level and shared among the stake

holders and project teams.

Synchronising of RiMa Reporting

The reporting was largely experienced as a matter of taste. The risks presented took

different forms, included different parameters, with or without actions to mitigate the

risks. This was sending confusing messages to the management and might have

discouraged some, especially middle management, to consider seriously reporting

coming from RiMa activity.

Answer to this problem was to standardise the form in which the “Top 10” were

reported. The table ideally fits on 1 page, includes a selected subset of parameters

related to the risks that are of interest for the management or wide audience.

In spite of this agreement, this had remained largely a matter of personal

understanding and taste.

Current Status of the RiMa Process Implementation

With these adaptations RiMa process continued through the next 9 months. Currently

over 40 projects across 12 locations are involved.

Though it is difficult to precisely make a distinction and calculate to which extent

each of the SPI initiatives contributed to the overall improvements achieved in the

field of software engineering in the organisation it is believed that RiMa has played

its role. We have achieved the short term goal, i.e. improved project management. We

have shifted the focus of project managers and their staff towards future. We have

taught our people to approach the project more often from the customer point of view.

As a side effect, we have identified a number of process improvements in the areas

other than project management. They will further optimise our processes and focus

our attention to the benefit of the end result.

The shared opinion is that as general statement stands that SPI is about the change of

the organisational culture, even more so is true for the risk management. So the state

of the application of this process goes hand in hand with the maturity level we are

experiencing, even when we are trying to take some lead. In this respect, several

initiatives are being taken.

Next Steps

Improving the System Test Process

 Page 1.9 of 1.43

More Involvement of Local Management and Experts

We have observed that identification of risks remains somewhat limited to the

professional scope of the people involved in the identification subprocess. The quality

of the actions defined within mitigation and contingency plans may suffer

similar lack of creativity. And, obtaining more co-operation and common

understanding from the management may also require some more engagement on

both sides.

To make further progress in this direction we have started a pilot of the slightly

modified process.

 Identification: In addition to the project staff and other project participants, we

have included also other sources of possible risks, some of them being outside our

RD&E organisation (Figure 4). For example, these include interviews with

commercial staff, management of Product Strategy group, etc.

 Risk Analysis and Prioritisation: The expectation is that a dedicated team of

practitioners, experts in their fields, might be better positioned to propose more

suitable actions for mitigation and contingency plans.

 Action Planning: For the items with larger organisational impact, like cross-

project or cross-location risks, it is important to obtain support from the

responsible levels of management. Therefore, the regular Steering Board of the

location involved will discuss those items, (re-)confirming the commitments to the

plans proposed by expert teams.

RiMa for Requirements Management Through Technical Tendering Co-

ordination

The SSD RiMa process as defined so far, urged for this activity, as a specific and

explicit project activity, from the start of TLD onwards. Requirements analysis,

allocation, project planning and resource allocation are handled by different groups of

people. How the information related to the project preparation that was collected by

those people was passed to the project teams, was not sufficiently defined and

practised.

A joint effort is being made by the members of Technical Tendering Co-ordination

Risk Monitoring

Risk

Analysis

Risk

Prioriti-

zation

Risk

Resolu-

tion

Risk

Identifi-

cation

Biweekly meeting (PriMa Team)

PRiMa Team
Mitigation
Actions

Responsibles
Commitment

Monthly

meeting

Expert Team

Books

Project Reviews

Interviews

R&D project +
Product Strategy +
Program Management +
Volume/ Technical Assistance

Weekly Project Books

Monthly SPI Steering Board

Screening

Team

Figure ZIVKOVID.4: Improved Risk Management Process

Improving the System Test Process

 Page 1.10 of 1.43

teams and RiMa Council in order to channel this information, in many ways relevant

to the risks existing for the project, to the PRiMaTs, in a consistent and coherent

manner.

RiMa Across Several Projects

In a complex environment such as that of SSD S12, major risk of any single project is

impact due to some other project(s) running in parallel, or decisions taken for some

previous projects of the same customer or market. In order to better manage this kind

of risks, we have introduced what we call a Cross Project Control Board (in analogy

with software configuration management boards).

The members of this board are the key people in PRiMaT/SQA of the current project

and TPMs/SQA of the other projects that may possibly be impacted. The task of these

people is to identify risks and problems for those other projects born by the actions

and decisions taken in the course of the current project, and propose mitigation or

contingency plans. Those are further discussed by the Steering Boards and the main

decisions taken: either to deal with the items immediately during the ongoing project

or to postpone the actions and pass them to the other project(s). The second may refer

to the first coming project, or distribute among several of them.

The identified problems remain registered for follow-up in the defect prevention

database of the impacted projects. This can be either location specific or a general

one. The identified risks are passed to the PRiMaTs of the impacted projects.

Sometimes is the difference in this classification (problems versus risks) an academic

one. This is specially the case for the cross project items. This duality can best be

explained by the figure 5.

Conclusion

We have illustrated an example of the institutionalisation of the risk management

RISK
ORIGIN

(PROBLEM)

UNDESIRABLE

OUTCOME

Figure ZIVKOVID.5: Spiral of risks and problems

Improving the System Test Process

 Page 1.11 of 1.43

process into a large and complex software organisation. The process of risk

management has proved its role as the improved way to conduct project management.

As already known any SPI initiative consumes considerable amount of time and

effort. It changes organisational culture. This change is necessary in order to allow

the organisation to make technological break through and learn how to develop new

products.

Risk Management is even more a matter of cultural change. It is supposed to make

forward looking habitual behaviour. As such, the process goes hand in hand with

managerial and engineering practices that are described in CMM for software, for the

organisations operating at levels 2 and 3 of the Model.

For this reason it may be expected that full benefits of this process may be expected

after those practices have been well established. Indeed, our observation is that for the

most advanced projects where enough priority and attention were given to the full

range of SPI practices, risk management was also better established and the projects

were more taking advantage of it. Risk Management Council in SSD remains taking

the leading role in adjusting the process continuously (tuning where necessary and

making advances where possible) while it is observing and estimating the process

feasibility and utilisation.

References

[1] R. Charette: Software Engineering Risk Analysis and Management, McGraw-

Hill, New York, 1989

[2] SEI (6 authors): Continuous Risk Management Guidebook, Carnegie Mellon

University, Pittsburgh, 1997

[3] R. Charette: Risk Entrepreneurialism: A Study For Alcatel Alsthom. ITABHI

Corp, Springfield VA, 1996/05.

[4] Bezirgan, Atilla; Graef, Nikolaus; & Mulazzani, Marco. Risk Management.

Alcatel, 1993/04/30.

[5] GRafP Technologies inc. Software: Process Risks Identification, Mapping

and Evaluation Resolver. 1996/04.

[6] Smith, Graeme. Common Information Model Project Risk Management

Guidelines, Alcatel Alsthom, 1995/04/28.

 Page 1.12 of 1.43

Improving the System

Test Process

Jörn Münzel

Bosch Telecom, Frankfurt, Germany

Abstract

The paper shows the results of an ESSI-funded experiment which has evaluated the

use of a standardised test programming notation to increase test efficiency at Bosch

Telecom. The goal of the experiment was to decrease system test time and to decrease

manual effort involved in maintaining regression test cases through automatic testing.

The experiment includes changes of the test process based on the integration of a test

case design and programming method together with the installation of new tools.

Beside the experiment the paper describes the results and the experiences made with

the approach regarding costs, effort and organisational aspects.

The main experiences of the project show that the increase of automatic testing is

possible, but it requires a close binding to product development and new skills of

testers. Efficiency in the use of test programming, which was not reached in the

experiment, needs a high degree of test case reuse. Further activities to improve the

approach based on an easily programmable and easily maintainable test design are

also outlined.

Introduction

System testing, i.e. the functional testing of complex embedded software in a target

environment, is often a very time-consuming and expensive task. Bosch Telecom

develops and manufactures, among others, large private communication networks,

which are currently tested by a mix of manual and automatic test sequences.

Looking for ways to improve the existing test process, Bosch Telecom decided to

evaluate the use of the standardised notation TTCN (Tree and Tabular Combined

Notation - ISO/IEC IS 9464-3), together with currently available test environment

tools. This evaluation is embedded in the ESSI-funded Process Improvement

Experiment ‘RESTATE’(REuse of System Test cases through Applying a TTCN

Environment - PIE-No. 23978).

The main goals of the experiment are test effort reduction and a shortening of the

time spent on performing system test.

The paper presents an outline of the experiment (old vs. new test process) including

the expected goals in detail and the motivation for introducing TTCN.

The measured results and the assessments made are the base for further activities to

Improving the System Test Process

 Page 1.13 of 1.43

disseminate the technology in Bosch Telecom together with further improvements in

test technology.

The paper also presents experience about the Bosch Telecom approach to technology

transfer and process improvement. Bosch Telecom has established a centralised

‘software best practice’ competence team (called Software Technology

Department) which has the task of improving software development by collaboration.

Members of this team together with testers from the development department have

carried out the experiment project.

Outline

The paper is structured into four chapters followed by a short conclusion.

The first chapter ‘Process Improvement Experiment’ describes the context of the

evaluation experiment including the goals, technical aspects and organisational

remarks.

The second chapter ‘Improvement Activities’ then shows the changes applied to

process, test technology and the organisation.

The third chapter ‘Experience and Assessment’ expresses the results of the

experiment with reference to costs, effort and development culture.

The fourth chapter ‘Future Activities’ summarises the current dissemination

activities and the additional activities to improve the TTCN test technology.

Improving the System Test Process

 Page 1.14 of 1.43

Process Improvement Experiment

The chapter will give the reader information about the context and the goals of the

improvement experiment together with some technical details of the process models,

technologies and tools which were used.

The RESTATE experiment has had the goal to evaluate the use of a standardised

formal notation to specify automatically executable system test cases. The supporting

tool environment is used to perform test case execution in different environments

(target and development environment) in order to reuse test cases. Test objects are

private communication switches on special hardware under real-time conditions.

Bosch Telecom

Bosch Telecom forms the telecommunication business sector of Robert Bosch

GmbH. It is concentrated on communications technology for public and private

networks, and mobile telephones, as well as on security and traffic control systems.

For further information see Appendix II or connect to URL: ‘http://www.bosch.de’.

The products concerned are mostly developed in-house, with an increasingly heavy

emphasis on software, sometimes in excess of 80 %.

Market openness, technological variety and rising customer expectations are forcing

vendors in the field of telecommunications to come to market faster with high quality,

better tested products.

Software Technology Department

To improve software processes and software development Bosch Telecom established

a software technology department some years ago. The goal of the department is to

evaluate ‘software best practice’ technologies and to integrate the proven ones into

Bosch Telecom practice. Such technologies may already be in use in some parts of

Bosch or they may be completely new.

To do evaluation and integration the department works very closely together with the

product development departments. New technologies normally are evaluated in a

prototype project in a realistic context and with the participation of the department

which currently wants to use the new technology first.

To transfer technology, the members of the department work as consultants, teachers

and coaches. The main work and basic strategy is to work as participant coaches. This

assistance normally continues for a longer term and may last for the complete

duration of a project. Main advantages is that the people being coached are in close

contact for a longer period with the coach and the ideas of the new technology.

Additionally the ‘expert’ and the new technology have to succeed in ‘reality’ which

increases the qualification of the technology and the experience of the coach.

Baseline

The division where the PIE is being carried out develops private networking

equipment, mainly private switches and terminals. It has had a BOOTSTRAP

assessment which indicated a very good level of maturity but however indicated also

some points for improvement. One of these was test methodology and test

automation.

The software development process is well structured in different phases, derived from

Improving the System Test Process

 Page 1.15 of 1.43

the German V-model, with several fixed product quality evaluation points.

Test phases cover several levels of quality assurance, e.g. unit test, software

integration test, system integration test including such activities as feature testing

(also known as system testing), load testing and field testing.

Starting scenario:

The goal of system testing is to check the functionality of the product in the target

environment under real time and real usage conditions. The functionality of the

private telecommunication switch consists of more than a hundred features

concerning the connection and administration of asynchronously acting ‘users’.

The system test consists of testing each feature as a single capability together with

testing the correct correlation of related features. Tests are specified as textual

descriptions of behavioral scenarios involving several users, e.g. ‘participant A takes

handset off hook and dials 4711’. Test execution is done by using real terminals to

stimulate the test switch as described and by checking the system reaction.

The first step in test automation is done by capturing the test execution at the

signaling interface and by replaying these test runs automatically. During the replay

the signals (messages) of the system under test are compared with the recorded one.

This possibility is used to do regression tests at the system test level of new product

releases.

The main problem with captured test sequences is their lack of robustness in the face

of small signaling changes and optional concurrent behavior of asynchronous

working links. This sometimes forces new capturing phases after small changes.

The current test process is structured into six phases/activities which are listed

below to show what effort was measured:

 Test Specification Design:

Refinement of the informal behavioural test scenarios with the information needed to

execute and assess the test cases.

 Recording Test Cases:

Manual execution of the test cases and capturing the data at the signalling interfaces.

 Verification/Adaptation:

Analysis of the captured data and manual adaptation of the scripts where necessary

(i.e. date and time are ‘don’t care’-values).

 Test Environment Preparation:

Installation and configuration of test equipment and test object.

 Test Execution:

Automatic re-run of captured test cases.

 Result Analysis:

Comparison and assessment of the executed test case traces with the reference

data (captured traces), especially when the execution shows differences.

Goals

The goals of the improvement experiment were derived from the hypothesis that the

time it takes to do system test seems too high. This means the time between

developing a new feature or new product variant and delivering the tested product has

to be shortened to get better reaction times in the dynamic telecommunication market.

The two main goals focused on were:

 reduce time to perform system test

 reduce manual test effort

Derived from these goals the target of the experiment was to measure and assess the

Improving the System Test Process

 Page 1.16 of 1.43

effects of the use of TTCN to increase test automation and to reduce manual

maintenance effort.

The following paragraphs describe in more detail the relation between the goals and

the realised experiment.

When analysing the existing test process, it was detected that current test automation

via capture/replay has two main disadvantages. Firstly, a captured signalling

sequence does not cover all possible correct dynamic behaviour of the system under

test. To test the functionality of the switch does not necessary force a special

sequential behaviour at the different signalling interfaces each time. Secondly, each

captured test contains a complete sequence including all the used signals/messages

which forces the storage of a lot of redundant data. Changes of message data have to

be edited or newly recorded for each test case because no building mechanism using

data references is possible.

To improve the process it was decided that a ‘test programming’ technique is needed

to increase the flexibility of test sequences and to decrease redundant data.

Existing test programming techniques in the area of communication testing are home-

made or related to a tool supplier or based on TTCN. When realising this, the

different arguments of costs, own development and maintenance cost, efficiency and

future portability were considered carefully. It was decided to use TTCN and buy

existing tools because of the long term cost aspects and the higher portability outlook.

Home-made or special supplier solutions seem to be more efficient, but not on a long

term view.

Experiment Facts

The following part will give a short introduction into the basics of TTCN and the

working packages of the experiment.

The Tree and Tabular Combined Notation (TTCN) is standardised by ISO as part

3 of the ISO/IEC 9646 IS (Conformance Testing Methodology and Framework) [1]

and includes a formal notation for specifying test cases as sequence trees of

message interactions [2],[3],[4].

The main feature of the standard is the use of PCOs (points of control and

observation) to define abstract test suites (ATS). To stimulate and check a system

under test, the tester has to define one or more test points (PCOs) and has to specify

the stimulation and checking of messages as abstract commands.

To specify asynchronous or optional behaviour, TTCN offers features to define

alternative receives, default behaviour and concurrency. To check time dependencies,

there are commands to start and stop timers together with commands reacting on

time-outs. To assess the resulting behaviour, each path of a message sequence has to

be assigned a test verdict.

The experiment was structured into three work packages which were sequentially

[5].

Work package one was entitled ‘Installation, Education and Preparation’. It

comprised the evaluation of the available TTCN tools including installation of the

chosen one. The participants were trained to the use of TTCN and the tools. Main

task of the work package was the conception of the used new test process based on a

new test design and programming method, named the Bosch Telecom TTCN

modelling technique.

Work package two was called ‘System test at target environment’. It comprised of

Improving the System Test Process

 Page 1.17 of 1.43

the realisation of two TTCN test suites including their verification and execution in

the target test environment. An overview is shown below in the figure, more

information about the test process and the tools is described in the following chapter.

Fig. JMUNZEL.1 : Experiment Overview - System Test

Work package three was called ‘Integration test with reuse’ which evaluates a

continuing improvement possibility. It contains the reuse of the realised TTCN test

suites to test the switch software already in the development environment.

This part of the experiment is not included in this paper because these activities were

not finished at the time of writing.

All the activities were measured based on a GQM (Goal/Question/Metrics)

measurement plan. This includes also a baseline measurement where the same tests

were realised and executed based on the current test process (see Baseline).

RESTATE Team

The project team consists of six members, three from the product department and

three from the technology department. Additional a TTCN consultant from a German

software house and a experienced process consultant were engaged to the project.

The main task of the technology department was the evaluation of the TTCN tools

and the conceptual designs. The members of the product department mainly worked

on the test contents, the baseline measurements and the test environment adaptations.

Regular project meetings, conceptual discussions, reviews, feed-back sessions and

overlapping tasks encouraged a high degree of teamwork.

Experiment System Test

Private

Communication

Switch

semi-formal

test

specification

Simulator

TTCN-Editor

and Checker

TTCN-Compiler,

Test Execution

Manager,

Result Evaluation

Improving the System Test Process

 Page 1.18 of 1.43

Improvement Activities

The following chapter presents the things which were changed by the experiment.

This includes the test process based on a more formalised test method and the effects

of using test programming techniques. Additionally the used tool environment and

the organisational changes are described.

The idea of this chapter is to give some information about the activities done and

technical results achieved in the experiment.

Process

Changes to the existing test process were forced by two aspects. One was the use of

test case programming instead of recording, the other was the introduction of a new

test realisation method to increase reuse of test data and behaviour.

The new TTCN test process is structured into seven phases which are listed below:

 Test Specification Design: (same as Baseline)

 Test Case Design:

Design of each test case structure based on the domain test architecture which forces

the reuse of standard sequences and data.

 TTCN Coding

Coding of the test cases by implementing only the necessary new TTCN code and

reusing existing parts (TTCN test steps, message constraints, etc.).

 Verification:

Analysis of the implemented TTCN test cases via code inspection and/or special test

execution.

 Test Environment Preparation:

Installation and configuration of test equipment and system under test, compilation

and configuration of the TTCN test cases.

 Test Execution:

Automatic execution of the compiled test cases.

 Result Analysis:

Tool supported analysis of the executed test case traces, especially when the

execution has a ‘failed’ verdict.

Technology and Tools

The use of programming techniques for test cases logically implies the existence of

program development phases such as problem analysis, architectural design, detailed

design, coding rules, etc.

In our case these activities resulted in a domain specific architecture [6], where each

‘user’ involved within the feature execution is modelled as a PCO. A user realises the

interaction with a kind of terminal including telephone handset, display and keyboard.

Each type of user is specified as a finite state machine (FSM) where each transition is

designed as a logical building block. Synchronisation between the users and final

verdict assignment of the test result are modelled in a central test task.

Because the used PCOs were not accessible with an automatic test environment each

transition had to be transformed into a TTCN test step at signalling interface level,

e.g. ISDN protocol messages. To reuse test steps they were coded as configurable

macros. Problem of the representation is the not always clear relation between user

Improving the System Test Process

 Page 1.19 of 1.43

behaviour and signalling interaction.

Basically the structuring of independent, but synchronised test points including

reusable test steps allowed an efficient specification and coding of test cases.

The tool environment as shown in figure JMUNZEL.1 covers three areas of TTCN

test support:

 test coding;

 test compilation and configuration;

 test execution and result analysis.

Test coding is supported by a TTCN editor which allows the window-based writing

of TTCN test suites, supported by syntax and semantic checks (online and off-line).

Compilation and test case configuration are supported by a TTCN compiler and a

PIXIT editor (Protocol Implementation eXtra Information for Testing). The

compiler needs to be specialised to the execution environment. The PIXIT editor is

used to connect TTCN variables to the configuration data of the system under test,

e.g. telephone number, hardware addresses. PIXIT data and executable code have to

fit.

Test execution and result analysis are supported by a test campaign manager, a

PCO platform, a tracer and a TTCN animator. The test campaign manager

supports the selection and execution of single or connected test cases. The PCO

platform is needed to support each used PCO with the underlying services. It realises

the physical and logical access between the system under test and the test point. The

tracer stores the execution data exchanged at all interfaces including time stamps and

offers these data for further analysis. The TTCN animator is a tool which supports the

trace analysis via showing the used path high-lighted in the TTCN code.

Organisation

The organisational changes affect two areas, one is the testers knowledge and

training, the other is the project scheduling.

As mentioned before test case programming requires software development skills in

addition to domain know how. That means TTCN testers need training in the use of

TTCN, the tool environment and the Bosch Telecom TTCN modelling technique.

Because of this amount of special knowledge, it was decided to build special test

teams.

Project management is also involved in the changes because test case programming

(at least initially) increases the effort for test specification and coding. These

activities should be done in parallel to the product development to get executable test

cases when the system test phase begins. Project scheduling and resource

management have to be improved to integrate these changes.

Improving the System Test Process

 Page 1.20 of 1.43

Experience and Assessment

This chapter gives an overview of the measured results of the RESTATE experiment,

the personal experience of the project members and the assessments made.

The information is structured into three sub-chapters to separate the aspects of costs,

improvement / changes and additional factors.

This chapter should be a must for all readers because it contains the results of the

RESTATE experiment.

Costs

The costs of introducing TTCN as a test programming technique were measured for

three areas:

 tool investment;

 training;

 initialisation.

The tool investment comprises the TTCN editor and the TTCN Module with its parts

described in the previous chapter. There was no investment necessary for basic

hardware/software (PC, workstation, LAN, test simulator).

One licence for the TTCN editor is approx. 5,000.- US $, a licence of the TTCN

Module is about 27,000.- US $. Assuming that each tester involved needs a TTCN

editor licence and 3 - 5 tester share a TTCN Module environment, each tester’s place

of work costs approx. 12,000.- US $. In our experience, this investment is similar to a

software developer costs (CASE tool, programming environment). Cost may decrease

by negotiation and the number of licences bought. Additional effort/cost is necessary

for tool installation and permanent support.

The training costs are distinguished between TTCN training, tool training and test

domain training.

A standard TTCN training course (3 days) in our case was about 1,200.- US $ for

each participant. The training included a ‘hot-line’ support over three month.

The tool training consists of a three day course and was about 2,400.- US $ each

participant (3 participants). Tool support during the experiment without additional

cost was part of the licence fee.

The test domain training depends on the knowledge of the tester about the features

under test, the system under test and the interface specifications of the test points (e.g.

ISDN protocol). In our case the cost ranged between no cost and 6 weeks effort for

reading and coaching.

We assume training costs are also similar to software development, maybe less if the

tester already has knowledge of software development in general.

The initialisation cost contains the effort we invested to develop our test architecture

and our test design technique including TTCN coding rules and basic test steps. In the

RESTATE project this effort was about 8 man months.

We assume that these costs have high dependency on the complexity of the test area

(number of parallel test points, complexity of the interface protocols), the quality of

an existing test architecture and the quality of the test case specification documents.

In our case we had two complex interface protocols, up to four test points and no

usable test architecture.

Improving the System Test Process

 Page 1.21 of 1.43

Effort

To get data for assessing the value of test programming techniques the experiment

has measured the implementation of two test packages. Both test suites were

implemented using the current test process and the TTCN test process. Additionally

the test suites were adapted to a second type of switch to measure the change effort

(maintenance) involved when reusing existing test cases.

In detail we measured the effort needed at each phase of both processes to get

information about the entire effort and the effort distribution across the different

activities. One test suite, called Basic Call, tests the feature of connecting two users

under several conditions. The other test suite, called Advice of Charge (AOC), tests

the feature of displaying and storing charging information.

Because we expected an effort increase for the first time programming a test suite

rather than simply recording test cases, we also tried to measure the maintenance

effort of both the processes. This was measured via testing two different switch types.

The following figures show the measured data of the ‘Baseline’ and ‘Experiment’

projects.

Fig. JMUNZEL.2 : Baseline Measurement - Test effort distribution

The figure above shows the results of the reference measurement (baseline) based on

the current test process. Average effort per test case is 2.5 ph (person hour) for Basic

Call and 5.6 ph for AOC.

D
e

s
ig

n
 S

p
e

c
.

R
e

c
o

rd
in

g

V
e

ri
fi

c
a
ti

o
n

T
e

s
t

p
re

p
a

ra
ti

o
n

T
e

s
t

e
x
e

c
u

ti
o

n

R
e

s
u

lt
 a

n
a

ly
s
is

E
ff

o
rt

 p
e

r
T

C Basic

Call

AOC

0

10

20

30

40

50

[p
h

]

Initial Effort Baseline Team

Improving the System Test Process

 Page 1.22 of 1.43

Fig. JMUNZEL.3 : Experiment Measurement - Test effort distribution

Looking at the experiment team, we measured the distribution shown above for the

initial coding and verification of the two test suites. Average effort per test case (TC)

are 7.2 ph for Basic Call and 20.1 ph for AOC. The zero effort during the ‘Design

Test Specification’ (Design Spec.) phase is because we already used the results of the

baseline team.

To illustrate the effects of using programming techniques and the reuse of building

blocks in TTCN programming the following two figures show the evolution of effort

per test case over the experiment period.

Fig. JMUNZEL.4 : Experiment Measurement - Effort per test case Basic Call

D
e

s
ig

n
 S

p
e

c
.

D
e

s
ig

n
 T

C

C
o

d
in

g

V
e

ri
fi

c
a
ti

o
n

T
e

s
t

p
re

p
a

ra
ti

o
n

T
e

s
t

e
x
e

c
u

ti
o

n

R
e

s
u

lt
 a

n
a

ly
s
is

E
ff

o
rt

 p
e

r
T

C Basic

Call

AOC

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

[p
h

]

Initial Effort Experiment Team

Evolution of EffortEvolution of Effort

(per Test Case: Basic Call)(per Test Case: Basic Call)

9393

2929

4646

3131

4141

46.546.5

9.679.67 7.677.67 7.757.75
3.153.15

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

1/1998
2 TC

2/1998
3 TC

3/1998
6 TC

4/1998
4 TC

5/1998
13 TC

1/1998
2 TC

2/1998
3 TC

3/1998
6 TC

4/1998
4 TC

5/1998
13 TC

[ph][ph]

Effort per Month

Effort per Test Case

Improving the System Test Process

 Page 1.23 of 1.43

Fig. JMUNZEL.5 : Experiment Measurement - Effort per test case AOC

As shown above, the effort to program a test case decreases after an initial period in a

range comparable to the baseline values.

The following two pictures show the results of measuring maintenance effort. We

called this measurement the ‘Robustness’ factor because of our demand is that

regression test cases should not need maintenance without required changes.

Fig. JMUNZEL.6 : Baseline Measurement - Maintenance effort distribution

The results of the baseline measurement show the activity distribution and an average

effort of 1.5 ph for Basic Call and of 1.6 ph for AOC.

Evolution of Effort
(per Test Case: AOC)

126

91.5

35

50.5

36.5

10.1
3.04

0

20

40

60

80

100

120

140

2/1998
0 TC

3/1998
0 TC

4/1998
0 TC

5/1998
5 TC

6/1998
12 TC

[ph]

Effort per Month

Effort per

Test Case

D
e

s
ig

n
 S

p
e

c
.

R
e

c
o

rd
in

g

V
e

ri
fi

c
a
ti

o
n

T
e

s
t

p
re

p
a

ra
ti

o
n

T
e

s
t

e
x
e

c
u

ti
o

n

R
e

s
u

lt
 a

n
a

ly
s
is

E
ff

o
rt

 p
e

r
T

C Basic

Call

AOC

0

5

10

15

20

25

[p
h

]

Robustness Baseline Team

Improving the System Test Process

 Page 1.24 of 1.43

Fig. JMUNZEL.7 : Experiment Measurement - Maintenance effort distribution

The experiment test suite for Basic Call was already robust and the AOC required an

average effort of 1.2 ph for each test case.

Assessing the current test process measurements we found that the main effort

occurred during phase Test Specification Design, and that it was not expected at such

a high level. The current test captures the test data at signalling level where a lot of

communication details are included. Most time is needed to abstract from the detailed

message contents (signalling level) to get statements about the behaviour of tested

features (user level).

Another interpretation made is about the direct relation of test effort and complexity

of test cases. The Basic Call test cases do have a less number of test actions than the

AOC test cases to be specified, recorded and verified.

Assessing the TTCN test process measurements we came to appreciate the high

amount of effort involved in developing / programming test cases. Until a library of

basic test steps exists the effort is much higher. Although the experiment already used

the Test Specification Design phase information of the baseline team, the designing

and coding of TTCN took a longer time.

A positive evaluation of TTCN is during the Test Environment Preparation and

Result Analysis phases where less effort was needed because of a higher degree of

automation.

Interpreting the maintenance effort for both processes there are no striking differences

between current process and TTCN. This may occur from the approach we made to

test two different switches. For Basic Call we registered zero effort with TTCN and

some effort with the baseline team, which shows the distribution we expected. For

AOC we registered a higher effort with TTCN because the programmed configuration

of one switch has differences to the second switch approach. This resulted in a small

redesign of the TTCN test suite. Another influence factor we did not measure was the

degree of comparison we used. In the case of RESTATE we checked the receiving

messages very superficially and this was easy to adapt at the Baseline approach.

D
e
s
ig

n
 S

p
e
c
.

D
e
s
ig

n
 T

C

C
o

d
in

g

V
e
ri

fi
c
a
ti

o
n

T
e
s
t

p
re

p
a
ra

ti
o

n

T
e
s
t

e
x
e
c
u

ti
o

n

R
e
s
u

lt
 a

n
a
ly

s
is

E
ff

o
rt

 p
e
r

T
C Basic

Call

AOC

0

5

10

15

20

25

[p
h

]

Robustness Experiment Team

Improving the System Test Process

 Page 1.25 of 1.43

Detailed test checks should be easier to maintain in the TTCN programming

environment than at the protocol simulator.

Concluding the effort data of the experiment we assessed that the expected

advantages of using TTCN were not reached by the experiment. The goal to reduce

test time and manual test effort are not deducible in a short term view compared to

the costs and the effort.

On a long term view there are aspects which contain advantages and which we will

use as a base for our ongoing work (see chapter Future Activities). One aspect is the

effort reduction of TTCN programming for complex test cases based on a stable test

step library and a lot of regression. Another advantage may be a higher degree of

automation at regression test which may be executed at 24 hours at seven days a

week. Another aspect where we guess an advantage is the possibility to do test case

programming in parallel to product development which forces an early inspection of

the interface specification. We guess that this would not only lead to earlier existing

test cases but also to an increased quality of the realised product.

Management Experience

At current test approach there exists a high individual relation between testers, system

under test and developer. The realisation of test runs and the interpretation of results

is based on a lot of experienced know how. The easiness of the approach and the

experience of the existing test team are useful to react fast on changes.

When using a test programming technique the designing and interpretation rules have

to be formalised to be effective. The coding of stimulating messages and the

verification of the receiving messages has to be based on formal specifications. In our

experiment we had the problem of a mismatch between the level of testing (user

behaviour) and the level of test access (signalling interface). Because a formal

representation of user behaviour and the associated signalling behaviour did not exist,

we had to build one. Such representation is required for programming test cases but

was not directly accepted by the developer. From their point of view this kind of

specification may handicap the flexibility of a layered development where realisation

is hidden from the service interface (access point). During the experiment we could

not solve this problem.

Another experience we had during the experiment is the similarity between the

management of test case programming and of software development. In the current

test process the testers do a lot of work independent of each other. When designing

and coding TTCN the programmer have to work as a team to use common

information, e.g. message declarations, constraints, test steps. To manage this work

such technologies as team management, quality assurance and configuration

management (access rights, release management, etc.) are necessary.

Transfer Experience

In the RESTATE project we summarise the technology transfer experience in three

areas, technology evaluation, process changes and cultural / organisational changes

To introduce a technology like TTCN requires not only the tailoring of tools and

naming conventions but also the development of a vision about a new process. We

have spent a large amount of effort in discussing and understanding the ideas of

TTCN based testing, the application domain context and the goals of the system test

before designing a concept how the TTCN technology and tools may fit to the

problem area. Successfully we early integrated together external consultants,

experienced testers and members of the technology department, so that we got the

Improving the System Test Process

 Page 1.26 of 1.43

information needed and, in time, a common vision of the solution. Generalising this

experience, we realised the necessity of adapting a ‘new’ technology to the problem

domain. In particular the integration of experienced people of the application domain

and the technology domain over a longer period supports a well designed and

accepted solution.

The main changes in the test process were brought about by the increase of

documentation depending on a higher degree of necessary formalism. Both sides,

testers and developers, had reservations about writing and using documented

specifications. On the other hand we got more acceptance during the project when we

used our specification for problem localisation. The main problem of detailed

documentation is often that filters are missing which could help in extracting

currently needed information. Missing flexibility and the effort of maintaining

detailed documentation often were used as arguments.

Generalising this experience we will have to think about techniques to get

hierarchical structured specification to filter adequate levels of information and to

maintain traceable and consistent data.

Our experience in cultural and organisational changes is limited to a small amount,

because we did not work with a larger team over a longer time. In conclusion, we had

no problem in discussing the problems and in designing a new test approach but there

is still uncertainty as to how the results of the experiment should be interpreted. The

problems of integrating a test programming technique are focused to two areas. The

first is the need for a new kind of specification (representation ‘user behaviour’ -

‘signalling behaviour’) which has to be written by development staff. The second is

the need to teach the testers how to program test cases. Finally also project scheduling

should be changed to integrate a specialised TTCN test team early on in the

development.

Because of the gravity of changes involved our doubts seem to be justified and we

have to think about a stepwise integration.

Improving the System Test Process

 Page 1.27 of 1.43

Future Activities

Concluding the results of the RESTATE experiment the use of TTCN as a system test

programming technology will not meet our process improvement goals in a short

term view.

TTCN requires investment (tools, training, initialisation) and increases effort for the

first test case realisation. Maintenance effort is less than today but to reach a return on

investment we need a high number of maintenance cases.

On the other hand we learned a lot when evaluating TTCN and measuring our current

test process. The main message for further activities is based on the experience that

the developed test architecture including the use of PCOs is a strong concept to

improve test specification and test verification. Also the TTCN technology with the

existing tool environment is valuable to be used for test automation but the

programming effort has to be decreased.

The following sub-chapter show an overview about some activities already started or

aimed at.

Distribution

To distribute the results, experience and recommendations of the RESTATE

experiment we started several activities.

Public dissemination of results and experience are done via ESSI reports and

Conference presentations [5], [6] as this paper shows. In-house dissemination at

Bosch is done via reports, presentations, intranet pages and several workshops.

Main distribution is supported by the ‘software best practice’ competence team which

is involved in consultant and coaching activities. Some other development

departments already started to include the TTCN technology to their process using

the experience of the experiment and the know-how of the technology department.

Continuous Improvement

To improve the TTCN test programming technology we selected three areas for

further activities. Main goal is to reduce the effort of test case coding.

We have started a co-operation with the Institute for Telematics at the University of

Lübeck, Germany, to analyse the problem of automatic generation of TTCN test

cases out of formalised Message Sequence Charts (MSC). MSC is a standardised

notation to specify dynamic interaction on a higher level of abstraction. This should

decrease the effort for TTCN coding.

Another area is to increase the use of formal specification techniques as SDL and

ASN.1 for interface specification. These could be used for increased tool supported

code generation at development and at testing.

A reduction of development cost per test case should be reached by increasing the

reuse of test cases. This is the goal of the second part of the RESTATE experiment

where the already existing TTCN test suites are executed during the software

integration phase in the development environment (see Experiment Facts: Work

package 3).

To improve the test process we started a further analysis about the current used test

scenario (protocol PCO). Our target is to deduce PCOs which are easier to handle

Improving the System Test Process

 Page 1.28 of 1.43

from the viewpoint of feature tests. Preconditions are a necessary access at this

interface and a less complex interaction model. Additional we believe, that a stable

syntactical and semantic interface is a basic requirement for the efficient use of a test

programming technique. This will increase considerably the use of building blocks

and reduce maintenance effort.

Conclusion

Summarising the results and the experience of the RESTATE experiment:

 TTCN as a test programming notation is only part of the solution for our test

problem.

 TTCN, its test method and existing tools offer a mature basis for systematic and

automatic regression testing.

 Efficient automatic testing requires a binding to the development process.

The best feature of the TTCN test method is the idea that tests are structured using

Points of Control and Observation (PCOs) which supports a clear approach.

Efficiency of programmed test cases is reached through a high degree of regression to

reduce maintenance effort. Efficiency of programming is reached through the use of

stable interfaces as test access points (PCOs) to reduce coding effort. Interlocking the

test process with the development process (e.g. requirements, architectural design)

will support product quality. An earlier review of interface specifications from a

tester’s point of view will increase transparency and completeness.

On the other hand, test case automation requires investment in tools, new skills, test

process and initialisation effort.

We have not yet reached all our goals, but we are on a promising course for the

future.

Improving the System Test Process

 Page 1.29 of 1.43

Glossary

AOC Advice Of Charge (supplementary service of a switch to display charging

information)

ASN.1 Abstract Syntax Notation 1 (Standard for specifying abstract data types)

ATS Abstract Test Suite (TTCN test cases, independent of special execution

information)

ESSI European Systems and Software Initiative (Program of the European

Commission)

GQM Goal/Question/Metrics paradigm (basic metric concept, originated by

Victor Basili, University of Maryland / USA, and the Software

Engineering Laboratory)

IEC International Electrotechnical Commission

ISDN Integrated Services Digital Network (Standard for Telephony)

ISO International Standardisation Organisation

ISO 9646 Open System Interconnection - Conformance testing methodology and

framework (Standard including the specification of TTCN)

LAN Local Access Network

MSC Message Sequence Chart (Standard for dynamic behaviour flows)

PCO Point of Control and Observation (basic concept of TTCN methodology)

PIE Process Improvement Experiment (ESSI work program task type)

PIXIT Protocol Implementation eXtra Information for Testing (Variables used

in TTCN which are assigned to configuration data at run time.

RESTATE REuse of System Test cases through Applying a TTCN Environment

(Title of the ESSI PIE project of Bosch Telecom)

SDL Specification Description Language (Standard for specification of finite

state machines)

TTCN Tree and Tabular Combined Notation (Test programming notation,

specified at ISO 9646 - part 3)

Reference Summary

[1] ISO/IEC IS 9646, Information Technology - Open Systems Interconnection -

Conformance testing methodology and framework, Part 1 - 7, International

Standard IS 9646, ISO, Geneve, Switzerland, 1992

[2] Kron J., Wiles A., A Tutorial on TTCN, Tutorial at the 11
th
 International

Symposium on Protocol Specification and Verification, 1991

[3] Baumgarten B., Giessler A., OSI Conformance Testing Methodology and

TTCN, Elsevier Sciences B.V., Netherlands, 1994

[4] Ek A., Grabowski J., Hogrefe D., Jerome R., Koch B., Schmitt M., Towards

the industrial use of validation techniques and automatic test generation

methods for SDL specifications, in: Proceedings of the 8
th
 SDL Forum ed.

Cavalli and Sarma, Elsevier Sciences B.V., Netherlands, 1997

Improving the System Test Process

 Page 1.30 of 1.43

[5] Münzel J., Better testing for private communication networks, in:

Proceedings of the 5
th
 European Conference on Software, Testing, Analysis

and Review, Edinburgh, (CD-ROM), 1997

[6] Anlauf M., Programming service tests with TTCN, in: Proceedings of the

IFIP TC6 11
th
 International Workshop on Testing of Communication Systems

ed. Petrenko and Yevtushenko, pp. 263-278,Kluwer Academic Publishers,

Boston, USA, 1998

Appendix I : about the author

Jörn Münzel is currently section manager at the Bosch Telecom software technology

department and project leader of the ESSI Process Improvement Experiment -

RESTATE (REuse of System Test cases through Applying a TTCN Environment).

The technology department propagates software engineering and methodology

expertise through co-operation with the product development divisions.

Mr. Münzel is active in the areas of software test and software quality management.

From 1993 to 1995 he worked at Robert Bosch Research and Development as a

software engineer in the areas of test and quality management of object-oriented

software development.

Jörn Münzel received a diploma in Computer Science from the Technical University

of Darmstadt (Germany) in 1986.

Prior to joining Bosch, he was a software engineer at a German software house,

where he took part in and led several projects in the area of telecommunication and

conformance testing.

For several years Mr. Münzel has been an active member of the German Special

Interest Group on Test, Analysis and Verification of Software which is part of the

German ‘Gesellschaft für Informatik e.V’ (German Computer Science Society).

Appendix II : about Bosch Telecom

Bosch Telecom forms the communication technology business sector of Robert

Bosch GmbH. Approx. 19.000 employees develop and manufacture products in a

number of locations in Europe which are marketed world-wide over the company’s

own sales network.

In 1997 Bosch Telecom achieved sales of approx. 5.3 billion DM which represents

11% of total Bosch Group sales. 560 million DM were invested in Research and

Development.

The Bosch Communication Technology Business Sector is concentrated on

communications technology for public and private networks, and mobile telephones,

as well as on security and traffic control systems.

Six Product Groups are responsible for this business and are present in the market

with a wide product mix. This ranges from systems for radio-relay, multiplex

engineering, and network management, through telecommunications, fire and

emergency-alarm systems, video-supervision installations, up to cellular phones,

traffic-management systems and equipment for satellite engineering. The business is

characterised by its strong service orientation.

 Page 1.31 of 1.43

Implementing SPI:

Combining business

process improvement

and system development

at Nokia

Tero Lindholm

Nokia, Salo Finland

A short description of Nokia

Headquartered in Finland, Nokia is a broad-scope telecommunications

company supplying mobile phones, mobile and fixed telecommunications

networks, data communications solutions, multimedia terminals and

computer monitors. With sales in 130 countries, net sales totaled FIM 52.6

billion ($9.8 billion) in 1997. Nokia, listed on NYSE (NOK.A), employs more

than 41,000 people worldwide.

The starting scenario

Nokia has rapidly moved from functionally oriented organisation to a

business process oriented mode, and our information systems have not

followed the change as fast as they should. To fill the gap, IM organisation

must learn and implement working methods which enable the creation of

business process oriented information systems. To satisfy these business

needs, Nokia has introduced a new development approach for information

systems development. These processes have been created and tested during

the SPI.

In 1996, the starting point of software engineering practices in Nokia Mobile

Phones/Information Management was, that there were no clearly defined

Combining Business Improvement and Systems Development

 Page 1.32 of 1.43

processes to guide the software development according to the business needs.

Requirement analysis was usually done with an ad-hoc style without a pre-

defined process. For the technical design and implementation, there was a

first version of project manual to follow.

Technical environment from IT point of view at Nokia is great. Market’s

leading brands are utilized in every part of the company and personnel’s skill

level is high in technical issues. In the SPI project, ICL ltd was selected as the

vendor to provide a consulting point of view and to deliver their skills for

business analysis and requirements specification areas.

Business environment in telecommunication industry is fast moving and

quite young, which means big challenges for information management: timing

is crucial. Because of the changing environment, also organisation is changing

rapidly. Change is an every day phenomenon at Nokia, which helps a lot

when changing working practices as a part the SPI. Skill set needed for the

business and requirements analysis and other parts of the SPI is different

from the technical expertise so common at Nokia. In order to succeed, some

time for training was reserved during the SPI.

The technical target environment for the SPI included a R/3 based standard

package as the baseline project environment, a CASE tool to support the IM

Process and an intranet environment where the results were shared.

The expected outcome

The expected outcomes of the PIE were as follows:

 Accepted Nokia IM process description, which

 includes phases from concept creation to prestudy and planning

 Is integrated to Nokia process development methodology

 Existing software support (a CASE-tool has been selected)

 Trained facilitators are available

 A pilot project ready

 Other projects has been started

 Vendors as partners to develop the process and the tool further.

These outcomes were also achieved during the project.

The implementation of the improvement actions

Organisation

For the target organisation, the main activity has been the Workpackage 1,

which purpose was to sell the development ideas to the senior management of

the Information Management organisation. Success in this step can be also

seen as the most important success factor for the experiment. Senior

management had the role of steering group and provided the management

support for the project. The project was organised as follows:

Combining Business Improvement and Systems Development

 Page 1.33 of 1.43

The steering group consisted of senior management of the information

management organisation, who are responsible of information systems in

various groups of Nokia. The project leader came from the IM organisation as

well. The project group consisted of IM resources, who actually do systems

development as their daily work. These persons participated the project as a

part time resources. Business organisations were involved through the pilot

projects and the quality office was represented through the project leader,

because he was a part of the team which was developing the process

development methodology of Nokia.

Technical environment

The main technical outputs were the process descriptions and ARIS Toolset

as the CASE-tool. The main learning point is that when the target process is

clear, also system requirements are clear. And when system requirements are

clear, it is quite straightforward to analyse and test the possible candidates.

The process of selecting the CASE-tool consisted of the following major steps:

a) collect the selection criteria including information on vendor companies,

functionality required and the technical environment the tool runs in. b)

select the candidates roughly using the market knowledge in house and some

external reports like the ones from Gartner Group. c) arrange workshops

where the candidates are checked against our criteria d) select the Top 2

candidates and pilot the best one. e) If the pilot is a success, stop otherwise go

to the step d). Vendor information is needed because Nokia wants to have

partners we can trust in, the technical environment should fit into our

current environment and the functionality requirements are derived directly

from the process descriptions, e.g. if we have a step called “map the process”

the tool must be able to support the mapping exercise.

Training

Training has been divided in three main parts based on the targets of the

PIE: the focus areas were process thinking, IM methodology and the tool .

Process thinking and development principles were introduced to the team at

the beginning of the project, when the focus was on process descriptions. The

IM methodology principles were introduced to the management when the first

draft versions of the descriptions were available with purpose to show some

early results. The pilot project teams were trained as a part of the project

training in order to learn a common methodology and language during the

development work. Aris toolset training was given to the PIE team when the

tool selection process was over in order to enable the tailoring of the tool.

Role of the consultants

The role of the external consultants was to transfer their knowledge about IM

development processes to Nokia’s organisation in terms of process

descriptions. The transfer was made mainly through process descriptions and

personal consultancy. At the beginning of the project, they checked the

preliminary, rough process framework which had been developed in Nokia.

Combining Business Improvement and Systems Development

 Page 1.34 of 1.43

The purpose of the evaluation was to quarantee that the starting point and

the targets were at a world class level. During the project, the consultants

then fulfilled the framework with further details and descriptions. For

example, when the original framework included an activity called “Analyse

data subject areas”, the consultants then added the detailed descriptions

about the activity to Nokia’s model. The detailed descriptions were mainly

based on the existing process descriptions of ICL ltd.

Nokia expected to gain a lot of benefits by using consultants, because the

selected vendor has more experience about the problem area than Nokia and

they had also a tested their methodology in practise. That existing

methodology is now transferred into Nokia’s language and it has also been

fitted into the Nokia process model.

The tested methodology means here process descriptions, that have been

created in ICL based on practical experience and that have been applied in

many projects already. Translation into Nokia language is needed because

the terminology is different in each company: for example the word “process”

is defined differently and ICL uses the word “task” instead of Nokia’s

“activity” etc. The tailoring part means that Nokia provides the framework of

what kind of activities we need to perform during a development project and

ICL is capable of providing the detailed descriptions of the activities: how to

do an activity in practice, which roles are involved, what kind of information

is needed and created during the activity etc. It has been obvious that the

most of the activities Nokia requires can be found in different ICL

descriptions, but they are grouped in a different way.

Experiences were mainly positive and the main target of why the consultants

were used, was reached.

Phases of the experiment

The project was divided into phases according to Nokia’s new system

development process. The main phases and milestones are described in the

figure below.

Combining Business Improvement and Systems Development

 Page 1.35 of 1.43

ID Task Name

1 ESSI PROJECT (IS CONCEPT CREATION & PRE-STUDY)

2 Milestone E-1 (PRE-STUDY START APPROVED)

3 PRESTUDY

6 Milestone E0 (PROJECT PROPOSAL APPROVED)

7 PLANNING

14 Milestone E1 (PROJECT APPROVED & DEFINITION FROZEN)

15 PROCESS & TOOLS DESIGNING

62 Milestone E2 (PROCESS DOCS and tools APPROVED)

63 PILOT

85 Milestone E3 (PROCESS WORKS IN ACTUAL USE)

86 ROLL-OUT

95 E4 (PROCESS WORKS IN PRODUCTION USE)

96 FEEDBACK

105 E5 (PROGRAMME TERMINATION)

106 PROJECT MANAGEMENT

Fig. TLINDHOL. 1:

The model includes milestones where the main outputs of each phase are reviewed

and accepted. Milestone E-1 is the starting point for the development; E0 handles the

project proposal including the plan with main resources, steps and schedule; in E1,

the process specifications and detailed project plan are accepted; E2 handles the

created process descriptions and the selected tool; in E3, the results of the pilot

project are accepted. At this point, also the Process Improvement Experiment (PIE)

was over.

The descriptions were created using a piloting approach, where three draft

versions were introduced. By using the drafts, we were able to provide

quicker results to the organisation and also collect feedback at early phases of

the project. Three draft versions seemed to be practically the optimum

number of releases, because the timing and effort required to produce them

was at an acceptable level compared the benefits gained. A top-down

approach was used to develop the descriptions, which means that each draft

release had more details than the previous one, and that each release

included the descriptions of the whole framework.

The selection of the CASE-tool started when we had a rough understanding

about the development process. This kind of approach made it possible to

start the selection process at an early phase of the project in order to select

the top candidates.

The measured results and lessons learned

Combining Business Improvement and Systems Development

 Page 1.36 of 1.43

Technical results

The following technical results have been achieved:

 Process documentation is available

 A tool (ARIS Toolset) has been selected and purchased to support the

process described above

 The process has been piloted in pilot projects and the experience has been

recorded in order to develop the process further.

The main measurement criteria for the technical results was time: the results

must be available in the planned schedule. From the schedule point of view,

the project was successful. The deliverables of the project have remained the

same as planned at the beginning of the project. The project team has had

many positive experiences concerning the methodology: some of the available

documents are already in use in real life projects and many persons and

organisations external to the pilot projects are interested in the results. One

of the main targets of the project was to integrate process thinking and

system development, and it seems to be obvious that the integration is really

needed, and wanted by the organisation. In practice, the whole application

development in Nokia is based on process thinking and now we have a

methodology to support this approach.

According to the SPICE standard (Baseline Practices) , the current status

of the development processes are as follows:

SPICE

Process

Category

Status at the beginning of

the PIE

Status today

Customer-

Supplier

Contract process exists,

customer satisfaction is

measured

No changes

Engineerin

g

No process descriptions and

proper practises exist for

developing purposes,

implementation is supported

by a project manual.

All the needed process

descriptions exist

Project A first version of the project

manual has been used since

March 1995.

Updated to include the required

guidelines and templates like

project plan and review

documents

Support Quality assurance and

problem solving has been

used according to the project

manual, also since March

1995.

Quality assurance included into

the development process in the

form of milestone practices

Organizati

on
Engineering the business

(ORG.1) will be tested

according to this proposal,

process improvement is

Engineering the business is a

part of the development process

(process improvement). IM

related process training will be

done as requested by the

Combining Business Improvement and Systems Development

 Page 1.37 of 1.43

mostly based on outputs of

that test. IM related

training is well organized,

and work facilities are at a

proper level. However,

reuse of application

components is not

supported.

projects, there are no changes in

other trainings. No changes in

work facilities. Reuse is now

emphasised at the design level,

when creating the system

specifications.

The high level description of the development process includes the main

activities described in the figure below.

Combining Business Improvement and Systems Development

 Page 1.38 of 1.43

ID Task Name

1 IS CREATION PROGRAM MODEL V. 1.0

3 IS CONCEPT CREATION PROJECT

4 Plan Concept Creation project

5 C1 (START OF CONCEPT CREATION APPROVED)

6 BUSINESS ALIGNMENT

7 Analyze strategic needs

8 Define the process scope

9 Analyze current state of the process

10 Map the process at rough level

11 Analyze end-users' needs & ergonomics

12 Analyze interest groups' needs & effort

13 Document high-level business requirements

14 C2 (BUSINESS NEEDS SPECIFIED)

15 IS ARCHITECTURE DEFINITION

27 C3 (IS CONCEPT PLANNED)

28 IT CONCEPT VERIFICATION

41 IS ENGINEERING PREPARATION

52 C4 (IS/IT CONCEPT VERIFIED AND APPROVED)

54 IS ENGINEERING PROJECT

55 Plan target-setting phase

56 E-1 (TARGET-SETTING START APPROVED)

57 TARGET-SETTING

58 ANALYZE THE PROCESS

62 Determine people change mgnt requirements

63 DETERMINE BUSINESS REQUIREMENTS FOR SYSTEM

69 Make Non Disclosure Agreements (NDA) with vendors

70 VERIFY AND DETERMINE SYSTEM COMPONENTS

74 Compose project proposal

75 E0 (PROJECT PROPOSAL APPROVED)

76 IS & PROJECT PLANNING

77 Create system specification

78 Plan project

79 E1 (PROJECT PLAN & SPECIFICATIONS FROZEN)

80 IS DESIGN & VERIFICATION

108 E2 (SYSTEM WORKS IN TEST ENVIRONMENT)

109 IS PILOT

125 E3 (SYSTEM WORKS IN ACTUAL USE)

126 IS ROLL-OUT

138 E4 (SYSTEM WORKS IN PRODUCTION USE)

139 PROJECT EVALUATION & COMPLETION

140 Collect lessons learned

141 Compose final report

142 Close project data store

143 E5 (PROJECT TERMINATION)

Fig. TLINDHOL. 2 : List of activities in the Nokia IS Creation model.

The activities with name Cx or Ex are milestone activities, that act as quality

control and decision points in each project. Each activity is described in detail

using three different descriptions: process description describes the activity in

a graphical process format telling of what should be done, templates are input

and output documents of the activities and guidelines are detailed

descriptions of how the activity should be performed. The selected software

tool supports the process making it possible to describe and analyse the

results of a development program in an electronic format.

Business results

Combining Business Improvement and Systems Development

 Page 1.39 of 1.43

The business impact of the experiment is mainly in the area of process

development: the main pilot area, Service and Repair process, has been re-

engineered according to the principles of the new development process. The

main targets like reducing the process turnaround time and simplifying the

system structure, will be reached when this actual baseline project is ready.

But already now, when we have created a new process and the needed system

specifications, the new development process has proved to be a valuable tool

also from business point of view.

The real challenge is in organising a development program where both

process improvement and creation of a new information system takes place.

Management, program organisation and the users must all understand that

the actual system implementation will happen quite late when counting from

the beginning of the program. Early wins are important assets in these

programs, and they can be achieved using package programs, demonstrations

and piloting approach.

Organisational results

The main impact to the IM organisation is that the process thinking has been

learned also in the IM community. The importance of business view in the

system development has been realized and the application organisation has

been organised according to the business processes. The PIE has had its

impact to these changes, because the IM organisation has a development

process to follow when developing applications. In order to quarantee that the

internal IM process development will continue, a new job position has been

created with responsibility of process development.

There has been a positive change in organisation culture in different areas:

 Project team understood the business purpose of this exercise, resulting in

a good working spirit.

 Management of the information management organisation has been

interested in the project results, which means that the development ideas

has been bought by the management.

 Those who don’t know about the results of the project, seems to have

intellectual resistance to accept the ideas. Anyway, they were asking the

draft-results of the project at the earlier stages and now when they have

the descriptions available they are also using the descriptions. This

means that the demand is out there.

 From cultural point of view, informing about the results is very

important. This challenge will be tackled by the new process improvement

organisation and communication material.

The main achievement in skills area is among the project and pilot teams

They have got a wider view to the work in information management and now

they have a good reason to be interested in business development instead of

only technical aspects. Although, the team was interested in business issues

already before the project started, but now the target of skills development is

clear. The team is also able to provide skills development programs for other

IM persons, because there are general process and skill maps available.

Some of the new skills which are required in IM are for example process

Combining Business Improvement and Systems Development

 Page 1.40 of 1.43

thinking, architectural development, basics about human related change

management and creation of a development roadmap.

Technical lessons

The following lessons have been recorded during the experience:

 Process principles drive selection of technology but also vice versa,

technology may provide new business possibilities

 Business reasons for development must be clear in order to optimise the

process and support the business

 Deep technical aspects are not as important as communication; modular

and clear presentation about the working practices is needed at three

levels as described in the table below:

Target group Type of material

Management level,

Newcomers

Overview presentation

Project leaders, team members

while working

Practical easy-to-use working guides

in a form of document templates

Project leaders, newcomers, team

members in training sessions

Process description in a graphical

format (describe what to do) and

deeper technical guidelines (describe

how to perform an activity).

Delivery and availability of the documentation is one of the most important

topics when rolling-out new working practices. A clear, easy-to-use channel

should be created for this purpose if not existing before.

Business lessons

According to the experience, the critical success factors for process

development are the following:

 Active communication to keep the project alive

 Sponsor and management support to sell the ideas forward

 Business cornerstones (reasons) must be clear from the beginning

 Clear milestones enable the project follow-up and communication

 Quick wins must be achieved in order to show business possibilities of the

project

 The process must be easy to understand, easy to learn and easy to

support. This can be realised by handling it like a service product: a real

product requires a product manager, customer support and continuos

improvement based on real-life experiences.

 Resourcing is a critical issue: enough resources must be granted for

developing the new process, training it and supporting new projects to get

started.

 Training must include a lot of justification of why this kind of approach is

needed. Selling of the ideas is a difficult task which must be done over

and over again, in practice to all new process users.

Combining Business Improvement and Systems Development

 Page 1.41 of 1.43

Strenght ans weaknesses of the experiment

Strengths of the project were as follows:

 There users of the target process are very demanding, and they challenge

the development work all the time

 Nokia is a process oriented organisation, which means that the developers

can concentrate on developing the working practices, they don’t have to

sell process thinking to the organisation

 Open minded project group, who was able to listen to the environment

and learn new things very rapidly. This feature was applied visible in the

documentation, where new ideas were adapted quickly.

Some weaknesses experienced during the PIE:

 Delayed start of the experiment because of long processing time in

European Commission (EC)

 Resource planning problems, partly because of the delayed start, partly

because of other organisational pressures

 Too detailed reporting is required by the commission

 In the company, a part of the company culture must be changed by the

project: methodologies are not highly appreciated in a fast moving

business. This means that a lot of effort is required for communication.

If I were to repeat the experiment, I would change the following tasks:

 Start the project without EC funding; It would have been easier to gain

organisation’s commitment if the project had started as planned. Because

of the delay, few key persons in the organisation had to start another

project and they were not anymore available for the PIE. The support

from the Commission is a great thing, but because time is one of the most

important factors in telecom-business, delays in projects may result in

difficult problems.

 Management support should have been heavier and more visible than it

has been; I would require more visible actions by management to support

the project.

Conclusions

Human related change management is one of the key issues in process

development. Even though it was known from the beginning of the project,

not enough manpower were focused on communication. The lessons have been

learned and the future actions include a lot of training and other kind of

communication.

Co-operation between Nokia and the partner has been a positive experiment.

Because Nokia had clear specifications on business requirements and the

process framework, the partner was able to start its work to specify and detail

the framework process and use its competence in the required area.

It is clear that the results of the project have been very good and the project

can be considered to be a successful one: the principles have already been

taken into real-life use.

Combining Business Improvement and Systems Development

 Page 1.42 of 1.43

Appendix One: CV of the author

Tero Lindholm acts as a global application manager for after market business

at Nokia Group. He is a finnish, married, 33 years old and M.sc in computer

science. He has performed doctoral studies since 1994, being also a member a

top research unit "Turku School of Computer Science" (TUCS) during 1996-

1998.

Tero Lindholm's work experience includes several years of experience on

managing large international projects, management consulting and quality

management. He has gained experience in international line management

during the last three years in his current position. Tero's special skills are

project management, business process development and system development

methodologies. Cross-cultural human management is one of daily activities in

his current work. The common parts of process development, information

systems development and human change management are the driving forces

in his current work.

Figure TLINDHOL 3: Tero Lindholm

The favourite hobby is still ice hockey, where he has achieved four pronze-

medals on national level. "Retired" since 1996, he is still active in sports and

also an active captain of his own boat.

Contact information:

Tero Lindholm

Nokia Group

P.O.Box 86

24101 Salo

FINLAND

Email: tero.lindholm@nmp.nokia.com

Mobile phone: +358 40 545 9841.

Combining Business Improvement and Systems Development

 Page 1.43 of 1.43

Appendix Two: Description of Nokia

Headquartered in Finland, Nokia is a broad-scope telecommunications

company supplying mobile phones, mobile and fixed telecommunications

networks, data communications solutions, multimedia terminals and

computer monitors. With sales in 130 countries, net sales totaled FIM 52.6

billion ($9.8 billion) in 1997. Nokia, listed on NYSE (NOK.A), employs more

than 41,000 people worldwide. Operating profit exceeded 8 000 MFIM in

1997. All the key figures are rapidly growing, promising a growth of over 35 %

in terms of earnings per share in 1998.

Figure Tlindhol 4: Nokia's logo.

WWW home page is at www.nokia.com.

DOCUMENTTYPE

TypeUnitOrDepartmentHere
TypeYourNameHere TypeDateHere

Page 2.1 of 2.23

Session 2 – Metrics

Driven SPI Part I

Using Defect Analysis to Initiate the Improvement

Process

Otto Vinter

Brüel & Kjær, Denmark

ovinter@bk.dk

Software Metrics Applications in a European

Perspective
Terttu Orci

SISU

Royal Institute of Technology

Stockholm University

Stockholm, Sweden

Page 2.2 of 2.23

Using Defect Analysis to Initiate

the Improvement Process

Otto Vinter

Brüel & Kjær, Denmark

ovinter@bk.dk

Introduction

This presentation will report the experiences gained from improving the software

process at Brüel & Kjær. In stead of starting a process improvement programme with

an assessment according to one of the common maturity models, our improvement

strategy has been an experience-driven, incremental process based on the available

information from earlier development projects.

We started by performing root cause analyses of error logs generated during previous

development projects. Based on the findings of the analyses we then introduced

improvements in our development process to prevent frequently occurring types of

errors.

Once the first results from improvements had materialised, the interest in a more

formal assessment could be raised. A Bootstrap assessment was performed by an

external body, but because of the strong project manager culture (we are a level 2

organisation) it was not possible to turn the recommendations into improvement

actions.

In order to overcome this barrier, we then involved the leading project managers

through a series of interviews where they were asked about which type of problems in

their development projects they felt were the most serious. The problems perceived

by the project managers were quite common, so a concensus on the next

improvement actions could be reached quite easily. A number of new improvement

projects are now under way headed by the project managers with mentoring and

support from the process improvement group.

The recommendations from the three approaches above show a remarkable overlap,

so we can recommend others to use an experience-driven approach based on the

available information in the company as a way to initiate a process improvement

programme.

Using Defect Analysis to Initiate the Improvement Process

Page 2.3 of 2.23

Defect Analysis

We have conducted thorough analyses and classification of bugs reported during

development and after release of products. In these analyses we classified bugs

according to a taxonomy described by Boris Beizer [1].

The analyses [2][3] showed the need to perform a more systematic unit test of our

products. However, the analyses also showed that the major cause of bugs stemmed

from requirements related issues.

The improvement actions have been funded by the Commission of the European

Communities (CEC) under the ESSI programme: European System and Software

Initiative. The title of the test improvement project is: PET - The Prevention of Errors

through Experience-Driven Test Efforts (ESSI project no. 10438) [2][3]. The title of

the requirements engineering project is: PRIDE - A Methodology for Preventing

Requirements Issues from Becoming Defects (ESSI project no. 21167) [4].

The Test Improvement Project

The software quality of our company was felt to be unsatisfactory. Too many products

were shipped with bugs. It was the general opinion that this was caused by a lack of

testing by the developers before release.

It was therefore decided to conduct a process improvement experiment to find ways

to improve the testing process. The project was titled: The Prevention of Errors

through Experience-Driven Test Efforts (PET) [2][3].

The problem reports were analysed and bugs in them categorised using Boris Beizer's

taxonomy [1]. We found that bugs in embedded real-time software follow the same

pattern as other types of software. We found that the major cause of bugs reported

(36%) are directly related to requirements, or can be derived from problems with

requirements. The second largest cause of bugs (22%) stems from lack of systematic

unit testing.

The techniques selected to improve unit testing were: Static and dynamic analysis.

Tools were installed to support these techniques. We experienced a 46%

improvement in testing efficiency (bugs found per person hour) and we raised the

branch coverage of all units to above 85%.

An improved (production) version of the baseline product was then released and

tracked for the same number of weeks we had measured on the existing (trial) version

after its release, so that we were able to evaluate the effect of the experiment on

problem reports.

The team received 75% fewer error reports than for the trial-release version of the

product. Of those error reports 70% were found to be related to requirements e.g. to

bugs that could not have been found through static and dynamic analysis. This once

more confirmed the need for us to improve the requirements process.

Using Defect Analysis to Initiate the Improvement Process

Page 2.4 of 2.23

In spite of these remarkable results the use of static and dynamic analysis never

spread throughout the organisation. Some project managers ignored the results.

Others started to work with the techniques, but stopped when time pressure built up.

Those who proceeded released products with remarkably fewer bugs.

The Requirements Engineering Improvement Project

In the second improvement action we performed a closer analysis of requirements

related bugs in order to find and introduce effective prevention techniques in our

requirements engineering process. The project was titled: A Methodology for

Preventing Requirement Issues from Becoming Defects (PRIDE) [4].

From the analysis of requirements related bugs we found that requirements issues are

not what is expected from the literature. Usability issues dominate (64%). Problems

with understanding and co-operating with 3rd party software packages and

circumventing their errors are also very frequent (28%). Functionality issues that we

(and others) originally thought were the major requirements problems only represent

a smaller part (22%). Other issues account for 13%. The sum of these figures adds

up to more than 100% because one bug may involve more than one issue.

This has had an impact on our methodology. It had to be focused on usability

problems, and early verification and validation techniques, rather than correctness,

and completeness of requirements documents.

We therefore introduced the following techniques on a real-life project:

Scenarios

Relate demands to use situations. Describe the essential tasks in each scenario.

Navigational Prototype Usability Test, Daily Tasks

Check that the users are able to use the system for daily tasks based on a navigational

prototype of the user interface.

We found an overall reduction in error reports of 27%. We saw a 72% reduction in

usability issues per new screen, and a 3 times increase in productivity in the design

and development of the user interface.

What was also surprising was that not only did we experience a reduction in bugs

related to requirements issues, we also found a reduction in other bug categories. The

derived effect on other types of bugs than the requirements related can be explained

by the fact that most of the developers achieved a deep understanding of the domain

in which the product was going to be used from describing use situations (scenarios)

and taking part in the usability tests. This invariably leads to reduced uncertainty and

indecision among the developers on what features to include and how they should be

implemented and work. In the previous project the new screens were constantly

subject to change all through to the end of the project.

However, the impact of these techniques on the perceived quality of the released

product is even greater than the prevention of bugs. Describing use situations

(scenarios) enabled the team at a very early stage in the requirements engineering

process to capture the most important demands seen from a user/customer

Using Defect Analysis to Initiate the Improvement Process

Page 2.5 of 2.23

perspective. The developers therefore got a very clear vision of the product before the

requirements were fixed. The subsequent usability tests on very early prototypes

verified that the concepts derived from the descriptions of use situations (scenarios)

still matched the users’ needs and could be readily understood by them in their daily

use situations.

The product has now been on the market for more than 7 months and it steadily sells

more than twice the number of copies than the product we have compared it to. This

is in spite of the fact that it is aimed at a much smaller market niche, and that the

price of the new product is much higher.

In contrast to the test techniques, the interest amoung project managers to adopt the

scenario and usability techniques has been much higher. This may be because

developers much rather will work with requirements than with test.

Bootstrap Assessment

When the first results of the improvement actions based on defect analysis had

materialised, the management of our company could be convinced that a more formal

assessment of our software development process should be performed in order to

further the improvement programme.

A Bootstrap assessment was performed using the Danish company DELTA as

assessors. Four projects and the software development management were interviewed

by the external assessors. The overall result of the assessment was that we were at

level 2.25.

The recommendations from the assessors pointed out weaknesses in the following

areas:

Development Model

The shift in focus from a primarily hardware driven development to software had to

be more focused. The assessors recommended to introduce a specific life-cycle for

software development.

Process Descriptions

Introduce the formal as well as informal improvement actions of the software

processes in the quality management system.

Unit and Integration Testing

The assessors commented that the improvements we had achieved under the test

improvement experiment (PET) needed to be applied on a wider scale in the

company.

Configuration Mangement

Again the assessors commented on the need for a more uniform way of performing

configuration management, change control, and planning.

Using Defect Analysis to Initiate the Improvement Process

Page 2.6 of 2.23

Requirements

The assessors were aware of the ongoing requirements engineering experiment

(PRIDE) and commented on the need for a description of the process.

Project Management

Improve planning, estimating procedures, introduction of time and resource usage,

closer monitoring of project progress.

The recommendations above clearly shows that a Bootstrap assessment has a much

wider perspective of the software development process than defect analysis. Defect

analysis primarily high-lights “hot-spots” in the development process. However, the

testing and requirements “hot-spots” that we found through our defect analysis were

also found through the assessment.

Due to the strong project manager culture of our company, which is typical of level 2,

the recommendations from the assessment were never turned into improvement

actions. Top management had stated their commitment to follow up on the

assessment recommendations, but in the end they left it to the project managers

themselves to find and introduce improvement actions on their individual projects.

And the process improvement group did neither have the resources nor the “power”

to be able to introduce new activities on a wider scale.

With no “pressure” from the top, and projects running late, it is no wonder that the

project managers chose to concentrate on their day-to-day problems of getting

products out of the door, so nothing happened as a result of the assessment.

Project Manager Involvement

Through the Center for Software Process Improvement, which is partly funded by the

Danish state, we got the opportunity to increase our resources and research

knowledge for process improvements. This became the basis for spreading

improvements on a wider scale in the organisation.

We realised that if we were to succeed in introducing improvements on a wider scale,

rather than those individual actions we had performed on the ESSI experiments, we

had to tie the actions to the “power structure” of the organisation.

We decided to perform another evaluation of our software process, this time from the

perspective of the project managers. We involved the leading project managers

through a series of interviews where they were asked about which type of problems in

their development projects they felt were the most serious. Seven project managers

were interviewed and detailed minutes were recorded.

From these minutes we could compose a list of problem areas that the project

managers found to influence their projects most. The problems perceived by the

project managers correlated very well, so a concensus could be reached quite easily:

Using Defect Analysis to Initiate the Improvement Process

Page 2.7 of 2.23

Software Development Model

The present ISO9001 registrered waterfall model was deemed unsatisfactory for

efficient software development. A new model based on iterations, e.g. through

experimental prototypes, was asked for. Risk management was also an important

element.

Requirements

The project managers of course knew about the ongoing requirements engineering

experiment (PRIDE) and requested improvements in this area.

Project Monitoring

Better estimating procedures, follow up, and progress evaluations.

Project Conclusion

Configuration management, release criteria, and testing.

Reuse

Actually this item did not initially appear in the interviews, but the organisational

changes that took place at the time of the evaluation centered on establishing a group

responsible for reuse.

The problems perceived by the project managers clearly resemble the

recommendations from the Bootstrap assessment. Once again we see a much wider

perspective of the software development process than defect analysis. However, the

testing and requirements “hot-spots” that we found through our defect analysis were

also found through this evaluation.

The project managers were presented with these findings at a workshop where top

management also was present. They were each asked to select a topic from the list

that they felt most natural to work on with their present (or up-coming project).

The process improvement group and the researchers from the Center for Software

Process Improvement then established support groups that would train, mentor, and

follow these projects.

Three project managers chose to work with implementing the requirements

engineering techniques from PRIDE. Two chose to work with new development

models. One chose to work with reuse and one with project conclusion. Finally the

R&D manager wanted to contribute by improving project monitoring.

These new improvement projects are now under way headed by the project managers

with mentoring and support from the process improvement group. There seems to be

very little resistance to the improvement actions recommended by the support group.

In fact there is great enthusiasm in the teams for both the development model

experiments and requirements engineering techniques.

Using Defect Analysis to Initiate the Improvement Process

Page 2.8 of 2.23

Comparison and Conclusions

The recommendations from the three types of approaches show a great deal of

overlap though they sometimes use different words.

Recommendation Defect Analysis Bootstrap

Assessment

Project Mgr.

Interviews

Development Model

- iterations

- risk management

x

x

x

x

Requirements x x x

Project Monitoring

- estimation

- time & resource usage

- monitor progress

x

x

x

x

x

Project Conclusion

- configuration mgmt.

- testing

- release criteria

x

x

x

x

x

x

x

Reuse x

Process Descriptions x

Fig. OtV.1 : Comparison of Recommendations

What is important, however, is the fact that the findings from the defect analysis

approach are recommended by the more general evaluations. This means that an

approach based on the already available information in the company is a valid

approach to initiate a process improvement programme.

We therefore conclude that bottom-up, experience-driven improvement actions based

on defect analysis are a cheap an effective way to get started. Formal assessments can

be postponed until the initial improvements have demonstrated the value of

improving the software development process.

However, it is also clear from our experience that it is only possible to achieve a

widespread acceptance of the improvement results if the process improvement group

is working within, or tie their actions to, the “power structure” of the company.

Future Work

A second Bootstrap assessment is planned for January of 1999 and we look forward to

seeing that the weeknesses in testing and requirements have been reduced significantly.

It will probably be too early to see the effects of the other improvement actions.

Based on the new recommendations from the assessors, another round of interviews

with the project managers will be performed and two more improvement actions

initiated in 1999.

Using Defect Analysis to Initiate the Improvement Process

Page 2.9 of 2.23

References

[1] Boris Beizer, Software Testing Techniques. Second Edition, Van Nostrand

Reinhold New York, 1990.

[2] Otto Vinter, Per-Michael Poulsen, Knud Nissen, Jørn Mærsk Thomsen, The

Prevention of Errors through Experience-Driven Test Efforts. ESSI Project 10438.

Final Report, Brüel & Kjær A/S, DK-2850 Nærum, Denmark, 1996.

(http://www.esi.es/ESSI/Reports/All/10438).

[3] Otto Vinter, Per-Michael Poulsen, Knud Nissen, Jørn Mærsk Thomsen, Ole

Andersen, The Prevention of Errors through Experience-Driven Test Efforts, DLT

Report D-259, DELTA, DK-2970 Horsholm, Denmark, 1996.

[4] Otto Vinter, Søren Lauesen, Jan Pries-Heje, A Methodology for Preventing

Requirements Issues from Becoming Defects. ESSI Project 21167. Final Report,

Brüel & Kjær Sound & Vibration Measurement A/S, DK-2850 Nærum, Denmark,

1998. (To appear on this web address soon:

http://www.esi.es/ESSI/Reports/All/21167)

Appendix A: CV of Author

Otto Vinter is managing a software technology and process improvement group at

Brüel & Kjær responsible for projects to improve the software development process.

He has been active in defining software engineering standards, procedures, and

methods to be employed at Brüel & Kjær. He has also been the driving force in the

company's transition from procedural programming to Object-Oriented development.

He has managed software development projects for 25+ years; with Brüel & Kjær

from 1986, before that with the Danish branch of Control Data Corporation, and with

Regnecentralen. He holds a Masters Degree in Computer Science from the Danish

Technical University.

Appendix B: The Company

Brüel & Kjær is a leading manufacturer of high-precision measurement instruments.

Brüel & Kjær develops high-precision electronic instruments for sound and vibration

measurement applications. The company is headquartered in Denmark, but the

majority of the products are sold through subsidiaries around the world. In the past

most of the products were based on embedded real-time software, but now the

number of PC applications are rapidly taking over.

http://www.esi.es/ESSI/Reports/All/10438
http://www.esi.es/ESSI/Reports/All/21167

Using Defect Analysis to Initiate the Improvement Process

Page 2.10 of 2.23

Brüel & Kjær Sound & Vibration Measurement A/S

Skodsborgvej 307

DK-2850 Nærum

Denmark

Tel: +45 4580 0500

Fax: +45 4580 1405

Email: ovinter@bk.dk

Page 2.11 of 2.23

Software Metrics

Applications in a

European Perspective

Terttu Orci

SISU

Royal Institute of Technology

Stockholm University

Stockholm, Sweden

Introduction

Software metrics has been quite an intensive research area for more than two decades,

yet its practical applications have been rather limited. The 70's being the era for

software size metrics, introduced lines of code, and Albrecht's Function Points [1], to

measure the size and functionality of a software product. The size measurement,

useful in its own right, serves also as a component in measuring productivity, and as

an estimated parameter to estimation models [4],[13], which were mainly introduced

in the 80's. In the 90's, the main focus is on software processes, and to improve the

software processes is commonly agreed to be the solution for software companies

fighting against delivery delays, cost overriding, and quality flaws in the end product.

As measurement is inherent in the concept of improvement, in the stream of software

process improvements currently undertaken, the number of practical applications of

software metrics can be expected to increase.

A software process improvement may be undertaken with different intentions: to get

certified according to a standard, e.g. ISO9001 [11], to follow the maturity ladder of

the Capability Maturity Model (CMM) [12], or to solve a specific problem, e.g. the

lack of configuration control.

Software Metrics Applications in a European Perspective

Page 2.12 of 2.23

Some of the large software companies in USA have published their long term process

improvement programs including introduction of metrics, e.g. [9],[14]. We are not

aware of any corresponding publications from large European companies concerning

organisation wide improvement or metrics programs. Yet, in software process

improvement area, several activities are in place today, the most widely known and

influential being the ESSI programme (European Software and Systems Initiative)

supported by CEC.

The projects within ESSI programme, usually called Process Improvement

Experiments (PIEs), are normally short term, 12-18 months in duration, and intended

to improve the software process, and to establish a basis for further improvement. The

projects have the process improvement goal in common, but differ in the focus, and

consequently in the project specific objectives. The focus may be to get increased

knowledge of the state of the affairs, e.g. number of defects discovered by the

customer after delivery of a product, or to investigate whether an object-oriented

technology would reduce the time to market.

In the project EUREX - European Experience Exchange [5], which is an ESSI

dissemination action, we have analysed the experiences reported by 13 companies,

representing process improvement experiments within ESSI programme. In this

paper, the experiences collected so far will be presented, with focus on how software

metrics are used to measure the improvements.

EUREX

Until today, CEC has supported about 300 PIEs, some finished, others in progress. In

order to disseminate the experiences and knowledge of the PIEs to a wider European

audience, the project Eurex works along the objectives of

collecting,

systematizing, and

disseminating the experiences and lessons learnt

from the process improvement experiments.

The partners of EUREX are Highware Gmbh (D), Highware Productions (Fr),

Gemini Societá (I), Socintecs (ES), and SISU (S). The PIEs studied have been

clustered into a number of subject domains: object-oriented technology, reuse and

component based development, software metrics, requirements and test, project

management, and configuration management. Naturally, the domains are overlapping

to a certain extent, and therefore, a PIE could, in principle, belong to several domains.

For simplicity and for avoiding redundancy in the project work, each PIE is, however,

placed to one and only one domain.

Each of the partners is responsible for two lines of work:

to cover the PIEs in the partner's geographic area

to make a deeper study and to merge the experiences of the PIEs in one subject

Software Metrics Applications in a European Perspective

Page 2.13 of 2.23

domain.

To cover the PIEs in a geographic area, a partner responsible for the area is supposed

to organise one workshop in every subject domain. To such a workshop, all the local

PIEs are invited to present their objectives, methods of implementation, and

experiences. If a PIE cannot attend, the final or mid-term report should be made

available to the workshop organising partner. The collected experiences from the

workshop will then be forwarded to the partner, responsible for subject domain. That

partner will finally merge and report the experiences in the subject domain in case.

SISU - the Swedish Institute of Systems Development, is responsible for the Nordic

PIEs (Sweden, Denmark, Norway, and Finland) as well as for the subject domain

Software Metrics. At the time of writing, two workshops have been organised by

SISU. In the context of those workshops, ten PIEs have presented and/or made their

final reports available. In addition to that, the final reports from three PIEs presented

at a metrics workshop given by Socintecs (ES) have been made available to us. Those

13 PIEs are the basis for the study presented in this paper.

Software Metrics

Software metrics, presented in various textbooks, e.g. [6],[7],[10],[15] and

conferences, has a long tradition in theory, while considerably shorter in terms of

industrial applications. Software metrics relies on the underlying theory, called

representational measurement theory, posing some requirements on a correct

definition, validation, and use of software metrics. From practical point of view, there

are several further questions of importance, e.g. how to identify the right metrics to

use, how to introduce a metrics programme, and how to keep it alive. In the

following, these aspects will be discussed in more detail.

Measurement - what is it?

Software measurement is an activity assigning a number or a symbol to an entity in

order to characterise a property of the entity according to given rules. The informal

definition, even though giving an idea, must be more precisely defined. The message

of the definition is that there should be an entity, a property, a measurement mapping

and rules for the mapping. The measurement mapping and the rules is usually called

metric. An example of an entity is code. An attribute characterizing the code is size,

and one possible metric for measuring size of code is the number of lines of code

(LOC).

Initially, there must be an intuitive understanding of the property of the entity of

interest, otherwise there is no way to define an adequate metric. For example, for the

entity person, we can intuitively understand the property length, which can be

measured in inches or centimeters. If observing two persons, we usually get an

understanding who is taller, i.e. whose length would get a larger value if measured.

The intuitive understanding can be represented in an empirical relation system, a pair

consisting of the set of entities, and a set of relations, e.g. “taller than”. For the

Software Metrics Applications in a European Perspective

Page 2.14 of 2.23

measurement, there must be a corresponding numerical relation system, a pair, with

symbols representing the entities and numerical relations corresponding to the

empirical relations. For the relation “taller than”, an adequate numerical relation

would be >. There is also a so called representation condition requiring that a

measurement mapping must map the entities into numbers and empirical relations

into numerical relations in such a way that the empirical relations preserve and are

preserved by the numerical relations. In practice, this means that if we have an

intuitive understanding that A is taller than B, then also the measurement mapping M

must give that M(A) > M(B). The other way around, if M(A) > M(B), then it must be

that A is intuitively understood be taller than B.

In the above example, the representation condition is easy to understand and accept.

The difficulties arise as soon as we are talking about metrics which have been defined

although there does not exist such an intuitive understanding of the property. Good

candidates in this class are complexity of code and quality of a product. The

complexity is often measured by McCabe's cyclomatic number, while the most used

quality metrics are related to the defects: the number of defects/KLOC, or the number

of defects discovered by the customer. None of those metrics paint the whole picture,

mainly because there does not exist that intuitive understanding in the first place.

Both metrics give only a partial view of the property of interest.

The measurement mapping, the empirical and numerical relations are usually called

the scale of the measurement. There are five different scales:

nominal,

ordinal,

interval,

ratio, and

absolute

scales.

A measurement on a nominal scale is a classification of the entities into a set of

disjoint classes without any ordering between the classes, i.e. the classes form a

partition. An example of measurement on a nominal scale is a categorization of

defects, if no ordering of the defects is of interest. The ordinal scale extends the

nominal by adding an order for the classes. An example of the ordinal scale is

categorizing defects with respect to severity. The interval scale adds the concept of

distance, and poses the requirement that the distance between any two consequtive

classes is to be equal. Celsius and Fahrenheit for measuring temperature are on

interval scale. Ratio scale is the interval scale extended with zero-element, i.e. it

includes the total absence of the property in case, e.g. size of code measured by LOC,

which in principle could be zero. An absolute scale measurement is counting the

occurrences of entities, e.g. hours spent on a particular task.

It is important to establish the scale of the measurement in that different scales allow

different manipulations with the measurement data. On the nominal scale, only the

frequency and mode are relevant. On ordinal scale we can calculate the median of the

values. On interval scale also the arithmetic mean is meaningful to calculate, while on

ratio scale, also geometric mean makes sense. On absolute scale, we can do all the

calculations by numbers.

Software Metrics Applications in a European Perspective

Page 2.15 of 2.23

If a measure has components from different scales, the scale with the weakest

manipulation possibilities determines the scale of the composite measure. For

example, productivity calculated by dividing the size of the output by effort needed to

produce that output is on ratio scale because size is on ratio scale, although effort is

on absolute scale.

Attributes can be classified as internal and external attributes. Measuring internal

attributes of an entity, no other entities or attributes are involved. An example of an

internal attribute is size. Measuring an external attribute of an entity, other entities or

attributes may be needed for measurement. An example of an external attribute of the

entity code is maintainability. To measure maintainability, it is not enough to study

the code, but the code in the process of error detection and correction must be studied.

The external attributes are the challenging ones when it comes to define and validate

metrics. If there is no adequate metric for an external attribute, e.g. maintainability, it

may be possible to predict from an internal attribute. This is what we always do when

buying a car: we cannot measure the external attributes like how well the car behaves

under certain circumstances, but use internal attributes like tire dimension, brake

system, or whatever, as a predictor.

What is the thing being measured?

There are three main classes of entities of interest for measurement in software

engineering, namely product, process, and resource. Product is an output from a

process, e.g. code, a document, a script. A process is one or several activities.

Resource is an input to a process, e.g. staff, tool, method.

Sometimes, we need to measure attributes for a global entity, namely the entire

organisation, e.g. average delivery delays in all the projects undertaken during a

certain period of time, or the maturity of the organisation in software development on

a CMM scale.

Why is the triangle - the entity, attribute, and metric - needed?

Unless there is a clear statement of the entity, attribute, and a metric, it does not make

much sense to talk about measurement. For example, the statement “the size is 20

measured in LOC” does not make sense unless we know the entity in question.

Unless the attribute is defined, we do not know what property of the entity is

supposed to be characterized by the metric. For example “The code has FOG number

50” does not make any sense unless we know what attribute we are measuring by the

FOG number. Unless the metric is defined, we do not know even the scale of the

measurement, nor can we get an understanding of the relative value of the

measurement. For example, the statement “The code size is 70000” does not make

sense unless we know if size has been measured in LOC or bytes, or something else.

What types of use are there for the measurement data?

Software Metrics Applications in a European Perspective

Page 2.16 of 2.23

The measurement data has two principal types of use: assessment, i.e. to understand

the state of the affairs, and prediction, i.e. to make a statement about the future state

of the affairs. Possible uses of measurement data in prediction are as input to a

prediction model, to calibrate a prediction model, or to serve as the basis for defining

a prediction model. An example of an assessment is measuring complexity of code by

McCabe’s cyclomatic number. An example of use of McCabe's cyclomatic number is

as input to a prediction model to predicting the attribute maintainability of the code.

There are studies showing that McCabe's metric is not a valid predictor of

maintainability, nor is it an acceptable complexity metric [6]. Yet it is often used in

both senses.

Validating metrics and prediction systems?

The software metrics literature offers a large number of metrics, yet there are severe

limitations in terms of adequate metrics missing, e.g. metrics for complexity and

quality of different kind of products, size and structure of products other than code, to

take a few examples. If there does not exist a metric adequate to the purpose, an

organisation can always define its own metrics. When defining metrics, empirical

data is needed to validate the metric in case. The validation is intended to assure that

the representation condition is fulfilled, i.e. that the empirical relations are preserved

and preserve the numerical relations. First of all, there must exist consensus, an

intuitive understanding of the attribute. The basic idea of the metrics validation is that

it should measure the attribute it is intended to measure. A good example of an

attribute, the metric of which is often said to fail in this respect, is the IQ test. It is

claimed that the test does not measure the attribute intelligence, but something else,

for example logical ability. Logical ability, although possibly being a component of

intelligence, is not the lone carrier of intelligence. The problem with the metric for

intelligence is that there is no commonly agreed definition of intelligence in the first

place.

The validation requirement applies also to prediction systems. A prediction system is

valid if it correctly predicts what it is intended to predict. In validation of a prediction

system, the empirical data must cover the predictive capability of the prediction

system, i.e. to give a measure how much the estimates differ from the actuals. Metrics

for this purpose are MRE (Mean Relative Error) and PRED (Prediction accuracy).

How to identify right metrics?

It is stressed by most authors that the identification of metrics should be goal

oriented, i.e. unless you know the purpose of the measurement, you should not start a

metrics programme. The most well-known methods for identifying the right metrics

from the goals are the Goal-Questions-Metrics method (GQM) [3] and Application of

Software Metrics Applications in a European Perspective

Page 2.17 of 2.23

Metrics in Industry (AMI) [2]. Although the methods are not difficult as such, the

difficulty lies in inventing the right questions and metrics, which is not trivial at all.

Knowledge and training in software metrics as well as familiarity with the application

domain are needed.

What is good data?

The measurement data collected should fulfil certain quality criteria to be useful in an

analysis. We do not attempt to give an exhaustive listi of quality criteria, rather to present

some requirements which are commonly accepted as necessary requirements on

measurement data, namely

correctness

consistency

time precision

right granularity

The correctness requirement means that the data should be collected according to the

rules of metrics definition. For example, if measuring the code size by LOC, and the

rules state that reused code should be excluded, correct data would not include reused

lines of code. Needless to say, this requirement implies that there should be precise

definitions in the first place. The consistency criteria means that different people

measuring a product for some purpose should use the same version of the product, i.e.

the product to be measured should be under configuration control. The time precision

means that if a process is measured, there should be distinct start and end of the

process, otherwise the process measurement is meaningless. The right granularity

means that the granularity should be determined with respect to the goals of the

measurement. If the granularity is too fine for the purpose, unnecessary effort must be

put into data collection, while in the opposite case, the usefulness of the data might be

reduced.

How to introduce a metrics programme and to keep it alive?

It is often argued that only simple metrics should be used, whatever is meant by

simple metrics, and that metrics should be automatically collected, otherwise the

programme will fail in the long run. The first question to ask is how long the program

should run? Has the programme been introduced with the purpose of assessing the

state of the affairs, to solve a particular problem, or has the measurement programme

been included in a continuous process improvement programme, intended to run long

term. There are a number of guidelines and good advice for introducing a metrics

programme and to keep it alive [6], [14], e.g.

get and keep a commitment from the top management

measure anything, but individuals

give feedback to those who collect the measurement data

metrics should be automatically collected if possible

don't measure unless there is clear purpose with it

Software Metrics Applications in a European Perspective

Page 2.18 of 2.23

The guidelines do not, of course, guarantee a success of a metrics programme, but the

lack of the requirements may easily lead to a failure. Of particular importance is the

commitment from the top management. Without that support, the programme has not

much chance to survive.

The Study

In this study, 13 PIEs have been analyzed. The basis for the structure of the analysis

has been the theoretical aspects and the questions of practical interest presented in the

previous section. In particular, we analyse the PIEs with respect to the following

questions:

Is the measurement well-defined?

Have the metrics and prediction systems been validated?

What is the distribution of the entity types product, process, and resource?

Has expert support been needed in metrics definition?

How have the right metrics been identified?

What are the lessons learnt and problems encountered?

Is the measurement well-defined?

With this question we try to understand the metrics maturity of the PIEs, which can

be said to represent the European software community. There are several

requirements on being well-defined. For example, if LOC is used to measure the size

of code, the model of the entity should be precisely defined, e.g. will comments be

included or not. In this study, we only ask whether or not each of entity, attribute, and

metric have been defined in the context of a metric presented. If a concept is not

explicitly stated, but obvious from the context, it is regarded as defined.

In the 13 PIEs analysed, 51 different metrics were presented in total. Only nine of the

metrics definitions (18%) included the entity, attribute and metric, while in the

remaining cases, one or two of the concepts were not explicitly stated, nor clear from

the context.

In 27 of the metrics (53%), the entity was not defined. For example, the metric

“number of errors discovered within three months after release” might be intended to

measure a process, e.g. development or testing. Alternatively, it might be intended to

give an indication of the error density of the products delivered to a customer. To take

another example, the metric “percentage of the problems solved at the first level”, is

stated to measure the attribute quality, but it is not clear which entity it refers to. In

principle, it could be a product or a process.

In 28 of the 51 metrics (55%), the attribute was not defined, in some of them with the

entity defined, in some without. An example of a missing attribute with defined entity

is the metrics “the number of nodes in the design tree” characterizing the entity

Software Metrics Applications in a European Perspective

Page 2.19 of 2.23

design document. The attribute intended might be the size of the design document.

This metric could also be used to predict some attribute for another entity, e.g.

maintainability of the code. Another example of a missing attribute with a defined

entity is “the number of software problem reports” for a product. This attribute is

often used to assess the quality of a product. In that case, the number of software

problem reports should rather be related to the size of the product, instead of giving it

as an absolute number. An example of both entity and attribute missing is the metric

“the number of software errors per function point”. It might been used to assess the

attribute “error density” of a product, or it could be a metric for assessing the quality

of the development process.

In five of the 51 metrics presented (10%), the metric was not defined. An example of

a missing metric with other concepts in place is “risk” assessment for a process. An

example of both metric and entity missing, is the attribute “productivity”, usually a

resource metric, but without explicit definition, we do not know what kind of

resource is intended, neither how it is measured.

In 20 of the 51 metrics presented (39%), neither the entity nor the attribute were

defined. Examples of such metrics are “percent of cost per function point”, “the

number of claims”, “the number of problems registered”, “the number of test cases”,

and “the number of unnecessary modifications related to the total number of

modifications”.

Have the metrics and prediction systems been validated?

Unless the metrics and prediction systems have been validated, the value of the

measurement data is not of much interest. Even worse, it may be misleading in that

the measurement data can be interpreted in several ways.

Only two of the 13 PIEs (4%) have presented experiments for validation, both

validating prediction systems. Two of the PIEs have used an invalid metric, McCabe

cyclomatic number to measure the complexity of the code. With a closer look, it

seems that the real use of McCabe metric has in those PIEs been to predict the

maintainability of the code, the higher the McCabe number, the more efforts can be

expected to be needed in maintenance. However, McCabe metric is neither a valid

predictor of maintainability [6].

What is the distribution of the entity types product, process, and

resource?

The PIEs are supposed to measure the improvement obtained because of the process

improvement experiment. It could be expected that process measurement would be

Software Metrics Applications in a European Perspective

Page 2.20 of 2.23

the main entity type in the measurements. However, of the 24 metrics with entity

defined at all, the distribution of the entity types is as follows: eight process metrics

(33%), 13 product metrics (55%), one resource metric (4%), and two global metrics

(8%) measuring the organisation maturity. It seems that product metrics are to a large

extent used to measure some external attribute of a process, e.g. the product quality

measured by the number of problems can be used to measure the quality of the

software process, or some of its activities.

Has expert support been needed in metrics definition?

A need of expert support in defining metrics would imply some lack knowledge and

training in software metrics in the organisations.

Of the 13 PIEs studied, seven of them (54%) state explicitly having used expert

support to define the metrics. This number could be higher in reality, as there is no

reason for the PIEs to present this fact unless the metrics expert was a partner in the

project.

How have the right metrics been identified?

With this question we intend to capture the methodologies used to identify right

metrics.

The methods for identifying the right metrics have been Goal-Question-Metric

(GQM) in one case (8%), and AMI (Application of Metrics in Industry) in one case

(8%). As 46% of the PIEs had expert support in metrics definition, the explicit

method of identifying the metrics might not be known to the PIE, and therefore not

mentioned.

What are the lessons learnt and problems encountered?

The reason for this question is to investigate whether the lessons learnt and problems

encountered confirm or conflict the common knowledge of introducing metrics

programs. A further reason is to use the problem statements to support the discussion

and conclusions of the study. We state all the problem and experience types explicitly

and once. Most of them are shared by several PIEs.

Data was not consistently collected

The purpose of measurement was not clear

Reliability and accuracy of the measurement data is important

There was resistance by people to collect metrics data

Collection of data must be integrated in working processes

Metrics program was too ambitious

Software Metrics Applications in a European Perspective

Page 2.21 of 2.23

It was difficult to measure

Metrics must be defined and validated

Relationships between metrics must be defined

There must be templates for metrics data collection

Collection of data was a big effort

It was useful to get the metrics

Use simple metrics

None of the statements is new, nor in conflict with the common knowledge in the

area. It is worth to observe that the PIEs stress the requirements on correctness,

reliability, accuracy, consistency, definition, and validation, especially as the metrics

presented in large extent lack these properties. The need for templates for data

collection can also be interpreted as supporting the need of precise definition of data.

The statement of ideally using simple metrics may be interpreted as the defined

metrics have been difficult to understand, the metrics data collection has been

difficult, or the analysis part has been difficult. Similarly, the difficulty in measuring

may be based on difficulty of understanding because of lacking precise definitions. It

is well-known that resistance for metrics data collection and filling in the forms is

common, and that it may be, to some extent, be reduced by giving feedback of the

measurement results.

Conclusions

We have analysed 13 PIEs with the focus on how the improvement has been

measured in the process improvement experiments undertaken. The basis for the

analysis consists of a number of aspects, originating from both theory and practice.

The aspect which we believe is of most importance, is the definition and validation of

the metrics used. Although this issue has its origin in theory, it is not only an

academic issue to be discussed between software metrics researchers, but it is an

essential issue for the practical applications. Without a well-defined and validated

metrics and prediction systems, measurement has no value to the organisation. Even

worse, the measurement data may be misleading as without precise definitions, all

interpretations become possible. Without precise and validated metrics, comparing

measurement data from different organisations does not make sense either.

From this point of view, the PIEs under study appear considerably weak. Naturally

there is always bias in this kind of studies, and so may be even here: the reality might

in some cases been better than it seems from the final report. Still, it seems correct to

draw the conclusion that there is major potential for improvement in the software

metrics maturity and understanding the importance of the underlying theory. The

conclusion is also supported by the lessons learnt, presented in the previous section:

Without a precise metrics definitions it is not surprising at all that it has been difficult

to measure, and that the reliability, accuracy, correctness, consistency, definition, and

validation aspects have been included in the lessons learnt. Another supporting fact is

that more than half of the PIE organisations needed expert support in metrics

definition. Yet, the attributes measured were, with a few exceptions, internal

Software Metrics Applications in a European Perspective

Page 2.22 of 2.23

attributes, the metrics of which are easier to define and validate than metrics for

external attributes.

To obtain an improvement in the software metrics maturity on a European level,

software engineering research with the focus on empirical studies, especially in

defining and validating metrics, is needed. The empirical data needed for the research

should ideally originate from the industry. A cooperation between research and

industry is needed to getting started in a larger scale towards a software metrics

maturity improvement. To ensure a continuous improvement in metrics maturity,

software metrics should be included in the software engineering curricula, to train the

top management and engineers of tomorrow.

References

[1] Albrecht, A.J., Measuring Application Development, in Proceedings of IBM

Applications Development Joint SHARE/GUIDE Symposium, Monterey, CA, pp.

83-92, 1979.

[2] AMI – Application of Metrics in Industry, ESPRIT metrics technology

transfer project 1991-1993.

[3] Basili, V.R., Rombach, H.D., The TAME project: Towards

improvement-oriented software environments, in IEEE Transactions on Software

Engineering 14(6), pp.758-773, 1988.

[4] Boehm, B.W., Software Engineering Economics, Prentice Hall, 1981.

[5] EUREX – European Experience Exchange, Project Number 24478, ESSI

Dissemination Action, Annex I, Project Programme.

[6] Fenton, N.E., Pfleeger, S.L., Software Metrics – A Rigorous & Practical

Approach, International Thomsom Publishing Inc., 1996.

[7] Fenton, N. Whitty, R., Iizuka, Y., Software Quality – Assurance and

Measurement. A Worldwide Perspective. International Thomson Computer Press,

1995.

[8] Gillies, A.C., Software Quality – Theory and Management, 2
nd

 ed,

International Thomson Computer Press, 1997.

[9] Grady, R.B., Practical Software Metrics for Project Management and Process

Improvement. Prentice Hall, 1992.

[10] Kan, S.H., Metrics and Models in Software Quality Engineering.

Addison-Wesley, 1995.

[11] Oskarsson, Ö., Glass, R.L., ISO9000 i programutveckling – att konstruera

kvalitetsprodukter, Studentlitteratur, 1995.

[12] Paulk, M.C. et al, The Capability Maturity Model – Guidelines for Improving

Software Metrics Applications in a European Perspective

Page 2.23 of 2.23

the Software Process, Addison-Wesley, 1995.

[13] Putnam, L.H., Fitzsimmons, A., Estimating software costs, in Datamation,

Deptember, October and November 1979, pp. 312-315.

[14] SEI, Managing Software Development with Metrics, Course material, 1996.

[15] Shepperd, M. Foundations of Software Measurement. Prentice Hall, 1995.

Page 3.1 of 3.44

Session 3 –

Implementation of SPI

Part I

Data Driven Improvement for SMEs

Tor Stålhane, Ph.D.,

Kari Juul Wedde, MSc,

Tore Dybå, MSc.

SINTEF, Trondheim, Norway

SPI in Embedded Software Applications

Bjarne Månsson

Software Group Manager
BARCO Communication Systems Denmark

An Experience of SEPG Organization

Alessia Billi

Sodalia S.p.A., Trento- Italy

alessia@sodalia.it

Page 3.2 of 3.44

Data Driven

Improvement for SMEs

Tor Stålhane, Ph.D.,

Kari Juul Wedde, MSc,

Tore Dybå, MSc.

SINTEF, Trondheim, Norway

Introduction

As the competition in the software development business grow fiercer, process

improvement becomes more and more important. The best way for a company to

improve is through learning from their own data and experiences. However,

experiences are basically individual and in order to move from the individual

experiences of each developer to something that is useful in the company at large, we

need a method for converting data and experience into reusable knowledge through

data analyses and interpretation. This way of improving is called data driven

improvement.

In order to perform data analyses, it is necessary to combine collected data with

experiences that are available in the organization. This is important in order to

decide:

 What to measure and how to measure it.

 How to make sense of the collected data.

 How to move from experience and collected data to reusable knowledge.

In statistics, the problem of combining data and experience is usually solved

within a Bayesian framework. However, in order not to relay heavily on the

formalization of the prior – expert – knowledge, we needed a more informal

approach. An example of such a way to combine data, prior knowledge and

experience is the feedback sessions used in GQM [3].

It is outside the scope of this paper to report on our experiences with extending

the knowledge created inside a team across to other teams and to the organization as

a whole. Besides the need for building up an experience bases, an additional - but

Data Driven Improvement for SMEs

Page 3.3 of 3.44

often ignored role of data collection - is to dispel myths, which act as roadblocks for

the improvement work. Such myths are often unconscious acts of self-defense in the

company. As long as the myths are not challenged, they block all thoughts of

improvement. Thus, only by dispelling the myths can we move on to changes and

true process improvement.

The rest of this paper is organized as follows: First we discuss learning in

organizations in general and how this relates to the special problems facing SMEs.

Then we will go into more details and focus on how SINTEF has solved the

identified problems by using two approaches, namely GQM and risk based

improvement. At last we will sum up our experiences and offer a set of conclusions.

On Organizational Learning

The need for learning

Process improvement based on “best practice” models (e.g. CMM and Bootstrap) and

SPC can be contrasted with the use of improvement processes that are mainly

concerned with the contingent and human characteristics of software development. In

our view, software development is a social process where the resulting software

cannot be separated from the actors engaged in developing it. This perspective

requires learning rather than introduction of “best practice” models or SPC to

accomplish improvements in software development processes.

Fiol and Lyles [7] suggest that organizational learning is “the process of

improving actions through better knowledge and understanding.” We agree with this

viewpoint, and hold that the role of organizational learning, within the context of

software process improvement, is to provide a framework for improved actions.

However, in order to understand how such a framework could be used, there are two

basic dimension of software process improvement that must be conceived. One has to

do with the type of situation; the other has to do with the type of learning. For

software organizations in general, it is important to be alert to the fact that some

combinations of these dimensions facilitate improvements, while other combinations

inhibit improvements. This is summarized in Table 1.

Type of Situation

Type of Learning

Single-Loop Double-Loop

Stable (standardized) Facilitates Improvement Inhibits Improvement

Turbulent (innovative) Inhibits Improvement Facilitates Improvement

Table 1. The two dimensions of software process improvement.

The situation in software development processes is a sequence of stable and

turbulent conditions demanding alternations between innovation and standardization.

This suggests that process improvement require both change and stability. Fiol and

Lyles elaborate on this, noting that too much stability within an organization can be

Data Driven Improvement for SMEs

Page 3.4 of 3.44

dysfunctional and that too much change and turbulence leads to difficulties for

people to make sense of their environments. In other words, software process

improvement involves the creation and manipulation of this tension between

constancy and change.

The learning dimension consists of what Argyris and Schön [1] call “single-loop”

and “double-loop” learning. They define single-loop learning as “instrumental

learning that changes strategies for action or assumptions underlying strategies in

ways that leave the values of a theory of action unchanged.” Double-loop learning,

on the other hand, is defined as “learning that results in a change in the values of

theory-in-use, as well as in its strategies and assumptions.”

The concepts of single-loop and double-loop learning are crucial in understanding

the restructuring of the software organizations’ routines and practices. At their best,

SPC-based improvement models are concerned with how to achieve better

effectiveness within the existing values and norms, that is, single-loop learning.

Often, however, they are connected with simple adaptation rather than learning.

Furthermore, they are concerned with solving the needs of large organizations, oper-

ating in highly stable environments with long-term contracts. This can be contrasted

with the majority of SMEs that operate in increasingly changing environments where

the periods of stabilization are constantly shortened, thus requiring adeptness to

double-loop learning and reflective practice.

In sum, both standardization and innovation can produce improved actions for

SMEs in some situations, but can also harm these organizations in other situations.

Consequently, only by recognizing this challenge of the “learning paradox”, and the

intrinsic short periods of stabilization facing most SMEs, can they expect to succeed

with software process improvement.

Creating knowledge from experiences

The most powerful learning comes from direct experience. However, to understand

how SMEs can learn from such experiences, we must first understand the nature and

forms of humane knowledge and the processes whereby this knowledge is created.

Kolb [9] defines individual learning as “the process whereby knowledge is created

through the transformation of experience”. This experiential learning process, builds

on Lewin’s [11] model of action research, and consists of four stages in a cycle. First

we have the concrete experience. This is followed by collection of data and reflective

observation. Next comes abstract conceptualization, where models are constructed to

define, explain and possibly predict what we observe. Finally, in active

experimentation, models and ideas are tested in new situations. The outcome of the

experiment becomes concrete experience.

There are two aspects of the experiential learning model that are important for

process improvement in SMEs. First, the emphasis on here-and-now, concrete

experience to validate and test abstract concepts. Second, the concept of feedback to

describe a social learning and problem-solving process that creates knowledge. This

feedback loop provides the basis for data analyses and goal-oriented action.

Whereas Kolb’s theory is individually oriented, Nonaka and Takeuchi [12] have

presented a theory of knowledge creation that is team and organization oriented,

emphasizing Polanyi’s [16] distinction between tacit and explicit knowledge. Tacit

knowledge is personal and context specific, and therefore hard to formalize and

communicate. Explicit knowledge, on the other hand, is transmittable in formal,

Data Driven Improvement for SMEs

Page 3.5 of 3.44

systematic language. Furthermore, human beings acquire knowledge by actively

creating and organizing their own experiences and only a part of this knowledge can

be expressed in words and numbers (Polyani).

Nonaka and Takeuchi define organizational knowledge creation as a continuous

and dynamic interaction between tacit and explicit knowledge. This interaction

consists of four modes of “knowledge conversion”, as shown in Figure 1. First, the

socialization mode starts by building a “field” of interactions, letting the members

share experiences and creating tacit knowledge. Second, the externalization mode

helps team members to engage in a process of converting tacit knowledge into

explicit concepts. Third, the combination mode lets organizational members

systematize and share newly created explicit concepts, and existing knowledge into a

knowledge system. Finally, internalization or “learning-by-doing” embodies explicit

knowledge into tacit knowledge.

Figure 1. Interaction between tacit and explicit knowledge at the team level.

Externalization holds the key to organizational knowledge creation, since this

creates new, explicit concepts from tacit knowledge [12]. Unless shared knowledge

becomes explicit, it cannot easily be reused. The organization cannot create

knowledge on its own without individual initiative and interaction at the group level -

teams play a central role in the knowledge creation process in SMEs since they

provide a shared context in which individual developers can interact with each other.

Consequently, we have primarily focused on software development teams.

For learning to become more than a team level affair, however, knowledge must

be spread quickly and efficiently throughout the whole organization. One powerful

method of such diffusion is through the use of computer-based organizational

memory (Huber, [8]) or an experience base (Basili, [4]). This topic will, however, not

be discussed any further in this paper

Individual

Team

Externalization Internalization

Combination

Socialization Socialization

Data Driven Improvement for SMEs

Page 3.6 of 3.44

The Challenge for SMEs

In the face of the need for learning in order to improve, and that we need to base this

learning on our own experiences, the SMEs face two challenges, namely an ever-

changing environment - only partly controlled by themselves - and few projects

running at any given point in time. As a result of this, they have few data, which they

can analyze and use to build up an experience database. In addition, collected data

will soon be outdated and left irrelevant or – in the best case – uncertain.

These things taken together implies that SMEs need to grab the data as soon as

they are available, extract the important information for learning and convert it to

improvement actions without collecting long time series or amass large amounts of

data needed for a tradition statistical improvement approach.

When we have collected the data according to the GQM plan and performed the

necessary analysis, we can select one of two approaches, depending on the kind of

approach we have chosen:

 We can create knowledge that can be used for later improvement.

 We can use the results directly to search for improvement opportunities.

Irrespective of which approach we chose, we will get a lot of small but important

improvement steps from the developers during the measurement and analyses

processes.

In the next section, we will first describe our overall approach to process

improvement within the GQM framework. We will then go on to discuss the two

selected improvement approaches and how they have been used in a large national

project called SPIQ.

The SPIQ Approach

The SPIQ (Software Process Improvement for better Quality) is a major Norwegian

software improvement program. The overall goal of SPIQ is to increase the

competitiveness and profitability of Norwegian IT-industry through systematic and

continuos process improvement.

SPIQ is based on the general process improvement principles of Total Quality

Management (TQM) [2] [19], [20]. Specifically, the Plan-Do-Check-Act (PDCA)

cycle is important. Figure 2 shows the SPIQ improvement process - a two level

PDCA cycle, the project level and the organization level.

Data Driven Improvement for SMEs

Page 3.7 of 3.44

Figure 2 Two level PDCA cycle

The inner loop of this model is realized by one or more Process Improvement

Experiments - PIEs. The PIEs are implemented according to the ESSI model where

improvement project and development project are managed as two separate projects

– but with strong relations. The development project is a real project; not an

experiment set up just for the PIE.

Figure 3 Process Improvement Experiment

When we implement the PDCA cycle on the project level, GQM [14], [15] is our

most important tool for the Plan and Do steps. The fundamentals of GQM are the

Goals, Questions and Metrics, documented in a GQM plan. The Plan part of PDCA

covers the definition of Goals, Questions and Metrics and the Do part is the

implementation of the GQM plan - including feedback sessions. The Check part is

covered by the Post Mortem Analyses - which may be seen as a special feedback

session - and the Act part consists of feeding the experiences back into the

organizational level for institutionalization. For the institutionalization we are using

the principles from Experience Factory [5].

The conclusion from an earlier ESPRIT project is that feedback sessions are the

single most important element in keeping a measurement program alive. This is

consistent with our experience. Feedback sessions are important both as a means to

motivate the project team and as a method for data analyses and learning.

Another element that is important is the use of group interviews to define the

GQM plan – i.e. to define what to measure and how to measure it. Group processes –

including interviews and feedback sessions – are used to move from data and

individual experiences to shared explicit knowledge.

Do Project level

Organisation level

Check

Do

Act

Act

Check

Plan

Plan

P D C A
Improvement

project

Development

project

Data Driven Improvement for SMEs

Page 3.8 of 3.44

In addition, we have good experience with using TQM tools – simple tools like

histograms and scatter plots – in combination with GQM’s feedback sessions to

analyze data. TQM tools are important in order to communicate and to make sense of

the collected data.

Learning from Experience in SMEs

SINTEF Telecom and Informatics has worked with SMEs and improvement projects

for years. Together with Norwegian industry we have participated in ESSI PIEs and

improvement projects run under the Norwegian software improvement program

SPIQ. This chapter describes our experience from these projects with respect to the

problems identified in the introduction chapter.

This includes our experiences in going from individual tacit knowledge to shared

explicit knowledge that can be reused by software development teams. We discuss

the importance of involving the whole team and our experiences in using group

interviews and feedback session at the team level to interpret data and to share

experiences. Finally, the importance of writing experience reports from the PIEs will

be exemplified, as an important action when converting tacit knowledge into explicit

knowledge.

Involve the whole project team

“Why should I collect data?” A developer in a company asked this when they tried

to implement a measurement program the old way, i.e. by just deciding to collect

some metrics and then ask the developers to provide the data.

It is our experience that it works much better if the company involve the whole

project team from the start, i.e. from the moment the development project for a SPI

project is chosen. The overall improvement goal will normally be known by then.

The same goes for the GQM Goal.

In GQM the people representing the Viewpoint of the GQM Goal are considered

to be the experts. In the context of process improvement the project team always

represents the Viewpoint and as such they are the experts. They should therefore be

given a chance to confirm whether the defined SPI project is relevant for their project

or not. Further more they should take part in defining Questions and Metrics related

to the Goal.

It is often claimed that software developers are not interested in SPIs, they are

technology driven. Technology is important for the software community and

technology is therefore of great importance for the developers. Our experience,

however, is that they also take interest in SPIs if they are properly informed and

allowed to participate from the beginning. In SPIs performed the GQM way, the

process improvement is bottom up as soon as the Goal is given. The bottom up

approach helps us to collect metrics and solve problems that the developers consider

important.

Group interviews

In SPIQ we are using group interviews involving the whole project team in order to

define the Questions and Metrics – i.e. to fill in the GQM abstraction sheet. This is

Data Driven Improvement for SMEs

Page 3.9 of 3.44

possible in SMEs where few project teams have more than 10-12 members. In the

description of the GQM process this step is always conducted by interviewing each

team member separately. Individual interviews may be necessary for non-

homogenous groups, in order to prevent any single member from dominating the

process. We used individual interviews in one project, but found it both time

consuming and difficult. Several iterations were needed before we had a plan the

members could agree on, and the result was not any better than the ones we obtained

by using the group process.

By using a group process, the team can discuss and obtain an agreement during

the meeting. To overcome the problem with non-homogenous teams and dominating

persons, we start the session by splitting the team into groups of two persons. In a

group of two persons nobody could just drop out and all team members had a fair

chance to come forward with their own ideas. These two-person groups were given

15 minutes to come up with a set of Questions. The questions from all groups were

written on a whiteboard and served as a starting point for further discussion. The

whole session takes two to three hours and the result will be a draft GQM abstraction

sheet.

The GQM abstraction sheet is a means for acquiring the information needed for

defining the GQM measurement plan. The abstraction sheet has four quadrants – see

Figure 4. The upper quadrants show the Questions while the lower half shows the

hypotheses. The hypotheses are important in order to verify the validity of the

Questions. If the team have difficulties in coming up with any hypotheses, they may

have defined the wrong Questions. The hypotheses are, however, often dropped. This

is especially true for the Baseline Hypotheses.

Figure 4 GQM abstraction sheet

The Baseline Hypotheses quadrant shall document the developers’ view of the

current status of the measured properties. This means that the team should use their

current knowledge about the process to answer the defined Questions. In one

company they did not see any reason why they should fill in this quadrant, but they

started the job anyhow. Filling in this quadrant, however, started an enthusiastic

discussion, involving all team members. The discussion served as a great motivation

factor for the measurement program and when the data collection started, they were

all eager to see the result of the measurements.

All together, group interviews is an efficient way to fill in the GQM abstraction

Object Purpose Quality Focus Viewpoint Environment

Ouality Focus: Variation Factors:

Baseline Hypotheses: Impact on on Baseline Hypotheses:

Question1

Question 2

etc.

Question a

Question b

etc.

Goal

Q1 Q2 Qa Qb

M1 M2 M3 M4 M5 M6 M7

Data Driven Improvement for SMEs

Page 3.10 of 3.44

sheet, giving a large range of important effects:

 Individual tacit knowledge is converted into explicit shared knowledge

 Developers are motivated to participate in the measurement program

 We get a measurement plan that is based on the organizations overall

objectives and the developers immediate problems

Data analyses in the GQM context

When GQM and QIP were published, several of its proponents suggested using the

collected data to repeat successful projects through an SPC approach. This is,

however, impractical. In [13] Ould has given some reasons for this. We have two

additional reasons:

 We do not usually have a deep understanding of the reasons why a

project was a success. Thus, there is a strong possibility that we focus on

the wrong factors, for instance tries to follow the same distribution of

resources spent per phase, when the real – and may be only – reason for

the success was that the project was staffed with highly experienced

people.

 Each process improvement action will change one or more aspects of the

process. As long as we do not have complete understanding of all factors

that are involved in the outcome of a project, we can not update our old

data (previous to the change) in order to make them relevant for the

changed process.

Our solution to this is to use expert opinion aided by simple plots to interpret the

data. In addition we have included simple statistical techniques. Our data analysis

approach is as follows:

1. Select an appropriate plotting technique. The SPIQ project has provided

guidelines for this, depending on data type and amount.[10] In order to get a free

discussion, it is important not to add any analyses at this point.

2. Use the feedback sessions to present the data to the developers. There are several

possible responses to the presented data, each giving rise to a different action:

 The developers do not believe the data – “This is impossible!” In this

case, no further analysis is useful. We need to find out why the data are

not considered reliable and correct the data collection accordingly. This

does not necessarily lead to new data being collected. The solution may

also be to collect the data in a way that convince the developers that the

values are indeed correct.

 The developers recognize that the data collected are incomplete - “We

need other data sets in order to make sense of this”. A typical example is

failure data where we have mixed data from new components and reused

components or from simple and highly complex components. The

solution is to improve the data collection process to cater to the

differences in data.

 The developers are able to interpret the data directly from the plot - “As

Data Driven Improvement for SMEs

Page 3.11 of 3.44

we thought. This is because so and so but the manager will not listen!” In

these cases we have gained new or validated already available

knowledge about the process. Such knowledge can later be used to

pinpoint improvement opportunities. A typical example is that the

developers get confirmation on that more time spent on preparation

before a review leads to more bugs found.

A statistical analysis is only necessary in the third case – where the developers are

able to provide a direct interpretation of the data plot. The question posed to the

statistician in this case is “How likely is it that the observed pattern is not the result

of some random effect?” The real challenge for the feedback session comes when the

conclusion is that the level of significance is, say, 30%.

Note that it is dangerous to jump for instance from “A is linearly dependent on B”

to “B causes A”. It is always a possibility that both A and B depend on some

unobserved variable C. If C is not observed, “B causes A” and “C causes A and B”

will give the same kind of observations. In order to sort this out, it is important to use

the knowledge and experience of the developers during data analyses.

Feedback sessions

Feedback sessions are well organized, structured meetings integrating the project

team and the measurement team. In these meetings the collected data are presented to

and interpreted by the project team members. Combining the knowledge of the team

members with available data, we will get the following results:

 Identification of immediate changes and modifications for both the

software development process and the measurement process

 Identification of long term improvement opportunities

The results of the discussions have to be summed up in feedback session reports

that will be input to the post-mortem analyses at the end of the project. Writing these

reports is an important act of converting tacit knowledge into explicit knowledge for

the company.

Seen from a learning perspective, the feedback sessions thus gives results on

many levels. The project team will learn as individuals and as a group and the

organization collects experiences that can be useful in other projects later on. All

together the result can be summed up as:

 Individual experiences for the team members

 Measurements give knowledge of how things really are

 Common understanding of what we can learn from this knowledge

 Explicit shared knowledge about the process that can be reused by the

team and fed back into the organization level

Data Driven Improvement for SMEs

Page 3.12 of 3.44

The role of the TQM tools

Communication is important for learning, and to communicate we need means that

can be understood by all. The TQM tools are well suited. Most of them – like

histograms, scatter plots etc, are well known and therefore help to ease

communication in the whole organization. In addition to being suited for

communication inside the project team, they are well suited for communicating the

results of the improvement project to the management. For an excellent summary see

[18].

Risk in Data Driven Improvement

If we want to move on from data collection to improvement we have to deal with the

uncertainties inherit in an approach based on a small data set and expert judgement.

These uncertainties can be handled through risk driven improvement activities. The

rather short time available is an extra complicating factor in this picture. Thus, risk

rises from two aspects of process improvement:

1. Few data collected over a short time span, which implies an uncertain diagnostic

of the process

2. Uncertainty in understanding, which leads to uncertainties regarding the effect of

the proposed improvement actions.

As mentioned before, SMEs have few projects going on in parallel – usually only

one or two each year. The success of these projects is a critical factor in the survival

of the SMEs. Thus, the experiment performed in order to improve needs to be well

controlled so that the chosen approach can be changed immediately if things seem to

go wrong. These problem factors imply that we must be careful when choosing an

improvement strategy. In our opinion two things are critical:

1. Use many small improvement steps, not a few giant leaps. Evolution, not

revolution.

2. Design an improvement process with short feedback loops. This will give us a

better control and quicker reactions in case of problems.

Our experience has shown that data collection in most cases is more efficient for

identifying problem areas than for problem removal. Problem removal depends

critically on the knowledge, experience and motivation of the developers. In order to

tap this reservoir of information, SINTEF uses root cause analyses [18], realized by a

two step approach, starting with Pareto analyses in order to identify the most

important problems. We then use a group process, supported by an Ishikawa diagram

to analyze problem causes. When we feel confident that the right root causes have

been identified, we start to work on the improvement steps. This last step is the

easiest one. In fact, one company has stated that when the Ishikawa diagram is

completed, the solutions are in most cases obvious.

 Below is an example of an Ishikawa diagram. The main cause – Incomplete

requirements specifications – has been identified as an important problem cause by

collecting and analyzing data in a feedback session, supported by a Pareto analyses.

Data Driven Improvement for SMEs

Page 3.13 of 3.44

Figure 5 An Ishikawa diagram for “Incomplete requirements specification

Even if we use the Ishikawa diagram to identify possible improvements, the risks

rising from changes to the process still have to be controlled. As demonstrated by

others, there is a close connection between the GQM abstraction sheet and a risk

management table. This connection stems from the observation that the environment

factors in the GQM abstraction sheet are the important risk factors in the project –

see Figure 4. The environment factors are important for two reasons:

1. They can have a strong influence on the results of the project if or when

they change

2. They influence the values of the data collected in the project. If the

environment factors change, a large part of our relations will change also.

The influences are documented in the “Impact on Baseline Hypotheses”-quadrant

in the GQM abstraction sheet – see fig 4. Some of the environment factors are under

control of the company, at least in the long run. This goes for such factors as the

experience and knowledge of their developers, which can be influenced by courses

and other forms of training. As a general risk control approach during improvement,

we use Table 2 where the identified risks are at least the factors entered in the

Variation factors part of the GQM abstraction sheet.

Identified risks

Estimates

Causes

Possible actions Prob. Cons. Risk

Table 2 A general risk control approach

Incomplete

requirements

specifications

Incomplete

knowledge of

system

environment

Missing quality

assurance

Missing

functional

requirements

Too complex

requirements

Missing non-

functional

requirements

Misunderstandings

Incomplete

application

knowledge

Incomplete

problem

understanding

Unsatisfactory

customer

contacts

Missing

routines

Time

pressure

Routines not

followed

Missing

system

knowledge

Incomplete

problem

understanding

Data Driven Improvement for SMEs

Page 3.14 of 3.44

Conclusion

The situation with fast changes and few data is relevant for all SMEs and it will not

go away. Thus, we need to establish an improvement framework for continues

learning, not unreflective adaptation to best practice. The framework that we propose

is a cycle of change – based on data – and stabilization – based on standardization

and institutionalization. This is the same as the improvement framework originally

proposed by the TQM fathers.

It is our experience that the continues learning needed for process improvement is

best facilitated through a sequence of group processes. This sequence starts with the

group process needed to define what to measure and how to measure it, goes on

through collection and interpretation of data and ends up with institutionalization.

As a further result of few data and fast changes, we will seldom get enough data

for solid statistical analyses. As a consequence of this, human knowledge and

experience is of utmost importance when interpreting the collected data. Statistical

analyses will, however, be important for deciding the significance level for our

conclusions. Statistical analyses will also be important for areas where we will get

large amounts of data. This is the case for process steps that are repeated often, such

as code reviews, unit tests and maintenance activities.

An important alternative to experimental learning – at least in the strict sense of

this word – is to go for direct improvement. This is done by combining Pareto

analyses – what are our major problems – and one or more brainstorming sessions

supported by an Ishikawa diagram – what can we do about it. This way of improving

the process is faster, but carries a larger risk that the strict learning / understanding

approach.

This view will partly collide with the idea of experience reuse. As stated several

times in the past, one of the goals for process improvement is to collect data that can

be stored in a data bank for later reuse. There are, however, some problems with the

reuse of experience when we are strongly dependent on expert judgement. All the

experts’ knowledge stems from the process as it was before the improvement steps

and is thus not reliable for the new, improved process. Reusable experience must

thus focus on how to solve problems and on the parts of the process that were not

changed.

However, the most important experience to reuse is that it is possible to improve

the process through data analyses and the use of simple problem solving techniques.

In all case, improvement should be attempted through several, small steps, not in one

or a few giant leaps. The search for a best practice all too often results in a static

view of the process, which is dangerous in an ever-changing market – at least as

seem from the SMEs. In addition, it is important to keep in mind that static

knowledge is not necessarily a good thing in a dynamic environment.

References

[1] Argyris, C., D.A. Schön Organizational Learning II, New York: Addison-
Wesley, 1996

[2] Deming, W.E., Out of the crisis, Cambridge University Press, 1982

Data Driven Improvement for SMEs

Page 3.15 of 3.44

[3] Basili,V. R., Software Modelling and Measurement: The Goal/Question/Metric
Paradigm, in University of Maryland Technical Report UNIACS-TR-92-96,
1992

[4] Basili, V.R., Software Development: A Paradigm for the Future, in
Proceedings of the 13th Annual International Computer Software &
Applications Conference (COMPSAC), Keynote Address, Orlando, FL,
September, 1989

[5] Basili,V. R. et al, The Software Engineering Laboratory – an operational
Software Experience Factory, in Proceeding from the 14

th
 ICSE, 1992

[6] Fenton, N.E., Pfleeger , S.L., Software metrics – A Rigorous & Practical
Approach, International Thomson Computer Press, 1997

[7] Fiol, C.M. and M.A. Lyles Organizational Learning, Academy of Management
Review, Vol. 10, No.4, pp. 803-813, 1985

[8] Huber, G.P.,Organizational learning: The contributing processes and the
literatures, in Organization Science, Vol. 2, No. 1, February, pp. 88-115, 1991

[9] Kolb, D.A. Experiential Learning: Experience as the Source of Learning and
Development. Englewood Cliffs, New Jersey: Prentice Hall, 1984

[10] Juul Wedde, K., Analysing metrics data, in SPIQ technical memo, 1997 (in
norwegian)

[11] Lewin, K. Field Theory in Social Sciences, New York: Harper and Row, 1951

[12] Nonaka, I. and H. Takeuchi, The Knowledge-Creating Company: How
Japanese Companies Create the Dynamics of Innovation, New York: Oxford
University Press, 1995

[13] Ould, M., SPC – mistake of the 90s?, in Software Reliability and Metrics Club,
May 1997

[14] Perfect Consortium, Goal-Oriented Measurement Using GQM, in D-BL-GQM-
2-PERFECT9090, ESPRIT Project 9090 ”Perfect”, 1997

[15] Perfect Consortium, Perfect Improvement Approach, in D-BL-PIA-2-
PERFECT9090, ESPRIT Project 9090 ”Perfect”, 1997

[16] Polanyi, M.,The Tacit Dimension. New York: Doubleday, 1966

[17] Pulford, P., Kuntzmann-Combells, A., og Shirlaw, S., A quantitaive approach
to software management - The ami handbook, Addison-Wesley Publishers,
Wokingham, 1996

[18] Straker, d., A toolbook for Quality Improvement and Problem Solving,
Prentice Hall, 1995

[19] Uchimaru, K., Okamoto,S., Kurahara, B.,TQM for technical groups – Total
Quality Principles for Product Development, Productivity Press, Portland,
Oregon, ISBN 1-56327-005-6

[20] Zultner, R. E. TQM for Technical Teams, in Communication of the ACM, pp.
79-91, Vol. 36 No. 10, October 1993

Data Driven Improvement for SMEs

Page 3.16 of 3.44

Page 3.17 of 3.44

SPI in Embedded

Software Applications

Bjarne Månsson

Software Group Manager

BARCO Communication Systems Denmark

BARCO Communication Systems AS

BARCO Communication Systems (BCS) has 3 divisions, each dealing with a specific

range of products on broadcasting video and audio:

 BCS Belgium: Broadcast monitoring, cable TV systems, management systems.

 BCS North America: Digital transmission systems.

 BCS Denmark: Digital compression and transmission systems.

BCS Denmark

BCS Denmark has a long tradition for handling audio and video signals. In 1980, the

company RE Technology based its business objective on audio test and measurement

equipment, which in 1989 changed into telecommunication PCM transmission

equipment (34 Mbit/s, 140 Mbit/s). In 1992, the know-how in audio signals and in

telecommunication combined into audio and video broadcast communication before,

in 1997, the company became a profound member of the BARCO Communication

Systems.

The main products in BCS Denmark are codecs: digital video and audio compression

equipment for high-quality transmission via common telecommunication networks.

Years of SPI Experience

Page 3.18 of 3.44

The high-quality transmission usually relates to primary contribution of video and

audio

 between the scene of recording and the studio,

 between studios, and

 between the studio and the transmitter.

Transmitter

Telecommunication

network

TV Studio

Recording scene

Private

fiber

Private

fiber

Fig. BjM.1 : BCS product application

Product techniques

A modern video codec features high-speed conversion of video signals at 300 Mbit/s

into compressed video at telecommunication bandwidths of 45 Mbit/s, 34 Mbit/s, and

down to 8 Mbit/s (MPEG-2).

A corresponding audio codec features conversion of audio signals at 384 kbit/s into

compressed audio at telecommunication bandwidth of 64 kbit/s.

Because of the high requirements to conversion rates, the codec contains a lot of

dedicated electronics in the form of ASICs and FPGAs.

Embedded software applies system control and monitoring but only signal processing

at low bit rates (audio).

Years of SPI Experience

Page 3.19 of 3.44

PC software is used to replace the equipment display and keyboard featuring

equipment control and monitoring.

Control centre

Rosa

Headend

Telecommunication

network

RS232 / RS485

System control

Monitoring

Signal processing

Embedded

software

Management

Monitoring

Communication

PC software

Communication

Fig. BjM.2 : BCS product software techniques

The initial problem

During 1994, the BCS released a major codec product, the RE 3400 ETSI video

codec. The development of the codec had involved a project team greater than ever

experienced during the past history of the company. In order to cope with a project of

this size, a product life cycle model had been set up before the start of the project.

Planning

'DR0' DR1 DR2 DR3A

ImplementationDefinition

DR3B DR4

Design

spec.

Project

description
Prototype implementation

Product

maturing

Project

definition

Handover to

production

Release

P
ro

to
ty

p
e

P
M

P

TIV

RS (system)

DS (system)

R
e

le
a

s
e
 f

o
r

p
ro

d
u

c
ti

o
n

Corrections

Manufac.

Manufac.

Production data transfer / training

0series

Module Spec

TIV

Requirement

SpecificationRS:

Design

SpecificationDS:

Product Life Cycle Model
98-09-18 BjM

Manufac. 0series

Manufac.

Test (modules)

Integration

Verification
TIV:

Design implement.

Fig. BjM.3 : BCS product life cycle model

Years of SPI Experience

Page 3.20 of 3.44

The software crisis

Though the product development complied with the life cycle in all phases, the first

releases experienced a number of drawbacks like:

 Releases were delayed because of incomplete software.

 Every release had a number of software errors (known as well as unknown).

 A new release had not always corrected old software errors.

The customer reactions were even worse:

 “The codec is not even starting when I apply power!”

 “Really, did you not see these fatal errors during your test?”

 “Is there NO work-around to this problem?”

The ISO 9001 issue

During 1994, the BCS thought it would like to be ISO 9001 certified. At the

preliminary auditions by the certification institute, the software issue was brought up.

The QA procedures were based on the product life cycle model and as the product

was mostly hardware based, the software was only dealt with in 5 lines of text!

SPI initiated

The BCS management got very concerned at the alarming reports on the delayed

codec releases and on the software problems obviously causing the delays and the

bad quality. Furthermore, the road to the ISO 9001 certification was blocked by

insufficient software procedures.

Another hint was given. The BCS had always promoted the use of the latest

development techniques, “the-state-of-the-art”. When somebody told the

management that on a maturity scale from 1 to 5, BCS was on level 1 (not telling,

however, that so was the situation for 90% of other companies too), an unsatisfied

roar rolled through the company:

Do something about that software!

The SPI task force

Out of the roar came the establishment of a software group consisting of a newly

employed group manager and the four present software engineers. The initial task

was to evaluate answers to the outstanding questions:

 Releases were delayed because of incomplete software.

Answers:

 The software is specified too late in the product life cycle.

 The software engineers are outnumbered compared to the hardware

engineers (1:10).

 The project manager is a hardware engineer.

 Every release had a number of software errors (known as well as unknown).

 A new release had not always corrected old software errors.

Years of SPI Experience

Page 3.21 of 3.44

Answers:

 The software is not properly specified.

 The software is not separately tested.

 “The codec is not even starting when I apply power!”

 “Really, did you not see these fatal errors during your test?”

 “Is there NO work-around to this problem?”

Answers:

 The software is not properly integrated with the hardware.

 The codec product is not properly tested after the implementation of the

software.

 The ISO 9001 procedures.

Answers:

 The software must be part of the (hardware) product life cycle model.

These answers were presented to the management who instructed the task force to set

up an action plan of how to solve the problems. With the spirit of that time, the

objective of the task force was expanded with:

Better software in a shorter time at a lower price!

Where to start

In my 20 years of software development, I have been looking for some way to get

hold of this unpredictable, shapeless, intangible workmanship which somebody even

has dared to call art. Though everybody knew of the problems, no firm philosophy,

method, or tool had emerged though a few attempts had been performed, ref. [1].

This is very strange taking into consideration that hardware development is

performed under well known methods as described in the product life cycle.

Years of SPI Experience

Page 3.22 of 3.44

And then it starts as “best practice” out of the experience from many software

developments’ “seek and try”. The inspiration came from the Capability Maturity

Model CMM presented in Denmark during the spring of 1995, ref. [2].

Level Management Organizational Engineering

1: Initial

2: Re-

peatable

Project planning

Requirement

Management

Quality Assurance

Configuration

Management

Project Tracking

Subcontract

Management

3:

Defined

Intergroup

Coordination

Integrated Software

Management

Process Focus

Process Definition

Training Program

Software Product

Engineering

Peer Reviews

4: Mana-

ged

Quantitative Process

Management

 Software Quality

Management

5: Opti-

mizing

 Process Change

Management

Technology Change

Management

Defect Prevention

Fig. BjM.4 : The CMM key process areas

Buzzwords arise all the time, and in 1995 everybody said “OOM”, “CASE tool”, and

“Reuse”. The CMM indicated with which key process areas to start. It is e.g. pointed

out that no method or tool can solve the lack of requirement specifications, and that

in order to gain benefit from reuse, configuration management must be introduced.

Later on, we did not strictly follow the order of areas in the CMM, but we went more

for every topic, which is also the basic idea in the Bootstrap model.

Initial SPI

Being a development company, the BCS is very project oriented. In order to be

understood by the management, the task force (software group) handled its task as a

project. The software process action plan 1995/96 set the outlines of the project with

the following headlines:

 Objective: Ensuring a fast, effective and controlled software development with a

stabilized high level of quality.

 Project items: CMM key process areas of level 2.

 Time schedule, resource plan and a budget.

 Resources: Every software engineer (on part-time).

Years of SPI Experience

Page 3.23 of 3.44

In order to make the ISO 9001 certification possible, the software was introduced

into the QA procedures by software guidelines, which give recommendations to the

essential documentation of:

 Software requirement specification.

 Software design specification.

 Software test and verification.

 Software configuration control.

For the project RE 3400, which initiated this SPI, we recommended two actions for

every new release:

 Software requirement specifications on new functionality.

 Software test and test reports on the product functionality.

Short time results

It is important for every project to have some immediate results showing that the

project is doing progress.

The first obvious result was the ISO 9001 certification in mid 1995 in which software

was an integrated part.

Another result was recordings of an improved error rate measured on the codec RE

3400 releases.

 Software errors

Ver-

sion
found in -test known in

release

found after

release

removed

 24

1.5 24 17

1.6 42 37 9 4

1.61 20 37

1.62 10 36 25 10

2.0 34 21 5 40

3.0 39 13 2 13

3.1 13 15 6 0

3.11 1 15 0 6

4.0 28 9 1 6

3.12 3 10 1 0

 190 90 80

Fig. BjM.5 : The RE 3400 error rates on releases

SPI continued

On obtaining the first results, we followed the same road when continuing the SPI:

 SPI action plan 1996/97.

 SPI action plan 1997/98.

Years of SPI Experience

Page 3.24 of 3.44

We were then leaving the strict division into CMM key process areas and focused on

the two key subjects of:

1. Software development methods and tools.

2. Software project management.

Development methods and tools

Despite good experience in writing software requirement and design specifications,

we were still having difficulties in revealing all the relevant requirements from the

hardware to the software. Though everybody still said “OOM”, we were advised in

real time applications to go for the Structured Analysis and Design. This was

introduced in late 1995 together with the tool Select Yourdon, ref. [3] and [4].

Fig. BjM.6 : Example on SA/SD-RT

The original object of the SA/SD-RT was for the hardware engineers and the

software engineers to have a common base to discuss the full implementation. But it

turned out to be a method for the software engineers to find all relevant questions in

connection with the requirements.

Introducing the SA/SD-RT as early as in 1995 has enabled us to revise the method

and the tool to our specific use. An example is that because we are not using entities

(database data flows), we have removed this item from our recommended templates.

Shift X bits
into register

2

unaligned slot

Align bits
to startbit
of frame

1

slot

Send out
signal slot

4

telecom signal

Slot extracted

Signal slots
Frame detected

unaligned bits

unaligned bits

Alignment found

bits

bits

Years of SPI Experience

Page 3.25 of 3.44

In the software implementation phase we had to set a number of rules:

 Only one compiler (Borland C)

 Only one linker/locater (Paradigm)

 Only one emulator (CheckMate)

These strange rules originate from the fact that previous software projects were

isolated from each other. Having one software engineer on each of these projects,

they had “succeeded” into choosing a different compiler to each project.

We could now see that the oncoming projects required a number of software

engineers, which trigged off some more guidelines:

 Programming guidelines

 Version control (Intersolv PVCS)

/***

* Project : Demoproject for PVCS

* Used in : PVCS demonstration

* Description : The module only contains a

* demo description.

* :

$Workfile: demo.c $

$Log: F:/sw_faggr/Projdemo/Source/vcs/demo.c_v $

*

* Rev 1.0 18 Feb 1997 13:34_08 BjM

* Description of the change in this revision

*

***/

Fig. BjM.7 : Example of programming guidelines (program header)

Years of SPI Experience

Page 3.26 of 3.44

The software test and verification is a subject too often put aside. In our case, we had

already some very bad experiences of not properly testing the software together with

the hardware. Choosing the V-model was very natural taking into consideration that

the hardware already followed this model, ref. [5].

System Requirements

System design

Module Specifications

Requirement Verification

System Integration Test

Module Test

Module test
Time

Module test

Module test

Module test

System Integration Test

Requirement Verif. Test

Fig. BjM.8 : The test and verification V-model

But finding the proper method and tool to each of the V-model stages turned out to

be a difficult task. Software engineers were used to test the software in the “monkey”

way - testing what they thought should be tested which is not much more than usual

debug testing.

Years of SPI Experience

Page 3.27 of 3.44

After some research, we recommended the test following methods and tools:

 Code review (checklist)

 Static analysis (Borland C compiler warnings)

 Dynamic analysis (IPL Cantata)

 Test cases (template)

Requirement

specification

Requirement

test

Design

specifikation

- system

Design

specifikation

- modules

Coding

Modules

test

Integration

test

Code review

Static Analysis

Debug

Test cases

Code review

Dynamic Analysis

Static Analysis

Test cases

Fig. BjM.9 : Software test tools

One hurdle to overcome was the strong belief of every software engineer that a test

tool can do the methodical work too! “Is the tool not able to generate the test case for

me?” No, there is still a lot of test work to do for the software engineer.

Project management

Software project management has the same contents as hardware project

management. In the beginning, the project managers (being hardware based) did not

believe this. But when we produced a project management guideline for using

software in hardware, they started to be convinced, ref. [6].

Years of SPI Experience

Page 3.28 of 3.44

The management guideline contains the following subjects of:

 Project creation.

 Planning.

 Reviews.

 Follow up.

 Metrics.

When we were filling in descriptions of how to perform these subjects, it became

more or less a repetition of what we already had described for the “product” project

management (the ISO 9001 QA procedures).

As to the software project creation we confirmed the following items:

 ISO 9001 QA procedures: how to develop while ensuring proper quality

 Product life cycle model: the phases of the project

 Risk analysis: pinpointing the major risks in the project

No. Poss.

0,2..0,8

Effect

1..10

Weight

P*E

Preventive

actions

Prepared

actions

Signals

1,0 The product

1,1 Is the product technically wrong?

- Are the technical requirements difficult? Is the product

the-state-of-the-art?

0,4 10 4 Check with

Barco

1,2 Is the product wrong for the market?

- Is the market moving? Do we know the market?

0,8 5 4 Check with

marketing

communications

 Customers

decline use of

management

network

1,3 Is the quality too bad?

- Do we usually see many errors after release?

0,2 8 1,6

2,0 The frames of the project

2,1 Are the goals and subgoals unclear?

- Are the goals too ambitious?

0,2 10 2

2,2 Is the project description still unsettled by DR1?

- Is the requirement specification well prepared?

 Is the project plan by DR1 realistic?

0,5 5 2,5

2,3 Inadequate resources?

- Do you expect additional resources during the project?

 Do you expect overtime work?

0,8 5 4 Commitment

from Product

Council.

Agreement with

Barco

Asking Barco

for resources.

External

resources

Increasing

delays on

START of

items

Fig. BjM.10 : Example of risk analysis

Years of SPI Experience

Page 3.29 of 3.44

As to the software project planning we confirmed the following items:

 Estimation: Still based on the experience of the individual engineer.

 Project plan: MS Project tool.

 QA checklist: The 81 QA procedure checkpoints required during the project.

Fig. BjM.11 : QA checklist

As to the software project reviews we confirmed the following items:

 Requirement specification: Check list on major items.

 Code review: Check list of reasonable items.

* Structured code?

* Requirements mapped into the code?

* Is the SD-RT diagram implemented?

* Is the interface to the module OK?

* Is the code easy to maintain?

Fig. BjM.12 : Code review checklist

Years of SPI Experience

Page 3.30 of 3.44

As to the software project follow up we confirmed the following items:

 Project meetings: Minutes of meeting with action list.

 Monthly report: Project progress and problems.

 Release plan: Monthly revision of the product release dates.

 QA deviation report: All deviations from the QA procedures are reported.

Fig. BjM.13 : Example on QA deviation reports

As the software project metrics we confirmed the following items:

 Time statistics: Development time used on each module.

 Evaluation: Project history, major differences to the original project plan.

 Quality reports: Monthly reports on released products.

 Product problem reports: Customer reported problems.

 Release plan tracking: How close did we get to the planned milestones?

Milestone Hit rate

(on time or better)

Hit rate

(delay 20%)

Prototype milestone 45 % 60%

Product matured milestone 35 % 55 %

Release milestone 30 % 45 %

Milestone differences

From prototype to product matured 65 % 70 %

From product matured to release 75 % 80 %

Fig. BjM.14 : Release plan tracking

In BCS, the software metrics has been an overlooked subject, so even if we did

introduce these items to the projects, we could not retrieve information from the

“experience” database. And because we did not get any immediate results out of the

metrics, the trend was that we did not even do any metrics on the new projects.

In summary we did not introduce any new software project management items, but

we merely confirmed the existing hardware related items. In a few cases, e.g. risk

analysis, we expanded the items of the subject.

Years of SPI Experience

Page 3.31 of 3.44

SPI assessment

One of the things that started the SPI in BCS was the allegation of our maturity level

being level 1! Naturally, a metric of the SPI project is the measure of maturity level.

As to the action plans, we set the goal of reaching a specific level:

 Action plan 1995/96: Level 2

 Action plan 1996/97: Level 2.5

 Action plan 1997/98: Level 3

But how do we measure our maturity level? In the CMM, you can only be on one

level of 1, 2, 3, 4, or 5, and only if you are complying with all key process areas of

that level. Doing any improvements of a higher level does not count on a lower level.

This is handled in the Bootstrap model, which compiles all process improvements

into a single number with divisions of a quarter. In this way, even minor

improvements can be measured, and you benefit from measuring even small

improvements, which is good for the motivation, ref. [7].

The Bootstrap assessment can be performed by either self-assessment or by certified

assessment.

The self-assessment involves a questionnaire which one or more people from the

organisation may answer.

The certified assessment involves 3 days’ interview of management and of a number

of project groups made by external auditors.

At the end of 1996, BCS decided to do both a self-assessment and a certified

assessment. The self-assessment was based on three different questionnaires and it

gave the following results:

Bootstrap assessment method Level

BOOTCHECK (46 questions) 2.5 - 3.5

ESSI committee (43 questions) 2.5 - 3.0

SYNQUEST (370 questions) 2.0 - 2.5

Certified (“3 days of questions”) 2.3 - 2.5

Fig. BjM.15 : Assessment results

The questionnaire containing most questions (SYNQUEST) gets the nearest to the

certified assessment (luckily enough!), ref. [8]. But anyhow, any self-assessment

gives a clue of the present maturity level:

Better do some self-assessment than none at all!

Years of SPI Experience

Page 3.32 of 3.44

SPI summary

You get most benefit from SPI if you apply the improvements

on concurrent projects.

We applied the SA/SD-RT and implementation methods on 3 major projects with

good results. But the introduction of the test and verification V-model was delayed

compared with the progress of the 3 projects, resulting in a very bad software quality

on one of the major projects.

Also, software project management was not introduced early enough on the 3

projects. The software time planning (time estimates), software project plan, and the

risk analysis (all due in the early phase of the project) were hardly used in the

product project.

And now we have to wait for the next major project before we can benefit from these

methods!

An advantage of introducing SPI as part of the QA procedures was that we were not

delayed by any “pilot project evaluation”. Though we did some trial investigations

before introducing a major new method or tool, we gained a lot of knowledge and

motivation from everyone being educated to the same level at the same time.

Software guidelines

Requirement

specification

1995

1998

1997

1996

Level 1

Level 2.25

Level 1.5

Level 2.0

Level 2.75

Level 2.5

SPI actionsProject phase of

3 major projects

Assessment

Design

specification

Prototype

implementation

Product maturing

Release

SA/SD-RT

ISO 9001 certification

Project management

(SPIN)

Test and Verification

ISO 9001 auditSA/SD-RT Revision

Project management

continued

Action plan 1995/96

Action plan 1996/97

Action plan 1997/98

Action plan 1999

ISO 9001 audit

Today

ISO 9001 audit

Test and Verification

continued

Bootstrap assess.

Level 42
Fig. BjM.16 : SPI Summary with respect to Concurrent Projects

Years of SPI Experience

Page 3.33 of 3.44

SPI lessons learned

Introducing SPI in a development-based company requires a strong health and lots of

good spirits - like in any other project matter!

But keeping some rule-of-thumb in mind can help you through the strongest of bad

luck.

Below I sum up some of the main good and bad experiences from the 3 years of SPI

introduction.

The SPI iceberg

Beware of the SPI iceberg. It is easy to “buy” a method or a tool but it is much harder

to get it working inside the company.

 Implementation must be thoroughly planned.

 Management must commit itself to the SPI.

 You yourself must urge a publicity drive to “sell” the SPI to the projects.

Buy

Sell

(internally)

Support

Education, maintenance

Fig. BjM.17 : The SPI iceberg

Years of SPI Experience

Page 3.34 of 3.44

The SPI “silver bullet” life cycle

Beware of the SPI “silver bullet” life cycle, ref. [9]. It is easy to set up unrealistic

expectations to the outcome of the SPI, but that only works until the SPI is being

used in real life. The hard work is to get SPI down to earth and get it working in

actual practice.

Initial

Invention
Actual

Use
Disillusion

Maximum

Hype

Practical

Benefit

RIP

Enthusiasm

Fig. BjM.18 : The SPI “silver bullet” life cycle

The SPI good experience

 Software is now an equal member of the good party

 We have grown from 5 to 20 software engineers and we still have a common

development basis

 Synergy (and reuse) between 3 major projects

 SPI on all projects motivate people

 Better software delivery time

 Presumably better software quality

 We know how good we are!

 And we know our shortcomings!

The SPI bad experience

 SPI mental process takes time (2 years per level)

 SPI motivation curve has still not turned into positive

 Project managers are not yet properly educated

 Software module test is not properly introduced

 Software metrics are absent - no experience database has been established

 SPI maintenance takes its toll

 It has not become cheaper to develop software

 At the moment we are not becoming better

Years of SPI Experience

Page 3.35 of 3.44

SPI in future

Still, many SPI subjects and items have to be fulfilled - and changed! This will be

when new projects require revised methods and tools!

For the next action plan, the main topics will be:

 Keep the same software group setup.

 Fill in the gaps found, Overcome pitfalls found.

 Turn the SPI motivation curve into positive.

 Define the proper end maturity level (3?).

 And maintain it.

 Synchronize with the hardware process.

BCS software began as a supplier to the hardware but this is not the case anymore.

We must look upon each other as equals in the cause of product development.

Years of SPI Experience

Page 3.36 of 3.44

Abbreviations

CASE: Computer Aided Software Engineering

CMM: Capability Maturity Model

OOM: Object Oriented Model

SA/SD-RT: Structured Analysis and Design in Real-Time

SPI: Software Process Improvement

References

[21] [1] S. Biering-Sørensen, F. Overgaard Hansen, S. Klim, P. Thalund

Madsen: Håndbog i Struktureret Programudvikling, Teknisk Forlag, 1988.

[22] [2] Capers Jones: The Path to Software Excellence: Becoming “Best in

Class”, SPR, Inc., March 10
th
, 1995.

[23] [3] P. Ward, S. Mellor: Structured Development for Real-Time Systems,

Prentice-Hall, 1984.

[24] [4] F. Overgaard Hansen, F. Hansen: SA/SD-RT Kompendie 940131,

DTI, Århus, 1994.

[25] [5] Boris Beizer: Software Testing Techniques, Van Nostrand Reinhold,

New York, 1990.

[26] [6] W.S.Humphrey: Managing the Software Process, Addison-Wesley,

Reading, MA, 1989.

[27] [7] P. Kuvaja, et al.: Software Process Assessment and Improvement –

The Bootstrap Approach, Blackwell Business, Oxford, 1994.

[28] [8] SynQuest, version 1.5: Selfassessment for Softworkers, SynSpace

GmbH, 1996.

[29] [9] F.P. Brooks: No Silver Bullet: Essence and Accidents of Software

Engineering, IEEE Computer, Vol. 20, No. 4, April 1987.

Years of SPI Experience

Page 3.37 of 3.44

Appendix: The author and the company

Bjarne Månsson
With more than 20 years of software background, Bjarne Månsson has experienced

the need of and the requirements to the SPI movement. He graduated in 1974 with a

M.Sc. degree from the Technical University of Denmark (DTU), which in 1979 was

extended with a M.Phil. Degree from the University of Leeds, UK. Starting in 1976

in the telecommunication world, developing test equipment for telephone exchanges,

he joined the first attempts to embed software in purely hardware-based products.

His knowledge in this field was widened in much greater scale during the 1980s

where he worked as project manager of data acquisition equipment including data

collection electronics and data processing mainframe software. After a short visit to

the CNC machine industry in the early 1990s, also developing data acquisition,

Bjarne Månsson returned to the telecommunication business, being responsible for

the introduction of SPI in embedded software in high quality broadcasting

electronics.

BARCO Communication Systems Denmark
The BARCO Group’s main business area is projection systems, which covers one

third of the group sales. The closely related display systems and graphics systems

cover another third of the group sales.

A BARCO group member is the BARCO Communication Systems, which is a world

leader in high quality solutions for the broadcast, cable TV and telecommunication

markets with

 Broadcast display systems

 Broadband communication systems

 Broadcast and telecommunication networking systems

The BARCO Communication Systems has three divisions (Belgium, North America

and Denmark) doing development, production, marketing and sales of

 Broadcast monitoring

 Digital compression systems

 Digital transmission systems

 Cable TV headend systems

 Operations support system (ROSA)

The BARCO Communication Systems is present world-wide with offices in

Germany, France, UK, the Netherlands, Israel, USA, Mexico, Brazil, Hong Kong,

China, Malaysia, Japan and Australia.

Page 3.38 of 3.44

An Experience of SEPG

Organization

Alessia Billi

Sodalia S.p.A., Trento- Italy

alessia@sodalia.it

Abstract

A key element of the Sodalia Software Process Improvement is the establishment of a

Software Engineering Process Group (SEPG), that consists of members of the

Sodalia Methodologies Area, completely devoted to activities related to processes

and methodologies definition, and of representatives of the software development

projects.

The group has been established with the objective of co-ordinating the improvement

activities of the company software processes.

The approach to fulfill that objective is based on three key steps: identification of

improvement actions, implementation of these actions by work groups, extension to

the whole organization.

The achieved results show the benefits of this approach: the company obtained the

certification ISO 9001 and has been assessed at level 3 of CMM in an outstanding

time frame of about four years.

Introduction

The institutionalization of a Software Engineering Process Group is a key element in

the improvement of the organization’s processes capability, and in the increase of the

overall company maturity.

The Capability Maturity Model at level 3 requests the existence of a similar group, in

order to develop, understand, maintain and improve processes related to the software

projects and to the organization.

The model indicates different suitable solutions for the organization of the SEPG,

involving full-time or part-time resources assignment.

Company Context

An Experience of SEPG Organization

Page 3.39 of 3.44

Sodalia is a medium size company (200 technical staff) located in Trento (north of

Italy), developing advanced software for the management of telecommunication

services and networks.

It was established in 1992, as a joint venture between TELECOM Italia and Bell

Atlantic Corporation, and started operations in 1993.

From its foundation, among the main company’s mission statement, the objective of

improving the quality level of products occupied a relevant position. In order to reach

this objective, Sodalia decided to steer its effort both to improve the maturity level,

according to the SEI Capability Maturity Model, and to obtain the ISO 9001

certification.

The company was assessed at Level 2 of the Capability Maturity Model in December

’95, in May ’96 received the ISO 9001 certification, and finally, in September ’97,

has been assessed at Level 3 of the SEI-CMM.

Improvement Steps

The model adopted by the company for the improvement of the processes is the

Capability Maturity Model of the Software Engineering Institute.

As an important objective of the Company has been, since its foundation, the

achievement of a satisfactory level of processes and products quality, a significant

effort was spent in the definition of common process already while the company was

moving its first steps in software development.

The first step of the company in this direction was the definition of the software

development process model, called SIMEP (Software Integrated Management and

Engineering Process), founded on the following basic principles: iterative

incremental/evolutionary approach, software reuse, object-oriented approach, full

integration of project management and software engineering activities.

After its first modeling, the process has been consolidated and the related

documentation has been enriched; the improvement steps followed each another in

ambit of selected improvement areas based on the Key Process Areas of the CMM.

For each improvement area, a set of guidelines and a templates have been defined, in

order to make homogeneous the way of performing the various activities among

different projects during the software life-cycle.

The topic of requirement management has been faced in several subsequent

improvement steps in order to obtain a homogeneous classification and description of

the product requirements.

Starting from the original textual way of requirements description, the improvement

steps have been addressed to structure the requirements, by identifying each single

requirement with the needed granularity, to classify the requirements in more

categories and sub-categories and to define a status vector for each requirement in

order to manage its status and its attributes.

The result is the currently used layout and the defined process for requirements

definition, that guarantee that the requirements are managed and controlled and that

the traceability is kept.

Also as regarding the project management, two improvement degrees have been

obtained in two different, subsequent steps: at first the effort has been spent into the

definition of common process and instruments for planning and controlling the

projects; a subsequent improvement followed, aimed to support the project managers

An Experience of SEPG Organizaation

Page 3.40 of 3.44

in sharing the planning and monitoring company experience and in managing the

project risks. In this phase, a specific improvement step has been devoted to the

identification of all possible risk factors for the company projects, to be kept into

account by the project managers during the risk planning.

Configuration management activities have been defined and supported for making

the software products and intermediate artifacts managed and controlled.

The verification and validation of the products has been guaranteed by making

reviews of process artifacts and software test performed by adopting standard process

and method, and by defining the classification and weight of the defects.

Guidelines for process tailoring have been produced for supporting the process

scalability: the process is currently adaptable to various project and product types,

sizes and risk classes.

Data measurement and metrics constituted an important topic to be investigated; a set

of guidelines has been defined and then made more usable by the creation of a

software process database for an homogeneous collection of data and measures; the

company projects data have made available to be used for estimation activities.

These important improvement activities strongly connected to the Key Process Areas

of the CMM have been completed by a set of other improvement steps, related for

example to the selection of particular tools or methods to support and perform the

development activities.

After the assessment to the Level 3 of the CMM, most effort has been spent in the

improvement of the standard set of company tools, and in introducing smooth

changes to the company processes towards the Level 4 of CMM.

Organizational Problems Faced

The principal organizational structure that supported all the described activities has

been, from beginning of the improvement activities, the Methodologies Area,

composed of technicians fully devoted to the study of all the topics connected to the

software engineering.

This group analyses the problems related to all the improvement items, investigates

the best results available in literature and tries to adapt them to the company context,

keeping into account the problems to be faced day by day by the people involved in

the projects activities, due to the organization, the products domain and the type of

the clients.

The existence of this Area played a fundamental role in the achievement of the main

company–level results, as assessment of levels 2 and 3 of CMM and the ISO

certification.

Nevertheless, the overall organizational approach to the software process

improvement has been tuned and changed during the first 5 years of the company

life.

The Methodologies Area staff in fact, having the objective of investigating in deep

the various topics, gained a good level of knowledge about the theoretic aspects of

the faced arguments; however the problems connected to the practical application of

the methodologies and processes in a particular context and products domain are

sometimes not immediately visible, and the contribution of the experience coming

from the members of software development projects is invaluable.

Furthermore Sodalia experience showed that members of the projects, if not involved

An Experience of SEPG Organization

Page 3.41 of 3.44

in various decisions at company level, could suffer the technical decisions like

impositions; as a consequence the methodologies risk to be "placed on the shelf".

But, at the same time, project staff feel the involvement in methodologies and

processes definition as a lower level priority activity; in addition, the Methodologies

Area has the commitment to guide the company improvement according to CMM as

a reference model.

For these reasons an organizational approach calibrating the contribution of

theoretical elements and practical experience has been considered necessary for

guarantee the success of the company improvement steps.

The Organization of the Software Engineering Process

Group

To fulfill this need the Software Engineering Process Group (SEPG in the following)

has been established in July 1996, that guided the company improvement in the

transition from level 2 to level 3 of CMM.

Fig. ABI.1 : SEPG and Work Groups Composition

The Group is composed as permanent members by the Methodologies Area

Work

Group 2

Work

Group 1

Methodologies

Area

Project A

Project B

A oject A

roject B

SEPG

An Experience of SEPG Organizaation

Page 3.42 of 3.44

representatives and by the project managers of all the company projects. In addition,

according to the particular needs, other company staffs are involved in SEPG

activities for short periods (see fig. ABI.1).

The selected approach is based on the selection of improvement areas, with clear

objectives, and on the implementation of related actions by the establishment of work

groups (see fig. ABI.2).

This implementation is followed by the extension of the achieved results in the

overall organization.

This approach includes points of centralization of both information and decisions,

and points of delegation of the activities to specialized groups, optimizing in such a

way the effort expended by all the participants according to their roles and

capabilities.

Fig. ABI.2 : SEPG and Work Group activities

The improvement areas are identified by the SEPG, on the basis of proposals

suggested by either Methodologies Area staff or projects members; generally the

proposals arise from assessments, from analysis of industry trends and emerging

technologies or from project needs.

The work groups having the objective of implementing these areas are composed

trying to involve people capable of give the maximum contribution: Methodologies

Area staff with a strong theoretic knowledge and practitioners with technical

responsibilities for certain domains within a development project and with a

significant experience.

Methodologies Area staff are in charge for organizing and coordinating the work of

these groups, and collecting, synthesizing and reporting the results.

As already noted, the involvement of the Methodologies Area is full-time, whereas

SEPG

Select

Improvement
Areas

Implement

Improve

ment

Actions

Work
Group

Transition

to

Organization

Evaluate

Outcome

An Experience of SEPG Organization

Page 3.43 of 3.44

projects provide in turn temporary resources, so that the effort spent affects only in

minimal part projects schedules.

The responsibilities of the work group consist of the following:

 focus on an aspect of the software process;

 proposal of improvement actions, defining the objectives and the expected

benefits;

 implementation of the improvement actions, as assigned by the SEPG;

 support to projects.

The work groups’ intermediate results are frequently presented to the overall SEPG,

in order to maintain informed all projects representatives and involve them in the

most important decisional issues, minimizing the involvement time.

At the moment of the improvement area implementation conclusion, the sharing of

the information in the whole company and, most important, the agreement, are so

assured, and the transition phase is immediate.

The sharing of the information on the SEPG activities is also facilitated by the

support of the available tools as the Software Process Database and the use of the

internal web as a communication mean.

An example of work group

Based on a proposal of the Methodologies Area, a specific session of SEPG meeting

discussed the opportunity to improve the Sodalia development infrastructure,

adopting a UML-compliant process supported by a single CASE tool.

The first emerged necessity was the evaluation of the Return of Investments: a first

work group has been formed with the objective limited to this duty.

Four Methodologies Area members, two project architects (from different projects)

and one project manager formed this work group.

The work group presented the results to the SEPG two months later.

After the evaluation of the results the SEPG committed two other work groups: one

with the objective of analyzing and proposing the changes of the software process

and documentation standard (suggesting a practical way to achieve common semantic

and UML notation for specification and design phase), a second work group with

objective of performing the screening of the candidate case tools, defining the way

for performing its experimentation and reporting the results.

The first work group started working at the end of June 1998; three Methodologies

Area members and the architects of all Sodalia projects composed it.

The group met about every ten days, and a Methodology Area member was

responsible of reporting the collected and discussed information and formalizing it in

a document, whose key elements were presented to the SEPG about every two

months.

The activities of second group started at the end of July 1998.

Two Methodologies Area members, one architect, one project manager and three

developers, working in different projects, formed the group.

The Methodologies Area members, being members also of the first work group,

guarantee the compliance of the results of the two groups.

The agreement achieved and the presented results showed the success of the selected

An Experience of SEPG Organizaation

Page 3.44 of 3.44

organization approach.

Benefits of this approach

The institutionalization of this organizational approach, involving in different ways

different company roles, compared with the organization adopted during the previous

phases of improvement, shows evident benefits that could be summarized as follows:

 project managers and development staff are in turn fully involved in the selection

and definition of processes, methodologies and tools, assuring the contribution of

the practical point of view in this kind of activities;

 the systematic approach to the changes to be introduced in the company

facilitates the activities and allows to reuse the matured experience;

 the natural resistance to the changes by the projects members, used to perform

the activities in a traditional way, is minimized, due to the extended involvement

in the decisional process;

 the information connected to each improvement phase is diffused in a short time;

 a communication point is established also for the sharing of best practices

matured within a single project, with evident benefit for the overall company.

Conclusions

To support the analysis and the solution of problems related to the management of

the software development processes and methodologies improvements, the help

coming from people directly involved in the project environment is invaluable, but a

centralized organization can play a very important role for assuring the sharing of

experience. For this reason a mechanism for diffusing decisions and lessons learned

is very important.

As a result, this approach assures the best exchange of knowledge, maintaining the

correct balance between the theory and its pragmatic application.

References

[30] [1] Paulk M.C., Weber C.V., Garcia S.M., Chrissis M., Bush M., Key

Practices of the Capability Maturity Model, Version 1.1, Tech. Rep.

CMU/SEI-93-TR-25, Software Engineering Institute, Carnegie Mellon

University.

Page 4.1 of 4.50

Session 4 – Metrics

driven SPI Part II

Introduction of Metrics in Civil Engineering Software
Development

ESSI PIE No. 27272 - ICENSOM

Dr. A. Tsipianitis

TEGEA SA, Athens, Greece

SIMMER: Software and Systems Integration Modelling
Metrics and Risks (Getting to Level 4)

Brian Chatters

ICL, Manchester, UK

Peter Henderson

University of Southampton, Southampton, UK

Chris Rostron

ICL, Manchester, UK

Implementation of metrics in development of
highly-safety critical SW

Kenneth Kvinnesland

Navia Aviation , Oslo Norway

Page 4.2 of 4.50

Introduction of Metrics

in Civil Engineering

Software Development

ESSI PIE No. 27272 - ICENSOM

Dr. A. Tsipianitis

TEGEA SA, Athens, Greece

1. Introduction

In the recent years measurements play a critical role in achieving effective software

development. Software measurement techniques are increasingly being used by

organisations aiming to improve the quality of the software they develop and the

efficiency with which it is produced. This trend can be justified as a systematic

approach to overcome the effects of software crisis: poor quality systems delivered

late and over-budget. According to various studies, measurements should be

introduced in a top-down approach focused on specific goals, which are consistent

with the business of the organisation and the software development process in use.

Furthermore, the measurement results should be interpreted based on the

organisational context and business objectives, and should be used for managing and

improving the software development process.

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.3 of 4.50

The ICENSOM Process Improvement Experiment (PIE) under the CEU programme

ESSI (European Systems and Software Initiative) introduced at TEGEA SA (a civil

engineering software developer) a rigorous discipline for software quality

measurements driven by business objectives. The rationale behind this PIE is based

on the fact that software packages developed by TEGEA need to be frequently

updated after changes in Greek and European regulations on construction and

environmental engineering. This frequent updating is a major concern because it has

to be carried out in a controlled manner, for the achievement of small lead-times,

without compromising the quality and reliability of the developed product.

The technology that was introduced to alleviate the above problem is the

Goal-Question-Metric (GQM) method. GQM was applied in the context of a typical

project developing software for static analysis and dimensioning of buildings. Such

measurements will enable the identification of appropriate areas for improvement in

software development practices and will support the implementation and subsequent

monitoring of the improvements.

TEGEA benefits from introducing GQM in determining potential process

improvements and in supporting related improvement actions. Furthermore, TEGEA

expects a higher product quality and reliability, shorter time-to-market and less

software development costs. The potential benefits within the wider European

community are also significant because the PIE deals with a common concern and

promotes a proven method.

This paper presents the motivation for the ICENSOM PIE, a brief overview of the

GQM method, the objectives and the organisation of the experiment, an account of

the activities, up to date experiences and lessons learned from ICENSOM PIE and a

set of conclusions and plans for improvement activities.

2. Starting Scenario

Development projects at TEGEA’s Engineering department involve a number of

typical attributes. Such attributes include an effort of 30-60 person-months and a

duration of 9-12 months. After the completion of each project, a follow-up period of

up to six months is commonly used for collecting feedback from the use of the

software product at customer’s premises. Typical project teams involve 4 or 5

persons. The project team members are involved in one or more functions such as

software design, coding, testing or administration.

TEGEA’s software engineering practices are based on the waterfall model.

Additionally, practices based on prototyping methods are used for critical software

system parts. Efforts are currently invested in formalising and documenting the

current practices for software development.

Newly-appointed individuals undergo on-the-job training and are supported by more

experienced personnel. Each software project has a nominated Project Manager, that

due to the size of the company might occasionally coincide with the General

Business Manager. There is no independent Software Quality Assurance (SQA)

function at TEGEA, due to its small size. However, some SQA activities are carried

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.4 of 4.50

out by the project manager and other project technical staff. As far as it concerns

software development methods, technologies or tools, no systematic training is

currently in place.

The General Business Manager evaluates the feasibility, expected benefits and risks

from each software project, before undergoing any contractual commitments. This

activity is not performed in a formal and documented way. Project management

conducts periodic reviews of the status of each software project at major milestones,

but not in a formal way. Project managers carry out estimation and scheduling

activities, using their experiences and knowledge of the abilities and availability of

the project resources they administer.

No formalised procedure exists to control changes in software requirements, design

specifications, accompanying documentation and code. The functionality and quality

of the software system under development are reviewed by area specialists. To this

respect, all major software products and documents are technically reviewed by

project staff. The testing and verification of all implemented functions in the

software systems is ensured by test specification documents, which are based on

requirements. Additional tests are carried out when major faults are detected during

system test activity. Acceptance tests are also performed by end users in certain

cases.

Coding standards are usually applied to the software projects. The majority of

products are developed using the TURBO PASCAL and C++ programming

languages in Windows environment. Software design is documented through

flowcharts and appropriate textual descriptions. Project staff makes use of several

documentation tools. Software tools such as the MS Project are used for project

planning.

Until the ICENSOM PIE there was no rigorous discipline for software measurements.

No documented and widely used measures are utilised for the estimation of software

product size, and thus productivity. Managers estimate project resources by using

empirical methods, based on accumulated experience. Actual project data and

estimates on assignment of resources are recorded but not analysed. There is no

complete and stable baseline for providing reliable statistics on software code errors

or test efficiency. It should be noted that, problem reports by end users are recorded.

The strengths of the current practices at TEGEA include the utilisation of technical

and management reviews for software development projects. Personnel has high

technical competence on civil engineering software issues. People are willing and

capable to work in teams for development and are committed to quality and

improvement issues.

The weaknesses of TEGEA’s software practises concern the lack of a formal

framework for software measurements, whereas specific functions (such as SQA,

methods & tools support, change control) are not implemented. Furthermore,

software project planning and estimation is carried out empirically. Therefore a

number of corrective actions are necessary including: introduction of formal software

quality measurements, enhancement of the definition and documentation of software

development practices, implementation and enhancement of supporting functions

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.5 of 4.50

(such as quality assurance, technical reviews, product testing and change control) and

improvement of project management practices.

3. Overview of the GQM Approach

There are a variety of approaches for establishing measurement programs that have

appeared in the literature. Among the various methods for software measurements [1,

2, 3], the Goal-Question-Metric (GQM) approach [3] is one of the most effective and

well-established ones. The GQM method was developed by Professor V. Basili and

his research group at the University of Maryland, in close co-operation with NASA

Software Engineering Laboratory. Since then, the method has also been applied by

several software development organisations, including Ericsson, Daimler-Benz,

Bosch, Schlumberger and Nokia, among others. The method is based on a simple

process by which software developers and managers first define the goals that the

software process and its related products must achieve (on organisation and project

levels), then refine the goals into a set of questions and finally identify the metrics

that must be provided to be able to answer the questions. Thus, GQM provides a

top-down approach to the definition of metrics, whereas the interpretation of the

measured data is done in a bottom-up way. This helps software developers and

managers to share a common view of the target of the measurement, knowing both

what to measure and for which purpose the measured data will be used.

The result of the application of GQM is the specification and implementation of a

measurement plan for a particular set of goals and a set of rules for the interpretation

of the measurement data within the context of these goals. The GQM model has three

levels:

1. Conceptual level (GOAL): A goal is defined for an object (product, process,

project or resource), for a variety of reasons, with respect to various models of

quality, from various points of view, relative to a particular environment.

2. Operational level (QUESTION): A set of questions is used to characterise the

way the assessment / achievement of a specific goal will be performed based on some

characterising model. Questions try to characterise the object of measurement

(product, process, etc.) with respect to a selected quality issue and to determine either

this quality issue from a selected viewpoint or the factors that may affect this quality

issue.

3. Quantitative level (METRIC): A set of data is associated with every question in

order to answer it in a quantitative way. The data can be objective (e.g. person hours

spent on a task) or subjective (level of user satisfaction).

A GQM model has an hierarchical structure starting with a goal, that specifies the

purpose of measurement, the object to be measured and viewpoint from which the

measure is taken. The goal is refined in several questions, that usually break down

the issue into its major components. Each question is then refined into metrics. The

same metric can be used in order to answer different questions under the same goal.

Several GQM goals can also have questions and metrics in common, provided that

when the measure is actually collected, the different viewpoints are taken into

account correctly (i.e. the metric might have different values if taken from different

viewpoints).

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.6 of 4.50

With the GQM method, the number of metrics that need to be collected is focused on

those that correspond to the most important goals. Thus, data collection and analysis

costs are limited to the metrics which give the best return. On the other hand, the

emphasis on goals and business objectives establishes a clear link to strategic

business decisions and helps in the acceptance of measurements by managers, team

leaders and engineers.

The GQM approach can be used as stand alone for defining a measurement program

or, better, within the context of a more general approach to software process

improvement. A good approach for software process improvement, that is compatible

with the GQM approach, is the Software Engineering Institute’s Capability Maturity

Model (CMM) [4] combined with Deming’s widely used Plan-Do-Check-Act cycle

for improvements implementation. Another approach is the Quality Improvement

Paradigm (QIP) an iterative, goal-driven framework for continuous improvement of

the software development [5]. This method is actually an offspring from the

development of the GQM one. Because information necessary for applying the GQM

method is derived and/or used in every step of QIP, GQM has also been described as

the measurement view of the QIP.

The GQM approach to measurement of processes and products has been used

successfully in selected industrial environments within the CEMP (‘Customised

Establishment of Measurement Programs’) project. This project was funded by CEU

within the ESSI framework and aimed at evaluating the GQM approach and

supporting its transfer into industrial software engineering practices [6].

The average cost resulting from the measurement activities on a project using the

GQM approach is around 5% of the total cost for the software development. This

additional cost is much less when compared to the cost of bottom-up metrics

approaches, which are based on collection and analysis of large amounts of data.

References

[1] K. H. Moeuller and D. J. Paulish, “Software Metrics: A Practitioner’s Guide to

Improved Product Development, Chapman & Hall, 1992.

[2] R. B. Grady, D. L. Caswell, “Software Metrics: Establishing a Company-wide

Program”, Prentice Hall , 1987, ISBN 0-13-821844-7.

[3] V. R. Basili, G. Caldiera, H. D. Rombach, ‘The Goal Question Metric

Approach’, Encyclopedia of Software Engineering, volume 1, John Wiley & Sons,

1994, pp. 528-532

[4] M. C. Paulk, C. V. Weber, B. Curtis, M. B. Chrissis, “The Capability Maturity

Model: Guidelines for Improving the Software Process”, Addison-Wesley Publishing

Company, 1995, ISBN 0-201-54664-7.

[5] V. R. Basili, G. Caldiera, H. D. Rombach, ‘Experience Factory’, Encyclopedia

of Software Engineering, volume 1, John Wiley & Sons, 1994, pp. 469-476

[6] CEMP ESSI Project #10358, Final Report version 3.0, 1996, VASIE - ESSI

PIEs Repository (http://www.esi.es/VASIE/).

4. Objectives and Organisation of the Experiment

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.7 of 4.50

The ICENSOM experiment involves the following objectives:

Technical Objectives of the Experiment

 introduction at TEGEA, of formal software quality measurements, based on the

GQM method

 determining potential process improvements at TEGEA and introduction of

activities for supporting the related improvement actions

 assessment of the GQM method, concerning its suitability for engineering SMEs

 dissemination of experiment related experiences and lessons learned, towards

appropriate audiences in Greece and the rest of Europe

Commercial Objectives of the Experiment

 higher product quality and reliability as experienced by the customer

 less time-to-market for TEGEA’s software products

 less software development costs due to less re-design, testing and maintenance

activities

The anticipated technical and commercial benefits from the ICENSOM experiment

include: establishment of potential improvements, introduction of a mechanism for

supporting the corresponding improvement actions and enhancement of project

management practices. Moreover, the ICENSOM experiment will result in higher

quality in the developed software products, increased efficiency of technical review

and testing activities and enhanced competence and motivation of TEGEA’s staff.

Finally, ICENSOM will contribute towards transferring of experiences from this PIE

to other activities in TEGEA, less time-to-market for TEGEA’s software products,

reduction of the software development cost and higher productivity for software

development activities.

The experiment involves three main phases: the Experiment Set-up, the GQM

Application and the Experiment Conclusion. The Experiment Set-up Phase involved

resolving any synchronisation issues with the baseline project, training of the

involved personnel, establishment of a ‘Measurements Responsible’ role in

TEGEA’s Engineering department and setting-up the co-operation with the

subcontractor. The deliverables from this phase include the Training Plan, the

Training Reports and the Subcontractor Work Specification.

The GQM Application Phase consists of the four following main activities: Primary

Goal Derivation, Goal Decomposition, Metrication and Measurements Interpretation.

Primary Goal Derivation: During this activity the current software development

practices at TEGEA were analysed with emphasis on the baseline project. This

analysis was performed based on appropriate questionnaires and interviews, taking

also into account any existing information from analogous past activities. The

outcome of this analysis was the Assessment Report, including findings, remarks and

directions for potential improvements. Then definition of the primary goals that will

be used later on for measurements definition was carried out. This activity was based

on information from past projects, the results of the analysis of software development

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.8 of 4.50

practices at TEGEA and the special constraints of TEGEA’s development

environment. The primary goals definition was organised by the Measurements

Responsible, supported by the external consultant, and involved personnel from the

baseline project and other projects at TEGEA’s Engineering department. The

outcome of this activity was the Goal Analysis Report.

Goal Decomposition: The previously derived primary goals were decomposed into

sub-goals, questions and the corresponding metrics. This activity resulted in a Goals

Tree incorporating questions that led from goals and sub-goals to the metrics

corresponding to these goals. The Goals Tree was also included in the Goal Analysis

Report.

Metrication: This activity involved preparation and planning for the collection,

processing and subsequent analysis of measurement data. The GQM Measurement

Plan was prepared and introduced (including complete measurement definitions) in

the activities of the baseline project. This plan was prepared by the Measurements

Responsible and was appropriately reviewed by individuals form the baseline project.

Then, primitive data were collected from the baseline project, and after appropriate

verification and processing led to measurement results.

Measurements Interpretation: During this activity the defined measurements in the

GQM Measurement Plan are validated against the goals and questions. Subsequently,

analysis and review of validated measurement data is performed in order to assess the

degree of achievement of the defined goals. As a result, the quality level of the

products and processes being measured is evaluated. This analysis of validated

measurement data leads to the identification of potential process improvements and

enables monitoring of improvement actions. The associated deliverables include the

Measurements Analysis Report and the Improvements Report.

During the Experiment Conclusion Phase, the degree of suitability and effectiveness

of GQM in the context of TEGEA is established and experiences/lessons learned

from the ICENSOM PIE are disseminated towards various Greek and European

organisations developing software. Deliverables from this phase involve the

Experiment Evaluation Report and the Post-experiment Activities Plan.

The baseline project for the ICENSOM experiment is called SKAT-II and involves

the development of a user friendly and reasonably-priced software package for static

analysis and dimensioning of buildings completely made out of pre-constructed steel

concrete elements. This construction method, named 3D-Method (Three Dimensional

Structural Wire-Mesh with Embedded Insulating Material), is particularly suitable

for timely and cost effective building constructions. The software package to be

developed will incorporate the following features:

 static analysis and dimensioning of building foundations, steel concrete wall

elements and plates

 user interface based on mouse-driven commands and pull-down menus

 interface with spreadsheets, such as EXCEL, for estimating the cost of the

constructions under analysis

 interface with CAD packages like AUTOCAD, for 3D representation of the load

carrying elements of the building under analysis

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.9 of 4.50

This project is of major importance to TEGEA due to its innovative character and its

high market potential. The duration of the baseline project is 10 months and involves

an effort of 55 person-months.

5. Conducting the Experiment

The analysis of the software development practices in use at TEGEA’s Engineering

department was carried out as a first step in applying the GQM method. The

requirements and practices at Levels 2 and 3 of the Capability Maturity Model

(CMM) were used in conducting this analysis. The CMM was chosen as a framework

for this analysis because it is widely recognised by many industrial organisations,

provides a reliable picture and is compatible with the GQM approach. The analysis

was performed using appropriate questionnaires and lasted for five days. It focused

on the baseline project SKAT-II but relevant information and issues from other

TEGEA’s software projects and previous analysis findings were taken into account.

The results of the analysis of the software practices will support the activities for

planning and organising process improvement at TEGEA. These results are presented

in the Assessment Report.

The remarks and findings from the analysis activity were checked with baseline

project individuals and were prioritised. In this manner, focus is directed towards the

most important issues for measurement and subsequent improvement, where positive

impact is possible. In the Assessment Report recommendations were also

included for each finding to support the preparation and establishment of future

improvement plans. The findings from the analysis of software practices were

categorised in the following areas: software project management, software

measurements, product control & quality assurance, technical reviews, development

processes and training.

In line with the GQM approach, the Goal Tree was then established, aiming at an

improved software development process and better product quality. The results from

the above analysis, information from past projects and particular requirements and

constraints of the baseline project were used as input. The Goals Tree contains the

primary goals, which are further analysed into sub-goals and corresponding questions

that lead from the identified goals to the associated metrics. This structure is

documented in the Goal Analysis Report. The Goal Tree was intentionally kept

simple and straightforward in order to facilitate the succeeding activities in the GQM

method (the definition, collection, validation and analysis of measurements). The

Goal Tree is given in Figure 1, and was used as a basis to derive the full Goal Tree

with goals, sub-goals, questions and metrics. The Goal Tree is structured in a tabular

format, involving the sub-goals, factors and questions that affect each primary goal

and subsequently define the relevant measurements.

GOAL 1. Enhance the effectiveness of the software development process

Goal 1.1 Enhance activities for the definition of software development

processes

Goal 1.2 Enhance project management activities for software development

Goal 1.3 Establish data for use in estimation of software development projects

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.10 of 4.50

Goal 1.4 Improve consistency and precision in achieving agreed delivery dates

Goal 1.5 Reduce redesign effort and cost in software development projects

GOAL 2. Increase control on and quality of the developed software

products

Goal 2.1 Monitor the quality of software products in all phases of their

life-cycle

Goal 2.2 Improve the effectiveness of software testing activities

Goal 2.3 Increase use of technical reviews for the software products

Goal 2.4 Enhance competence of both technical and management personnel

Figure 1. Goal Tree of ICENSOM experiment.

The application of GQM measurements at TEGEA’s Engineering department was

centred around two primary goals: enhancing the software development process and

increasing the quality level of developed software products. This approach was

influenced by the characteristics and constraints of the software development

environment at TEGEA, as well as by the related business goals and priorities. Each

defined sub-goal in the Goal Tree (fig. 1) was analysed by the ICENSOM team and

involved baseline project personnel in order to identify any factors that can impact

(either positively or negatively) the fulfilment of the specific sub-goal in concern.

The identified factors then led in a set of questions that address the sub-goal in

concern and finally, to the related metrics. Each question corresponds to one

identified factor. The defined metrics are actually the answers to the identified

questions.

An example of identified questions that address a particular sub-goal, namely Goal

1.2, in the Goal Tree presented above is depicted in Figure 2.

Goal 1.2 Enhance project management activities for software development

Question 1.2.1 How to control and enhance planning precision?

Question 1.2.2 Is there a process in use for project planning and tracking?

Question 1.2.3 How to monitor and control periodic project status reviews?

Question 1.2.4 How to monitor and control risk identification and analysis

activities?

Figure 2. Example of questions related to a sub-goal

The next activity in applying the GQM method involved identifying metrics for the

factors (and questions) associated with the sub-goals in the Goal Tree. Figure 3

depicts an example of metrics for the case of the sub-goal for ‘enhancing project

management activities’ (Goal 1.2 within the primary goal for increasing the

effectiveness of the software development process).

Goal 1.2: Enhance project management activities for software development

Factor: Risk handling activities in software development projects

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.11 of 4.50

Question 1.2.4: How to monitor and control risk identification and analysis

activities?

Metrics:

1. No. of project meetings for risk handling (identification and analysis)

2. Effort spent in project meetings for risk handling (no. of hours for such

meetings and percentage of these hours in the total project effort)

3. No. or risks identified in project meetings for risk handling

Figure 3. Example of metrics associated to a question

 The activities for identifying metrics for the baseline project involved rather simple

techniques (group reviews and brainstorming) and reflected the actual practices used

at TEGEA for software development and management, as well as the experiences of

the involved individuals. The approach to keep things as simple as possible and to

involve all interested roles and individuals was followed throughout the ICENSOM

experiment. Such an attitude is in fact a prerequisite for ensuring acceptance,

participation and commitment of the development team towards improvement goals

and activities. Using this approach, simple metrics were defined and basic statistics

or graphs were used for the analysis and presentation of the measurement results.

The GQM measurement plan for the baseline project was then prepared, including all

defined measurements and all the necessary information for the collection, analysis

and validation of the defined measurements. This plan provides for each defined

measurement information that indicates: who collects the data, when the data are

collected, how measurement data are processed, validated and presented. The

measurement plan was implemented in the baseline project and sets of measurement

data were collected, validated and analysed. These activities are carried out by the

ICENSOM team in co-operation with baseline project personnel as necessary.

6. Results and Experiences

Software Process Improvement: The GQM method can provide a suitable framework

for measurements that facilitate improvements in the software development process.

This approach can provide a way to prioritise identified improvement areas. In this

respect, GQM supports definition of project goals, analysis of measurement data and

feedback into the project and organisation. Furthermore, it allows the definition of

measurement plans that can be reused in later projects.

GQM Goals and Measurements: Prior to the application of GQM method, there was

very limited use of measurements at TEGEA’s software projects. Therefore, the

identified GQM goals for the baseline project (SKAT-II) were focused in

consolidating measurement data and establishing a baseline for understanding the

current state of software development practices. On the other hand, GQM goals for

improvement of software development practices and products were also identified.

The measurements previously used at TEGEA did not provide significant help in

supporting project or business goals and improvements. Furthermore, in defining

such measurements constraints and views of project managers or developers were not

taken into consideration. The GQM method on the other hand depends on the

consolidation of ideas and concerns of various roles, both technical and management.

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.12 of 4.50

Thus, the GQM approach contributes in increasing motivation and approval of the

measurements framework by all individuals involved in a project. A crucial factor in

establishing a successful measurement framework is to incorporate, during the Goal

Derivation and Decomposition activities of the GQM method the existing business

goals, already used measurements and specific constraints of the organisation. Thus,

consistency of GQM measurements with existing practices is facilitated and

commitment of personnel to the new measurements is ensured to a great extent.

GQM Data: For projects and units with limited experience and use of measurements,

special care should be put on collection, analysis and validation of the measurement

data. Data collection must be carefully planned (in terms of responsibilities, time

period and supporting templates or forms) since this ensures the correctness of the

measurement data. Analysis and interpretation of the measurement data is the hardest

part of measurement. This should be carried out in co-operation with all involved

individuals in a team-based manner. For example, it is dangerous to provide results

that address (even indirectly) the effectiveness of software developers or the quality

of software work products, especially in cases were such results are given as granted.

Application of GQM: During the application of a new method in an organisation, one

should try to keep things simple and take a more conservative approach. In this

respect, the most important and necessary goals and metrics should be implemented

in order to keep cost at a reasonable level, especially for a small organisation. It is

very tempting, especially in less mature projects or organisations, to measure

everything for the sake of completeness and therefore result in large sets of data that

is very difficult to handle.

The use of the GQM method at TEGEA contributed to a great extent in the

understanding of the various activities and phases of software development. The

importance of a adequately defined software process was recognised and accepted by

TEGEA’s personnel, both managers and developers, involved in ICENSOM

experiment.

Overhead of GQM: The effort spent up to date in the ICENSOM experiment

amounts to a significant overhead for software development activities. The GQM

introduction corresponds to an overhead in the order of 20% compared to the effort

spent in the baseline project. Although this overhead is large for an SME

organisation, it is expected that future applications of GQM method to development

projects will involve a greatly reduced overhead. This is due to the already acquired

skills for the GQM method, as well as to already established roles and infrastructure.

Organisational support: A prerequisite for the successful introduction and

implementation of the GQM framework in an organisation is to make it part of the

company strategy and business goals. The management of the organisation should

have the vision of process improvement and should provide the necessary resources

and support. The results from the introduction of the GQM method through

ICENSOM will be used, after appropriate analysis and tailoring in next software

projects. Acceptance of future applications of the GQM method is ensured through

the internal dissemination activities of ICENSOM and the involvement of key

personnel from TEGEA in the GQM introduction.

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.13 of 4.50

Positive Aspects of the Experiment

The positive aspects of ICENSOM experiment are listed as follows:

ICENSOM team and involved personnel form the baseline project has acquired skills

with respect to the GQM method and enhanced their awareness for process issues.

Support of the external consultant significantly facilitates ICENSOM experiment.

The training and consulting activities for the PIE provided valuable guidance,

experience and various viewpoints in the derivation and analysis of the GQM goals

and measurements.

The GQM method provides a suitable framework for measurements that facilitate

process improvements. GQM involves the concerns and viewpoints of both managers

and technical staff in the organisation, thus enhancing their motivation for and

commitment to measurement and improvement activities. Moreover, the involvement

in the GQM activities promotes the team-based approach in carrying out project and

organisational activities. The GQM method actively involves all interested

individuals from the very beginning (from goal derivation until measurements

analysis and validation).

Close co-operation between the baseline project personnel and the ICENSOM team is

essential for introducing successfully the GQM measurements at TEGEA.

Negative Aspects of the Experiment

The negative aspects of ICENSOM experiment are listed as follows:

The application of GQM method to a baseline project should be well planned and

performed gradually, in order to minimise interruptions and negative impacts in the

software development activities. The introduction of a new method is usually not

without problems and time has to be devoted in coping with unexpected difficulties.

Management of the baseline project was concerned about delays and interruptions in

the product development schedule due to additional activities imposed by the

ICENSOM PIE. It is rather common that the return-on-investment tends to be small

or even negative in the first project were a new method is introduced. Such concerns

could be rectified by the expectation of long-term benefits, evident in future projects.

During goal derivation of GQM, certain goals initially reflected short-term concerns

for the baseline project. These goals were influenced by immediate priorities of the

baseline project manager and technical personnel. However, such goals undermine

the effective use of measurements that can facilitate long-term process

improvements.

It takes rather long time between the definition of GQM measurements and obtaining

actual results. In this respect, it is not possible to obtain all measurement results from

the baseline project within the time frame of the ICENSOM experiment.

Furthermore, the derived improvements during the ICENSOM experiment will be

evident after the end of the PIE.

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.14 of 4.50

In case of inadequate previous use of measurements, as with the baseline project, it is

difficult to evaluate all the identified goals and improvement actions. This is due to

the lack of a current baseline to make comparisons with the achieved results.

7. Conclusions and Further Activities

The ICENSOM experiment has been very helpful so far in introducing the GQM

method at TEGEA. The GQM method provides a suitable framework for

measurements that facilitate improvements in the software development process. A

significant interest has been expressed at TEGEA to continue the GQM

measurements to future projects and investigate the expansion of the measurement

program. The decision for wider application of GQM will be taken by TEGEA’s

management after the conclusion of ICENSOM by considering the final results and

evaluation.

Certain activities are currently carried out within ICENSOM, while other activities

are planned for the period after the conclusion of the experiment. These activities are

included in the following list:

The collection, analysis and validation activities of the defined measurements in the

baseline project are carried out to completion.

Establishment of the degree of effectiveness of GQM in the context of TEGEA.

TEGEA’s business environment is being initiated. This activity is based on an overall

analysis of results form the baseline project. This evaluation will include any

shortcomings, problems and proposed solutions regarding the application of GQM.

Performing the rest of the planned internal presentations of ICENSOM results.

Activities of external dissemination have also been scheduled.

Investigation and scheduling of activities for packaging the acquired results and

experiences from ICENSOM for further use at TEGEA. The scheduling of

introduction of the GQM method in future projects is based on the ICENSOM results

and experiences acquired so far.

Investigation will be initiated for the introduction of tools to automate and tailor the

GQM method in future development projects. Such tools should be able to

incorporate the already acquired experience and results from the first GQM

application through ICENSOM.

ICENSOM - Metrics in Civil Engineering Software Development

Page 4.15 of 4.50

Appendix A. Author CV

A. Tsipianitis has a diploma in Civil Engineering from National Technical University

of Athens (NTUA) and a Ph.D. from University of Hamburg in Geo-sciences. Since

1989 he participated in various research projects of NTUA in the areas of

environmental engineering, maintenance and restoration of Greek historical

buildings. He carried out several technical studies in the areas of environmental

engineering, geological studies, port construction, undersea piping construction and

construction of special purpose buildings (depots, schools etc.). Dr. A. Tsipianitis has

also carried out the evaluation and management of significant construction projects in

the Greek public sector funded by the CEU.

Dr. A. Tsipianitis is the Business Manager of TEGEA S.A., an engineering firm

active in the areas of environmental engineering, construction projects and

development of software packages for construction and civil engineering.

For correspondence:

Dr. A. Tsipianitis,

TEGEA SA, 100 Alexandras Ave., Athens 114 72, Greece

Tel.: +301 6440103

Fax.: +301 6424001

E-mail : atsipi@tee.gr

Appendix B. Company Description

TEGEA is an engineering firm established in 1991, active in the following areas:

 technical analysis, design and implementation of construction projects (buildings,

ports, roads, water distribution and sewage networks)

 technical analysis, design and implementation of environmental engineering

projects

 provision of services / consulting for the management of construction works and

environmental engineering projects

 Development of software packages for computer aided analysis and design of

special constructions. These packages target the market of civil engineering firms,

as well as the market of building construction companies.

 Development of software packages supporting the technical and financial

management of large construction projects. These packages target the market of

construction engineering companies.

Most developed software packages are also used internally, in the context of

TEGEA’s construction and consulting contracts.

Page 4.16 of 4.50

SIMMER: Software and

Systems Integration

Modelling Metrics and

Risks (Getting to Level

4)

Brian Chatters

ICL, Manchester, UK

Peter Henderson

University of Southampton, Southampton, UK

Chris Rostron

ICL, Manchester, UK

Introduction

This article documents the mid-term progress and provisional conclusions

of SIMMER; an ESSI funded Process Improvement Experiment. The

overall objective of the experiment is to produce a more effective means of

planning and controlling complex software and systems integration

projects.

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.17 of 4.50

In order to remain competitive, ICL (as well as many other companies)

needs to continually improve its predictability of costs and schedules for

integration projects, to reduce time to market and to reduce costs without

detriment to the quality of the products. The developments of our complex

software and systems rely more and more on using commodity

components and collaborations as a way to meet these business objectives.

The ability to accurately predict effort and time scales and the ability to

keep within budget is becoming increasingly difficult in such projects.

The specific purposes of the experiment are to demonstrate the

applicability of the “Cellular Manufacturing Process Model” (CMPM)

technology to a business critical, live software and systems development

project and to develop and tailor the model and associated metrics to

improve the project management processes.

Starting Scenario

Over recent years, software and systems development has become more

complex and the trend has been towards the use of bought-in components.

There is an expectation that, by buying in components, the time to bring a

system to market can be significantly reduced. However, the use of third

party components introduces a number of unknowns into the development

activities, increases risks and jeopardises delivered quality. This fact is

particularly true when the component is software that may not have been

exposed to the specific operational environment previously, often leading

to performance problems.

An internal assessment of our development processes (incidentally,

achieved by participation in the SPICE/2 trial) identified the need to

improve:

 the supplier management process - to better integrate the supplier's

engineering processes with those of ICL, particularly in the area of

support during software and systems integration

 implementation of organisational wide process metrics to help

understanding and improve predictability

SIMMER makes a significant contribution to addressing these two areas

for improvement. Traditionally, ICL has used the V-diagram waterfall life

cycle model to plan and control software and systems development.

Estimates of effort and time scales are based on an understanding of the

architecture of the solution, and expert opinion of the degree of difficulty

and potential problems likely to be encountered during the integration

activities. The availability of resources and the team size is also taken

into account when making the estimates.

A number of alternative life cycle models and development methods, such

as DSDM [7] and Boehm’s spiral model [2], are now in existence but none

of them adequately address the issue of managing complex integration of

third-party supplied components.

The CMPM, developed jointly by ICL and Peter Henderson of

Southampton University, is a more appropriate model for the changing

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.18 of 4.50

business. It provides a better means of capture and metrication of the

interfaces between the contributing supplier, development and

integration activities, enabling earlier and more comprehensive

verification and validation of software products.

The Cellular Manufacturing Process Model

General Description

The CMPM is defined to be a set of “Manufacturing Cells” with the

relationships between the cells described as a set of metrics. The model is

based on Watts Humphrey’s network models of software development [4],

and on the “value chain” model developed by Michael Porter [5].

supplier 1 integration 2

supplier 2

supplier 3

internal supplier

integration 1

customer 1

organisational boundary

Fig.SIMMER.1: The Cellular Manufacturing Process

The model is based on a view of products that are integrated from a

mixture of bought-in and self-built components (Fig.SIMMER.1). In this

context, system integration is defined to be those activities which identify

(and specify) components and develop “glue” to bind them. Some

components will plug directly in (that is, they will not require any

additional glue). For such components, the choice of one influences or

restricts the choice of the others. The nature and quantity of glue

required is a significant property of the system design. Each integration

activity is defined as a cell within the CMPM. The model is clearly

hierarchical. Each cell can be a component in a higher-level integration

activity. Each component used by a cell can, itself, have been integrated

from lower level components, either by in-house development or supplied

by a third party.

Products with hierarchical structures lend themselves to being developed

and built in a network of manufacturing cells. Each cell is responsible for

one level of integration. The cell receives components from suppliers,

makes some components locally, glues the components into an integrated

product (which is tested to output standards) and ships the integrated

product to a customer or to the cell performing the next level of

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.19 of 4.50

integration. Note that the traditional software development process can

be defined as an integration cell within the definition of the CMPM. It

makes all components (lines of code) in-house and glues (compiles and

builds) them into a software module or software product.

The behaviour within a cell can be as formalised or as ad hoc as the

business or product demands. The measurement regime of the CMPM

(the metrics) is not dependent upon detailed knowledge of how each cell

performs its integration tasks, only how it meets its external obligations.

Metrics within CMPM

Six metrics are defined by CMPM (Table 1). Fig.SIMMER.2 illustrates

how these metrics are associated with each cell within the network. The

reassuring thing about these metrics are that they are clearly at the

management level, not down at the detailed code level.

Manufacturing

Cell

Work Done W

Input Quality

of supplied

components Q

OutputQuality

of delivered

components P
Product Size S

Time to Deliver T

Team Size N

Fig.SIMMER.2: Metrics Associated with Each Cell within CMPM

The measurements of the quality of the input to and output from each cell

are converted to percentage reliability measures (100% indicating total

reliability). The values will be based on actual measures of the quality or

based on an expert judgement from the project team members. Clearly,

the quality metrics are directly related to project risks.

W Effort The work done on each cell, in net person days (excludes project

management overheads). Factors affecting W include unforeseen

problems, changes in requirements, poor estimates of S, late

handovers, and product problems (the number of and the cost of

resolution that may be further complicated by supplier support

interfaces).

T Elapsed time The schedule of deliveries of components from each cell, in elapsed

working days (excludes weekends and public holidays).

N Team size The average team size (W=T*N)

S Size A measure of the size of the product, in "Standard Integration Units"

(SIU's) - in the context of integration, size is determined by "hard"

cost drivers which are quality independent. The drivers cover costs for

building systems, installing products, regression testing, producing

project infrastructure, and making glue/in-house components.

Q Input quality The average quality of incoming components, on a scale of 0 to 5 - the

costs incurred as a result of the values assigned to this metric (and the

required output quality P) are determined by “soft” drivers which are

dependent upon the issues, risks, and problems inherent in the

supplied components.

P Delivered

quality

The target quality of outgoing components, on a scale of 0 to 5

Table 1: CMPM Metrics

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.20 of 4.50

Predicting Costs and Time Scales Using CMPM

COCOMO (Constructive Cost Model) is a model for estimating software

effort, cost and schedule for a number of different types of software

development projects [1]. COCOMO predicts a relationship between S, W,

N and T. CMPM postulates that a relationship also exists between Q, W

and P. The conjecture is that effort can be modelled against size (S) but

that input and output quality (P and Q) will also have a significant

impact on any predicted costs. That is:

W = f (Q,P,S)

Where W = effort, Q = input quality, P = output quality and S = size.

The function will demonstrate the behaviour that, if the target P

increases, either W will increase or Q needs to be increased. Similarly, if

S increases, then W or Q will need to be increased in order to achieve the

same level of output quality (Fig.SIMMER.3).

S1 < S2

Q1 < Q2

Effort

Quality

Q2

Q1

S1 S1 S2

Fig.SIMMER.3: Illustration of effect of S, P and Q on W

The function can be determined from historical data and used to predict

costs and time scales for future projects.

Relationship of CMPM to Capability Maturity

The effectiveness of CMPM as a predictor of costs will depend upon how

well an organisation understands its processes. Only then can it make

reasoned estimates of the size of the tasks that need to be performed to

achieve its deliverables. There are (at least) two key factors that affect

how well an organisation can make predictions.

Firstly, it needs to ensure that its activities are managed effectively. To

achieve effective management, it needs to gather data on the performance

of its activities and to analyse the data to identify potential predictors of

future performance. Basic data collection of cost, schedule and problems

is a requirement of level 2 of SPICE [6].

Secondly, it needs to be able to define the tasks that need to be performed

within a cell. The CMPM allows the description of a cell to be as formal or

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.21 of 4.50

as ad hoc as the business demands. However, to gain maximum benefit,

our experiment demands a level of description which enables project

manager’s to plan detailed tasks in a repeatable and, to some degree, a

predictable manner. To achieve this, we have advocated that the project’s

processes need to be defined. That is, they need to operate at level 3

within the SPICE model before the application of CMPM can have full

effect.

With these two key building blocks in place, CMPM can then be used to

further improve the predictability of the performance of a project (hence,

the reason for the subtitle of this article: “Getting to Level Four”).

Plans and Expected Outcome

Objectives

The overall business objective of this experiment is to produce a more

effective means for the design and planning of complex software and

systems integration projects, involving the use of commodity components,

collaborations with third parties, or the reuse of existing components. The

new process will improve the understanding of how to exploit the

components in a new project and hence, help to mitigate against risks and

to improve predictability.

Specifically, the aims of the experiment are:

 to demonstrate the applicability of the CMPM technology to a

business critical, live software and systems development project;

 to develop and tailor the model specifically for software and systems

integration and validation;

 to develop appropriate metrics to support the project;

 to quantify the benefits as a result of applying the technology.

Benefits

The specific benefits are expected to be:

 More accurate predictions of costs and schedules. The major

expected benefit by the application of the new method will be to

significantly improve the accuracy of the predictions of project costs

and schedules, thus enabling more realistic forecasts. This

improvement, in turn, will lead to better overall business planning

and enable the organisation to have more confidence in ensuring that

its return on investment will be protected.

 Improved Product Quality. The new method will ensure that a

better focus is given to quality requirements and ensure that

preventive action is planned to mitigate against potentially high-risk

components. This focus, in turn, will ensure better test and validation

coverage. The process improvement will have the effect of significantly

reducing the number of customer detected bugs once the product is

released, resulting in a reduction in support and maintenance costs

and improved customer satisfaction.

 Reduced Time to Market. The biggest cause of delays to the

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.22 of 4.50

planned schedule of a project involving supplied components, is the

time it takes to resolve unexpected problems. A better understanding

of the quality of the input and its impact on the project will enable

such problems to be pre-empted and resolved much faster, thus

reducing the time to market.

 Exploitation of CMPM. The results of the experiment will allow the

CMPM to be enhanced and exploited as a key aid to improving

software and systems supply, development, and integration processes.

The method will be able to be applied to any organisation, which

designs, integrates or tests complex software systems, using

commodity products, collaborating with third parties, or reusing

existing designs and components.

Definition of the Baseline Project

The baseline project is part of a broader programme aimed at providing

platforms, which exploit emerging technologies and meet the future needs

of ICL’s customer base. A number of systems management products are

included in the system and a minimal amount of non-invasive integration

is undertaken to make them easier to use and to improve their RAS

(reliability, availability, serviceability) characteristics.

The project is split into seven teams with an average size of eight people.

The software is a combination of COTS products, in-house development,

and collaborative development with partners. Software products, for

example for backup, performance monitoring, printing and event

management, are included. The suppliers of the relevant hardware

modules provide platform specific software products (e.g. peripheral

drivers). Regular, incremental, deliveries of the system are made to the

customer base.

The Plan

1. A set of baseline measures will be established by analysing historical

data. Variations between predicted and actual measures will be

recorded. A log of problem reports from the baseline project activities

will be set up, identifying where the problem was found, its severity,

which component, process, or supplier caused the problem and how

long it took to resolve it.

2. The generic CMPM will be used to define a specific model, tailored to

the baseline project. The baseline project activities will be split into

cells, which reflect the interfaces between the development teams for

each incremental release of the system. A set of metrics will be defined

and collected for each cell and initial estimates will be made of the

values for these metrics. The input quality levels (Q) of the supplied

components will be determined by review and discussion with the

project staff and the output levels (P) will be defined by the project

requirements.

3. The incurred effort (W), team sizes (N) and time scales (T) of the

baseline project will be monitored as part of the normal project

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.23 of 4.50

management activities. Every month, actual measures or revised

estimates will be made of size (S), input quality (Q) and delivered

quality (P), causing revised estimates of total effort to be made, if

necessary. Additional data will be collected from the problem

management activities and the problem log will be updated.

4. The metrics data collected by the baseline project will be used to carry

out ongoing analyses of the relationships between effort (W), size (S),

and quality (Q and P). Results of the analyses will be used to evolve a

cost estimation model, which will be piloted by the baseline project

throughout the lifetime of the experiment to predict effort and time

scales for future activities.

5. Data collected throughout the experiment will be analysed and the

differences between the predicted and actual values, when compared to

the measurements taken prior to the experiment, will be used as a

measure of the effectiveness of the process.

Progress against the Plan

Establishment of Baseline Measurements

Effort is recorded and reported each month by project members and gives

a breakdown for each incremental release. This breakdown was not

available for the historical data and so each team made an estimate on

the contribution made to each incremental release.

Representatives from each of the teams also estimated values of S, P and

Q. Q was estimated by using a checklist to identify the drivers for and

potential causes of poor input quality (Table 2). The representatives were

asked to give a rating for each of the suppliers to the cell, on a scale of

zero to five, of the degree to which they agreed with the statement

concerning the attribute (zero = totally disagree; five = fully agree). An

overall rating was derived. This rating was left to the judgement of the

team representative because not all suppliers have the same impact on

the project plans. However, in many cases, an average was computed.

Output quality was also estimated in a similar way, based on hindsight of

problems experienced during the implementation of the cell.

Attribute

A. The impact of the product and development process

characteristics are fully understood

B. The inherent quality of component will guarantee no problems

for your activities

C. The supplier is easy to work with

D. We have full synergy with the supplier

E. The supplier is dependable

Table 2: Attributes used to measure Q and P

Estimation of size S was based on a "standard integration unit" (SIU). All

integration projects need to carry out standard tasks such as

establishment of the project environment, building systems, installing

products, and regression testing. The total amount of effort is also

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.24 of 4.50

dependent upon the number of supplied components, the amount of

in-house development, and the number of incremental builds. The costs

for these basic activities are independent of the input quality of the

supplied components and the output quality of the integrated system. As

an initial attempt to set values of size for each cell, one specific (arbitrary)

integration cell was defined to be of size 100 SIU's. Relative values of size

were estimated for all the others cells through a facilitated session with

all the team leaders and the overall project manager. This approach

ensured consistency in the way that size was estimated.

Application of CMPM to the Baseline Project

The project is structured as a network of cells which are classified as

“software development”, “hardware development”, “systems integration”,

or “build and release” to reflect the different nature of the activities that

are carried out within each cell. At this point, it is unclear whether the

different categories of cell will display different behaviours, which may

need to be reflected in the cost estimation algorithm. Cells are defined for

the contribution each team makes to each incremental delivery of the

system. Not all teams contributed to every release and, in some teams,

activities were carried out in parallel to support a number of releases.

Data Collection

Standard project control processes demand regular progress reports

identifying the percentage of activities achieved, the status of the key

milestones, issues, and spend to date. The process has been enhanced to

ensure predicted and actual values of the six CMPM metrics are reported

as well. For each incremental release, each team (cell) within the project

estimates values of S, Q and P. The values are then used to estimate W

and T from a given N. Typically, a release date is set as a requirement

and resources (N) are made available to underpin the milestone, subject

to budgetary constraints. As part of the regular reporting, actual or

re-estimated values of S, Q and P are recorded and used to review the

estimates of the outstanding effort needed to complete the release.

Development of Cost Estimation Algorithms

Early experimentation of the model using the historical data highlighted

some inconsistencies in the way that Q and P had been estimated. For

example, one team had estimated the same values of S, P and Q for three

increments even though the actual effort varied widely. The assumption

of the model is that S, P and Q are sufficient synthetics to enable effort to

be estimated. If this was the case, equal values of S, P and Q must yield

the same estimates of effort. As a consequence, a more objective means of

measuring Q and P is required and revised definitions of Q and P are

being implemented.

For the development and integration cells,

 Q=5 is defined to be "all components are fault free"

 Q=0 is defined to be "all components are faulty"

A component is defined to be the lowest level unit that, if faulty, will have

only one fault. This revised definition requires a value to be set on the

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.25 of 4.50

number of components and, for practical purposes, the value is set by

estimating the maximum (realistic) number of expected faults. That is,

the estimator is asked to consider the worst case scenario which, typically

he would do as part of the risk assessment process. For example, a

software module may be estimated to have, in the worst case, a hundred

faults. Thus the number of "components" in the product is defined to be

one hundred.

For the build and release cells,

 Q=5 is defined to be "only one component build is required, per

component" (typically, components will be batched together to reduce

the total number of builds required)

 Q=0 is defined to be "every component is faulty and requires a rebuild

to correct the fault"

In the context of integration, a fault equates to any problem that incurs

cost to correct and thus includes process faults, product faults, and issues

arising from dealing with suppliers.

P is defined to be the level of achievement against predefined release

criteria. If all criteria are fully satisfied, P=5. The project release

processes include a formal review of achievement against the release

criteria, thus enabling a value of P to be assigned.

Measured Results and Lessons Learned

Baseline Measurements

Table 3 provides an example of the historical data for one team (cell).

Each record gives the values of the metrics for the work done to deliver

components to each incremental release of the system. The values of Q

and P are the subjective values obtained by interviewing team members.

As already stated, the plan is to introduce more objective measures of P

and Q based on the number of problems expected/experienced.

Project W T N S Q P Problem

software team a 548.5 86 7.6 50 3.1 4 11

software team a 31.92 21 1.8 10 3.6 4 0

software team a 723.1 169 4.8 40 3.6 4 23

Table 3: Baseline Data

Table 4 summarises the actual and estimated values for W, T and N for

each incremental release of the system.

 Actual Forecast

Release Wa Ta Na We Te Ne (Wa/We)% (Ta/Te)%

release a 2284 149 28 1320 60 28 173 248

release b 440 84 7.9 576 40 18 76 210

release c 2758 213 15 1512 140 14 183 152

release d 793.4 213 4.2 640 140 4.5 124 152

Table4: Summary of Metrics by Release (Actual vs. Forecast)

Much of the extra cost is incurred due to quality problems. The summary

shows slips of between 52% and 148% and overspends of between -24%

(underspend) and 83%. Note that this data is used for internal planning

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.26 of 4.50

purposes and does not reflect commitments made to customers. The data

provides a starting point against which the results of the experiment can

be compared.

Experiments with the Model

The collection of the historical data is providing a better insight into the

behaviour of the software and systems integration process. Various

hypotheses have been postulated and experiments have been undertaken

to model the behaviour using curve-fitting techniques. Fig.SIMMER.4 is

an example of the results of one such experiment. It shows the

distribution of the values of two constants (b and k) used in a

COCOMO-type formula to predict effort from the historical values of S, Q

and P.

Fig.SIMMER.4: Computed values of b and k

Some of the reasons for the scatter have already been discussed but these

early results are encouraging. They suggest that S, Q and P do indeed

influence W and a relationship probably exists that can be modelled and

used to predict future project behaviour.

Future integration teams will be multi-disciplined and thus, the CMPM

may reduce to two cells - one for integration and one for build and release.

This change in organisation should help to reduce some of the anomalies,

as all teams will perform similar activities. However, the size of the

teams will be of the order of existing teams (about 6-8 people) and the

difficulties in estimating costs for small teams need to be addressed.

Lessons Learned

Even if we are unable to find values to support the theoretical model,

there is still considerable benefit (which should not be underestimated!)

to the project in using the metrics set to manage its business more

effectively. The metrics will support the management practices that are

required to achieve level 4 on the SPICE maturity scale.

Specific lessons learned so far include:

 The experiment only works with the full collaboration from the

project.

 The metrics need to be simple and easy to collect. Data collection

needs to be established as part of normal business; carried out by

project staff. Build on what projects currently care about and are

Scattergraph to show any clusterings in the values of b and k in relation to effort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 0 1 2 3 4 5

b

k

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.27 of 4.50

likely to have data. Then get disciplines in place to capture and

analyse the data.

 Metrics provide objectivity into the project management decisions. The

act of measuring alone can bring about improvement.

 Subjective measures are better than no measures at all but they are of

limited use. They allow projects to think about the issues but they do

not allow the development of cost estimation models.

 There is clear benefit in using the extended metrics set (S, P, and Q)

in managing integration projects. The issues to be managed in an

integration project are much broader than product problems (bugs)

and all problems that impact costs significantly need to be considered.

Many process problems can have a bigger impact on project overruns

(for example, when working with suppliers).

 Metrics need to be based on a sound, objective basis - therefore, a

project needs the equivalent of SPICE level 2/3 management practices

in place before the full benefits of SIMMER can be realised.

References

 [1] Boehm B. et al, The COCOMO II Model Definition Manual,

University of Southern California, USA, 1996

[2] Boehm B.W., A Spiral Model of Software Development and

Enhancement, in: IEEE Computing 21(5), pp. 61-72, 1988

[3] Chatters B.W., Henderson P., Rostron C.J., The Cellular

Manufacturing Process Model: Planning a Complex Software And

Systems Integration Project, in: Proceedings of the European

Software Measurement Conference, pp. 559-564, Technologisch

Instituut vzw, 1998

[4] Humphrey W.S., Managing the Software Process, Addison-Wesley,

1990

[5] Porter M.E., Competitive Advantage: Creating and Sustaining

Superior Performance, The Free Press, New York, 1985

[6] SPICE - PDTR ISO 15504, Software Process Improvement, Part 2:

A Reference Model for Processes and Process Capability, Version

2.0, 1996

[7] Stapleton J., DSDM: Dynamic Systems Development Method,

Addison-Wesley, UK, 1997

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.28 of 4.50

Appendix 1: Author Profiles

Brian Chatters

Brian Chatters is a Software and Systems Engineering consultant

within ICL High Performance Systems. He is responsible for

ensuring continuous development of the organisation’s software

and systems engineering capability and he has developed and

introduced a framework based on SPICE and CMM, to discharge

this responsibility. He has worked in the software industry for

over 30 years in various roles including programming, strategic

design and project management. In the last 12 years, he has

focused on quality management and process improvement. He

graduated from Bristol University with an honours degree in

mathematics. He is a fellow of the Institution of Electrical

Engineers, a Chartered Engineer and an active committee member

of the BCS SPIN (UK) Special Interest Group. He is also a

qualified ISO 9000 auditor and a qualified SPICE assessor.

Peter Henderson

Peter Henderson is Professor of Computer Science in the

Department of Electronics and Computer Science at the University

of Southampton in the UK. Prior to his move to Southampton in

1987 he was Professor of Computer Science at the University of

Stirling, also in the UK. Henderson is also a visiting ICL Fellow.

He is head of the Declarative Systems and Software Engineering

Research Group (see http://www.dsse.ecs.soton.ac.uk/) which

combines research interests in Software Engineering, Formal

Methods and Programming Languages. His own research includes

executable specifications, component-based systems, process

modelling and the software development process. He has consulted

for many companies, including ICL, on diverse topics in Software

Engineering but in particular on Software Development Process

Improvement. He has published two books and about thirty papers

on Software Engineering. Currently Henderson is national

co-ordinator for an EPSRC (Engineering and Physical Sciences

Research Council) research programme entitled Systems

Engineering for Business Process Change which has a legacy

systems, COTS, component-based software development theme

within it.

Chris Rostron

Chris Rostron is a Development Manager within ICL High

Performance Systems. He is responsible for the planning; release

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.29 of 4.50

management and quality assurance of a major UNIX based project.

He has worked in the software industry for 30 years in various

roles including programming, software design, release and

configuration management, support including Product

Introduction, business planning, and Quality assurance and

project management. In the last 6 years he has focused on release

and configuration management, planning and Quality Assurance.

He gained qualifications in Cartography before joining the

computer industry. He is a qualified ISO 9000 auditor and a

qualified SPICE assessor.

SIMMER – SW and Systems Integration Modelling Metrics and Risks

Page 4.30 of 4.50

Appendix 2: Company Descriptions

ICL is a leading supplier of IT systems and services. Operating in over 70

countries and employing over 19,000 people, the group's revenues for 1997

were £2,447 million generating a pre-tax profit of £30.0 million. The

company implements IT systems for major projects and provides

innovative services to a range of industries covering amongst others,

retail, finance, travel, telecoms and utilities together with education and

local and central government sectors. Its services include outsourcing,

helpdesks, network services, inter/intranets, electronic commerce,

interactive kiosks, smart card systems, digital cities and web sites. ICL

plans to relist on the stock market in 2000.

ICL’s website: http://www.icl.com

ICL's High Performance Systems Division (HPS) is responsible for the

development, sales and marketing of enterprise-scale solutions and

services. Working together with ICL business operations world-wide,

our customer offerings are based on the Trimetra range, providing data

centre solutions running OpenVME, Windows NT and UnixWare, and on

i500, ICL's open directory software.

HPS is at the forefront of new technologies enabling the information society. These

include interactive media servers, WWW-enabled software and advanced data centre

solutions based on combining leading ICL and partner technologies and expertise.

Page 4.31 of 4.50

Implementation of

metrics in development

of highly-safety critical

SW

Kenneth Kvinnesland

Navia Aviation , Oslo Norway

Abstract

The Process Improvement Experiment AMPIC (Application of Metrics for

Process Improvement for safety Critical software) has been carried out in

the company Navia Aviation that consists of the former separate

companies Normarc, Garex and Nova which have recently been merged.

Navia Aviation is the largest exporter of Instrument Landing Systems

(ILS) in the world. The product ranges also include systems for Air Traffic

Control (ATC), Flight Inspection Systems (FIS), Coastal Radio

Communication Systems, Radar Data Processing and Display Systems

and Enhanced Surface Movement Radar Systems.

The fundamental objective in the PIE was to: Develop suitable metrics for

SW-development in order to improve estimation, expose problem areas

and also to improve the development process itself in respect of quality

and productivity.

In the AMPIC-experiment software metrics has been derived from the

overall company goals by using the Goal-Question-Metrics-Method The

AMI approach which is very similar to GQM was used to assess the

development process before the start of the PIE.

This paper described how the PIE was implemented in two very different

organisations that used be separate companies. A brief description of the

GQM method is given before the actual measurements and collected

results in one of the baseline projects is described. The final section

summaries the success and failure criteria in the two baseline projects

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.32 of 4.50

This section discuss why the PIE proved to be successful in one of the

baseline projects but failed in the other.

1. Background.

Introduction

The AMPIC PIE was proposed by Garex and Normarc when they were

still separate companies. It was however clear that the companies were

going to be merged. Both experienced problems with completing the

development projects within time and cost-limits. It was also evident that

the quality of the development process had to be improved, as a new

project involving development of highly safety critical software was about

to be started.

This paper mainly focuses on the part of the PIE that has been

successfully integrated with the Kappa-project at former Normarc. The

part of the PIE that was integrated in a Coastal Radio-project at Garex

more or less failed and the reason for this is discussed in the last section.

The following sections gives an overview of the baseline project.

The Kappa-Project

The Kappa-project is developing the next generation of Instrument

Landing Systems using satellite navigation based on the Global

Positioning System (GPS). The product will in the future be a supplement

to the existing ILS-product. Parts of the software developed in the project

are highly safety-critical and shall be certified according to the standard

DO-178B / ED 12B [1]. This standard defines different software levels

based upon the contribution to potential failure conditions. Levels range

from A to E with A being the most safety critical level. The certification

is performed by the American Federal Aviation Administration (FAA) The

safety critical software developed in the Kappa project will be certified

according to level B which has the following definition:

Level B: Software whose anomalous behaviour, as shown by the system

safety assessment process, would cause or contribute to a failure of

system function resulting in a hazardous/severe-major failure condition

for the aircraft.

The safety critical software is developed using a subset of ADA-83. The

software is running on CPU-cards that are made within the company. No

operating system is used.

Some issues that are expected to contribute significantly to the work load

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.33 of 4.50

during development of this software are as follows:

 Requirement traceability: All software requirements must be

traceable from their origin to source code. All code must be

traceable backward to requirements or derived requirements

which again must be traceable back to their origins. Derived

requirements must be traceable back to specific design decisions.

 Requirement based testing: All requirements at all levels must

be covered by test cases.

 Coverage testing: The test cases developed for the requirements

must cover all source code and all conditions. It shall be proved

that all source code has been exercised by the test cases in all

conditions.

The amount of safety critical software is expected to be relatively small,

between 5000 - 10000 lines of code.

Non safety critical software are developed using Visual C++ and will be

running at a Windows-NT workstation. This software will be used for

maintenance purposes. The amount of software is expected to be around

100 000 lines of code.

The overall goals for the PIE within the Kappa-project were to

understand the impact related to development of highly safety critical

software, particular in order to identify cost-drivers. Changes were

expected to be very expensive, and special focus has been put on metrics

related to change control in order to reduce the amount of changes to a

minimum.

The Coastal Radio-Project

The project involves maintenance and further development of an existing

software.

The basic part in the product is a digital telephone switch. The real-time

software running in this switch constitutes 80 % of the total number of

code-lines. The software is written in C. It runs on top of TST, which is a

runtime system that serves as an abstraction layer between the operation

system and the application.

New software projects are typically maintenance projects. I.e. the

different customers require development of new functionality that are

added to the existing software code base. The same code base is used for

all customers, hence configuration management issues becomes very

important.

The baseline project included development of the following new

functionality:
 Software for Radio Control. I.e. remote tuning, diagnostics etc. for

a specific set of radios.

 Software for a new switch card.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.34 of 4.50

 Software for Pulse Code Modulation Diagnosis.

The overall goal for the PIE within the baseline project was to reduce the

time and costs related to delivery of products, by improving specifications

and by improving the configuration job done before delivery.

Recommended reading

The DO-178B/ED-12B "Software Considerations in Airborne Systems and

Equipment Certification" is the bible for development of safety critical

software in the avionics business. This document should be of interest for

any company developing safety critical software.

References

[1] DO-178B/ED-12B, Software Considerations in Airborne Systems

and Equipment Certification, December 1, 1992

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.35 of 4.50

2. The Goal-Question-Metrics method

Introduction

GQM is a method for breaking down overall goals into a set of factors that are measurable.

The following sections contains an overall description of the GQM-method [2] as it was

implemented in the PIE.

Initial phase

The initial phase involved the following steps:

 Identification of the overall goals.

 Performing interviews with the developers in order to expose

problems related to the defined goals.

 Review of the material collected in order to define questions based

on the suggestions, questions on hypothesis mentioned by the

developers.

 Development of metrics from the material collected and the

questions defined. This is graphically illustrated in a GQM-tree as

shown in Fig. KKVAMPIC. 1 below.

 Validation of the results. The developers must validate the

metrics in order to ensure that there is a common understanding

about the problems, that the questions are relevant, that the

selected metrics are relevant and that the measurements are

possible.

 A measurement plan is developed based on the metrics.

These initial steps were carried out leaded by representatives from

SINTEF Telematics which has long experiences with these kinds of

processes. This assistance was crucial during the start of the PIE.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.36 of 4.50

Fig. KKVAMPIC. 1: GQM-tree

Organising the information

Typically the information will be organised in a GQM Work sheet. An example is shown in

Table 1. This sheet contains:

 A short goal definition.

 Quality Focus which contains questions that are developed from

the goal definition.

 Variant Factors. This is a developed description of the

environment presented in the goal definition.

 Baseline Hypothesis. This is what the developers think are the

answers to the questions presented in Quality Focus before the

actual measurements.

 Impact on Baseline Hypothesis.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.37 of 4.50

GQM Work sheet

Analyse: Development Process In order to

understand:

Development of Safety

Critical Software

Point of view: R&D-department Environment: Kappa-project

Quality Focus Variation factors

Q2.1 What is the distribution of development

costs among the activities ?

Q2.a Type of sub-system

 Safety critical

 Not safety critical

Q2.2 What is the average cost of a change ? Q2.b Sub-system complexity

Q2.3 What is the volume of the source code ?

Q2.4 What is the review results, in respect of the

following subjects ?

 No. of first time approvals

 No. of pages

 No. of remarks

 Hours spent

Baseline Hypothesis Environment Impact on Baseline Hypothesis

Q2.1 Q2.a.: Safety Critical Sub-systems should:

Type Req. Des. Impl. Test Increase hours pr. change (Q2.2)

Not Safety

Critical

5% 50 % 30 % 20 % Increase percentage of hours spent

in Requirements and Test (

Q2.1)

Safety

Critical

30 % 15 % 5 % 50 % Have a lower percentage of

first-time approvals in review

(Q2.4)

Q2.2 20 hours pr. change Q2.b Sub-system with high complexity

should

Q2.3 5000 lines safety critical code Increase hours pr. change (Q2.2)

 100 000 lines not safety critical code Have a lower percentage of

first-time approvals in review

(Q2.4)

Q2.4 40 % approved in first reviews

 20 Pages in average pr. document

 20 Remarks (1 pr. page)

 30-40 Hours (1.5 - 2 pr. page)

Feedback

Table 1 GQM Work Sheet

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.38 of 4.50

Definition of goals in the Kappa-project

The first major goal was to ensure that :

The product quality is high enough to receive a certification by the American

Federal Aviation Administration (FAA).

The product must be a "zero error product" and changes will be costly due to very strict

change control mechanisms. Hence the following sub-goal was defined

G1.1 Reduce the amount of changes to a minimum.

The second major goal was to:

G2. Understand what it takes to develop safety critical software.

Development of safety critical software is expected to be more costly than development of

regular software. In order to improve estimates and cost-control the following sub-goal was

defined:

G2.1 Get an overview of the cost-profile related to development of safety critical

software.

Recommended reading

The ami approach [3] is an elaboration of the GQM-method. It is very

easy to read and should be beneficial for both developers and managers.

References

[2] Basili, Victor R., and Rombach, H. Dieter, "The TAME Project: Towards

Improvement-Oriented Software Environments", Institute for Advanced

Computer Studies, University of Maryland, UMIACS-TR-88-8, January,

1988.

[3] Application of Metrics in Industry a quantitative approach to

software management South Bank Univ., London 1992 (ISBN NO.

0 9522262 0 0)

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.39 of 4.50

3. Measurement in the Kappa-project.

Introduction

This chapter describes the methods used to collect the data and it shows a

representative selection of the results found in the Kappa-project so

far. It also describes some of the process improvements that has been

implemented.

Methods for Data Collection

Existing forms of reporting was improved in order to make reporting

overhead as small as possible.

 A new database based on Microsoft Access was developed. This

database is used both for definition of work packages and for

registration of time spent in the different activities. Each

work-package is divided into classes of sub-activities, E.g.

requirements, design, test, review , rework etc. This makes it easy to

make queries on these classes in the database.

 A new problem report database based on Sybase SQL has been

customised in order to support collection of metrics related to the

change process.

 Review reports have been changed in order to collect metrics related

to the review process.

Analysis of data from the Change Process

These data are used to answer the following questions:
 What is the distribution of changes among the different type of

changes?

 What is the distribution of changes among the project phases

where problems were introduced ?

 What is the distribution of changes among the causes of the

changes?

 What is the distribution of changes among the project phases

where problems where found?

 What is the distribution of changes among components in the

product structure?

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.40 of 4.50

Fig. KKVAMPIC. 2 : Cause of change vs. Impact

Fig. KKVAMPIC. 3 : Distribution of changes among project phases

The examples shown in Fig. KKVAMPIC. 2 and Fig. KKVAMPIC. 3

shows parts of the current status regarding the questions listed above.

Most of the changes implemented so far has been related to the

documents defining the SW-process. Only a small number of changes

have been implemented in the system requirements and system

architecture. The data from the change control activity will become more

interesting as the project moves into the coding phase and the test

phases.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.41 of 4.50

Analysis of data related to costs.

These data are used to answer the following questions:
 What is the distribution of development costs among the different

types of activities ?

 What is the average cost of a change ?

Fig. KKVAMPIC. 4 : Distribution of development costs

The distribution of different classes of sub-activities in the Kappa-Project

is depicted in Fig. KKVAMPIC. 4.

 The total amount of time spent in the project is now about 12000

hours.

 The classes Miscellaneous and Special Activity contains among

other things project management, training, and development of

tools. These data are now being re-classified in order to make the

real content more visible without expanding the level of details.

 The class "Safety" refers to the Functional Hazard Analysis (FHA)

which is being performed by external consultants, which explains

the low percentage.

 95 % of the rework so far is related to plans and standards.

 The total effort related to SW process development and

certification is so far about 35 % or 4200 hours. This also includes

development of a requirement database. It is now expected that

the total effort will be about 10 000 hours.

 It is still to early to distinguish between the safety critical

modules and the non safety critical modules.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.42 of 4.50

Fig. KKVAMPIC. 5 : Change Costs

Fig. KKVAMPIC. 5 shows the number of problem reports that have been

resolved and how many changes that was made in this process.. The cost

for each problem report is so far 8.6 hours. These data confirms that the

strict change control process which is necessary to comply with [1] is very

expensive. The project continuously tries to make the process more

smooth and to make the review process more effective as described in the

next sections.

Evaluation of the Change Process

Evaluation of the costs related to the change process revealed the

following problems:

 There were two boards involved in the process, the Change

Control Board (CCB) and the Release Control Board (RCB). This

organisational model was based on experiences from another

company developing safety critical software. The CCB handled the

administration of the process while the RCB became involved if a

problem had major consequences or was related to management

issues. This model did however create a significantly amount of

overhead.

 The quality of the change orders were not good enough. Too many

was rejected by the CCB and too many proved to be impossible to

implement.

 There was too much overhead in the communication between the

CCB and the engineers which investigates and implements the

changes. Problem reports and change orders were sent back and

forth between the board and the engineers too often.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.43 of 4.50

Improvements in the Change Process

Based on the evaluation the following improvements were made:
 The RCB was merged with the CCB. The new CCB now a number

of permanent members while other members attends the board

meetings as required based on a set of business rules.

 Change orders are now pre-reviewed before being assessed by the

CCB in order to prevent rejection at the board meeting.

 The investigation process and the change process are now merged

when possible to reduce the overhead in communication. In the

old model the majority of problem reports were assigned to

engineers for investigation. The assigned engineer returned a

proposed solution to the CCB which would decide whether to

include it in a change order or not. In most cases however the CCB

did know in advance if it was necessary to issue a change order on

a specific configuration item. In the new model the CCB may

assign an expanded action to an engineer. Typically such an

action includes responsibility for the investigation of the problem,

preparation of a change order and implementation of the changes.

Consequently a problem report is not returned to the CCB before

the change order is implemented and closed. The problem report

database has been upgraded to match these changes.

A new change control standard which incorporates these changes was

approved in September 1998.

The Document Approval Process

There are 6 different roles defined in the approval process, these are:

Author, Inspectors, Review Moderator, Subject Responsible,

Configuration Management (CM) and Software Quality Assurance (SQA).

The Review Moderator approves the review process and the Subject

Responsible approves the technical content of the document. Finally the

document is approved by CM which checks that all material have been

archived according to the CM-plan, and by Software Quality Assurance

(SQA) which approves the process as a whole.

The review process is based on the principle of formal inspection, but has

some special characteristics:
 The Review Moderator is always a person that is up to date on the

technical content and is very often identical to the subject

responsible.

 The author does not have any formal responsibilities for the

content of the document.

 The review meeting is democratic, I.e. all the inspectors may put a

veto on approval.

 Discussion at the review meeting is allowed.

 Most of the issues are characterised as Minor. A Major issue

automatically leads to a second review.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.44 of 4.50

Analysis of data collected in review.

These data are used to answer the following questions :
 What is the approval rate ?

 What is the average no of pages ?

 What is the average no of discrepancies pr. page ?

 What are the costs of a review including preparation?

Fig. KKVAMPIC. 6 : Errors, costs and approval rates

Fig. KKVAMPIC. 7 : Results from reviews vs. results from re-reviews.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.45 of 4.50

The examples shown in Fig. KKVAMPIC. 6 and Fig. KKVAMPIC. 7

shows examples of collected data related to the approval process. The

term Old Process is used to identify the first series of review which was

performed on the plans and standards. The review process was then

changed because only 25 % of the documents where approved in the first

review as described in the following section.

Evaluation of the Approval Process.

Evaluation after the first analysis of the data collected revealed that the

inspectors was not strict enough when they participated in walk-through

prior to formal inspection. This meant that many immature documents

were subjected to inspection and consequently the approval rate was very

low (25%). The duration of the review meetings was too long and there

was also too much discussions. This reduced the quality of the review

meetings. Discrepancies were unnecessary often defined as Major Issues

which again led to a second review. This happened because the inspectors

wanted the solution of all discrepancies to be 100 % specified in the

review meeting.

Improvements made to the Approval Process

Based on the evaluation the following improvements were implemented:

 Pre-review: A Competent person appointed by the Review

Moderator must review the document and give go for formal

inspection.

 Discussion is only allowed at the end of the review meeting, I.e.

the list of issues shall be fully recorded before discussion about

the solutions is allowed

 A review meeting should not last more than two hours.

Statistically a review meeting manage to do 8 pages pr. hour on a

new document. Consequently a reviews of large documents must

be split into several meetings.

 An issue may be defined as "Minor", even if the solution of the

discrepancy cannot be 100 % defined in the review meeting. In

this case the solution must be approved by the Moderator or the

Subject Responsible.

After these changes a new set of data was collected. The main discovery

was that the approval rate in first review increased from 25 % to 60 %

and this showed that the quality of the work done prior to the review

had improved.

However the review efficiency was not increased, I.e. the percentage of

discrepancies found during first -time inspection had not been increased

and is still only 50 %. The project is working to improve this number.

The results also shows that the number of discrepancies found in review

is remarkably stable regardless document type, especially in re-reviews.

Review of requirements is more expensive than other review and this

result was expected due to the very strict verification objectives for

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.46 of 4.50

requirements. Some of the requirements documents approved have a

relatively high number of discrepancies pr. page compared to the average,

evaluation shows that this was due to high time-pressure. It is expected

that these documents will be subject to more changes than the average

documents because they are more immature.

Based on these results the project tries to increase the time the inspectors

spend in preparation and also to put more emphasise on walk-troughs

prior to the inspections. The project is also considering objective criteria

for approval based on statistical data, I.e. to put a specific limit on

number of discrepancies pr. page.

Summary of experiences regarding safety critical software.

The main experience is that the effort of developing a development

process that complies with [1] showed to be much more difficult than

assumed.

 Currently more than 4000 hours has been spent on development

of plans and standard and the certification process in general.

This effort was substantially underestimated at the start of the

project. However this also means that the company has invested

heavily in knowledge about SW development processes.

 The data collected so far confirms that the strict change control

necessary to comply with [1]makes changes very expensive. Some

improvements to the change process have already been made, but

the data from the change control activity will become more

interesting as the project moves into the coding phase and test.

 By analysing the statistical data and do some simple changes to

the review process it has been possible to improve the process. The

average number of approval on first attempt has increased from

25 % to 60 %. The process should however still be improved

because analysis of data shows that only 50 % of the discrepancies

are found in the first review. This process is the key to reducing

the change costs.

Recommended Reading

"Developing a Successful Metrics Program" [4] . This paper demonstrates

how GQM can be used in a small metrics project. The method is applied

(in theory) on data collected at the NASA Goddard Space Flight Centre

(GSFC).

References

[1] DO-178B/ED-12B, Software Considerations in Airborne Systems

and Equipment Certification, December 1, 1992

[4] Rosenberg, L and Hyatt L. "Developing a Successful Metrics

Program" resented at 8th Annual Software Technology Conference,

Utah April 1996

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.47 of 4.50

4. General experiences

The following sections discusses the differences between the baseline

projects and tries to explain why the PIE became a success in one project

and a failure in the other.

Maturity of the existing processes

The GQM-method was applied in the same way in both the two baseline

projects.

The situation in the two projects was however very different. The

investigation in the Coastal Radio-project revealed that the existing

development process was much more immature than originally assumed.

Many of the leaders at a lower level in the organisation felt that the

process and the organisational environment was too unstable for

measurement. There was also an immense time pressure in the

organisation because several projects was delayed. The R&D manager

who did initiate the PIE was a driving force but otherwise motivation was

low.

The environment in the Kappa-project was much more favourable, even if

there were a great number of risk factors involving both new technology

and a new development process, The Kappa-project had just started to

define a development process that was going to comply with [1] when the

PIE started. In fact there was no existing development process at the

starting time. Many of the developers had however been working with

processes improvement within other departments in the former Normarc.

At the start of the PIE there was not any great time-pressure in the

project. The work with the SW development process had absolute priority

because of the certification. in addition the project manager for AMPIC

was also responsible for the development of the process in the

Kappa-project. Consequently metrics became an integrated part of the

development process from the start. The project manager for the

Kappa-project at that time was also very focused on the development

process.

Cultural differences

There are major cultural differences between the two projects which

explains why the people working in one of the baseline project was

reluctant while the people in the other department did welcome the

changes:

During the last years there has been several attempts to improve the

development process in the organisation running the Coastal

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.48 of 4.50

Radio-project. The major problem is that it has always been the

management that has tried to make changes and that low priority has

been given to such issues compared to other projects in the

R&D-department. The developers tend to be tired of "bright ideas from

the management", and it has been difficult to convince them about the

value of the PIE.

The R&D-section running the Kappa-project has a another history. Many

of the management issues related to software have traditionally been

handled by the developers themselves. Historically this is because the

number of people working with software used to be relatively low, and

because few other people in the organisation had any knowledge about

software development. Because of this, the software developers had a

high degree of influence on management, and they have been a driving

force behind improvement in the software development process in other

departments also prior to the PIE.

Unstable organisational environment

There were great problems due to turmoil in the organisation running the

Coastal Radio-project. In many ways the merging of the companies

became a take-over and this created a cultural shock which at times lead

to a quite hostile climate between the management and the employees.

During the process both the former General Manager the R&D manager

which originally proposed the PIE did resign. This took away much of the

driving force from the PIE. The new management did support the PIE but

it did also initiate a lot of other change processes and the baseline project

was redefined and rescheduled.

Timing problems between the PIE and the baseline projects :

Timing became the worst problem for the PIE because of major delays in

both the baseline projects. For the Coastal Radio-project this was mainly

due to other development projects that did not finish in time. It took a

long time after the metrics were defined before the baseline project

actually started and it became difficult to keep the subject hot.

The Kappa project had a much longer "warm up phase" than planned.

Full effort was not started until August 97 and the first 6 months was

completely dominated by the effort of defining a development process

compliant with [1]. The PIE was however very successfully matched with

this work, and the advantage was that measurement was integrated in

the new process from day one. However the Kappa-project itself did not

start producing data relevant for the PIE until January 98. Consequently

it was difficult to give feedback to the developers and motivation problems

occurred also in this project. Another effect is that much of the most

interesting data will be produced after the PIE has finished. Results will

however be made public available also in the future.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.49 of 4.50

Report policy

The nature of the metrics that was defined in the Coastal Radio-project

became a problem. Many of the metrics was supposed to be collected when

the developers experienced difficulties. This also meant that the

developers could decide whether to report or not.

In the Kappa-project on the other hand the developers have to report

because reporting is an integrated part of the tools used to register time

spending, problem reports and review results . The quality of these

reports may be more or less accurate dependant of the individual

motivation, but it is impossible not to report. The use of the database

tools has also made reporting overhead very small.

Summary of the success factors

 The development process must be stable before metrics is applied..

 The organisational environment should also be relatively stable.

Turn over and re-organisation makes it very difficult to keep a

stable development process.

 The PIE should be adapted to the pace of the baseline project. It

is very difficult to synchronise the 18 months duration of the

PIE with the schedule of large development projects which tends

to be delayed. Process improvement should preferably be a

background activity which makes a small but steady progress.

 There must be a least one impelling force working in the baseline

project. This person should preferably be a key figure among the

developers. It is very difficult to make any progress without such

persons.

 The assistance from SINTEF Telematics was absolutely necessary

in order to get started with the project.

 Regular feedback to the developers is necessary to secure accurate

reporting.

 Report overhead must be reduced to a minimum. Direct reporting

in SQL-databases has proven to be successful.

The Kappa project is still in an early phase, and the most interesting

experience data produced in this project is yet to come. Navia Aviation

will continue to spread experience data from this project also after the

AMPIC PIE is completed.

Recommended reading

"Implementing Effective Software Metrics Programs" [5]. This paper

analyses success and failure criteria found in two organisations that was

both running metrics projects.

METRICS IN HIGHLY SAFETY CRITICAL SOFTWARE

Page 4.50 of 4.50

References

 [5] Hall T. and Fenton N. "Implementing Effective Software Metrics

Programs" IEEE Software March/April 1997.

Page 5.1 of 5.44

Session 5 –
Implementation of SPI

Part II

Lessons learned in a National SPI Effort

 The Danish SPI initiative:

Centre for Software Process Improvement
Jørn Johansen

DELTA Software Engineering, Denmark

Lars Mathiassen

Aalborg University, Denmark

SPI by IPS - Involvement, Planning, Structure

Bill Culleton

Silicon and Software Systems (S3), Ireland

Experiences from practical software process

improvement
Seija Komi-Sirviö, Markku Oivo, Veikko Seppänen

VTT Electronics, P.O. BOX 1100, FIN-90571 OULU, FINLAND

Seija.Komi-Sirvio@vtt.fi, Markku.Oivo@vtt.fi, Veikko.Seppanen@vtt.fi

fax: +358 8 551 2320, tel. +358 8 551 2111

Page 5.2 of 5.44

Lessons learned in
a National SPI

Effort

 The Danish SPI initiative:

Centre for Software Process Improvement

Jørn Johansen

DELTA Software Engineering, Denmark

Lars Mathiassen

Aalborg University, Denmark

Abstract:

This paper focuses on experiences from the first part of a Danish, national

research- and collaboration initiative on software process improvement (SPI)

involving four software organisations and a dozen researchers. The general

experience is that Danish organisations can benefit from SPI initiatives. Such

efforts are, however, resource demanding, they require a high level of

management commitment and participation, and they typically involve

fundamental changes in the software processes and environments. This paper

presents a number of practical lessons focusing on learning to practice SPI, on

taking advantage of the key features related to SPI, and on dealing effectively

with the organisational changes involved in SPI initiatives. Other parts of the

experiences are published as separate, scientific papers.

Lessons learned in a National SPI Effort

Page 5.3 of 5.44

A National SPI effort

Software development is a young discipline. Although our knowledge has grown in

the last 30 years there still is a pronounced need for improvement in quality and

productivity in software development. Continuous improvement efforts have become

a strategic necessity to maintain profitability and meet the requirements from the

market. Today the most forceful and promising approach for improving the software

development process is based on maturity models such as CMM [16] & [27] and

BOOTSTRAP [22].

A national initiative has been formed in Denmark to facilitate the use of such

approaches within the software industry. This collaboration runs over three years

(1997-1999) with a 2.6 Million ECU budget, of which half is financed by the Danish

government: Ministry of Commerce (Council for Development of Business and

Industry) and Ministry of Research (Centre for IT-research). The initiative includes

four companies, Brüel & Kjær A/S, Danske Data A/S, L. M. Ericsson Denmark A/S

and Systematic Software Engineering A/S, and also DELTA Danish Electronics,

Light & Acoustics, Aalborg University, and Technical University of Denmark. The

missions of the initiative are:

 To systematise SPI knowledge in Danish companies.

 To tailor and further develop the most promising models for SPI, so they apply

for the Danish software industry.

 To develop frameworks for managing, organising and implementing SPI

activities in Danish companies.

 To communicate and publish knowledge about SPI to Danish companies.

These missions are addressed through action research efforts in each of the four

software organisations in which the following basic questions connected to software

process improvement are addressed:

 Modelling: How can we understand software development processes, the

conditions under which they are performed, and their capability to develop

quality software?

 Measurement: How can we assess the capability to develop software, identify

the appropriate improvement areas and strategies, and measure the effect of the

implemented improvements?

 Change: How can we manage, organise and carry out concrete and sustainable

initiatives to improve an organisations capability to develop quality software?

The research and development collaboration has been organised around:

 Four research groups at the participating companies.

 A common research forum across the companies.

 A Danish network on software process improvement.

Lessons learned in a National SPI Effort

Page 5.4 of 5.44

At each of the four companies, a local research group is established. This group

works tight together with the management, the local SPI-group, and the ad-hoc

groups established to work with specific improvements, cf. figure LM-JoJ.1. A

research group includes 4-7 employees from the company (normally the SPI-group),

who are involved in or has responsibility for improvement activities in the company,

and 3-4 external researchers. The research group meets 8-10 times a year, and the

initiated improvement work in the concerned company is followed closely:

 It supports the company in adapting and using improvement methods.

 It participates in the companies’ preparation and implementation of improvement

activities on identified improvement areas.

 It assesses strong and weak aspects of methods and the way in which they are

used.

Figure LM-JoJ.1: Organisation.

The research forum consists of the four research groups. This forum meets twice a

year in common workshops where:

 Experience and knowledge is exchanged across the companies.

 New process improvement knowledge is presented.

 Inspiration for specific improvement activities is presented.

 Improvement activities are put into perspective through general discussions about

software management and organisation development.

In addition, the project manages and supports an open network for Danish software

development companies who are involved in SPI activities.

Lessons learned in a National SPI Effort

Page 5.5 of 5.44

Lessons learned

In the following, we present ten lessons based on the work performed in the four

companies and documented in a midterm report for the project [40]. Experiences

have as a first step been systematically collected, discussed and documented in each

of the participating organisations. These experiences are derived from important

episodes, encountered problems, and successful initiatives documented as historical

data in each software organisations. Subsequently, these experiences have been

compared and contrasted across the four organisations to arrive at more general

knowledge on SPI. The resulting lessons focus on learning to practice SPI, on

taking advantage of the key features related to SPI, and on dealing effectively

with the organisational changes involved in SPI initiatives.

Data-driven interventions motivate and provide insight

Process improvement initiatives are based on measurements, which give knowledge

about the maturity of a development process in a company or indicates the effect of

the process improvement initiatives. The improvement initiatives are therefor not

primarily driven by new ideas or technologies. They start from systematic knowledge

about existing practice and about the effect of earlier initiatives. For most companies

this requires a change in both attitude and management practice in relation to methods

and new technology.

Maturity assessments have played a decisive role in the early progress of this project.

Insight in strengths and weaknesses has formed the basis for planning the

improvement activities and has strongly motivated both management and developers

in the work with improvement of the software development process.

A specially developed maturity assessment approach, called Problem Diagnosis, was

used at Brüel & Kjær, especially to involve the project leaders knowledge and

experience. This strategy has been vital in establishing a solid basis and a positive

climate for improvement. At L. M. Ericsson the use of self-assessments, performed

by the project leader or the project group, has given valuable insights into existing

practices and at the same time motivated projects to engage themselves actively in

improvement activities.

So far there are only few experiences with measurement on effects of improvements.

The main reasons are that it takes time and requires many resources to establish a

well functioning effect measurement programme. The first experiences with

presentation of effect measurement results are, however, positive. At Danske Data,

effect measurements were implemented in tight co-operation with management to

achieve a common understanding of the existing processes and to establish a fruitful

and well functioning measurement programme. The first data caused interest and

gave rise to debate with top management. The quality of the data provided are,

however, still insufficient to be used as practical tools in the improvement activities.

Lessons learned in a National SPI Effort

Page 5.6 of 5.44

A discussions of measurement during software process improvement work are to be

found in [13], [16], [28], [42], [43] and [44].

Maturity can be assessed in different ways

Maturity assessments have been practised in all four companies using several

different assessment methods: CMM and BOOTSTRAP as the main tools, but also

QBA (a level 2 CMM Questionnaire Based Assessment method developed by

Aalborg University [43]), CMM Light Assessments, Ultra Light Assessments and

Problem Diagnosis. Table 1 shows which methods have been used in combination.

The assessments have established that all four companies should either work on

reaching level 2 or consolidate it.

Table 1: Used assessment methods in the four companies.

Company/Method

Metode

Brüel & Kjær L. M. Ericsson Danske Data Systematic

CMM

BOOTSTRAP

QBA

CMM Light

Ultra Light

Assessment

Problem Diagnosis

The different assessment methods have only lead to minor differences in the derived

recommendations, but they each have their strengths and weaknesses. CMM and

BOOTSTRAP are comprehensive methods supporting an intensive and quite visible

assessment process in the organisation. QBA, CMM Light and Ultra Light

Assessments are less intensive and can therefor be used more often and broader in the

organisation. These methods are less accurate due to their reduced extent. Problem

Diagnosis is directed towards a well-defined group in the organisation and provides a

picture of their understanding of the situation. To combine these approaches it is

important to consider the main purpose and the participants in an assessment.

Comparing the use of questionnaires with interviews it has been unambiguously

reported, that the interview form gives more engagement and a higher level of quality

of the answers.

More discussion on this subject is to be found in the following litterature: CMM [27],

[2], [6], [5], [9], [23], BOOTSTRAP [22], [3], [14], [18], [45], SPICE [29] and the

Problem Diagnosis [44].

Establishment of a metrics program is a project in itself

To reach a higher level of maturity can be an objective in itself for some companies.

However, most organizations want to know whether the improvement activities

contribute to specific objectives for the company or its employees. In these

organizations, there has, for example, been a pronounced wish to know if there is a

Lessons learned in a National SPI Effort

Page 5.7 of 5.44

change in customer satisfaction, error rates in products, productivity, or motivation

among employees.

None of the four companies have so far established a well-functioning effect

measurement programme although some of the companies have spend a great deal of

resources to do so.

One encountered challenge relates to creating inexpensive routines for data collection

which at the same time give satisfactory coverage and validity. This task has in all the

companies appeared to be much more complex than expected. It is therefor strongly

recommended to define effect measurement programmes as an improvement project

with its own plans, resources, and obligation to document improvement. The

initiatives will be more visible and they can be organized in an iterative fashion in

which improvements of the measurement programme become essential parts of the

overall improvement project.

Diffusion of the effect measurement results represents a separate challenge. On one

side it is inexpedient to publish measurement data, which are not sufficiently reliable.

Many will question their value and the discussion will therefor focus on critique of

the measurement programme instead of improving the understanding of present

practices in the company. A publication of the measurement results can, on the other

side, contribute to a higher validity, partly because the projects then become more

serious providers of data, and partly because publication can initiate discussions

which identity weaknesses and point at feasible and practical solutions. In general it

is recommended to practice early publication and diffusion of measurement data.

Other experiences on effect measurements and Return on Investments can be found

in: [4], [10], [19], [47], [21] and [34]. [27] presents a guide in a goal driven

measurement programme for software development.

Process improvement is organisational development

Englebrecht suggests that organisational development efforts include five distinct

efforts (Engelbrecht, et al., 1991) First, the vision and motivation behind the effort is

communicated to the organisation and an initiative group is established. Second, a

situation analysis is performed in which a shared picture of the future is created.

Third, this picture is expressed as a number of prioritised objectives based on broad

participation to establish the necessary motivation in the organisation. Forth, these

objectives are turned into specific improvement activities involving experiments and

operational planning. Finally, the initiatives have to be implemented as parts of a new

organisational practice. In this project, most of the effort in the companies have been

on efforts two to four above:

 Analysis of the actual situation (assessments).

 Specific improvement activities and experiments.

This is not to say that nothing has happened concerning the other aspects of

organisational development, but they do not stand out as visible as these do until now.

Lessons learned in a National SPI Effort

Page 5.8 of 5.44

The other three types of efforts involved in organisational development have been

addressed—visions and strategies related to improvement of the software

development process have been developed and presented, initiatives to make others

participate in prioritising initiatives have been taken (and always with success), and

some efforts to implement improvement initiatives have been completed—but,

following the dominant rhetoric of the SPI literature, each of these efforts have so far

played a less dominant role than the two mentioned above. In their continued efforts

to create successful and sustainable improvements each the organisations are now

focusing broader on all the concerns involved in organisational development.

Inspiration can be found in e.g. [1], [36], [38], [20], [51], [25], [26] and [31].

Process improvement initiatives should set an example

It is important that a process improvement project appears as an example of

efficiency and competent work. An often-used slogan goes like this: ”A project for

process improvement must practice at least one level of maturity higher than the

organisation which is undergoing an improvement process”.

Our measurements show that the companies’ maturity level is 1 or very close to level

2 on the CMM scale. The improvement projects should therefor act as being on

maturity level 2 and show professional project management. In practice this has

proved difficult. The projects have suffered from frequent replacements of key

employees, when they were missing in development projects or for other top priority

tasks. Problems with setting precise goals and supply of necessary resources have

also been very typical for process improvement projects.

At Danske Data, the improvement project is characterised by concrete goals at the

organisational level, powerful management back up, a well-qualified crew and a few

dedicated resources together with people involved on a part-time basis. In spite of

this, the project has been suffering from unrealistic planning, problems with focusing

the SPI efforts, and difficulties in getting the right key people involved in

implementing initiatives.

At L. M. Ericsson, many synchronous improvement activities have taken place

resulting in insufficient attention on each single initiative and hence too little

progress. Yet, in a period the focus was on preparing for a formal, company-wide

CMM assessment to qualify for level 2, and in that period visible progress was made.

It has been quite difficult for all the involved organisations to make SPI initiatives

function as an example and there is a good reason to believe that this problem will

arise in most process improvement initiatives. Especially companies at the low

maturity levels can find inspiration in [13] and [24]. Other related experiences can

be found in [7], [8] and [15].

Lessons learned in a National SPI Effort

Page 5.9 of 5.44

Process improvement must lead to visible results

Process improvement takes time. It is, therefor, important to demonstrate substantial

results during the project. Only by visible improvement, results, and progress, is the

improvement project able to demonstrate and remind the organisation about its worth.

This is especially important in relation to the motivation among management and

employees.

Creation of visible results has appeared to be an essential problem in all the

companies. Both management and developers have been curious to see and

experience concrete results. An important reason for this is, that expectations and

plans have been quite optimistic and ambitious (unrealistic), and the objectives were

not divided into manageable subobjectives, which could demonstrate progress.

Although it is difficult, several visible results has been achieved so far:

 At Danske Data, an extensive effect measurement programme is under

implementation, a competence centre has been established for project managers,

and a large diffusion and adoption project has influenced the organisation and

management of diffusion activities in general.

 At L. M. Ericsson, intensive use of Ultra Light Assessments have resulted in

increased motivation and participation which has led to improvements

corresponding to one step on the CMM scale.

 At Brüel & Kjær, new development models are under implementation, new

project follow-up procedures and tools are now in use, and new processes for

requirement specification are experimented with in a number of projects.

 Systematic Software Engineering has developed new process descriptions for

project and configuration management, and updated descriptions for review and

risk management. Adoption of these procedures is supported by an intensive

project management course involving all project managers.

Other experiences on this subject are discussed in [13], [24] and [34].

Process improvement requires dynamic organisation

All four companies recommend that improvement projects should be implemented as

normal development projects. This means planning, including a project plan with

time schedule, milestones, activities, and intensive follow-up in relation to a

requirement specification and the project plan. The reason why the companies

emphasise this is because planning and control in reality is a problem.

The four companies all have symptoms of problematic planning and control. Planning

has been at a too high level or even missing which have resulted in insufficient

resources, weak co-ordination, and insufficient communication about the activities in

the improvement project with the rest of the organisation. A missing plan for a project

signals less importance and low priority in a busy everyday life where improvement

activities are not given the same (or higher) priority as development activities.

Lessons learned in a National SPI Effort

Page 5.10 of 5.44

All things considered, the recommendation from the companies is as clear as it is

correct: The involved parties must be able to influence the project plan, they must

commit to it, and the required conditions must be in place. During the project, it has

to be clear what the project delivers and it has to be simple to verify whether the

defined goals are met in the end.

In each of the four organisations we have experienced projects as the ideal form to

organise improvement activities. The existing departments for new methods and tools

have been questioned and this has led to several reorganisations of the activities

related to technological innovation and support. In Systematic Software Engineering,

the existing Quality Assurance Group had to be merged with the SPI initiatives

resulting in a number of reappointments and reorganisations. In Danske Data, the

centralised method and technology department was reorganised into a number of

local groups and a smaller centralised group, and all the innovation activities where

co-ordinated as part of one comprehensive SPI initiative. In general, the organisation

and planning has to be as dynamic as possible to be able to accommodate changes

needed as result of the ongoing learning involved in become engaged in SPI

activities.

[13] and [24] give usable advises on how to manage a process improvement project.

[11] and [30] focus on organisation of and responsibility for SPI-groups.

Management must play an active role

Commitment from management is often mentioned as an absolute necessity to obtain

success in SPI. Commitment from management has three dimensions:

 Insight in what SPI comprises and what it means for the organisation. This

includes insight in the process improvement project, e.g. through involvement in

follow-up on the project.

 Support in the form of internal marketing of SPI, ensuring of stable resources,

definition of requirements to the improvement project and to the persons whom

are going to use the results. It also includes active involvement to find solutions

in conflicts of interests.

 Accept of the improvement project through involvement in preparation of the

project plan, including a time schedule, budget, and allocation of qualified

resources.

Commitment is not just to start an improvement project and give the project team

responsibility for improvement. Commitment includes build-up of sufficient

knowledge about SPI among managers, to be able to match the project team in

defining the vision, the expectations and requirements, and also to give the project a

competent follow-up.

In several of the companies an improvement area was defined, an activity was

specified, but time and resources were subsequently not allocated and too seldom

were specific improvements required by management in the product development

Lessons learned in a National SPI Effort

Page 5.11 of 5.44

projects. A continuous pressure from management contributes to support a positive

attitude for change. The priorities performed by management are the priorities, which

the employees tend to comply with. If product development is prioritised higher then

process improvement, then process improvement work will be of rudimentary

importance. During the first part of this project the companies have realised, that

success with software process improvement is tightly coupled to management

attention and follow-up, which has to be equal to product development projects.

This subject is also discussed in [13], [24] and [17].

There are many roads to improved project management

Improvement of project management is a central issue in software process

improvement. Partly because good project management is a condition for

improvement of other processes, and partly because many problems in software

development are connected to project management. Experiences across the

companies are very different, and the overall experience is, that there are many roads

to improve project management.

Systematic Software Engineering started their improvement of the Project

Management process by establishing a group consisting of department managers and

experienced project managers, who should formulate procedures for project

management. This preliminary work has now been ongoing for 1 year. The

procedures are finished, but not yet fully implemented in the organisation.

Implementation is closely coupled to an ongoing education of all project managers in

the company.

Danske Data has chosen to establish a competence centre for project managers, in

which the project managers have the responsibility for their own competence

development. The experiences with written procedures are not especially good in the

organisation. Because of this involvement has been in focus under construction of this

centre. Firstly, the competence centre is based on the project manager’s own

responsibility for contents – it is their problems and their involvement, which are the

substances in the centre. Secondly, a list of 10 objectives for project management is

formulated, which include a standard for good project management practice. Thirdly,

the centre offers education to build up competence. Status is that the competence

centre is fully established, an incentive scheme is agreed by the management, and the

education plan is in place.

Brüel & Kjær have for several years worked for improvement of project management,

primarily the “soft” parts of the project management process, such as teambuilding.

The key to change at the company is to solve the project manager’s problems.

Especially two areas have been in focus: Project follow-up and a more iterative

development model. An experiment with ‘Time-boxing’ is started, with the purpose

to show if it is an effective control technique for the company. In connection with

project follow-up, an early decision has caused purchase and installation of a new and

customised project management tool. Success is conditioned by the project manager’s

Lessons learned in a National SPI Effort

Page 5.12 of 5.44

experience with this tool. They have to feel they get help, not bureaucracy - an

experience from the PRIDE project [33].

At L. M. Ericsson the project management improvement initiatives are controlled by

the requirements from CMM level 2. The project managers have to fulfil these

requirements. Each project manager is responsible for the management as well as for

the improvement of the project management process in the project.

Hence there are many, very different ways in which project management can be

improved. Which one is the most practicable way depends on which requirements,

traditions, successes, and failures the company has.

Essentially and related factors are discussed in [12], [15], [13] and [24].

Each organisation must make its own experiences

The improvement projects have been followed intensively by persons with both

theoretical and practical knowledge in software development and process

improvement. There has been no lack of advice and recommendations from these

persons. At the companies, there are persons with concrete insight in process

improvement inside the company. Nevertheless, experiences and not least mistakes

seem to play a major role in an improvement project. “We were possibly able to read

about it in a book, and somebody has very likely said it, but nevertheless we fell

through at this point”, a manager said at a workshop.

There are several reasons for this. To get people to do something is a challenging

communication process, in which various ingredients, such as trustworthiness,

arguments, and feelings are included: “We are special” or “We know best what is the

best for this company”. Besides, basic communication problems, political games, and

power struggles each play their important roles in any SPI initiative. Minefields in the

shape of de-motivation therefor surround the improvement projects.

No panacea is available, but time used to discuss and exchange experiences with the

projects is well used. With the specifics of the situation at a company in the

foreground, a systematic argumentation is a very useful tactic, especially if it is

supplemented with personal authority and trenchancy. Exchange of experiences

between the companies has also proven useful, but it is only after they have gathered

their own experiences, that they believe in what others have experienced or

recommend.

Inspiration can be found in [17].

Conclusion

These lessons document the more practical oriented learning from the first half of the

Danish SPI initiative. Other experiences from this project are documented in a

number of more traditional papers 35 - 53.

Lessons learned in a National SPI Effort

Page 5.13 of 5.44

If we look at the results until now and relate these to what else is going on in

Denmark within SPI, it becomes relatively clear, that external pressure gains the

improvement process. A national initiative like this–where the involved companies

get external support, where there is a constant follow-up, where obtained results are

questioned and discussed, where mutual obligations are build between the partners,

and where contractual requirements enforce a high level of commitment–constitutes

and unusually fruitful and positive environment for successful SPI.

In the second half part of the project, we will focus more on effect measurements.

Some measurement programmes are under implementation, and this work will be

continued. In the end, such programmes are needed to establish indicators for the

level of improvements achieved in a national effort like this.

Acknowledgement

We thank all participants in this large project, the four companies Brüel & Kjær A/S,

Danske Data, L. M. Ericsson Denmark A/S and Systematic Software Engineering

A/S. Also thank to the sponsors Ministry of Commerce (Council for Development of

Business and Industry) and Ministry of Research (Centre for IT-research). Especially

we thank the persons, who are co-authors of part three of the project midterm report

[40], which has been the basis for this paper: Allan B. Jakobsen, DELTA Software

Engineering, Ivan Aaen, Jesper Arent, Jakob Iversen, Peter Axel Nielsen, Aalborg

University and Jacob Nørbjerg, Technical University of Denmark.

Literature

General literature

1 Applegate, L. M. (1994). Managing in an Information Age: Transforming the

Organization for the 1990s. IFIP Proceedings, 15-94.

2 Arent J. & J. Iversen (1996). Development of a Method for Maturity

Assessments of Software Organizations based on the Capability Maturity

Model. M. Sc. Thesis. Dept. of Computer Science, Aalborg University. (In

Danish).

3 BOOTSTRAP Team (1993). BOOTSTRAP: Europe’s Assessment Method,

IEEE Software Vol. 10, no. 3, pp. 93-95.

4 Brodman, J.G. & D.L. Johnson. (1995). Return on Investment (ROI) from

Software Process Improvement as measured by US Industry. Software Process

- Improvement and Practice, Vol. 1(Pilot Issue), pp. 35-47.

5 Curtis, B. (1994). A mature view of the CMM. American Programmer Sep.

1994, no. 9, pp. 19-28.

6 Daskalantonakis, M. K. (1994). Achieving Higher SEI Levels. IEEE Software

Vol. 11, no. 4, pp. 17-24.

Lessons learned in a National SPI Effort

Page 5.14 of 5.44

7 Diaz, M. & J. Sligo. (1997). How Software Process Improvement Helped

Motorola. IEEE Software, Vol. 14, no. 5, pp. 75-81.

8 Dion, R. (1993). Process Improvement and the Corporate Balance Sheet. IEEE

Software, Vol. 10, no. 4, pp. 28-35.

9 Dunaway, D.K. & S. Masters. (1996). CMM-Based Appraisal for Internal

Process Improvement (CBA IPI): Method Description. Technical report:

CMU/SEI-96-TR-007. Software Engineering Institute, Pittsburgh,

Pennsylvania.

10 Emam, K.E. & L. Briand. (1997). Costs and Benefits of Software Process

Improvement. ISERN-97-12. Fraunhofer - Institute for Experimental Software

Engineering.

11 Fowler, P., & S. Rifkin. (1990). Software Engineering Process Group Guide.

Technical report: CMU/SEI-90-TR-24, Software Engineering Institute,

Pittsburgh.

12 Goldenson, D.R. & J.D. Herbsleb. (1995). After the Appraisal: A Systematic

Survey of Process Improvement, its Benefits, and Factors that Influence

Success. Technical report: SEI-95-TR-009. Software Engineering Institute,

Pittsburgh.

13 Grady, R.B. (1997). Successful Software Process Improvement. Prentice Hall

PTR, Upper Saddle River, New Jersey.

14 Haase, V., R. Messnarz, G. Koch, H. J. Kugler, P. Decrinis (1994):

BOOTSTRAP: Fine-Tuning Process Assessment, IEEE Software, Vol. 11, no.

4, pp. 25-35.

15 Hayes, W. & D. Zubrow. (1995). Moving On Up: Data and Experience Doing

CMM-Based Process Improvement. Technical report: CMU/SEI-95-TR-008.

Software Engineering Institute, Pittsburgh, Pennsylvania.

16 Humphrey, W. S. (1989). Managing the Software Process. Reading

Massaachusetts. Addison Wesley.

17 Jakobsen, A. B. (1998). Tricks of Bottom-Up Improvements. IEEE Software,

Vol. 15, no. 1, pp. 64-68.

18 Jonassen Hass, A. M., Johansen, J. & Andersen, O. (1997): Softwareudvikling i

Elektronikindustrien. DELTA Dansk Elektronik, Lys & Akustik, D-260. (In

Danish)

19 Jones, C. (1997). Applied Software Measurement, McGraw-Hill.

20 Kotter, J. P. (1995). “Leading Change: Why Transformation Efforts Fail.”

Harvard Business Review (March-April), 59-67.

21 Krasner, H. (1994). The Payoff for Software Process Improvement (SPI): What

it is and How to get it. Software Process Newsletter, IEEE Computer Society

(no. 1, September 1994), pp. 3-8.

22 Kuvaja, P., J. Similä, L. Krzanik, A. Bicego, S. Saukkonen, & G. Koch. (1994).

Software Process Assessment and Improvement - The BOOTSTRAP

Approach. Blackwell.

Lessons learned in a National SPI Effort

Page 5.15 of 5.44

23 Mathiassen, L. & C. Sørensen (1996). The Capability Maturity Model and

CASE. Journal of Information Systems, Vol. 6, pp. 195-208.

24 McFeeley, B. (1996). IDEALSM: A User's Guide for Software Process

Improvement. CMU/SEI-96-HB-001. Software Engineering Institute,

Pittsburgh.

25 Mintzberg, H. (1983). Structure in Fives: Designing Effective Organizations,

Englewood-Cliffs, New Jersey, Prentice Hall.

26 Nonaka, I. (1994). “A Dynamic Theory of Organizational Knowledge

Creation”. Organization Science, Vol. 5, no. 1, pp. 14-37.

27 Paulk, M. C., C. V. Weber, S. M. Garcia, M. B. Chrissis (1993). The Capability

Maturity model: Guidelines for Improving the Software Process. Software

Engineering Institute, Addison Wesley.

28 Paulk, M. C., W. S. Humphrey und G. Pandelios (1992). Software Process

Assessments: Issues and Lessons Learned. Proceedings of ISQE92, Juran

Institute, 10-11 March, pp. 4B/41-4B/58.

29 Rout, T. P. (1995). SPICE: A Framework for Software Process Assessment.

Software Process - Improvement and Practice, 1(Pilot Issue), pp. 57-66.

30 Sakamoto, K., K. Kishida, N. Nakakoji (1996). “Cultural Adaptation of the

CMM: A Case Study of a Software Engineering Process Group in a Japanese

Manufacturing Company”. Process-Centred Environments, pp. 137-154, John

Wiley and Sons Ltd. New York.

31 Senge, P. (1990). The Fifth Discipline: The Art & Practice of The Learning

Organization, Century Business, London.

32 Vinter, O., T. -M. Poulsen, J.M. Thomsen & K. Nissen (1996). The prevention

of Errors through experiens-driven test efforts (PET). ESSI project

number10438.

33 Vinter, O., S. Lauesen & J. Pries-Heje (1998). A methodology for preventing

requirements issues from becoming defects. (PRIDE) ESSI Project number

21167.

34 Zahran, S. (1997). Software Process Improvement: Practical Guidelines for

Business Success, Addison Wesley.

Contribution from the project

35 Aaen, I., P. Bøttcher & L. Mathiassen (1998). The Software Factory:

Contributions and Illusions. In: Proceedings of the 6th European Conference on

Information Systems, Aix-en-Provence, France.

36 Arent, J. (1998) Making Software Process Improvement Happen. Doctoral

Consortium at the 6th European Conference on Information Systems,

Aix-en-Provence, France.

37 Arent. J. (1998). Making Software Process Improvement Happen: A Learning

Perspective. Ph.D summer school at Magleaas, Copenhagen, Denmark.

Lessons learned in a National SPI Effort

Page 5.16 of 5.44

38 Baskerville, R. & J. Pries-Heje (1997). IT diffusion and innovation models: The

conceptual domains. In: Diffusion, Transfer, and Implementation of Informa-

tion Technology, T. McMaster & D. Wastell (Eds.), London: Chapman & Hall.

39 Bøttcher, P. (1997). Comparing Total Quality Management and the Capability

Maturity Model (CMM) in an Organizational Change Perspective, Proceedings

of the Seventh International Conference on Software Quality, Montgomery,

AL.

40 Centre for Softwareprocesforbedring (1998). Danske Erfaringer med

Forbedring af Softwareprocessen. DELTA Dansk Elektronik, Lys & Akustik,

D-262. (In Danish)

41 Falck, W., M. Gaupås, K. Kautz, A. Oppøyen & T. Vidvei (1997).

Implementing Configuration Management in Very Small Enterprises. In:

Proceedings of the European Conference on Software Process Improvement -

SPI´97, Barcelona, Spain.

42 Iversen, J. (1998). Data-Driven Intervention in Software Process Improvement.

Doctoral Consortium at the 6th European Conference on Information Systems,

Aix-en-Provence, France.

43 Iversen, J., J. Johansen, P. A. Nielsen & J. Pries-Heje (1998). Combining

Quantitative and Qualitative Assessment Methods in Software Process

Improvement. In: Proceedings of the 6th European Conference on Information

Systems, Aix-en-Provence, France.

44 Iversen, J., P. A. Nielsen & J. Nørbjerg (1998). Problem Diagnosis in Software

Process Improvement. Proceedings of the Twenty-first Information Systems

Research Seminar in Scandinavia, Aalborg, Denmark.

45 Jonassen Hass, A.M., J. Johansen & J. Pries-Heje (1997). BOOTSTRAP the

real way to SPI. Quality Week 97 Europe.

46 Jonassen Hass, A. M., J. Johansen & J. Pries-Heje (1998). Does ISO 9001

Increase Software Development Maturity. EuroMicro ’98.

47 Kautz, K. (1998). Even in Very Small Software Enterprises Metrics can make

Sense. Proceedings of the 21st Information Systems Research Seminar in

Scandinavia, Aalborg, Denmark.

48 Kautz, K. & E. Åby Larsen (1997). Diffusion Theory and Practice:

Disseminating quality management and software process improvement

innovations. In: Proceedings of the 5th European Conference on Information

Systems, Cork, Ireland.

49 Lyytinen, K., L. Mathiassen & J. Ropponen (1998). Attention Shaping and

Software Risk: A Categorical Analysis of Four Classical Approaches. Accepted

for publication in ISR Journal.

50 Mathiassen, L., F. Borum & J. Strandgaard Pedersen (1997). Transforming IT

Management through Action Learning. Proceedings of the Twentieth In-

formation Systems Research Seminar in Scandinavia, Oslo, Norway.

51 Mathiassen, L. & C. Sørensen (1997): A Guide to Manage Software

Engineering Technologies. In: Diffusion, Transfer, and Implementation of

Lessons learned in a National SPI Effort

Page 5.17 of 5.44

Information Technology, T. McMaster & D. Wastell (Eds.), London: Chapman

& Hall.

52 Vinter, O. (1997): How to Apply Static and Dynamic Analysis in Practice.

Software Quality Week 97, and Quality Week Europe 97.

53 Vinter, O., P.-M. Poulsen, S. Lauesen, J. Pries-Heje (1997). Preventing

Requirements Issues from Becoming Defects. EuroSTAR 97.

Authers and Companies

Jørn Johansen has 18 years experience in IT. He has worked for 15 years in a

Danish company with embedded and application software as a developer and project

manager. For the last 3 years he has worked as a consultant and registered

BOOTSTRAP assessor, performing more then 25 BOOTSTRAP assessments in

Denmark. Jørn Johansen is also co-ordinator the Danish SPIN-group. He is project

manager in the Centre for Software Process Improvement project.

DELTA Software Engineering, Venlighedsvej 4, 2890 Hørsholm, Denmark,

E-mail: joj@delta.dk, Phone: +45-45867722, Fax: +45-45865898.

DELTA Software Engineering is a division DELTA Danish Electronics, Light &

Acoustics. DELTA has been in business for more than 50 years and performs

accredited testing and consultancy for discerning customers throughout Europe.

DELTA has a staff of 240 and is a totally independent self-governing foundation.

DELTA Software Engineering works with assessment of software products and

software life-cycle processes and conducts research in these fields. Specific

competence areas are software quality systems, software best practice and software

product certification.

Lars Mathiassen is a professor in computer science with 23 years of experience as

researcher, teacher, and consulting. His research interests focus on engineering and

management of IT-systems. More particularly he has worked with project

management, object-orientation, organisational development, management of IT, and

the philosophy of computing. He is project manager in the Centre for Software

Process Improvement project.

Aalborg University, Fredrik Bajers Vej 7E, 9220 Aalborg Ø, Denmark

E-mail: larsm@cs.auc.dk, Phone: +45-96358913, Fax: +45-98159889

Aalborg University. The Department of Computer Science at the Faculty of

Technology and Science, Aalborg University, Denmark is one of the major

departments of computer science in Denmark: founded in 1990, it currently has

approximately 300 undergraduate/graduate students, 20 PhD students and roughly

40 employees.

Page 5.18 of 5.44

SPI by IPS -

Involvement, Planning,

Structure

Bill Culleton

Silicon and Software Systems (S3), Ireland

Introduction

Silicon and Software Systems (S3) is a successful independent company providing

silicon software and hardware design services in the areas of telecommunications,

consumer electronics and computer communications etc. For 12 years we have been

providing solutions to industry based on expertise, quality and dedication to meeting

delivery dates. In order to build on this success it has become increasingly clear that

an optimum process is essential to providing a high quality and efficient service to

current and future customers. Optimising the already existing processes is however

potentially an expensive task and one which is solved in many companies by setting

up a dedicated group to address it. In view of the S3 culture of involvement and

ownership this was not an option.

The SPI program undertaken was quite large and covered topics which ranged from

improving an existing set of quality procedures through to modification of on-line

process definition and support.

The improvement plan which was developed and is currently being executed has

ensured that process definition and approval has involved approx. 45% of the

organisation. The training methodology will ensure that more than 75% of the

organisation is involved in process adaptation and approval. Apart from one

dedicated co-ordinator no person has had to provide more than 40 hours of their time

in the last 12 months of this part of the overall SPI project.

This paper addresses the approach taken to improve the existing quality procedures.

This is felt to be the keystone to strong process definition and is essential when

producing quality work for any customer. Furthermore, when used correctly it can be

expected to lead to improved productivity.

SPI by IPS

Page 5.19 of 5.44

The selection of an improvement model and the justification for the choice made is

presented.

The paper then proceeds to discuss the improvement plan and its execution. In

particular the method used to ensure maximum staff involvement and buy-in is

addressed. This includes usage of pilot projects, expert teams for process definition,

task forces to review their proposals and update existing procedures. It furthermore

describes the training methodology adopted and highlights how this was used to

increase the number of people involved in process definition and approval.

Finally a number of initial results which have been achieved are presented.

Process Background and the Drivers of Change

When S3 was founded in 1986, it was immediately decided that a quality system must

be implemented. Standards and procedures were defined for the main SW

development activities based on the IEEE standards. These were initially effective but

as the organisation grew some problems were noticed.

Recognising the importance of controlled quality, an improvement process based on

ISO9000 was embarked upon in 1993. Official accreditation was achieved in May

1994. The main outcomes of this initiative were a comprehensive library of

documented procedures, both standards and guidelines as well as a very quality

conscious mentality among staff.

These procedures have been in use within the company since 1994 and have certainly

been seen to help meet quality criteria on projects. It had however in the meantime

become increasingly obvious that they were beginning to add an expensive overhead

to some smaller projects and in some cases were possibly being counter-productive.

In 1997 it was decided to tackle these issues as part of a renewed SPI initiative. There

were also other issues addressed, e.g. definition of and collection of metrics,

improvement of an intranet based on-line process definition and support system.

These however fall outside the scope of this paper.

It was clear that there were a number of different approaches which could be taken

but it was felt that the best one was very dependent on the underlying issues. As a

means of identifying these a general meeting was held and individual staff were

interviewed. In this way opinions were solicited from more than 30% of the staff,

both development and management. The main issues identified were

 Structure of quality system library was not intuitive

 Set of procedures was often viewed as being too large for small projects

 In many areas procedures were too restrictive, in other areas they were too loose

 Many ‘standards’ were very open to interpretation and as a result much time was

lost trying to interpret them for specific projects

When these issues were looked at in more detail three main points emerged

 The quality system library contained a number of very directed procedures but

had no clear indication of how they fitted together. It missed any definite

description of the development processes and how these individual elements

fitted into it.

SPI by IPS

Page 5.20 of 5.44

 Most procedures had been defined for, and evolved on large projects of many

tens of man years effort. They had been made very restrictive and were now

placing too much overhead on smaller projects.

 Not enough support was available in application of generic procedures to the

diverse needs of projects

At about the same time that the development engineers were realising that the quality

system was stagnating, senior management was beginning to realise that they did not

have the visibility into how projects were being executed that they would like.

Furthermore potential customers were beginning to query the level of visibility and

thus the level of control.

The consensus by all levels in the organisation that these issues existed has been very

important to the success of the project.

Selection of an Improvement Model

Based on the issues outlined in the previous section, it was decided that a good model

must be used so that improvement could be defined and measured. After some

discussion it was decided to use the Capability Maturity Model from the SEI. This

has a number of characteristics which were felt to be essential to this initiative

 One of the underlying principles of the CMM is that of incremental change.

Because of the size of the task and limited resources this was important

 CMM contains a predefined set of processes areas which were seen to be a good

starting point. These could be used to provide the overview or holistic

“end-to-end view of the process” (see [1]) which was required.

 Having a number of defined levels provides a good roadmap for continued

improvement even after achievement of level 2, see “Expected Results”.

 By ensuring that the development process was improved enough to achieve

CMM level 2 recognition there was some measurement available. This also had

the advantage of being an industrially recognised benchmark.

 The emphasis placed by the CMM on an effective support infrastructure was seen

as important in terms of ensuring practical application of defined procedures as

well as a means of ensuring structured improvement in the future

 It enables extra visibility into development processes for management and thus

matched this management requirement. In an internationally expanding company

managing this visibility correctly can help to enable world-wide management

transparency.

Having identified the main issues to be addressed and the roadmap to be used to

tackle these, the decision was taken to approach this initiative in the same manner as

any other project in the company. This required identification of a leader responsible

for development and execution of a plan as well as responsibility for the results. The

plan itself is addressed in more detail in “The Project Plan” and the results are

presented in “Results and Lessons Learned”.

The Project Plan

In the description of the plan a number of important constraints are presented. These

are felt to be typical constraints in a company of S3’s size.

SPI by IPS

Page 5.21 of 5.44

Plan Summary

It was decided that there were four strands to this plan. These were

 Raising process awareness and ensuring buy-in to improvements

 Process analysis, redesign and implementation

 Introduction of modified system

 Defining and providing process support

The main elements of each of these are described below

 Raising process awareness and ensuring buy-in to improvements

 Perform initial maturity assessment with involvement and support of

developers, middle and senior management. The evaluation can be expected

to provide the following results

 it makes people aware of the issues

 it provides a baseline figure against which improvement could be

measured

 it provides an indication of the weakest areas of the development process

and thus the ones which must be addressed first

 Process analysis, redesign, implementation and testing

 Based on the areas identified in the evaluation described above, analyse the

best methods used within the company but also throughout industry and base

a standard description on these. These are then documented for use by the

rest of the organisation.

 Existing documents can be updated using the analysis of the CMM Key

Process Areas (KPA) as a starting point.

 Review documents using as many development personnel as possible

 Introduction of modified processes on pilot projects to test usefulness and

practicality

 Introduction of modified system

 Once testing is complete the new procedures are to be released. This is to be

done by a combination of announcement via internal eMail and dedicated

training.

 Defining and providing process support

 Ensure that support in the practical application of procedures is made

available to personnel and guarantee that feedback from experience gained is

used to improve further. A good support structure also ensures effective

deployment of best practices.

Expected Results

There were three main goals defined. In addition to these, where possible there

were criteria against which their achievement could be measured. The goals and their

criteria were

Goal 1 Improve quality system procedures and understanding of how they

can help

Measure No measure. Effect will only be noticed when procedures are in use.

SPI by IPS

Page 5.22 of 5.44

Goal 2 Introduction of structured support organisation

Measure Company’s recognition of the need for this role and subsequent

funding of it. In a design services company this is a major

commitment.

Goal 3 Achievement of level 2

Measure Is a measure in itself

Execution of the Plan
The description of execution is divided according to the four strands of the plan.

Raising Process Awareness and Ensuring Buy-in to improvements

A strong culture of quality awareness, while being something most companies would

like to achieve, also has its disadvantages when trying to introduce change. These

were quite apparent in S3 and provided a major challenge to the project.

Most projects are quite successful and there was a general feeling that tasks were

being planned and executed effectively. This leads to a certain amount of resistance

to change. This was of course tempered by the feeling that the available procedures

were incomplete and thus providing potential for decreased efficiency.

In order to address this issue and to gain buy-in there were two main tasks

undertaken.

 Intermediate Maturity Evaluation

Using a fast maturity evaluation method, see [2], quick analyses were performed

on the SW divisions of S3.

From an awareness point of view, the most important feature of this method was

a round-the-table session where various personnel were asked to score the

various activities of each of the CMM level 2 KPAs. During the scoring session

if there were strong differences of opinion on activities, the people with extreme

scores were invited to offer their opinion on the activity. In this way very good

discussions took place and most people left the session appreciating the need for

clear process definitions and the need for an improvement program.

As a means of ensuring that the score reflected the real situation and that all

levels in the company were reached, the people invited to take part were from

senior and middle management as well as development. Care was also taken to

include people with a wide range of experience (1 to 17 years).

The outcomes of this evaluation were a baseline figure and a very much

increased awareness of the need for the SPI program. This counted as much for

management as for developers.

 CMM Training and Workshop

A number of experienced developers were invited to attend CMM training.

Those involved were a combination of people who believed very much in

process definition and control, and people who were sceptical about the idea.

The workshop itself consisted of learning the CMM basics and guided tailoring

of 2 KPAs for the S3 context.

The most important result of this workshop was that the group, as a whole,

decided immediately to meet another time to look at the rest of the KPAs. The

SPI by IPS

Page 5.23 of 5.44

strongest advocates of this were the people who had previously been the most

sceptical.

Process Analysis, Redesign, Implementation and Testing

A constraint shared by S3 and many other companies is the lack of resources due to

project pressure. At the end of the day, projects paid for by customers earn money

directly, an SPI project is seen as one with a return on investment which is difficult to

quantify. Despite being an investment, however, this does mean that it is not possible

to have a number of people working on it full time for an extended period of time.

This had to be taken into account in the plan.

The basic strategy used was to plan all tasks in such a way that they were of very

short duration and would not require too much time for people. In this way many

people could be involved without a large impact on projects. There was only one

person dedicated to the project full time, the project manager. This method of

spreading work is described below.

Process analysis was performed using the workshop method described in the previous

section.

The group of people involved had very wide experience on very successful and some

less successful projects. By drawing on this it was possible to define processes which

were based on best practices throughout the organisation and in some cases, practices

encountered in previous employment.

At the end of the workshops various members of the analysis team were assigned a

process. They were then responsible for documenting the results of the discussions

and working the details out further with specially formed task forces. Using this

method, process analysis and definition quickly involved approximately 25% of the

organisation. This added to the best practice approach required as well as ensuring

that a large user base had some feeling of involvement and ownership.

Having worked out the details, change requests were raised on existing standards

where necessary and a number of new procedures were identified for definition.

Most of the changes to existing standards were implemented by the project manager

using the change requests as the basis for work. This approach was chosen to ensure

consistency as well as to reduce the burden on project teams which were under a lot

of pressure at the time. When all updates were made a number of new people, as well

as the authors of the change requests, were invited to review the procedures. This

brought the involvement percentage to approximately 35%.

As a means of testing some of the changes being proposed it was decided to try these

on pilot projects. It was agreed at the start that if any change showed even a chance of

having a negative effect on a project’s quality or ability to deliver on time, it should

not be used. The importance of maintaining a professional service to customers would

not be compromised under any circumstances.

Two project leaders volunteered to use modified procedures. The KPAs which

needed most careful testing were chosen.

One project, a digital cordless telephone application, chose to apply the

Requirements Management KPA and the newly written procedures for the

requirement definition phase of a new project.

The second project, a web based performance analyser chose to apply the Project

Planning and Software Quality Assurance KPAs and modified procedures.

Both projects monitored the procedures effects carefully and reported regularly on

SPI by IPS

Page 5.24 of 5.44

their observations. It was found that the Requirements Management and Project

Planning were quite effective. It quickly emerged however, that the Software Quality

Assurance process description while looking quite good on paper, was not effective.

When examined in practice it was clear that it would add too much overhead to the

project. It was decided not to proceed with this until such time as a redesign had been

performed.

More information on these is provided in “Results and Lessons Learned”.

At this point an external consultant was contracted to examine the procedures with a

view to assessing their CMM compatibility. This resulted in various changes where a

number of essential aspects of the CMM had been either overlooked or

misinterpreted.

After testing these KPAs and receiving the report from the external consultant, final

descriptions of the KPAs were documented and procedures were updated again. The

KPA descriptions are documented in a handbook which is available to all members of

the SW divisions. Before releasing this everybody in the division was invited to

review it. When all comments were received, involvement coverage had increased to

approximately 47%.

When all procedures had been updated and released for general use a specialised

training program was initiated. This is described in “Introduction of Modified

Procedures”.

Introduction of Modified Procedures

Introduction followed two main paths.

All members of the SW divisions were notified by email about the release of new

versions of procedures. This was known not to be an effective way of introducing the

changes to people, but did ensure some awareness of the fact that changes were being

made

The details of changes were introduced by organising a dedicated training course, the

Software Process Training Introduction Course. This was designed with the following

goals in mind

 Introduction to CMM for all members of the SW division.

 Reiteration of justification of improvement program

 Introduction of changes

 Further, guided discussion of processes, thus providing increased involvement in

definition and approval

 Collection of feedback gained and updating of documents based on this

The course itself took the form of one day lecture and discussion sessions. Each

process was introduced briefly by the trainer, including real examples of project

problems experienced where particular aspects of processes had previously not been

defined. After this the relevant documents from the quality system library were

walked through and discussed. This provided all attendees with an overview of the

standards as well as a further review of the procedures in question. By ensuring that

people attending the course were drawn from different projects it was also possible to

have a good exchange of ideas on different aspects of the processes. Any problems

in the standards or good ideas from the discussions were noted on a feedback form so

SPI by IPS

Page 5.25 of 5.44

that change requests could be raised to ensure further improvement.

Any suggestions received were immediately entered into an existing change request

database. These were analysed and those accepted have either been implemented

already or are scheduled for implementation in the near future.

To date performing reviews of documents in this manner has increased involvement

in process definition and approval to approximately 80%.

Definition of and provision of process support

Documentation of procedures and training in their application of these is not

sufficient. Paper gathers dust and brain cells are used for project information. For this

reason a process support organisation has been defined. The main components and

their responsibilities are summarised below.

Process improvement and control is managed by a Software Process Group.

A group of process experts provide advice on the application of processes and

standards during the definition of project plans. These experts report regularly to the

Software Process Group who then use this information to see if there are ideas which

should be used elsewhere or issues which need to be addressed.

Another group of trained auditors perform regular audits on projects to verify

adherence to these plans. They also report the results to the Software Process Group.

At the moment the support part of this organisation is being piloted so there are no

measurable results available. Feedback from the projects involved has however been

very positive so that even if nothing else the ‘soft’ goal of ensuring that people are

happier to work with the quality procedures and system has been achieved.

Results and Lessons Learned
This chapter presents the results of this project to date as well as a number of lessons

learned.

The next chapter, “KPA Analysis and Introduction”, provides more details on the

results of piloted KPAs. While these are not measurable they are important from the

point of view of showing the effect from a customer and business perspective.

Project Goals

At this stage a number of results are available. The degree to which the established

goals were met are summarised in the following table

Goal 1 Improve understanding of QS procedures and how they can help

Result No measure, but people are already expressing satisfaction with the

improvements.

Goal 2 Introduction of structured support organisation

Result Current project manager is now providing process application

support to 3 projects. This has been approved by senior

management

 Division’s budgets from 1998 include one person year effort per

SPI by IPS

Page 5.26 of 5.44

year for this role

Goal 3 Achievement of level 2

Result Not yet achieved. This was originally planned for the last quarter

of 1998. The results of the latest externally conducted maturity

evaluation, while showing significant improvements, indicate that

there are still areas which must be improved.

The evaluation itself indicated an average improvement of 44%

improvement in performance.

Other Results

Apart from achievement of the project goals there were some other results achieved.

One very important one has been that one of the pilot projects was so successful that

the customer has approached S3 with a proposal for further work. This is based very

much on the quality of the processes used on the pilot project.

The following chapter, see “KPA Analysis and Introduction”, provides more

information on the piloting of processes and the level of success achieved

Lessons Learned

 Treatment of this sort of initiative as a project, following the same principles as

any other is the most effective way to achieve results. Having a solid plan

enabled the management of resources and constantly changing availability.

 Use at least one or if possible a number of external consultants and use them

early. They can provide an objective view of the organisation.

 Use a mix of experienced and inexperienced people for process definition. The

experienced people may have good ideas but the inexperienced people often have

very good questions and can force practicality onto working methods.

 Keep the business goals in mind. Even at an early stage in such an improvement

project potential results can be seen.

KPA Analysis and Introduction
One very useful observation early on in the analysis phase was that the standard KPA

definitions provided by the SEI mapped very closely to the way of working in S3.

This was very useful in that process descriptions have been prepared by describing

most aspects of the KPAs in terms of S3 while adhering strictly to the SEI structure.

This has made analysis and subsequent verification far simpler than would otherwise

have been the case.

The following two sections, “Project Planning” and “Requirements Management”,

present results of two KPAs which were piloted.

Project Planning

Improvements were introduced to the planning process including the documenting of

the plans on a web based performance analysis tool for IBM.

SPI by IPS

Page 5.27 of 5.44

This involved significant changes to the amount of detail which must be considered at

an early stage of the planning process as well as the manner in which this is

documented, e.g. more detail on and tabulated presentation of risk-analysis. The

increased amount of detail and improved clarity of the documents produced was felt

by S3 management to provide improved visibility into the project thus improving the

ability to manage and track the project significantly. For IBM management it

provided similar visibility and thus increased their confidence in S3.

The increased level of detail provided also had a major benefit for the project team

members. By settling details early in the project lifecycle there were fewer

ambiguities later on and less time was spent on discussions of topics which would

previously have been left open. Though not measured this would clearly have had a

direct impact on productivity. To a lesser degree, but not insignificant, it also had an

effect on the quality of the product.

The project itself resulted in a product which was delivered on time and was accepted

on initial release. Furthermore S3 has been approached by other departments within

IBM with a view to further work based on the reputation gained by the success of this

one.

Requirements Management

Changes in the manner in which initial requirements were gathered and documented

were introduced when starting a project for Telital.

Initial specification was originally required in a very short time scale. While it took

longer than was required, this had been identified early and had been discussed and

agreed to by Telital. Without a clear process here this negotiation would have been

more difficult for both parties.

With respect to the requirements themselves, these were documented in such a

manner that an early review showed that they were well understood and the

customer was happy to accept them as the basis for development. For the project team

members, they were confident that they understood the customer requirements and

had a good basis to plan and execute the project.

The result of the project has been a DECT handset which was delivered on time and

has recently achieved type approval.

Within S3 it has been decided to use this method to define the features of S3's own

proprietary product to ensure easier comparison with future customer requirements.

The Author

Bill Culleton, B.A., B.A.I., M.Sc, M.I.E.I is currently project manager for the S3

software process improvement project as well as being chairman of the S3 Software

Process Group.

He has six years experience in research and development for Computer Aided Design

applications for IC layout and design. This included both user support and application

promotion, thus providing a strong insight into the practical effects of errors in the

systems. The effects include both problems for users of the system as well as the

commercial effects.

SPI by IPS

Page 5.28 of 5.44

He has six years experience in the development of GSM Base Station Operation and

Maintenance software. This time has included active involvement in every aspect of

the project lifecycle starting at initial requirement specification through to

management of field testing and delivery to end users. More than half the time has

been spent as team and project leader within S3 as well as acting as project manager

with responsibility for managing the development and testing activities in the four

companies involved in the project. The activities have provided further insight into

the effect of the development process on the success of projects in term of meeting

budgets as well as strict quality criteria.

The Company, Silicon and Software Systems (S3)

S3 was founded in 1986 in Dublin, Ireland. Since its foundation, S3 has worked with

many of the world’s leading electronics multinationals, designing state-of-the-art

Integrated Circuits, Embedded Software and Hardware Systems for the merging

Communications, Computing and Consumer Electronics markets.

An international company, with a presence in Europe, USA and The Far East, the

company consists of approximately 300 employees (88% of whom are engineering

staff) who offer expertise in designing solutions which combine the speed of silicon

and the flexibility of software.

Also offering solutions in both disciplines separately, some of the company’s recent

achievements have included the design of one of the largest silicon chips in the world

to date and the development of advanced telecommunications software for a variety

of DECT products for both voice and data applications.

Acknowledgements
The author would like to acknowledge the following persons and companies for their

valuable support and advice during the execution of this improvement project.

Martin Farnan, SW director in S3. Sponsor of the project, mentor and provider of

pick-me-up motivational conversations on a regular basis.

Declan Kelly of S3. My predecessor, responsible for laying the groundwork for the

project and engaging in useful, thought provoking discussions throughout its lifetime

to date.

Fran O’ Hara of Insight Consulting, Ireland. External consultant who in addition to

providing CMM advice furnished a lot of practical advice specific to the S3 context.

Sami Zahran of IBM. External consultant who in his training workshop provided a

useful insight into CMM but possibly more important, insight into how the principle

of SPI can be taught in an enthusiastic manner.

IBM and Telital. Allowed me to use the examples of KPAs tested on projects

executed for them. Looking at the success of these projects it would appear that this

co-operation has resulted in a win-win situation.

SPI by IPS

Page 5.29 of 5.44

References

 [1] Zahran, S., Software Process Improvement, Practical Guidelines for Business

Success.

[2] The Interim Maturity Evaluation Toolkit. Provided by “Origin

TA/IPS, Veldhoven, The Netherlands”

Page 5.30 of 5.44

Experiences from

practical software process

improvement

Seija Komi-Sirviö

Markku Oivo

Veikko Seppänen

VTT Electronics, P.O. BOX 1100, FIN-90571 OULU, FINLAND

Seija.Komi-Sirvio@vtt.fi, Markku.Oivo@vtt.fi, Veikko.Seppanen@vtt.fi

fax: +358 8 551 2320, tel. +358 8 551 2111

Abstract: This paper describes a systematic multi-paradigm approach to software process

improvement called Pr²imer (Practical Process Improvement for Embedded Real-time

Software). Pr²imer has been developed by VTT Electronics for analysing and improving

embedded software development processes. It has been used in industrial software

process improvement programmes carried out both for SMEs and large multi-national

firms. It integrates software process analysis, goal-setting, improvement planning,

measurement and piloting into a total quality management framework. Among other

methods, Pr²imer utilises a Goal/Question/Metric (GQM) method developed by the

University of Maryland. GQM is a top-down, goal-oriented and measurement-based

quality improvement method. In this paper, the usability of Pr²imer will be evaluated.

Furthermore, a discussion focusing on the key success factors for process improvement

programmes is presented. The discussion is based on results gained from almost twenty

industrial improvement projects during the past five years.

Keywords: software process improvement, measurement, embedded software

Experiences from Practical SPI

Page 5.31 of 5.44

Introduction

The volume of embedded software in electronic products is constantly growing. In

addition to hardware and mechanics, software has become one of the core product

technologies. Typical examples of embedded computer systems are telecommunication

products, industrial process control systems and electronic instruments. Customer-specific

versions of electronic products are often implemented by using embedded software.

Therefore, the quality and management of the software process has become a critical

success factor within the electronics industry. An immature software development

process may result in poor product quality. In addition, the management and predictability

of an obscure software process is very insecure.

Section one of this paper introduces Pr
2
imer (Practical Process Improvement for

Embedded Real-Time Software) method. Section two describes experiences gained from

practical process improvement. Section three summarises the results and presents

guidelines for further work.

Practical Process Improvement for Embedded

Real-time Software – PR
2
IMER

Pr
2
imer is a practical and systematic approach for improving the quality of software

development process [1] [2]. It provides an overall improvement framework for

integrating and selecting software analysis, measurement, modelling and improvement

methods in order to meet the quality improvement requirements set by the company.

Pr
2
imer includes the following four activities for process improvement (see Fig.sks. 1)

1. quantitative and/or qualitative analysis concerning the current state of the process and

the product,

2. definition of the target state of the software process with measurable process and

product goals,

3. plan for practical process improvement activities, and

4. pilot operation and commissioning.

Experiences from Practical SPI

Page 5.32 of 5.44

Fig.sks. 1. Software process improvement activities supported by Pr
2
imer.

Pr
2
imer utilises different methods and techniques which are selected according to the

situation and needs of the company. In all phases and activities of Pr
2
imer, close

co-operation between the software development projects and the improvement team is

emphasised. From the initial planning of the improvement work onwards, interaction

between the ongoing software development projects and the planned process

improvement activities is crucial. Process improvement goals and steps have to be

adapted for the schedules of the software development projects. In addition, the quality

requirements for process improvement must conform with the goals planned by the

project organisation. Before release for large-scale use, it is necessary to perform pilot

projects in which the improved practices are carried out according to the improvement

plan.

Current state analysis

Analysing the current status of the software process or subprocess forms the basis for any

improvement initiatives. The purpose of the analysis is to describe and evaluate the

current software development practices and to identify problems or bottlenecks that are

possible subjects for improvement.

Pr
2
imer utilises two analysis strategies: qualitative and quantitative. The qualitative

analysis technique includes a semi-structured interview, which is usually performed by

using an analysis framework originally developed in the Esprit project AMES [3].

Qualitative analysis produces descriptive process models which include descriptions of

the organisational context and application domain, software development and

management practices. Qualitative analysis also provides evaluations concerning the

software development methods and tools that are used in projects. Furthermore, the

supporting techniques such as software development guidelines, templates, quality

assurance etc. are evaluated. The most serious problems, as well as opportunities for

improvement, are identified. Identification is based on evaluating the results and by

taking into consideration the goals of the company as well as those of the project. There

are several different techniques for analysing the current status. The most suitable one is

selected according to the needs and situation of the company. Quantitative analysis can be

performed by using for example such well-known questionnaire-based software process

assessment methods as BOOTSTRAP [4], CMM [5] [6], Trillium [7] or ISO15504 (also

known as SPICE) [8] which provide information concerning the maturity level of the

process. If a purely measurement-based approach is utilised in Pr
2
imer, the analysis can

be performed by using a GQM (Goal/Question/Metric) [9] method. In this case, Pr
2
imer

approach is very similar to the QIP paradigm [10].

Definition of target state

The definition of the target state takes place after a mutual understanding of the current

situation and the improvement areas is reached. The second phase of Pr
2
imer consists of

improvement goal setting and prescriptive process modelling. This phase also includes

measurement planning which is done according to the GQM method.

Development areas are analysed and evaluated by taking into consideration the objectives

set by both the organisation and software product development. Normally, the analysis

produces numerous different observations that are prioritised managers and project

members who will pilot the improved practices. When the improvement goal or goals are

set, updates to process models, practices, methods and use of tools are defined in order to

support the achievement of the goal. The concrete outcome of this definition may result in

new guidelines for software development, document templates, work instructions, et

cetera.

Pr
2
imer uses measurements in monitoring the success or failure of the improvement

Experiences from Practical SPI

Page 5.33 of 5.44

activities and in providing immediate guidance and feedback for the project members.

Pr
2
imer utilises a goal oriented Goal/Question/Metric (GQM) method. The GQM

approach is based on the assumption that in order to provide meaningful measurements,

an organisation must first specify the measurement goals in both organisational and

project levels. Following this, measurement goals have to be traced back to the data that

defines the goals operationally. Finally, a framework for interpreting the data with respect

to the stated goals must be defined.

GQM is a hierarchical model (Fig.sks. 2) starting with a measurement goal which is

defined according to a template with five dimensions expressing

 the object of measurement: which software engineering objects are measured?

 the purpose of measurement: why are these objects measured?

 the quality focus: which properties of the objects are measured?

 the subject of measurement (viewpoint): who is interested in these measurements?

 the context of measurement: in what environment are the objects measured?

GOAL

Question 1 Question 1 Question n

Metric 1 Metric 2 Metric 3 Metric 4 Metric n

D
ef

in
it

io
n

In
te

rp
re

ta
ti

o
n

Fig.sks. 2. The GQM approach.

The measurement goal is refined into a set of questions, which characterise the object

with respect to chosen issues from a selected viewpoint. The questions are then defined

by a set of metrics in order to provide quantitative answers. One metric may contribute to

different questions, and one question is typically answered by taking into account several

metrics.

Plan for development activities

The third phase of Pr
2
imer consists of planning improvement and measurement activities

or, in other words, planning process improvement implementation. The main results are

concrete process improvement and measurement plans. A step-by-step procedure plan is

needed, even if process improvement initiatives have been thoroughly targeted, from the

very beginning, to a specific area of software development. When planning the process

improvement steps, the main question is how to proceed from the current situation

towards the new practices defined in phase two. To answer this question, the

improvement goals and strategy for proceeding are described, improvement initiatives are

scheduled, the organisational and project level follow-up are planned and the training

demands are clarified. In addition to the overall improvement plan, a measurement plan

according to the GQM method is developed. This plan contains a detailed procedure for

metric collection. It describes who is responsible for collecting the data, and when and

how it is to be collected. In summary, the third phase of Pr
2
imer deals with

implementation and measurements: in what way are the improvement initiatives

implemented and how are the measurements to be utilised in pilot projects.

Experiences from Practical SPI

Page 5.34 of 5.44

Pilot operation and commissioning

Before taking the revised software process or subprocesses into large-scale use, new

practices must be evaluated by testing them in a pilot project or projects. Alongside the

pilot project, new practices are evaluated in feedback sessions where project members

analyse the collected measurement data. This way, the current status of piloting is

identified and possible corrective actions can be taken during piloting. The feedback is

bi-directional, which means that if necessary, experiences from the pilot projects are

utilised in revising the process improvement plans.

After piloting, the success of improvement actions will be evaluated mainly according to

the GQM plan. Informal feedback from the pilot projects is taken into consideration as

well. After the piloting based on the analysis and experiences, it is decided how the

revisited process will be utilised in product development and what are the further

requirements for improvement.

Experiences from practical process improvement

During the past five years, Pr
2
imer method has been utilised in more than twenty process

improvement cases, with fifteen different companies. The results have been good. In the

following, a discussion concerning the experiences of using the Pr
2
imer method in

process improvement is presented.

A cluster of companies where Pr2imer has been applied

The domain of applications for Pr
2
imer usage varies from consumer electronics to safety

critical medical instruments. However, most of the cases belong to the telecommunication

sector. We have co-operated with large international companies such as ABB, Datex,

Nokia, and Valmet, as well as with small and medium size companies such as Polar

Electro and X-Net.

In practice, the more mature the software development process of the company, the more

specific the focus of improvement. This feature affects the methods that are selected in

different phases of Pr
2
imer, particularly during the current state analysis. We have

practical experiences concerning focused improvement of the testing process, which in

many cases has been identified as the most problematic subprocess. Other demanding

processes are change management and requirements management. In eight cases, the

whole software process has been the object of improvement initiatives.

In the following, both general observations and remarks specific to Pr
2
imer phase are

discussed.

The importance of the top management commitment

Before the process improvement can truly start, various negotiations and initial planning

activities are crucial for the success of any process improvement initiatives. It is essential

that the right persons are involved in and committed to the improvement work from the

very beginning. This includes both persons owning the process and persons managing the

resources that are needed to execute the improvement work. If the pilot project is not

given enough resources for instance personnel to participate in the improvement planning

phase, and if there is no time for learning and utilising the new practices in the project,

problems are bound to appear. Experience has shown that the pilot project (team) is often

very enthusiastic and committed to improvement work in the beginning, but the revised

practices can be abandoned since the time pressure in the project is severe. The software

development work is hurriedly completed, in a similar manner as before, with the remark

"we know this is not a good way to proceed but it is the fastest one at the moment".

Experiences from Practical SPI

Page 5.35 of 5.44

Software development projects have seldom enough time allocated to fulfilling the

requirements set to development. Learning and piloting new practices usually causes

additional work for the pilot project. If this is not supported by providing additional

resources to the project, problems are to be expected in the later phases of improvement.

Experiences of the Pr2imer phases

Current State Analysis

The purpose of current state analysis is to find out both the weaknesses and the possible

improvement areas. Current state analysis can be thorough, covering the whole software

development process, or it can be limited to include only one subprocess such as

requirements analysis. It is recommendable to start with a full analysis in order to get a

good overview of all processes, especially if the process improvement initiatives are the

first of their kind in a company. An extensive analysis will clearly indicate which

processes the improvement actions could be targeted at. Without a large scale analysis,

the decision concerning improvement areas may be based on assumptions only. It is

therefore possible that the process focus for improvement is not the most urgent one,

which in its turn may cause results that are less than optimal.

Current state analysis can be performed by using quantitative methods such as CMM or

BOOTSTRAP. Alternatively, it can be managed with a qualitative method which uses

different techniques focusing on describing the actual software development process,

methods and tools. According to our experience, these methods support and complement

each other. Quantitative methods evaluate processes and provide a numerical assessment

which indicates the maturity of the processes by comparing them against a standard

process model. Later, when revised practices have been taken in full use in the company,

the process can be checked with re-assessment in order to verify whether the desired

improvement occurred from the maturity point of view. So far, one weakness pertaining

to the most commonly used assessment methods has appeared: namely, these methods do

not provide adequate support for analysis concerning the special features of embedded

software development. After all, quantitative method alone is not sufficient if the actual

software development process is not identified - and quite often it does not correspond to

the official process described in a quality manual or other document. Descriptive process

modelling forms the basis for any accurate improvement suggestions. In those cases

where we have used only qualitative methods for defining the actual practices, the result

of analysis has offered adequate framework for further actions. Fig.sks.3 presents a high

level example result of current state analysis of requirements engineering process.

The current state analysis is the least effort consuming phase for the company, if analysis

is to be conducted by external experts, as was the case in all these examples. According to

our experiences, the calendar time needed for current state analysis varies from a few

weeks to one and a half month. Normally the current state analysis has not revealed

weaknesses that are completely unknown [12]. One important benefit of the analysis has

turned out be the following: the situation is documented and mutual understanding is

achieved, which strengthens the commitment of project members and the company and

forms a basis for defining goals for new practices.

Experiences from Practical SPI

Page 5.36 of 5.44

Requirements from customers

Demands from market

- market surveys

- products of competitors

- new techonology

Requirements from inside the

company

- other applications

- ideas for new development

SPR
Customer

Feedback

MIF
CIF

Product Manager

Internal analysis meetings

Knowledge base of company

MRS

SW

development

Testing

Prototypes are reviewed

together with customers

Indi rect guiding

Change requests directly

to the engineer

Product

Internal Analysis meeting

- functions/properties that

will be added to new

product

Fig.sks.3. A high-level example result of current state analysis.

Definition of Target State

Definition of the target state consists of three main activities: improvement goal setting,

detailed definition of improved practices and measurement planning.

The most used technique for improvement goal setting is brainstorming session managed

by improvement experts. A brainstorming technique has sometimes been criticised for

producing too many improvement goals, but in general, it has been found useful. New

practices are designed to meet the improvement goals that have been decided in the

beginning of the target state definition. This includes prescriptive process modelling

which leads to concrete results such as software development guidelines or instructions.

Inviting persons with different positions (i.e. product managers, quality managers, project

managers, engineers etc.) to these meetings has proved to be very useful. This way, all

viewpoints can be taken into account. In normal industrial software development

environment, it is difficult to bring together people that represent different viewpoints of

software development, mainly due to scheduling problems. Invitations to selected pilot

project or projects are important in order to strengthen their commitment to the

improvement work. In Scandinavian countries, this might be a crucial issue since making

decisions is, above all, a democratic undertaking. Fig.sks. 4 shows an example of the

revised process for testing. It was defined in co-operation with a company in Pr
2
imer

Experiences from Practical SPI

Page 5.37 of 5.44

phase 2.

Test planning

Test execution

Result analysis

Review

Required test

cases exist

Faults found

Fixing

Exit criteria fulfilled

Check-

lists

Resources

Requirements

Specification

Responsibilities

Start date
Reusable tests

Test logs of

previous tests

Test plan
-features to be tested

-test case sets

-schedule

-exit criteria

-planned effort

-tasks

-responsibilities

Modifications/document

status => approved

Used effort

Review minutes

-Used effort

-Suggested

changes

-Found faults

Order of new test

cases

All required test

cases don't exist

-Common causes=>

updates to checklists/

process

-Deviations between

actual and plans

-Test effectiveness

-Process improvement

suggestions

Test log

Test

coverage

After release / in following

phases found faults

Test report

-performed tests

- found problems

-idea of problems causes

-summary

-test coverage (at the end

of the phase)

Effort used

Effort used

Defect Database

-test environment

-documentation

-code

Defect

records

Defect &

correction records

Existing features

to be tested

Review

Finish

Correction

records

Fig.sks. 4. An example of the proposal for the testing process.

Pr
2
imer emphasises the role of measurements in process or product improvement.

Measurement data provides the best mean for following the improvement actions and

managing the software development projects. We have successfully applied the

Goal/Question/Metric method in two ways: in both following and managing the

improvement activities and in defining the current state of a certain process. In Table.sks.

1 an extract from a GQM plan is presented. In this case, the improvement was targeted at

the testing process, and the current metrics values are identified by the analysed defect

database. This GQM plan is defined to monitor whether the improvement initiatives

function to improve the testing process as planned.

Table.sks. 1. An example of a GQM plan.

GOAL1:

Analyse the product and process

from the point of view of developer/tester/manager

in order to improve it

with respect to reliability

in the context of G-Company/QM-Project

Q.1.7 What is the amount of defects found in testing?

 M.1.7.1 For each test step/phase: Total # of defects found

 For each defect found:

Experiences from Practical SPI

Page 5.38 of 5.44

M.1.7.2 Severity (fatal, minor, cosmetic)

 M.1.7.3 Finding activity (module testing, integration testing, system testing)

 M.1.7.4 Date of find

Q.1.9 What is the defect lifetime?

For each defect found:

 M.1.9.1 Origin (phase when made: requirements specification, specification, design,

implementation, testing)

 M.1.9.2 Finding activity (document review, code review, module testing, integration

testing, system testing)

 M.1.9.3 Find phase (phase when found: requirements specification, specification, design,

implementation, module testing, integration testing, system testing, customer use)

 M.1.9.4 Date of find (M.1.7.4)

 M.1.9.5 Fixing date (M.1.7.5)

Starting various improvement actions at once is ill-advised. Regardless of how much this

precaution is stressed, there seems to be a human desire to prove that in this particular

case, it might be possible to proceed in a wider front. In the beginning of software process

improvement, it is deemed more important to get good results from a narrow area than to

only get some results in a wider area. The GQM method itself strongly emphasises the

role of the project in which the measurements are implemented in practice.

Depending on the target process or processes, the definition of the target state requires

approximately one to two months’ worth of calendar time. During this phase, contribution

from the company is of crucial importance.

Plan for Development Activities

The third phase of Pr
2
imer concentrates on implementing the improvement actions. The

main results of this phase are a measurement plan and an improvement plan. During this

phase, the steps required for moving from the current situation to the target situation are

planned. In addition, the measurements for supporting the improvement initiatives are

determined. The improvement plan unites the current state analysis, improvement goals,

defined new practices and planned measurements; furthermore, it defines the strategy

which is required to proceed in practice. While planning the improvement steps, the

characteristics and the schedule of the pilot project must be taken into account. These two

factors have to be extended to cover the overall schedule of improvements. In addition,

the need for training is also determined. If necessary, it is still possible to fine-tune the

improvement initiatives during this phase.

Measurement-related activities such as measurement data presentation, data collection

and analysis will increase the amount of work in project management. In order to

diminish the work load, VTT Electronics has developed a PC-based tool called

MetriFlame. MetriFlame is utilised in automatic measurement data collection, analysis

and presentation [12] [13]. It supports the GQM method by providing full GQM planning

and analysis support. MetriFlame has been used primarily in automating (as extensively

as possible) the collection and analysis of measurement data. In addition, it has been

applied to support GQM approach where the metrics required are tailored from project to

project. Fig.sks. 5 presents the MetriFlame measurement environment. Features

supporting the connection to different databases and output data formats are also

presented.

Experiences from Practical SPI

Page 5.39 of 5.44

Fig.sks. 5. MetriFlame tool environment [12].

Pilot Operation and Commissioning

With reference to calendar time, piloting is the most time consuming phase. The projects

we have been involved in have lasted a minimum of one year. During this phase, giving

continuous support and feedback to the pilot project is extremely important, as already

reported in [14]. The status of improvement actions has to be checked on regular basis

(for example monthly or bimonthly). This is done in joint feedback sessions with the pilot

project. In these sessions, the measurement results are analysed by the project members

who know the exact circumstances concerning the acquisition of the measurement data.

The pilot project provides a realible interpretation of the measurement results. The graph

in Fig.sks. 6 is an example created by using MetriFlame and the defect database.

Experiences from Practical SPI

Page 5.40 of 5.44

Fig.sks. 6. An example result of MetriFlame used in real feedback session.

During piloting, it is necessary to provide practical support in form of feedback sessions

[15]. If necessary, the improvement plan is updated. Prescriptive process models, as well

as other plans such as GQM and measurement plans, may require similar updating. After

the new practices have been successfully piloted in the pilot project or projects, they will

be put into full-scale use in the organisation. This phase has proved to be quite demanding

and requires thorough planning to proceed smoothly. After the new practices are in

full-scale use, a new Pr
2
imer improvement circle can be initiated. Process improvement is

a challenging undertaking, due primarily to the constant progress and evolvement

associated with it.

Conclusions and further work

In this paper, we have introduced the main principles behind a practical process

improvement method called Pr
2
imer. In addition, we have described various examples

and experiences achieved during the past five years. Pr
2
imer divides process improvement

into four main phases, starting with a current state analysis and continuing with an

improvement goal setting and target state definition. Before piloting activities,

improvement implementation and improved practices are planned in such a way that the

project in question can make full-scale use of them. In the domain of embedded software,

the demand for software process improvement is constantly growing due to the increasing

volume of software in embedded products. In supporting management and improvement

initiatives, the already important function carried by measurement has received additional

emphasis during the recent years. Even though experiences and results concerning the use

of Pr
2
imer improvement method have been very favourable, we are constantly developing

Pr
2
imer in order to fully satisfy the companies’ demands. In addition to automatic

measurement tool support, the next enhancement will introduce a methodology which

enables linkage between product quality characteristics and the influencing process. This

methodology is currently under development in an Esprit project called PROFES

(PROduct Focused improvement of Embedded Software processes) [16] [17] and it will

supplement embedded software development with completely new possibilities [18].

References

[1] Mäkäräinen, M., Komi-Sirviö, S., Practical process improvement for

embedded real-time software, Proceedings of the 5th European Conference

on Software Quality, Dublin, IR, 16 - 19 Sept. 1996. (1996), 408 - 416

[2] Karjalainen, J., Mäkäräinen, M., Komi-Sirviö, S., Seppänen, V. Practical

process improvement for embedded real-time software. Quality Engineering,

Vol. 8, no 4, 1996.

[3] Application Management Environments and Support, Esprit 3 Project 8156,

Technical Annex, Version 1.0, August 1993.

[4] P. Kuvaja, J. Similä, L. Krzanik, A. Bicego, S. Saukkonen, G. Koch.

“Software Process Assessment & Improvement – The BOOTSTRAP

Approach”, Blackwell Publishers, 1994.

Experiences from Practical SPI

Page 5.41 of 5.44

[5] Humphrey, W. S.: Managing the Software Process. SEI Series in Software

Engineering. ISBN 0-201-18095-2, Addison-Wesley Publishing Company,

Reading, Massachusetts, 1989.

[6] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity

Model for Software, Version 1.1, CMU/SEI-93-TR-24, Pittsburgh,

Pennsylvania, 1993.

[7] Telecom Product Development Process Capability, Version 2.3d, Bell

Canada, 1993.

[8] ISO/IEC TR 15504-2: Information Technology – Software Process

Assessment – Part 2: A Reference Model for Processes and Process

Capability”. Technical Report type 2, International Organisation for

Standardisation (Ed.), Case Postale 56, CH-1211 Geneva, Switzerland, 1998.

[9] Basili, V. R., Caldiera, G. & Rombach, H., D. The Goal Question Metric

Approach. In Marciniak, J. J. Encyclopedia of Software Engineering. Wiley,

1994.

[10] Victor R. Basili, Gianluigi Caldiera. Improve Software Quality by Reusing

Knowledge and Experience. Sloan Management Review, pp. 55-64, Fall,

1995

[11] van Latum, F., van Solingen, R., Oivo, M., Hoisl, B., Rombach, D., Ruhe, G.,

Adopting GQM-based measurement in an industrial environment, in IEEE

Software, January/February. Vol. 15 (1998) Nr: 1, pp. 78 – 86

[12] Parviainen P., Komi-Sirviö S., Sandelin T., Measurement-based improvement

of critical software subprocesses: Experiences from two industrial cases, in:

Proceedings of the Conference of Software Process Improvement, SPI’98, Monte

Carlo, December 1998

[13] Parviainen, P., Järvinen, J. & Sandelin, T. Practical Experiences of Tool

Support in a GQM-based Measurement Programme. In Hawkings, C., Ross,

M., Staples, G. & Wickberg H. INSPIRE II, Process Improvement, Training

and Teaching for the Future. The British Computer Society, 1997. Also in

Software Quality Journal, Vol. 6, No. 4, 1997.

[14] van Latum, F., Oivo, M., Hoisl, B., Ruhe, G., 1996, No Improvement Without

Feedback: Experiences from Goal-Oriented Measurement at Schlumberger.

[15] Parviainen, P., Järvinen, J. & Sandelin, T. An example model of GQM

-feedback loop. ROIHU -Project Report, VTT Electronics, 1997.

[16] PROFES: ESPRIT project no. 23239: PROduct Focused improvement of

Embedded Software processes. URL: http://www.ele.vtt.fi/profes/

[17] Andreas Birk, Janne Järvinen, Seija Komi-Sirviö, Pasi Kuvaja, Markku Oivo,

Dietmar Pfahl. “PROFES – A Product-Driven Process Improvement

Methodology”. In Proceedings of the Fourth Conference on Software

Process Improvement (SPI ’98), Monte Carlo, Monaco, December 1998.

[18] Dirk Hamann, Janne Järvinen, Andreas Birk, and Dietmar Pfahl. “A

Product-Process Dependency Definition Method”. In Proceedings of the 24th

Experiences from Practical SPI

Page 5.42 of 5.44

EUROMICRO Conference: Workshop on Software Process and Product

Improvement, volume II, pp. 898-904, IEEE Computer Society Press, 1988.

Experiences from Practical SPI

Page 5.43 of 5.44

CURRICULUM VITAES

Seija Komi-Sirviö works as a research scientist at VTT Electronics’ Software

Engineering Group. She was born in 1966. In 1992, she received her Master's Degree

in Information Processing Science from the University of Oulu, Finland. She has

worked as a System Analyst at CCC Companies from 1989 to 1994. From 1994

onwards, she has carried out research concerning the metrics of software process

improvement in VTT Electronics’ applied research projects. Her research interests

include software process assessment and improvement, as well as GQM based

software process measurement. She has published several papers in international

conferences.

Markku Oivo is the Chief Research Scientist and Head of Software Engineering

Group at VTT Electronics, where he has worked since 1986. He is responsible for

initiating and managing both applied research projects and industrial development

projects for a broad range of clients in software engineering. His fields of interest

include software engineering, software process improvement and measurement,

production of embedded software, object-oriented methods, as well as quality

assurance and improvement. He has previously worked at the University of Oulu

1981-82, at Kone Co. in 1982-86, and he has held visiting positions at the University

of Maryland in 1990-91 and Schlumberger Ltd. in 1994-95. He also holds a

docentship in software engineering at the University of Oulu. He has published

approximately 50 papers in international conferences and journals. Markku Oivo

received his MSc and PhD from the University of Oulu. He is a member of the IEEE

and ACM.

Veikko Seppänen was born in 1958. He earned his MSc, LicTech and Dtech degrees

in software engineering in 1983, 1985 and 1990, respectively, from the University of

Oulu, Finland. He worked as a software engineer at Nokia Data in 1982-83 and as a

research scientist and section head at VTT Computer Technology Laboratory in

1983-93. From 1994 onwards, he has worked as a research manager at VTT

Electronics and from 1995 onwards, as a research professor of embedded software.

He also holds a docentship at the University of Oulu. In 1986-87, he was a

non-degree graduate student at the University of California at Irvine, USA and in

1991-1993, a JSPS Postdoctoral Fellow at the University of Kyoto, Japan. Veikko

Seppänen has published over 70 scientific and professional papers concerning

embedded software engineering methods, tools and solutions.

Experiences from Practical SPI

Page 5.44 of 5.44

VTT ELECTRONICS

VTT is the largest contract R&D organisation in the Nordic countries. The number of

personnel is approximately 2600. VTT’s main functions include technology transfer and

consultancy projects with the industry. VTT is divided into nine units (including VTT

Electronics) which are independent business units within VTT. The annual turnover of

VTT is estimated to grow from 167 MECU (1995) to 193 MECU by the year 2000.

VTT Electronics, one of nine units of VTT, employs 250 experienced professionals. It

offers its services to all manufacturers of products containing electronic parts. VTT

Electronics’ basic business aim is to improve the competitiveness and profitability of the

industry by

 accelerating the integration of information technology and electronics into products,

and developing new applications of electronic products,

 ensuring the prospected growth of the electronics industry by offering effective R&D

services

 supporting the emergence of new industries by producing new technologies and

innovations.

VTT Electronics R&D services are used by electronics, telecommunications, process

automation, mechanical engineering, and instrumentation industries. VTT Electronics

offers its clients the following services:

 contract research and development for industrial clients,

 design, development, and prototyping of electronic products,

consultancy in methods and process development, technology transfer.

Page 6.1 of 6.40

Session 6 – Object

Oriented SPI

Impact on Introducing Object Oriented Software
Development Methodologies

Paul Sullivan

ESBI Computing Ltd., Dublin

Pat Caffrey

ESBI Computing Ltd., Dublin

The Rational Objectory Process - A UML-based Software
Engineering Process

Presenter: Sten Jacobson

Rational Software Scandinavia AB

O.O.S.I. OBJECT ORIENTED SYSTEM INTEGRATION

PROJECT N. 10987

CARICCHIA PAOLO

AEROPORTI di ROMA

Page 6.2 of 6.40

Impact on Introducing

Object Oriented

Software Development

Methodologies

Paul Sullivan

ESBI Computing Ltd., Dublin

Pat Caffrey

ESBI Computing Ltd., Dublin

1.0 Introduction

The SCOOP project objective was to enable an holistic view of the impact

of introducing OO software development methodologies and tools. The

specific objectives of the project were:

 Selection of an OO methodology.

 Selection of software development tools incorporating the chosen

methodology.

 Production of a test piece of OO software.

 A three stage assessment of the test software production

experience, i.e. a direct productivity comparison, examination of

the impact of OO on the whole baseline project (Stores Controller),

and examination of the impact on the whole company.

The SCOOP project had a number of deliverables, both internal and public,

which will reflect the success of the work achieved during the 8-month

duration.

2.0 Selection of OO methodology

To find as many OO methodologies in the marketplace, the Internet was

Impact on Introducing Object Oriented Methodologies

Page 6.3 of 6.40

used to find a list of books containing OO methodologies.

The book “A comparison of Object Oriented Methodologies” was used as a

guideline to selecting the following methodologies in more detail:

2.1 Fusion

The Fusion method is a combination of different sections of different

methods. It was discounted almost immediately due to its failure to describe

an organised methodology for developing applications. A large amount of

documentation is produced during the Fusion methodology, however the

processes by which that documentation is produced, the manner in which

that documentation links - or its overall cohesiveness, and the actual worth of

the documentation produced is sadly lacking.

2.2 OMT

Object- Oriented Modelling and Design

Prentice Hall International 1991

OMT along with Booch is considered to be one of the best Object-Oriented

methodologies. It is used extensively by many companies, has a wealth of

documentation available and a large number of case tools support it. The text

describing OMT is excellent with a section on Analysis, which is worth

reading regardless of the design methodology to be used. The main difficulty

with OMT is not what is produced, but the diagrams used to represent it. The

diagrams in this methodology are angular and to the uninitiated (even with a

notation guide) are difficult to follow; being ambiguous until a textual

description is read. Where OMT fails miserably is when it comes to design, as

it lacks the step-by-step approach of the analysis phase.

2.3 UML

The Unified Method V 0.8

The Unified Modelling Language V 0.91

The Unified Modelling Language (UML) is a combination of Grady Boochs’

Booch methodology and Rumbaughs’ OMT methodology. It was initially

developed by Grady Booch and James Rumbaugh, both of whom now work for

Rational Software Ltd. Ivar Jacobson then joined Rational and thence the

UML team.

The fact that there is a definite similarity of approach and thinking

between the Booch and OMT methodologies is apparent when comparing the

two methods. This feeling is backed by the following remark:

In comparing its’ self with the Booch-91 methodology the OMT manual

states:

“The similarities between the approaches are more striking than the

differences, and both approaches complement one another”.

Impact on Introducing Object Oriented Methodologies

Page 6.4 of 6.40

Unfortunately UML was currently in development and as such was not

considered a contender for selection.

2.4 Selected Methodology - Booch

Object-Oriented Analysis and Design With Applications ~ Second Edition

(1994)

The Booch design methodology is like OMT extensively used has ample

documentation and support tools. It has been chosen over OMT primarily

because it deals not only with the analysis stage of a project but also the

design. The diagramming notation used in Booch is also more readily

accessible and easier to understand than other methodologies. “Booch’s

notations are very comprehensive and can be used to document almost any

aspect of the system.”. One of the advantages of Booch is the fact that it is

extremely versatile and robust. The diagramming notation can as stated

above be used to represent almost any feature of a given system.

It is felt that the OMT methodology offers an extremely good process

concerning the analysis section, and for this reason while Booch shall be the

methodology used, procedural and process methods concerning the analysis

of a problem may be taken from OMT. As UML develops further it may then

be possible to move over from Booch with a flavouring of OMT to UML.

3.0 Selection of OO Development Tools.

To find as many OO development tools in the market, the Internet was

used again to find companies and their OO products. Questionnaires were

sent out to these companies to verify the suitability of their products to use in

the SCOOP project. The twenty-eight questionnaires received were split up

into the following categories : CASE, Development Tools, Object Request

Brokers(ORB) and Object Orientated Databases (OODBMS). Products falling

into the category of either ORB or OODBMS were discarded as being

unsuitable to our business. The remaining tools were scored using a

weighing system described below :

Heading Case Dev Heading Case Dev

Multi-user development
Environment

0.8 1 Available Support 0.8 0.8

Platforms Targeted 0.6 1 Available Training 0.8 0.8

Customisability 0.9 0.6 Road Map 0.5 0.5

Code Generation 1 0.4 Performance 0 1

OO techniques
Supported

2 2 Learning Curve 0.9 0.8

Licensing 1 1 Hardware
Requirements

0.5 0.8

Client Base 0.7 0.5 Evaluation Software 0.8 0.7

Inter-operability 0.3 1 Reporting Tool 0.9 0.2

Impact on Introducing Object Oriented Methodologies

Page 6.5 of 6.40

Migrate from VB/VC++ 0.7 0.4 Support Tools 0.6 0.6

A score of 0-5 was given under each heading and the weighing applied.

This scoring system was then applied to each of the remaining tools giving

the following results:

CASE

Product Description Score Reason

Forte High-end s/w modelling and

development environment for 3-

tier distributed applications

 Prohibitive cost

ObjectMaker Flexible CASE tool Unacceptable level of

marketing and support

ObjectTeam CASE tool heavily centered

around Informix with an OO

front-end

 Limited package with

unsuitable focus

Paradigm

Plus

OO component modelling tool

for VB,C++, Delphi, etc.

67.1 Licensing, Inter-operability,

platforms targeted,

evaluation software

Rational

Rose

OO CASE for VB, C++, etc.

tightly integrated with

Microsoft

72.3 Accepted

Select CASE OO CASE tool for VB, C++,

Delphi

79.6 Accepted

System

Architect

PowerSoft code partner OO

CASE tool

82.3 Accepted

Development Environment

Product Description Score Reason

Arranger IEF-based companion to

Composer

 Costing and parent company

Borland C++ 32-bit C++ environment Unacceptable level of

marketing and support

Composer IEF-based companion to

Arranger

 Costing and parent company

Delphi Borland OO GUI

environment for Object

Pascal

81.3 Accepted

Elements Distributed n-tier OO

application

 Prohibitive cost of multiple

products

Forte High-end s/w modelling and

development environment for 3-

tier distributed applications

 Prohibitive cost

MS Foxpro

5.0

Microsoft Xbase OO client/server Limiting programming

language

MS Visual Microsoft Java in MS 71.7 Immature technology with

Impact on Introducing Object Oriented Methodologies

Page 6.6 of 6.40

J++ development studio

environment

possibly unstable and

unsupported ports

Sun Java SPARCworks GUI workshop Unsuitable development

platform and

unstable/unsupported

platforms

MS VB 4.0 First generation of OO VB 78.1 Accepted

MS Visual

C++

Microsoft C++ in development

studio environment

83.7 Accepted

Obsydian Mid-end s/w modelling,

development, partitioning tool

 Prohibitive cost

OpenROAD OO 4-GL across heterogeneous

platforms

 Run-time licensing, no OLE

or ODBC, minimal GUI to

cater for multiple platforms

Optima++ PowerSoft C++ GUI

environment

52.2 Support tools, inter-

operability, client base, road

map, learning curve

PowerBuilder

5.0

PowerSoft 4GL 76.6 Licensing,

compilation/distribution,

available support

Visual Age IBM smalltalk environment Unacceptable level of

marketing and support

Visual

Objects

OO 4GL Replaced by OpenROAD

After scoring the CASE and OO development tools , it was decided that

one CASE tool and 2 Development tools would be selected. Evaluation

software was bought for the following tools:

Category Product Score Evaluation

CASE System

Architect

82.3 Very confusing interface. Functionally - “Jack of

all trades and a master of none”. Rejected.

 Select CASE 79.6 GUI not intuitive but much better than System

Architect. Too centered around the OMT

methodology. Rejected.

 Rational

Rose

72.3 Very user friendly provided good

documentation and supported Booch

methodology. Accepted.

Development

Environment

Delphi 81.3 Excellent Visual component library –

performs better than Visual Basic. Has most

OO features. Accepted.

 MS Visual

Basic 4.0

78.1 Shorter learning curve than Delphi but not enough

OO features. Rejected.

 MS Visual J++ 71.7 Immature technology. Rejected

 MS Visual

C++

83.7

All OO features, performs very well. However

very poor at screen painting. Accepted.

4.0 Training

All the members of SCOOP (1 Project Manager, 1 Team Leader and 2

Impact on Introducing Object Oriented Methodologies

Page 6.7 of 6.40

Analysts / Programmers) were given an excellent 4 day training course in the

Booch OO methodology presented by Rational Software. A 3 day training

course was organised for Delphi in Ireland , however this training course was

poorly designed and was not as useful as expected.

5.0 Selecting a Stores Controller module.

In selecting a Stores Controller (SC) module the following criteria was

used:

 The implementation time of the module must approximately match

30 days.

 The chosen module must not have many database tables or links to

other modules. The module must be as independent as possible

and have good metrics.

Also the following implementation assumption was made:

As Stores Controller was implemented in 1994 on Windows 3.1,

certain improvements can be made to the user interface, as the

SCOOP implementation will be developed in Windows 95. Also the

new concepts of three-tier architecture and OLE may be used to

implement SCOOP’s version of the SC module. Even though the end

result may look different the same functionality will be emulated.

Using the above criteria and implementation it was decided that the

Location functionality in SC would be selected.

6.0 The OO implementation Experience.

While implementing the Location functionality of Stores Controller the

following related concepts were added to the SCOOP implementation: -

 Design Patterns : These are standard set of design problems and

their solutions. Using both the Internet and a book called “Design

Patterns - Elements of reusable Object-Oriented Software”. This

helped in the design phase.

 Application Partitioning : It was decided to have a very flexible

architecture by partitioning the SCOOP application into GUI

classes, controller classes, Business classes and the Database

classes.

 Iterative Life Cycle : This was based on eliminating the project

risks early on in the life cycle.

Impact on Introducing Object Oriented Methodologies

Page 6.8 of 6.40

7.0 Assessments

7.1 Metric Assessment

The purpose of this assessment was to compare the original module

metrics with the SCOOP metrics to calculate which method was more

productive. Before the comparison was made the learning curve was taken

out of the SCOOP metrics to try and compare like with like. The following

metrics were calculated: -

Module Design Coding Test Total

(days)

Lines

of code

Existing

System

5 20 7 32 4630

OO System 20 9 6 35 3343

Fig 1 PSULL.1

Based on the metrics the following conclusions about using the OO

methodology were made :

 There was substantially more time spent designing in the OO

methodology and less time coding for the following reasons

a) The design using OO techniques is a much more thorough

process. All problems even implementation issues must be

thought out at this stage. Also if a business function is left

out or is added at a later stage , the class design may

change radically. The designer must also have the ‘big

picture’ view of the project and must known how the

business area is used throughout the system.

Existing

System

OO

System

0%

20%

40%

60%

80%

100%

Existing

System

OO

System

Metrics Comparsion

Testing

Coding

Design

Impact on Introducing Object Oriented Methodologies

Page 6.9 of 6.40

b) There is much more documentation in the design phase.

There are class diagrams, scenario diagrams, use cases and

Axis of change documents. In the existing software process

method there is at most two documents.

c) Coding takes less time due as the design documentation

provides classes that can be grouped together into

programmable packages. These packages can be written in

isolation and accessed through interfaces.

 The OO Metrics should decrease with time. If the ‘big picture’ view

is taken in the OO design phase and if the system is well

designed , classes can be reused. Therefore as the life cycle

progresses more classes are written and re-use becomes more

realistic. In this scenario the percentage re-use could be estimated

at 60% i.e. 60% of the code could be potentially re-used in the next

module in the Stores Controller application and also for another

application.

 The OO metrics should decrease in the maintenance phase. The

OO approach abstracts functionality better than more traditional

approaches.

7.2 Product Assessment

The purpose of this document was to assess the impact in applying the OO

methodology to the entire Stores Controller product. In order to implement

SC using the Booch methodology the following roles must be created and

training provided for these new roles:

Fig 2 PSULL.2

Training /Familiarisation

Requirements

0

5

10

15

20

25

30

Class

Architect

OO Designer OO Delphi

Implementer

OO C++

Implementer

Roles

D
a

y
s

Methodology

Rational Rose

Delphi

C++

Impact on Introducing Object Oriented Methodologies

Page 6.10 of 6.40

It was calculated that the 225 man-days were required to train the

required staff to implement Stores Controller effectively.

To estimate the number of man days needed to implement Stores

Controller, was achieved by getting the actual time spent implementing each

SC phase and multiplying these actuals by a ratio calculate by the SCOOP

experience. The following table shows how much time is spent in each phase

when uses the OO methodology in relation to the existing software process.

Phase OO

Methodology

Planning 125% (1.25 times)

Analysis & Design 140%. (1.4 times)

Coding 60%. (0.6 times)

Testing 90%. (0.9 times)

Using the above table and the actual metrics of the Stores Controller

system the following comparison is made:

Fig 3 PSULL.3

Note: The large training overhead was not included in the above

comparison.

7.3 Company Assessment

This assessment describes the impact on adopting the OO methodology on

the entire company. The following impacts were found:

 Staff. The current staff will need to be trained in the new OO

methodology. Staff roles will have to change. These roles are

described below :

 Class architect. The chief designer for each project who is

familiar with the entire functionality of the project.

 OO Designer. A designer very familiar with the OO

methodology.

 OO Delphi programmer. A programmer would

SSADM

OO

0 100 200 300 400 500 600 700

Man days

SSADM

OO

M
e
th

o
d

o
lo

g
y

Testing

Coding

Analysis and Design

Planning

Training

Project initialisation

Impact on Introducing Object Oriented Methodologies

Page 6.11 of 6.40

understand OO concepts and can use Delphi to implement

these concepts.

 OO C++ programmer. A specialist programmer to write

‘C++’ using OLE.

 Class Librarian. A person who is familiar with all the

business and utility classes used in the company. This

person will be responsible for object re-use across projects.

 Technical Architect. This person understands the

technical framework and the development environment on

which the projects are built.

 OO Project Manager. A person who knows how to

manage a successful OO project.

 Life Cycle. The company life cycle could change dramatically if

the iterative development process is introduced to deal with the

complex problem of OO project management. The Quality life

cycle will have to change to reflect the correct use of the OO

methodology.

8.0 Problems Encountered

The following problems were encountered during the SCOOP project:

 Inadequate training for Borland Delphi.

 During the project one of the personnel had to leave the project.

 The change from a traditional Top-Down approach to an

Object-Oriented approach took a long time to master.

 Many of the development tools vendors did not answer the

questionnaire.

9.0 Conclusions and Recommendations.

The major disadvantage in adopting the OO methodology is the overhead

or learning curve. The staff will have to be given formal training in the OO

methodology. The company life cycle may also change and there may be an

overhead involved in changing the Quality documentation. Also the

managing of OO projects will be more difficult.

However SCOOP feels that the OO methodology is the correct way forward

for the following reasons

 The time to market will decrease over time.

 The framework devised by SCOOP has greater flexibility and

solves many of the problems with the existing architecture. The

OO methodology made this possible.

 Allows greater abstraction and object re-use.

 Puts more emphasis on design, which means more system bugs are

Impact on Introducing Object Oriented Methodologies

Page 6.12 of 6.40

caught at design time.

These advantages will be value for money over time, as the following

graph will illustrate:

Fig 4 PSULL.4

The following are the recommendations of SCOOP to improve the software

process in ESBI Computing: -

 Investigate and review the current SCOOP architecture and

enhance the current SCOOP framework as appropriate. Also

review Delphi 3.0 , Visual J++ ..etc. and develop a clear future road

map for MC/SC technical architecture.

 Produce a demonstration system of the SCOOP architecture to get

user feedback. Based on the user feedback update the SCOOP

framework with agreed changes.

 Review and select a module of the MC/SC suite of application for

re-engineering using the SCOOP framework and methodology.

 Establish a training strategy to match both the short term

implementation of the selected module and also address

the longer term goals.

 Create a project plan for the selected module and set up

standards for the iterative development life cycle.

 Review Quality system and implement required changes to

adopt an iterative life cycle and an OO methodology.

Disclaimer

The opinions stated in this document are purely these of ESBI Computing

and relate to the findings of the SCOOP project.

Acknowledgement

ESBI Computing wish to thank the European Commission for its

assistance throughout the SCOOP project, without, which the SCOOP

Impact on Introducing Object Oriented Methodologies

Page 6.13 of 6.40

project, would not have been such a success.

Impact on Introducing Object Oriented Methodologies

Page 6.14 of 6.40

References

References

[1] Object-Oriented Development The Fusion Method, Prentice Hall 1994. ISBN

0-13-101040-9

[2] Object-Oriented Analysis and Design With Applications, Second Edition

(1994), Addison-Wesley Publishing.

[3] Object- Oriented Modeling and Design, Prentice Hall International 1991.

[4] The Unified Method V 0.8 The Unified Modeling Language V 0.91, Public

domain - Internet.

[5] A Comparison of Object-Oriented Methodologies, The Object Agency 1995.

[6] Object Oriented Methods, Ian Graham Addison Wesley.

Impact on Introducing Object Oriented Methodologies

Page 6.15 of 6.40

APPENDIX A - Company Background

ESBI Computing (ESBIC) is a member of the ESB International group of

companies, which is a subsidiary of ESB (Electricity Supply Board) Ireland.

Established in 1989, ESBIC has built up a impressive track record by

delivering information technology solutions to the international utility

market.

ESBIC has ISO 9001 certification and employs a Structured System

Analysis and Design Methodology (SSADM) approach to the development life

cycle. The legacy product that the SCOOP project used as a baseline, is called

Stores Controller (SC), and was developed using client-server architecture.

SC is a large part of the Maintenance Controller (MC) product suite. The

development tools of Visual Basic 3.0 / 4.0,Visual C++ version 5.0 and an

Oracle Database were employed in the original software.

APPENDIX B - Author Information

Author 1

Paul Sullivan

Qualifications

BSc in Computer Applications

Dublin City University

IT Experience

 5-6 years IT experience from developer to team leader

 Microsoft Certified Professional in Visual Basic

 I am well practised in the use of Visual Basic, Delphi, Visual C++,

Oracle and NT.

 I have adhered to the quality standards of ISO 9001 for over 2 years.

 The last five years I have worked on the re-engineering of a large

utility-based maintenance management system. It is now a client

server application running in many power stations around the world.

Impact on Introducing Object Oriented Methodologies

Page 6.16 of 6.40

Author 2

Pat Caffrey

Qualifications

BE

University College Dublin

IT Experience

 15 years IT experience from developer to team leader

 Research and Development Manger for ESBIC

 Production Manager for Stores Controller

APPENDIX C – Design Differences between SSADM

and OO.

1.0 Documentation.

SSADM Object Oriented

Requirement document Use Cases

Module Summary Class diagram

Screen Design Screen Design

Detailed Module Design Class Diagram

Database Modeling Database Modeling

 Axis of change

 Scenario diagrams

2.0 Differences

The use case diagram in the OO methodology has many levels. The first level

is a simple definition of the business function the use case is encapsulating.

When the class diagram is finished the relevant classes can be associated to

the use case. When the Database Modeling is complete the relevant entities

added. When the scenario diagrams are completed the relevant scenarios can

be attached. The use case is the link from the original requirement to the

analysis and design – this does not occur as easily with SSADM.

 The module summary, in SSADM, which is a textual description of

what the module does and how it interfaces with other modules, is generally

pure text. The actual function definitions only get added in detailed design

(in another document). However in the class diagram the analysis phase has

all the classes and their relationship to each other, the design phases brings

this class diagram a stage further by explain HOW they interact with each

other – by defining the methods and properties. This is done using a notation

Impact on Introducing Object Oriented Methodologies

Page 6.17 of 6.40

that is much closer to how the code will work.

Below is a sample use case and class diagram: -

Define a Location

Functional Details

Author Diarmuid Mac Carthy

Description Power stations generally have a warehouse on-site.

These are typically organised into areas of physical

storage such as floor space, shelves, trolleys, pallets, bins,

drums, etc. The majority of these will be normal storage

areas but some may be dedicated to inspecting suspect

materials (e.g. a safe area to accommodate hazardous

goods), while others may be used for routine testing (e.g. a

workshop for stress testing). Locations occasionally

become inactive, usually because of structural defects or

building renovations, contamination or cleaning.

This use case provides a mechanism for the storeman

to create a new area of storage.

In a situation where the new system replaces an older

one, or where a previous manual system is in operation, a

means must be provided for reflecting the fact that

quantities of store items are already in stock at a

particular location.

This use case provides a mechanism to allow the

storeman specify the store items and their quantities that

already exist at the new location.

Actors StoresMan

Pre-Condit

ions

 The new location must have a unique identification

Post-Condi

tions

 A uniquely identified location has been created

Implementation Details

Classes

Used

eLocation

eLocationType

eBinEntry

eStoreItem

Impact on Introducing Object Oriented Methodologies

Page 6.18 of 6.40

GUI

Details

Database

Implementati

on

 Location is inserted into the database through stored

procedure SP_INS_LOCATION with parameters

location code, description location type, active flag,

comments, row version .

Class Diagram (Sample)

Impact on Introducing Object Oriented Methodologies

Page 6.19 of 6.40

The Rational Objectory

Process - A UML-based

Software Engineering

Process

Presenter: Sten Jacobson

Rational Software Scandinavia AB

Abstract

This paper presents an overview of the Rational Objectory Process. The

Rational Objectory Process is a full lifecycle software engineering process

bringing Unified Modeling Language (UML) best practices to the fingertips of

each software developer. Objectory is a controlled iterative process, with strong

focus on architecture. It is a use-case driven, object-oriented process, using the

UML as a notation for its models. Objectory can be configured to fit a wide range of
projects.

The Unified Software Process

Page 6.20 of 6.40

Introduction—What is Objectory?

The Rational Objectory Process is a Software Engineering Process. It provides a disciplined

approach to assigning tasks and responsibilities within a development organization. Its goal is to

ensure the production of high-quality software, meeting the needs of its end-users, within a

predictable schedule and budget. The Objectory process captures many of the best practices in

modern software development in a form that is tailorable for a wide range of projects and

organizations.

Objectory is an iterative process. Given today’s sophisticated software systems, it is not possible

to sequentially first define the entire problem, design the entire solution, build the software and

then test the product at the end. An iterative approach is required that allows an increasing

understanding of the problem through successive refinements, and to incrementally grow an

effective solution over multiple iterations. An iterative approach gives better flexibility in

accommodating new requirements or tactical changes in business objectives, and allows the project

to identify and resolve risks earlier. [1, 2]

Objectory is a controlled process. This iterative approach is only possible however through very

careful requirements management and change control, to ensure at every point in time a common

understanding of the expected set of functionality and the expected level of quality, and to allow a

better control of the associated costs and schedules.

Objectory activities create and maintain models. Rather than focusing on the production of large

amount of paper documents, Objectory emphasizes the development and maintenance of

models—semantically rich representations of the software system under development. [3, 7, 8]

Objectory focuses on early development and baselining of a robust software architecture, which

facilitates parallel development, minimizes rework, increases reusability and maintainability. This

architecture is used to plan and manage the development around the use of software components.

Objectory development activities are driven by use cases. The notions of use case and scenarios

drive the process flow from requirements capture through testing, and provides coherent and

traceable threads through both the development and the delivered system. [7]

Objectory supports object-oriented techniques. Several of the models are object-oriented models,

based on the concepts of objects, classes and associations between them. These models, like many

other technical artifacts, use the Unified Modeling Language (UML) as the common notation. [4]

Objectory supports component-based software development. Components are non trivial

modules, subsystems that fulfill a clear function, and that can be assembled in a well-defined

architecture, either ad hoc, or some component infrastructure such as the Internet, CORBA, COM,

for which an industry of reusable components is emerging. [5]

Objectory is a configurable process. No single process is suitable for all software development.

Objectory fits small development teams as well as large development organization. Objectory is

founded on a simple and clear process architecture that provides commonality across a family of

processes and yet can be varied to accommodate different situations. It contains guidance on how to

configure the process to suit the needs of a given organization.

Objectory encourages objective on-going quality control. Quality assessment is built into the

process, in all activities, involving all participants, using objective measurements and criteria, and

not treated as an afterthought or a separate activity performed by a separate group.

Objectory is supported by tools, which automate large parts of the process. They are used to

create and maintain the various artifacts—models in particular—of the software engineering

process: visual modeling, programming, testing, etc. They are invaluable in supporting all the

The Unified Software Process

Page 6.21 of 6.40

bookkeeping associated with the change management as well as the configuration management

that accompanies each iteration.

Process Overview

Two Dimensions

The Rational Objectory Process can be described in two dimensions:

 along time, the life-cycle aspects of the process as it will unroll itself

 along process components, which groups activities logically by nature

The first dimension represents the dynamic aspect of the process, as it is enacted, and is

expressed in terms of cycles, phases, iterations and milestones.

The second dimension is represents the static aspect of the process: how it is described in terms

of process components, activities, workflows, artifacts, and workers.

Elaboration Construction TransitionInception

Phases

Requirements Capture

Analysis & Design

Implementation

Test

Management

Environment

Deployment

Process Components

Supporting Components

Iterations

preliminary
iteration(s)

iter.
#1

iter.
#2

iter.
#n

iter.
#n+1

iter.
#n+2

iter.
#m

iter.
#m+1

Organization
along content

Organization along time

Phases and Iterations

This is the dynamic organization of the process along time.

The software lifecycle is broken into cycles, each cycle working on a new generation of the

product. The Objectory process divides one development cycle in four consecutive phases [10]

 Inception phase

 Elaboration phase

 Construction phase

 Transition phase

Each phase is concluded with a well-defined milestone—a point in time at which certain critical

decisions must be made, and therefore key goals must have been achieved [2].

time

Major Milestones

Elaboration Construction TransitionInception

The phases and major milestones in the process.

Each phase has a specific purpose.

The Unified Software Process

Page 6.22 of 6.40

Inception Phase

During the inception phase, you establish the business case for the system and delimit the project

scope. To accomplish this you must identify all external entities with which the system will interact

(actors) and define the nature of this interaction at a high-level. This involves identifying all use

cases and describing a few significant ones. The business case includes success criteria, risk

assessment, and estimate of the resources needed, and a phase plan showing dates of major

milestones.

At the end of the inception phase, you examine the lifecycle objectives of the project and decide

whether or not to proceed with the development.

Elaboration Phase

The goals of the elaboration phase are to analyze the problem domain, establish a sound

architectural foundation, develop the project plan and eliminate the highest risk elements of the

project. Architectural decisions must be made with an understanding of the whole system. This

implies that you describe most of the use cases and take into account some of the constraints: non

functional requirements. To verify the architecture, you implement a system that demonstrate the

architectural choices and executes significant use cases.

At the end of the elaboration phase, you examine the detailed system objectives and scope, the

choice of an architecture, and the resolution of major risks.

Construction phase

During the construction phase, you iteratively and incrementally develop a complete product that

is ready to transition to its user community. This implies describing the remaining use case,

fleshing out the design, and completing the implementation and test of the software.

At the end of the construction phase, you decide if the software, the sites, the users are all ready to

go operational.

Transition phase

During the transition phase you transition the software to the user community. Once the product

has been put in the hand of the end users, issues often arise that require additional development to

adjust the system, correct some undetected problems, or finish some of the features that may have

been postponed. This phase typically starts with a “beta release” of the systems.

At the end of the transition phase you decide whether the lifecycle objectives have been met, and

possibly if you should start another development cycle. This is also a point where you wrap up

some of the lessons learned on this project to improve the process.

Iterations

Each phase in the Objectory process can be further broken down into iterations. An iteration is a

complete development loop resulting in a release (internal or external) of an executable product, a

subset of the final product under development, which grows incrementally from iteration to

The Unified Software Process

Page 6.23 of 6.40

iteration to become the final system [10].

Each iteration goes through all aspects of software development, i.e., all process components,

although with a different emphasis on each process component depending on the phase. This is

depicted in the diagram in the beginning of section 'Process Overview'. The main consequence of

this iterative approach is that the artifacts we described earlier grow and mature as time flows.

Process Components

The Objectory process is composed of 7 process components, which are described in terms of

activities, workflows, workers and artifacts. There are four engineering process components:

Requirement capture, Analysis and Design, Implementation and Test

and three supporting components:

Management, Deployment, and Environment

Process Components and Models

Each engineering process component describes how to create and maintain a model. Objectory

has the following model: use-case model, design model, implementation model, and test model. The

next figure shows the relationship of the process components and models.

OK

OK

Fail

Realized By

Implemented

By
Verified By

Implementation
Model

Test ModelDesign Model

Use-Case
Model

Models

Process
Components Test

Implemen-

tation

Analysis &

Design

Requirements
Capture

Each process component is associated with a particular model.

Requirements Capture

The goal of the Requirements Capture process component is to describe what the system should

do and allows the developers and the customer to agree on that description. To achieve this, we

delimit the system, define its surroundings and the behavior it is supposed to perform. Customers

and potential users are important sources of information as well as any system requirements that

may exist.

Requirements capture results in a use-case model and some supplementary requirements. The

use-case model is essential for both the customer, who needs the model to validate that the system

will become what he expected, and for the developers, who need the model to get a better

understanding of the requirements on the system.

The use-case model is relevant to all people involved in the project.

The use-case model consists of actors and use cases. Actors represent the users, and any other

system that may interact with the system being developed. Actors help delimit the system and give

you a clearer picture of what it is supposed to do.

Use cases represent the behavior of the system. Because use cases are developed according to

the actor's needs, the system is more likely to be relevant to the users. The following figure shows

The Unified Software Process

Page 6.24 of 6.40

an example of a use-case model for a recycling-machine system.

Recycle ItemsCustomer

Print Daily Report

Administer Deposit Item

Operator

An example of a use-case model with actors and use cases.

Each use case is described in detail. The use-case description shows how the system interacts

step by step with the actors and what the system does.

The use cases function as a unifying thread throughout the system's development cycle. The

same use-case model is used during requirements capture, analysis & design, and test.

Find Use Cases
and Actors

Describe the
Use-Case Model

Review the
Use-Case Model

Use-Case-Model
Architect

Use-Case
Specifier

Requirements

Reviewer

Architect

Structure the
Use-Case Model

Capture a
Common

Vocabulary

Describe a

Use Case

Prioritize Use Cases

The workflow in requirements capture, shown in terms of workers and their activities. The arrows

indicate a logical order between the activities.

Analysis & Design

The goal of the Analysis & Design process component is to show how the system will be realized

in the implementation phase. You want to build a system that:

 Performs—in a specific implementation environment—the tasks and functions

specified in the use-case descriptions.

 Fulfills all its requirements.

 Is structured to be robust (easy to change if and when its functional

requirements change).

The use-case model is the basis for design, along with the supplementary specifications.

Analysis & Design results in a design model that serves as an abstraction of the source code;

that is, the design model acts as a 'blueprint' of how the source code is structured and written.

Design also results in 'inside-view' descriptions of the use cases, or use-case realizations, which

describe how the use cases are realized in terms of the participating objects/classes.

The design model consists of design classes structured into design packages; it also contains

descriptions of how objects of these design classes collaborate to perform use cases. The next figure

shows part of a sample design model for the recycling-machine system in the use-case model shown

in the previous figure.

The Unified Software Process

Page 6.25 of 6.40

Customer Package Alarm and Printer Package

Receipt Printer

Alarm DeviceDeposit Item

Receiver

Customer Panel

Part of a design model with communicating design classes, and package group design classes.

The design activities are centered around the notion of architecture. The production and

validation of this architecture is the main focus of early design iterations. Architecture is

represented by a number of architectural views [9]. These views capture the major structural

design decisions. In essence architectural views are abstractions or simplifications of the entire

design, in which important characteristics are made more visible by leaving details aside. The

architecture is an important vehicle not only for developing a good design model, but also for

increasing the quality of any model built during system development.

Architect

Use-Case
Designer

Designer

Design
Reviewer

Architectural Analysis

Review the
Design

Review the
Analysis

Review the
Architecture

Object DesignObject Analysis

Use-Case DesignUse-Case Analysis

Architectural Design Describe Concurrency Describe Distribution

The workflow in analysis & design, described in terms of workers and their activities. The arrows

indicate a logical flow between the activities.

Implementation

The system is realized through implementation producing the sources (source-code files, header

files, makefiles, and so on) that will result in an executable system. The sources are described in an

implementation model that consists of modules structured into implementation packages. The

design model is the basis for implementation.

Implementation includes testing the separate classes and/or packages, but not testing that the

The Unified Software Process

Page 6.26 of 6.40

packages/classes work together. That is described in the next process component, “Test”.

Integrate
System

Architect

System Integrator

Implementer

Code Reviewer

Implement
Classes

Perform
Unit Test

Define the Organization

of Subsystems

Integrate
Subsystem

Review Code

Fix a Defect

Plan System
Integration

Plan Subsystem
Integration

The workflow in implementation, shown in terms of workers and their activities. The arrows indicate a

logical order between the activities.

Test

Test verifies the entire system. You first test each use case separately to verify that its

participating classes work together correctly. Then you test (certain aspects of) the system as a

whole with use-case descriptions as input to this test. At the end of test, the system can be

delivered.

The Unified Software Process

Page 6.27 of 6.40

Design Test

ImplementTest

Test Designer

Integration
Tester

System Tester

Evaluate
Test

Execute Integration

Test

Execute System
Test

Designer

Design Test Classes
and Packages

Implementer

Implement Test Components
and Subsystems

PlanTest

The workflow in test, shown in terms of workers and their activities. The arrows indicate a logical order

between the activities.

The Unified Software Process

Page 6.28 of 6.40

Features of Objectory

This section explains the core ideas behind the Objectory process, its most salient

features.

Object Technology

Many projects today employ object-oriented programming languages to obtain

reusable, change-tolerant, and stable systems. To obtain these benefits, it is even more

important to use object technology in design. Objectory produces an object-oriented

design model that is the basis for implementation [3, 7, 8].

An object-oriented model aims at reflecting the world we experience in reality. Thus,

the objects themselves often correspond to phenomena in the real world that the system

is to handle. An object can be an invoice in a business system or an employee in a

payroll system, for example.

A model correctly designed using object technology is

 Easy to understand. It clearly corresponds to reality.

 Easy to modify. Changes in a particular phenomenon concern only the object that

represents that phenomenon.

Use-Case-Driven Development

It is often difficult to tell from a traditional object-oriented system model how a

system does what it is supposed to do. We believe this difficulty stems from the lack of a

“red thread” through the system when it performs certain tasks. In Objectory, use cases

are that thread because they define the behavior performed by a system. Use cases are

not part of “traditional” object orientation, but their importance has become more and

more apparent. Other object-oriented methods provide use cases but use different

names for them, scenarios, threads.

Objectory is a ìuse-case driven approach.î What we mean by that is the use cases

defined for a system are the basis for the entire development process. Use cases play a

role in each of the four engineering process components: requirements analysis, design,

implementation, and test.

 The use-case model is a result of requirements analysis. In this early process we

need the use cases to model what the system should do from the userís point of view.

Thus, use cases constitute an important fundamental concept that must be acceptable to

both the customer and the developers of the system.

 In design use-case descriptions are used to develop a design model. This model

describes, in terms of design objects, the different parts of the implemented system and

how the parts should interact to perform the use cases.

 During implementation the design model is the implementation specification.

Because use cases are the basis for the design model, they are implemented in terms of

design classes.

 During test the use cases constitute test cases. That is, the system is verified by

The Unified Software Process

Page 6.29 of 6.40

performing each use case.

Notice that a use case has several descriptions. For each use case there is a use case

description, which describes what the system should do from the userís point of view,

and there is a use case design, which describes how the use case is performed in terms

of interacting objects.

Use cases have other roles as well:

 They can be used as a basis for iterative development.

 They form a foundation for what is described in user manuals.

 They may be used as ordering units. A customer can get a system configured with a

particular mix of use cases, for example.

Controlled Iterative Development

The Objectory iterative approach is generally superior to a linear or waterfall

approach for many reasons:

It lets you take into account changing requirements. The sad truth is that

requirements will normally change. Requirements change and requirements “creep”

have always been a primary source of project trouble, leading to late delivery, missed

schedules, unsatisfied customers, and frustrated developers.

Integration is not one “big bang” at the end—elements are integrated progressively.

Actually the Objectory iterative approach is almost continuous integration. What used

to be a big, uncertain and painful time taking up to 40% of the total effort at the end of a

project, is now broken down into 6 to 9 smaller integrations that begin with far fewer

elements to integrate.

It lets you mitigate risks earlier because integration is generally the only time risks are

discovered or addressed. As you unroll the early iteration you go through all process

components, exercising many aspects of the project: tools, off-the-shelf software, people

skills, and so on. Perceived risks will prove to not be risks, and new, unsuspected risks

will show up.

It provides management with a way to do tactical changes to the product; for example,

to compete with existing products. You can decide to release a product with reduced

functionality earlier to counter a move by a competitor, or you can adopt another vendor

for a given technology.

It facilitates reuse, since it is easier to identify common parts as they are partially

designed or implemented, instead of identifying all commonality up front. Identifying

and developing reusable parts is hard. Design reviews in early iterations allow

architects to identify unsuspected potential reuse and develop and mature common code

in subsequent iterations.

It results in a more robust architecture because you are correcting errors over several

iterations. Flaws are detected even in the early iterations as the product moves beyond

inception. Performance bottlenecks are discovered at a time when they can still be

addressed, not on being discovered on the eve of delivery.

Developers can learn along the way, and the various competencies and specialties are

more fully employed during the whole life cycle. Testers start testing early, technical

writers write early, and so on. In non-iterative development the same people would be

waiting around to begin their work, making plans and honing their skills. Training

needs or the need for additional (perhaps external) help is spotted early on, during

The Unified Software Process

Page 6.30 of 6.40

assessment reviews.

The process itself can be improved, refined along the way. The assessment at the end

of an iteration not only look at the status of the project from a product/schedule

perspective but also analyze what should be changed in the organization and in the

process itself to perform better in the next iteration.

Project managers often resist the iterative approach, seeing it as a kind of endless

ìhacking.î In Objectory, the interactive approach is very controlled; iterations are

planned, in number, duration, and objective. The tasks and responsibilities of the

participants are defined. Objective measures of progress are captured. Some rework

does take place from one iteration to the next, but this, too, is carefully controlled.

Requirements Management

The two key elements behind a controlled iterative process are requirements

management and change control. Requirements management is a systematic approach

to eliciting, organizing, communicating and managing the changing requirements of a

software intensive system or application.

The benefits of effective requirements management include:

 Better control of complex projects:

lack of understanding of the intended behavior as well as “requirements creep” are

common factors in out-of-control projects.

 Improved software quality and customer satisfaction:

the fundamental measure of quality is “does this system do what it is supposed to do?”

This can be assessed only when all stakeholders have a common understanding of what

must be built and tested.

 Reduced project costs and delays:

error in requirements are very expensive to fix; decreasing these errors early in the

development cycle cuts projects costs and schedule.

 Improved team communication:

requirements management facilitates early involvement of users to ensure that the

application meets their need; well managed requirements builds a common

understanding of the project needs and commitments among all stakeholders: users,

customers, management, designers, testers.

Focused more closely towards the needs of the development organization, change

control is a systematic approach to managing changes in requirements, design,

implementation, but also covers the important activities of keeping track of defects,

misunderstandings, project commitments, and being able to associate these with specific

artifacts and releases.

A Strong Emphasis on Architecture

Use cases drive the Objectory process end-to-end over the whole lifecycle, but the

design activities are centered around the notion of architecture—system architecture, or

for software-intensive systems, software architecture. The main focus of the early

iterations of the process—mostly in the elaboration phase—is to produce and validate a

software architecture, which in the initial development cycle takes the form of an

The Unified Software Process

Page 6.31 of 6.40

executable architectural prototype that gradually evolves to become the final system in

later iterations [9].

The Objectory process provides a methodical, systematic way to design, develop and

validate an architecture. It offers templates for architectural description around the

concepts of multiple architectural views, and the capture of architectural style, design

rules, and constraints. The design process component contains specific activities aimed

at identifying architectural constraints and, architecturally-significant elements, as well

as guidelines on how to make architectural choices. The management process shows

how the planning of the early iterations takes into account the design of an architecture

and the resolution of the major technical risks.

Architecture is important for several reasons:

It lets you gain and retain intellectual control over the project, to manage its

complexity, and to maintain system integrity.

A complex system is more than the sum of its parts, more that a succession of small

independent tactical decisions. It must have some unifying coherent structure to

organize those parts systematically, and provide precise rules on how to grow the

system without having its complexity explode beyond human understanding.

The architecture establishes the means for improved communication and

understanding throughout the project by establishing a common set of references, a

common vocabulary with which to discuss design issues.

It is an effective basis for large-scale reuse.

By clearly articulating the major components and the critical interfaces between

them, an architecture lets you reason about reuse, both internal reuse—the

identification of common parts—and external reuse—the incorporation of ready made,

off-the-shelf components. But it also allows reuse on a larger scale: the reuse of the

architecture itself in the context of a line of products that addresses different

functionality in a common domain.

It provides a basis for project management.

Planning and staffing are organized along the lines of major components.

Fundamental structural decisions are taken by a small, cohesive architecture team;

they are not distributed. Development is partitioned across a set of small teams each

responsible for one or several parts of the system.

Component-Based Development

A software component can be defined as a non trivial piece of software, a module, a

package or a subsystem, that fulfills a clear function, has a clear boundary and can be

integrated in a well-defined architecture. It is the physical realization of an abstraction

in your design.

Components come from different avenues:

 In defining a very modular architecture, you identify, isolate, design, develop and

test well-formed components. These components can be individually tested and

gradually integrated to form the whole system.

 Furthermore, some of these components can be developed to be reusable, especially

the components that provides common solutions to a wide range of common problems.

These reusable components which may be larger than just collections of utilities or class

libraries, form the basis of reuse within an organization, increasing overall software

The Unified Software Process

Page 6.32 of 6.40

productivity and quality. [8]

 More recently the advent of commercially successful component infrastructures such

as CORBA, the Internet, ActiveX or JavaBeans, triggers a whole industry of

off-the-shelf components for various domains, allowing to buy and integrate components

rather than developing them in-house.

The first point exploits the old concepts of modularity, encapsulation, bringing the

concepts underlying object-oriented technology a set further. The last two points shift

software development from programming software (a line at time) to composing

software (by assembling components).

Objectory supports component-based development in several ways.

 The iterative approach allows to progressively identify components, decide which

one to develop, which one to reuse, which one to buy.

 The focus on software architecture allows to articulate the structure: the

components and the ways they integrate: the fundamental mechanisms and patterns by

which they interact.

 Concepts such as packages, subsystems, layers are used during analysis and design

to organize components, specify interfaces.

 Testing is organized around components first, then gradually larger set of integrated

components.

Process Configurability

The Rational Objectory Process is general and complete enough to be used “as is” by

some software development organizations. However in many circumstances, this

software engineering process will need to be modified, adjusted, tailored to

accommodate the specific characteristics, constraints and history of the adopting

organization. In particular a process should not be followed blindly, generating useless

work, producing artifacts that are of little added value; it must be made as lean as

possible and still be able to fulfill its mission to produce rapidly and predictably high

quality software.

The process elements that are likely to be modified, customized, added or suppressed

include: artifacts, activities, workflows, workers and process components.

The Origin of Objectory

Objectory has many different sources. The more essential of these are:

 Objectory was originally developed in Sweden by Dr. Ivar Jacobson at Objectory AB.

Centered around the concept of use case and object-oriented design method, it has

gained recognition in the software industry and has been adopted and integrated by

many companies world-wide. A simplified version was published as a book in 1992

[7].

 The Rational Approach is an iterative process, focused on software architecture. It

has been developed by several different people at Rational, including Philippe

Kruchten, Grady Booch and Walker Royce. Various papers [9], [10] and books [3]

has described this approach. The Rational Approach was integrated with Objectory

The Unified Software Process

Page 6.33 of 6.40

in 1996.

 SQA Process is a formal test methodology developed by SQA, acquired by Rational

SW in early 1997. It is a leading test methodology for the Windows platform. SQA

Process was integrated with Objectory in 1997.

 Requirements College is a leading requirement management methodology developed

by Dean Leffingwell et.al. at Requisite. Requisite was acquired by Rational early

1997. Requirements College was integrated with Objectory in 1997.

The Objectory Process is supported by Rational's leading methodologists, including

Grady Booch, Ivar Jacobson, Philippe Kruchten, Dean Leffingwell, Walker Royce and

Jim Rumbaugh.

Objectory is sold as a product by Rational Software Corp. It is available in on-line,

browsable form and in printed book from. It is supported by training courses and other

services.

References

1. Barry W. Boehm, “A Spiral Model of Software Development and Enhancement,”

Computer, May 1988, IEEE, pp.61-72

2. Barry W. Boehm, “Anchoring the Software Process,” IEEE Software, 13, 4, July

1996, pp. 73-82.

3. Grady Booch, Object Solutions, Addison-Wesley, 1995.

4. Grady Booch, Ivar Jacobson, and James Rumbaugh, Unified Modeling Language,

White paper, Rational Software Corp., 1996.

5. Alan W. Brown (ed.), Component-Based Software Engineering, IEEE Computer

Society, Los Alamitos,CA, 1996, pp.140.

6. Michael T. Devlin, and Walker E. Royce, Improving Software Economics in the

Aerospace and Defense Industry, Technical paper TP-46, Santa Clara, CA, Rational

Software Corp., 1995

7. Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard,

Object-Oriented Software Engineering—A Use Case Driven Approach, Wokingham,

England, Addison-Wesley, 1992, 582p.

8. Ivar Jacobson, M. Griss, and P. Jonsson, Software Reuse—Architecture, Process and

Organization for Business Success, ACM Press, New York, NY, 1997.

9. Philippe Kruchten, “The 4+1 View Model of Architecture,” IEEE Software, 12 (6),

November 1995, IEEE, pp.42-50.

10. Philippe Kruchten & Walker Royce, “A Rational Development Process,” CrossTalk, 9

(7), STSC, Hill AFB, UT, pp.11-16.

Cf. also http://www.rational.com/products/objectory/process/

Page 6.34 of 6.40

O.O.S.I. OBJECT ORIENTED

SYSTEM INTEGRATION

PROJECT N. 10987

CARICCHIA PAOLO

AEROPORTI di ROMA

Object Oriented System Integration

Page 6.35 of 6.40

Description of the Company

Aeroporti di Roma is a company of the IRI group, born in 1974 from the fusion of

several companies (ground services) acting in Fiumicino and Ciampino airports of

Rome. Aeroporti di Roma (AdR hereinafter) is responsible for the co-ordination and

rationalisation of the facilities management and ground services in the airports of

Rome. In the next future AdR will become a private company, and this process has

begun six month ago putting on the market the 45 % of the stocks. An important

legal event pushed AdR management to renew their information system: that is, the

Italian anti-trust committee forced the company to share the market with new

handling agents. As a consequence, the AdR Information System has become a

critical factor of success to compete on the market. In order to offer competitive

services, AdR wants to improve the overall efficiency of their own organisation. In

this respect, it is clear that IS plays a main role: its efficiency has an impact on the

global level of service offered by the company.

AdR’s IS department is organised as follow:

 it includes132 AdR people plus external contractors.

The fields of activity are :

 SW development and maintenance.

 Technical infrastructures and automated system development.

 System management and HW maintenance

 Client Managers

The company policy regarding the software development is to use external labour

for the low level activities or for “turn key” project.

Actually, we are developing 20 main software projects and about one hundred

maintenance and implementation activities.

External contractors provide about 70 % of the total development needs.

Principal internal skill are :

Project manager

analyst

analyst programmer

The competence level and qualification are in the average.

The average is high, in some cases depending on the fact of a re-qualification

of low level skilled personnel to different activities.

Project manages lead workteam of internal and external resources.

“Method and Resources” plans and controls the resources scheduling and

supporting the workteam on methodology and tools.

In addition, it maintain Company data dictionary.

RAD is an organisation that develops small applications and manages all the

Object Oriented System Integration

Page 6.36 of 6.40

items regarding P.C., LAN, and Internet activities.

Information system department support different business areas like:

1. airport handling

2. flight information

3. maintenance of buildings and plants

4. marketing activities

5. accounting and financial areas

6. infrastructures development.

Main problems are :

- integration among the different applications is very difficult and expensive;

 - training costs are high, mostly dependent on the low profile of end-user.

- the heterogeneous user interface constitutes notable problems from the

 functional point of view.

Starting scenario

The main part of applications is mainframe-based, mostly developed in the last

decade or before, for each different business area.

Usually, the user interface is 3270-like and databases are relational.

For admin. business area applications, database are hierarchical and data

integrity is guaranteed by batch procedures.

Many applications are PC based, using data (via file transfer from mainframe

databases) for personal elaboration and statistical analysis using office tools like

those Windows based.

The mini-based applications are significantly used just for process-control

applications, for CAD, SAP or document management system.

This leads to a great variety of different product and devices to be managed.

AdR has conducted the Object Oriented System Integration (OOSI hereinafter)

application experiment with the support of the European Commission within the

ESSI Project number 10987.

The OOSI objectives were to evaluate the effectiveness of the OO paradigm in

terms of system interoperability, maintenance and evolution, through the

development of a significant application, and to disseminate this culture within the

organisation. In fact, the OMT methodology and the O2 system were used to develop

the AdR

“Weight and Balance” system.

Object Oriented System Integration

Page 6.37 of 6.40

WORKPLAN

The experimentation was arranged according to the following path:

1. Assessment of the current information system.

2. Identification of a significant AdR pilot application, in terms of data complexity

and distribution, to be re-designed and developed with the Object Oriented

paradigm.

3. Development of the identified pilot application.

4. Dissemination of the Object Oriented paradigm within the organisation.

5. Assessment of the experimentation results with respect to the OOSI objectives.

The preceding activities were structured into the following work packages :

WP1 - Object Oriented analysis of subset of existing information system (1, 2)

WP2 - Object Oriented design of the integration platform (3)

WP3 - Evaluation and Dissemination (4, 5)

WP4 - Project Management

The new “Weight and Balance” system is composed by five subsystems (the

acronyms derive from Italian language translation of the description in brackets):

GEMO (Operative Manuals Manager)

GTT (Technical Tables Manager)

SVPL (Work Balancing Manager)

BIL (Load Balancing Manager)

GMID (Mainframe Communication Manager)

The functionality of each subsystem will be described during the presentation.

EXPECTED OUTCOMES

The main expected results from OOSI were:

An evaluation of the maturity and effectiveness of the Object Oriented paradigm

in terms of application level interoperability, maintainability and evolution.

The dissemination of the Object Oriented paradigm within AdR

Application level interoperability, intended as the design of a comprehensive

entities conceptual schema of the AdR Information System, was considered a first

fundamental step towards technology level interoperability, that is the possibility to

access data in the heterogeneous databases on different hardware and software

platform. This latter was beyond the scope of OOSI.

The use of the Object Oriented paradigm to develop a general entities conceptual

Object Oriented System Integration

Page 6.38 of 6.40

schema for AdR information system was expected to facilitate the evolution of the

existing system and the development of the new ones.

Object Oriented System Integration

Page 6.39 of 6.40

THE IMPLEMENTATION OF THE IMPROVEMENT ACTIONS

The OOSI experiment was an important opportunity for AdR to learn through

direct experience about client-server architecture, graphical user interfaces, the

object oriented paradigm, and the beneficial effects of these technologies from the

organisational perspective as well. In particular, the object oriented paradigm has

shown itself to be powerful and very promising in respect of the possibility to

provide a comprehensive, uniform and structured view of the AdR application

domain and to evolve this view in a very easy way. The object oriented database

schema developed in the project has been evolving very quickly in a period of few

month. AdR are now more confident that re-engineering their information

system and developing the new applications on client server environment, equipped

with the most advanced software technology can improve their services and turn

into competitive advances in the medium-large term.

AdR are now dealing with education of the technical staff and revision of the

software process organisation. Moreover, IS department is now in change of

careful looking at emerging standards on object oriented methodology and

technology side. In particular, AdR are now paying attention to the emerging

Unified Modelling Language and the supporting technology, which will probably be

a subject of a new experimentation in the near future.

THE MEASURED RESULTS AND THE LESSON LEARNED

The application experiment was based on a real and significant AdR application.

From AdR perspective, this is a crucial point and reinforces their confidence on the

validity of the experiment results obtained from OOSI. The strength of OOSI also

stems from the fact that the experiment has not been confined to a limited group of

specialist, but various departments has been involved in it. Finally from the OOSI

experiment, the following lessons can be drawn:

 The rapidity and simplicity with which new domain entities (O2 classes) were

added and tested to refine the Weight and Balance system database schema, by

using specialisation, aggregation, and classification abstraction mechanisms,

leads to the consideration that application maintenance and evolution are

facilitated using object oriented technology.

 Object oriented paradigm allows for major data integration. Even end-user

technical manuals could be easily stored in the application database and

associated with the concerned entities.

 Object oriented modelling and tools make possible to develop system starting

from a high level view of application domain, which permit to overcome to the

language gap existing between end-users and software designer.

 This project allowed us to experiment with success :

 A new organisational model

 A client-server HW/SW architecture

Object Oriented System Integration

Page 6.40 of 6.40

 A modern and powerful software methodology and technology

However, careful attention must be paid to the introduction of these new

technological and organisational paradigms within the company. The process must

be gradual and involve as many people as possible, in order to maximise the

consensus and reduce resistance from people less ready to accept any change.

Page 7.1 of 7.47

Session 7 – SPI

Experience for Small

Teams

A Small Software Developers' framework for evaluating
the internal usage of IT

Béatrix BARAFORT, Anne HENDRICK,

Philippe LIEMANS, Jean-Pol MICHEL

Joint contribution from the Software Engineering team

Centre de Recherche Public Henri Tudor, L-1359 Luxembourg

CMM in a Micro Team: A Case Study

Joao Batista

ISCAA/CISUC, Portugal

A. Dias de Figueiredo

CISUC, Portugal

Improving Estimation and Requirements Management:
Experiences from a very small Norwegian Enterprise

Svein Are Martinsen (sveinare@invenia.no)

Invenia AS, P.O. Box 282, N-9201 Bardufoss, Norway

Arne-Kristian Groven (groven@nr.no)

Norwegian Computing Center (NR), P.O.Box 114 Blindern,

 N-0314 Oslo, Norway

Page 7.2 of 7.47

A Small Software Developers'

framework for evaluating the internal

usage of IT

Béatrix BARAFORT, Anne HENDRICK,

Philippe LIEMANS, Jean-Pol MICHEL

Joint contribution from the Software Engineering team

Centre de Recherche Public Henri Tudor, L-1359 Luxembourg

Introduction

Managing efficiently the Information and Communication New Technologies is a

prerequisite in order to support the access of small companies in the Global

Information Society.

The Software Market for the French speaking region composed of the Grand Duchy

of Luxembourg, provinces of Luxembourg, Namur and Hainaut in Belgium, and the

French Lorraine, could be described schematically as two highly independent layers.

The first layer, “High Level Software Market”, links big firms and organisations

(European Commission, banks and insurance, industry) with computer

manufacturers, software houses and consulting firms (either medium size

independent companies or subsidiaries of international groups). The second layer,

“Low Level Software Market", connects Small and Medium sized

Enterprises(SME)’s, with or without Information Technology (IT) department, with

small local software house. The latter is potentially larger but presents several

weaknesses: very little formalised Customer/Supplier relations, lack of visibility, few

consulting services, high risks in terms of reliability and continuity.

These reasons conducted the Software Engineering team of the Centre de Recherche

Public Henri Tudor (public research centre devoted to innovation and technology

transfer) in Luxembourg to define the SPIRAL*NET project 0. Its objectives are to

optimise and to generalise best practices related to the Customer/Supplier processes

and the associated support ones.

This paper describes experiences and case studies collected from various IT projects.

Based on conclusions and lessons learned, it outlines what could be a framework to

evaluate the maturity of Small Software Developers (SSD) companies in the

management of internal usage of IT.

Panorama of quality dedicated approaches

All along the 20
th
 century and particularly in its second half, quality approaches

contributed to the development of companies : TQM initiatives, ISO 9000

certifications 000, or competing for quality awards. For the last decade, IT-dedicated

quality models appeared, more specifically based on the process concept (CMM :

Capability Maturity Model, Bootstrap, Trillium, ISO 12207, ISO 15504 0 also known

A Small software Developer’s Framework

Page 7.3 of 7.47

as SPICE : Software Process Improvement and Capability dEtermination).

The majority of the previously mentioned standards are stemming from military,

industrial and aerospace initiatives, supported by governments and main industries.

These standards are directly applicable to big firms, but with lot’s of difficulties to

SSD's and SME’s, principally for cost reasons. Facing the growing importance of IT

in the enterprises and the competitive context of the end of the century, software

process improvement has become a key success factor, whatever the companies size

is. More and more adaptations are proposed for performing assessments and

improving software processes in small IT structures. Relating to excellence models,

the EFQM (European Foundation for Quality Management)

developed a model for

SME’s (The European Model for Small and Medium sized Enterprises), with an

associated award (the European Quality Award for SME’s). Concerning the CMM, a

company named LOGOS has worked out a lightened approach 0. The European

Commission is bringing out programs which aim at developing such approaches in

SME’s (for example projects such as SCATE 0, SPIRE 0, TAPISTRY 0 0, BIG

Project in the ESI -European Software Institute- 0). In Wallonie (French speaking

part of Belgium), several initiatives are performed in order to assist SME’s and to

provide them with tools and methods tailored to their context 0.

The regional context

The region which concerns us constitutes a geographical, cultural and economic

uniform unit. It is characterised by the use of a common language, French, and by a

geographical and historical proximity. Concerning economy, surveys conducted by

CEPS-INSTEAD (Centre d’Etudes de Populations, de Pauvreté et de Politiques

Socio-Economiques / International Networks for Studies in Technology,

environment, Alternatives, Development showed that the area has been seriously

affected by industrial decline, and the iron and steel industry recession had cost it

dear. An important tertiary sector is now growing up. This region is characterised by

economical poles of development around main cities (Nancy, Luxembourg, Namur

and Charleroi), and by an important network of SME’s.

The following paragraph illustrates the awareness of local SME’s to Software

Process Assessment (SPA) and Software Process Improvement (SPI). The study

realised by CITA 0 gives similar indications on Belgian French speaking SMEs.

Description of the panel

During several missions between June 97 and August 98, the CRP Henri Tudor

teams have met a valuable number of luxemburgish SSD’s. The following data

concerns about 16 of them.

The initial observation allows a classification of these SSD’s in 3 categories :

the IT professionals (5 of them) : these are mainly local companies and are

specialised either in software development (2), or propose full services from software

development to LAN / WAN infrastructure (3).

the companies with a well set IT department (both organisational and people aspects)

(5 of them) : they are all internationally aimed ; 4 are partners or subsidiaries of a

larger group. They have a well set IT strategy with home software developments (3)

or implementation of an ERP (2). The computer team works by its own, but can be

closely supported for the largest projects by the main company of the group (2) ; this

A Small software Developer’s Framework

Page 7.4 of 7.47

makes the team size variable, but usually it doesn’t reach 20 people.

the SME’s where the IT department is managed by a « one-man-band » helped by a

maximum of 3 collaborators (6 of them). Most of them outsource the software

developments and a large part of the activities of computer support.

This panel of companies consists of 10 industrial companies (polymers, machinery

pieces, materials, high added value steels, etc.) and 6 in the services field.

For 7 companies, the technological environment can be qualified of well developed

and efficient (well designed LAN, E-mail and intranet functions). On the other hand,

3 companies have significant gaps like an uncomplete LAN, no inter site links and/or

important lacks in the available software applications. In each case, the will or plans

exist to solve these problems. For 6 companies, the computerisation maturity is

medium with strengths but also with at least one large weakness such as a neglected

IT department, the computerised operational works not automated, the main software

unchanged for years and largely obsolete, etc.

States of commitment for process improvement

All companies want to improve and have the consciousness of making it an ongoing

process; the differences are the amount of energy they put in it and the speed of the

implementation of the selected changes.

The last remarkable point is that nearly half of the companies hide their face when

the time is up to fight the shortcomings and problems : taboos, ideas which never

become reality, resistance of several kinds, other priorities… All theses thoughts

emphasise the complexity of the problems, and highlight the global lack of an

integrated IT strategy in the companies, and particularly in SSDs.

SPA and SPI case studies

The Centre Henri Tudor has chosen the ISO 15504 framework to support

assessments and SPI activities. Located at the tactical level in an organisation,

process assessment bridges the gap between operational and daily tasks formalised

by procedures from a quality system (i.e. ISO 9001/9002 compliant), and the

strategic view of the company featured by business excellence models such as

EFQM, Baldrige…

In order to give prominence to this tactical turning point, the assessment preparation

phase consists in determining value chain activities of the organisation in connection

with its vision and its mission. Then, for each activity, key success factors induce the

selection of critical processes for the organisation. These processes can be assessed

and used as a basis to build a software practices improvement program.

Coming from the ISO 15504 baseline, an ISO 15504 compliant process model and

the associated improvement approach 0 are adapted to our local context. The

following paragraph illustrates these remarks via a description of selected case

studies. An ISO 15504 assessment has been realised for the company described in

each of them. Today, two of these case studies have been implemented in an

improvement plan.

Assessments automatically happened according to the following steps (the case

studies will only stress the outstanding elements of each step) :

initiation : introduction of the firm, awareness on SPI, selection of key-processes

A Small software Developer’s Framework

Page 7.5 of 7.47

preparation : determination of the field and the sample of activities to assess

according to the selected processes, planning of the interviews

assessment interviews (lead by a pair of assessors) and consolidation of raw results,

progressive definition of the assessment profile

analysis and reporting : results analysis, reports writing : detailed synthesis for the

managers

results presentation : to the managers and the concerned staff

assessment : validation of the method and results, proposition of a SPI program to the

firm

As for the advice in the definition and implementation of a SPI plan, the CRP Henri

Tudor operated in two different ways : either as a major actor of assistance to a firm

(for specific actions of assistance and advice during the preparation and the

implementation of a SPI program), or by participating to the SCATE 0 project as a

logistical relay and as an observer during the training sessions. The SCATE program

consisted in a series of nine training/action sessions during nine months destined to

SSD. This program was meant to train one person (the champion) to the suitable

techniques in SPI, to enable firms to acquire the competencies, abilities and

behaviours required to implement the change within the firm, and eventually to give

a chance to share the experience with other firms which are involved in the same

process. The program was based on the CMM and particularly on the level 2 Key

Process Areas. Two working groups gathering 5 firms each took place in Namur (B)

and in Luxembourg.

A Small software Developer’s Framework

Page 7.6 of 7.47

Case study A

Firm context – SPI context

Firm A is a Belgian SME which employs 250 persons. It gathers 3 non-profit-making associations,

which are the Social Insurance Fund, the Social Secretariat, and the Family Allowance Fund.

The IT department is a common unit for the 3 non-profit-making associations. It gathers 21 persons

and is divided into 3 functional teams, according to the non-profit-making associations. The

technological environment is centralised (mainframe system).

The manager of firm A attended a symposium about a program of training/action in the SPI field for

the SME’s. He decided to involve its company in such a program and initialised an improvement

project (participation to a SCATE User Group of Luxembourg and Namur). In order to know the state

of the software practices in his firm before starting the program, an ISO 15504 assessment was made.

Outcome for the ISO 15504 assessment

Weaknesses:

Expression of the vision / mission / value chain and selection of the key processes (not enough time

spent on this step; no distance)

Embarrassing presence of an observer from the IT management for the interviewed users.

Strengths:

Total support from the sponsor and implication of all Project Managers and of two key-users

Building of a process which is adapted to the firm’s context and to the interviewed persons

(Requirements and Tests process destined to users)

Results presentations used as a way of making every one aware of the role of IT within the firm and

underlining of the efforts made to improve software practices.

As for CRP Henri Tudor, experience and tools acquired from former assessments.

Lessons learned:

Need to improve the step of selection of key-processes in the firm (provide an assistance to the

formulation of the vision/mission/value chain) and to drive the thought towards other processes than

engineering ones.

Proposal of an assistance to the implementation or the evolution of the IT strategy in the firm.

Need to precise the recommendations and to start the preparation of an improvement plan.

Making of a formal outcome of the assessment.

Outcome from the tutoring program experience

Weaknesses:

Terms of SPI difficult to understand

Confusions between SPICE and CMM

Lack of an external follow up for the planned improvement actions

Strengths:

Awareness of the usefulness of SPI and motivation of the staff already acquired during the ISO 15504

assessment

Formalisation (for the planning and the follow up) and Change Management (especially for the less

young persons of the team)

Sharing of diverse experiences with other firms during monthly training sessions

Desire from the champions (supported by the sponsor) to continue the program of improvement beyond

the SCATE Program

Lessons learned:

Need of a structure for improvement and of a precise terminological frame which would be already

applied before starting the Program.

Need of external assistance to valid the implementation of improvement actions

Need of an external catalyst to avoid slowness of the step and decline of enthusiasm

Need to talk about the functions of technology watch with the firm (these functions could be common

to several companies and SSD)

General conclusion

The improvement program engaged via the SCATE tutoring project was not ended during the last

training sessions. Nevertheless, the managers and the champions decided to continue their work and to

enlarge their actions to other IT activities, such as the Requirements Management and the Quality

Assurance (already stressed during the ISO 15504 assessment). It is possible that a new ISO 15504

assessment will be done later, in order to measure precisely the evolution of software practices.

A Small software Developer’s Framework

Page 7.7 of 7.47

Case study B

Firm context - SPI context

Firm B is a SME of about 170 persons. It is a small business bank in Luxembourg.

A particular and independent organisational unit makes the IT treatments of the firm. This unit plays the

role of a privileged software house for B but it has also developed external services such as facilities

management which ISO 9002 certified. The IT staff gathers 24 persons. The activities of the IT team

deal with development and help-desk service. The technological environment is centralised (mainframe

system).

Following the SPIRAL’97 conferences in Luxembourg, a member of the Management Committee of

this company has been interested in the idea of an ISO 15504 assessment made by a neutral and

independent institute, such as the CRP Henri Tudor.

Once the management convinced and particularly the IT manager (sponsor of the service), an

assessment of the software practices has been decided with the following goals : determination of the

maturity level of the development process, identification of strengths and weaknesses, risks and

improvement opportunities, recommendations of precise measures which will be useful to the

working-out of an improvement program, and of the staff awareness to the continuing improvement of

software practices.

Outcome for the ISO 15504 assessment

Weaknesses:

Expression of the vision / mission / value chain and selection of the key processes (not enough

involvement from the firm in the step of selection of the processes and not enough follow up from the

CRP Henri Tudor)

Not enough support from the sponsor and not enough implication to determine the possible

continuation of the assessment with the definition of a whole improvement project

Questions linked to the IT strategy asked by the Management Committee

Complex relations between the organisational unit which plays the role of a software house for the bank

and the users themselves (difference of goals and no contract between client and supplier).

Strengths:

Involvement of all Project Managers and of three users from the bank.

Building of a tailored process to the context of the firm and to the interviewed persons (IT engineers

and end-users group process)

As for CRP Henri Tudor, experience and tools acquired from former assessments.

Proposition of the outline of a action plan based on the recommendations of improvement.

Lessons learned:

Review planning ratio to have a good understanding of the business activities

Extend preparation time for the assessment in the case of building processes for the assessment

requirements.

Need to improve the step of selection of key-processes in the firm (provide an assistance to the

formulation of the vision/mission/value chain) and to drive the thought towards other processes than

engineering ones. Advice to the firm all the way through.

Proposal of an assistance to the implementation or the evolution of the IT strategy in the firm.

General conclusion

As a whole, the assessment has been welcomed by the involved team (the IT staff) and happened in

good conditions. Nevertheless, the sponsor has not fully played his role, therefore it has been difficult

to prove him the need to define and implement a SPI project. Four months after the assessment, the

improvement project has still not started.

A Small software Developer’s Framework

Page 7.8 of 7.47

Case study C

Firm context - SPI context

Firm C is part of a European group (about 220 persons in Europe) which works in the manufacture of

colours concentrates and in colourings for plastics. There is also a group in the United States. As a

whole, the company knows a great growth.

The IT staff of the European subsidiary (for the components of Luxembourg and Belgium) has recently

grown to 6 persons (including 4 developers).

The technological environment is UNIX.

Following an awareness event for the SCATE program, the manager of firm C has decided to involve it

in such a program (SCATE User Group of Luxembourg). Indeed, this firm has a few means to reach the

same stakes as the great companies. IT engineers work as heroes with no view on the development.

Outcome for the ISO 15504 assessment

Weaknesses:

Terms of SPI difficult to understand

Difficult assimilation of the CMM guide (4 months were needed)

Strengths:

The presentation of the ami 0 (application of metrics in industry) method endorsed the internal step

(generalised to the whole company) of implementation of metrics (issued from a Goal/Question/Metric

approach).

After the time of assimilation of the CMM guide 0, practical elements were drawn out applicable to the

context of the firm (in terms of involvement, of common and systematic step)

Lessons learned:

Need of a toolbox (not enough tools provided via SCATE)

Need of an external assistance to the firm (during and after SCATE)

General conclusion

After the end of the training sessions, the champion and the managers were decided to continue the

improvement program (not finished at the end of the sessions).

After the jolt of the past, the future goals are to manage the flow of software processes used by the IT

team and to have the view on these processes. The goal is settled on year 2000 modifications.

This company made the deliberate choice to lead small improvement actions, at high added-value

(Quick Wins), which imply a long term partnership in the issue of projects/actions/training, the

exchange of experiences and the assistance of improvement actions by an external organisation.

A Small software Developer’s Framework

Page 7.9 of 7.47

Specifications for a SSD’s framework

Case Studies Results : contribution to an assessment and improvement

approach

Several outstanding and recurrent facts arose in the case studies. Based on these

experiences, some general guidelines and specific tips for SSD (our

recommendations) can be proposed in order to lead the assessment and improvement

actions, and to contribute to a global SSD's framework.

Awareness

It’s of no use to perform an assessment if the awareness level and the approach

support in the SSD is not sufficient :

Need for a preliminary awareness or training action for the sponsor, and at the very

least, all staff involved in the assessment

Our recommendations :

To assist the assessment with a real awareness effort for each contacted person

To plan specific awareness action to the sponsor and assessment co-ordinator

To organise awareness action for all staff

To cover all projects in the SSD

To interview each person for at least one process

To organise assessment interviews with a group of persons who are not performing

direct assessed process related tasks, but are customer or supplier for them.

Processes to assess

Generally we use the value chain diagram to identify the most critical core processes

and IT key processes.

Important links between the IT department’s vision and missions and the whole

company’s vision

Key processes choice with IT managers often ends up with engineering and project

management processes

Our recommendations :

We think that a set of processes, even if they are partially implemented, have to be

started on in a systematic way. They contribute to the value chain activities. We

suggest a list of generic activities which are often present in SSD and applicable to

the software context :

Product specification

Product selection and/or Product development

Product maintenance

Technology management

Management of activities

Considering the process model 0, the following list of processes which contribute to

the core activities of most SSD, has been established (most of the processes are

parent processes in the model) : Acquisition, Supply, Project Management, Risk

Management, Change Management, Problem Management, Configuration

Management, Infrastructure, Strategy Management, Development, Maintenance

A Small software Developer’s Framework

Page 7.10 of 7.47

We identified a particular process which does not exist in the model but which is

essential considering the SSD identified needs : Elaboration or evolution of the IT

strategy. This new business process is being established in CRP Henri Tudor and will

be the baseline for assisting SSD in defining or modifying their IT strategy.

Quick Wins

Quick wins are improvement actions which don’t require important implementation

efforts, but with visible and rapid results in the firm. It can be a document template at

disposal, a punctual involvement of a person in a meeting where he/she was never

invited before, available information never consulted before.

Our recommendations :

To implement Quick wins which bring a lot of added value to IT activities,

particularly for SPI aware companies with limited resources

Improvement actions

Well-known tips to manage SPI projects are critical in the context of SSD :

Need for setting an improvement infrastructure

Define an organisational frame for projects

Focus on key process related actions such as best practices collected by the means of

working groups, improvement implementations in a pilot context, action refinement,

institutionalisation and process formalisation (process definition)

Regular re-assessments

Our recommendations :

To identify an improvement infrastructure and to promote it to all staff in the SSD

(Two main roles are identified : the sponsor and the SPI actor. The SPI actor may be

project leader, process owner, and expert once at a time).

To start on systematically a set of processes, even if they are only partially

implemented, such as : Elaboration or evolution of the IT strategy, Client/supplier

relationships, problem management, change management, infrastructure

To assist the SSD to implement improvement actions (performed by an organisation

such as CRP Henri Tudor). This seems essential in order to encourage similar

experience reuse and a technology transfer adapted to their context

Guidelines for a framework

Based on experiences and case studies collected from different IT projects and

various activity sectors, requirements for a framework dedicated to SSD are defined.

This framework can be used to assess how a company uses IT and to determine

how new technologies could support its strategy and the development of its

activities.

First the framework is composed of the core processes identified through the analysis

of the vision and the business goals of the SSD. The well known value chain

diagrams helps you to model each adding value activity to the services and/or goods

production cycle. Some supporting processes could also be identified. The drivers are

sometimes called key success factors or aims; they outline the desired outcomes to

successfully achieve the mission.

A second dimension of the framework consists in modelling the usage of IT via the

identification of "information and communication processes". These are features for

A Small software Developer’s Framework

Page 7.11 of 7.47

stored, transformed or exchanged information among core processes in order to

better analyse the usage of Information and Communication Technologies and to

appraise in what extent they efficiently support core processes related activities. Each

of the information and communication process could be described through a 3-layer

architecture to cover technical, software and organisational components. The

technical components address hardware and networking (types of computers,

networks, cabling, and network liaison). The software components covers

fundamental applications (production, stocks, invoicing, accounting, salaries, human

resource management) and networking integration (networking protocol, operating

system,…). The organisation addresses the availability of computer resources,

facilities management or outsourcing choices, selection of suppliers.

Nowadays the IT evolution in firms can be stated by 5 major IT application

categories depending on the finality of the associated information system :

computerisation of operational activities

integration of subsystems

decision support systems

co-operation within the company or inter-personal communication

external exchanges or inter-professional communication

The third dimension concerns the key processes associated to IS projects (an ISO

15504 compliant process model 0 can then be used) where the processes are the

baseline for assessment and improvement actions.

Figure BB&AH.1 below shows how the framework is articulated, with the current,

target and potential IT view in a company.

During interviews with managers and employees, all data, templates, user guides are

collected (all materials allowing a good knowledge of the core processes and the

information and communication processes). Each of them is documented through a

set of attributes and models.

All these data will be analysed through three different viewpoints.

the current usage of IT

It compares which information and communication processes support the core ones

and how they are implemented from the manager and the users' points of view. All

the available functions are listed and analysed in terms of ease of use, availability,

performance, reliability, to characterise the current usage of IT.

The IT manager of the company has to describe as objectively as possible the

architecture, current solutions and IT supported functions. This analysis can also be

lead by somebody external from the company.

the target usage of IT

During interviews with the managers we collect their objectives in terms of IT policy

or new developments. Users outline all opportunities of evolution, improvement or

new programs supporting their daily activities.

the potential usage of IT

Finally the diagnosis identifies the most relevant opportunities for introduction of

new IT. They result from a cross-analysis of core processes and information and

communication ones. The ISO 15504 assessment approach is also tailored to evaluate

some of the software/system processes such as customer/supplier relations, project

A Small software Developer’s Framework

Page 7.12 of 7.47

management and risk management.

Figure BB&AH.1 : Representation of the framework

Conclusion

Some companies of the interregional area have been aware of SPI and are able from

now on to initiate SPI projects. The CRP Henri Tudor played and is still playing an

important role in spreading software process improvement ideas and initiatives. In

order to better apply these concepts and to evaluate the internal usage of IT, the

SSD's framework is built. It provides a baseline for working with SSDs, helping them

in the management of IT, and more particularly with Information and

Communication New Technologies.

Generally speaking, the Centre Henri Tudor is developing the concept of resource

centre as a platform dedicated to a sector or a discipline (manufacturing, health care,

multimedia, building trades ...). The neutral and independent platform aims to

disseminate information and to exchange experiences on software processes, to

gather competencies, skills and tools and to propose an integrated set of related

services. Under the generic label SPIRAL a variety of activities are organised such as

inter-company work groups actively discussing software quality issues, tailored

training cycles to create awareness of software process management and ISO 9000

certification among our regional business partners. A SSD's dedicated framework for

evaluating the internal usage of IT directly contributes to the development of services

in such a resource centre.

References

 Product

 specification

 Product

 selection /

development

 Product

 maintenance

 Technology management

 Management of activities

Identified IT key processes

Identified business core processes

Value Chain activities

Core business

Information & Communication processes

- Technical components

- Software components

- Organisational components

Current and Target

IT usage

Target and Potential

IT usage

A Small software Developer’s Framework

Page 7.13 of 7.47

Porter Michael E., Millar Victor E., How information gives you competitive

advantage, in: Harvard Business Review Article, July 1985

Kilpi T., Saukkonen S., Luukas J., Nokia Telecommunications Oy, Self-assessment

as a Means of Software Process Improvement in Small Software Processing Units,

in: Proceedings of the 3rd annual European Software Engineering Process Group

Conference, London, UK, June 1998

Andrés A., Magnani G., European Software Institute, SPICE for ‘s : How Process

Improvement Supports the Achievement of ISO 9001, in : Proceedings of the 3rd

annual European Software Engineering Process Group Conference, London, UK,

June 1998

Brodman G. J., Johnson L. D., The LOGOS Tailored CMM for Small Businesses,

Small Organisations, and Small Projects, LOGOS International, Inc., Needham, UK,

September 1997

Habra N., Du Bois P., La crise du logiciel : vers une démarche d'amélioration des

processus logiciels dans les PME Wallonnes, in : revue Athena de la DGTRE du

Ministère de la Région Wallonne, Namur, B, September 1998

Lobet-Maris C., Delhaye R., Henrotte V., Walthery P., Utilisation des Systèmes

d’Information Inter-Organisationnels par les PME Belges, in : Rapport Final SIO,

CITA-FUNDP, Namur, B, November 1997

Compita Ltd, Process Professional Process Portfolio, Process Professional Library

Services, 1996

SCATE Mid-term Report - ESSI Project 24291 - MTR, v4, June 1998

TAPISTRY Mid-Term Report - ESSI Project 24238 - V 1.0, January 1998

SPIRE Project Information Pack - ESSI Project 23873 – April 1997

SPIRAL.NET Project Programme - ESSI Project 27884 - V 2.0, May 1998

ISO/IEC JTC 1/SC 7, ISO/IEC TR 15504, 1998

EN ISO 9001, Systèmes qualité - Modèle pour l’assurance de la qualité en

conception, développement, production, installation et prestations associées, CEN,

Bruxelles, B, Juillet 1994

EN ISO 9002, Systèmes qualité - Modèle pour l’assurance de la qualité en

production, installation et prestations associées, CEN, Bruxelles, B, Juillet 1994

EN ISO 9003, Systèmes qualité - Modèle pour l’assurance de la qualité en contrôle et

essais finals, CEN, Bruxelles, B, Juillet 1994

K. Pulford, A. Kuntzmann-Combelles, S. Shirlaw, A quantitative approach to

Software Management – The ami handbook, Addison-Wesley, 1995

Kenneth M. Dymond, Le Guide du CMM – Introduction au modèle de maturité

CMM, traduction A. Combelles et al. – Objectif Technologie, Toulouse, F, 1997

Page 7.14 of 7.47

CV of the authors

Béatrix BARAFORT

Co-ordinator of several projects of process assessment (SPICE) and improvement

programs.

Currently project leader of SPIRAL*NET (ESSI Project 27884).

Qualified assessor (certificate of achievement of “Process Professional

Assessment”).

Anne HENDRICK

Member of the board.

Branch manager for Software Process Quality.

Co-ordinator for the SPIRAL platform. This resource centre aims to enhance

information and experience exchanges between IT professionals.

Responsible for the definition of service offers in the domain of software

engineering, process improvement and quality management, such as consulting,

technological and methodological assistance, specialised training, working groups

and forums.

Qualified assessor (certificate of achievement of “Process Professional

Assessment”).

Philippe LIEMANS

Member of the PRISME project which aims to assist SME’s to manage IT. The aims

of PRISME are to improve their maturity level to manage the IT infrastructure and to

assist them to assess the opportunities of new technologies.

Is in charge to visit SME’s and to prepare the diagnosis of their current infrastructure

and the analysis of their specific needs.

Jean-Pol MICHEL

Member of the board.

Manager of the Software Engineering Team (35 engineers).

This team gathers all competencies related to design and management of Information

Systems. The covered topics are computerisation of operational activities, integration

of subsystems, decision support systems, co-operative information systems.

Manager of the training centre of the CRP Henri Tudor named SITec.

This Centre organises continuing training courses, qualification programs and

awareness events.

Thanks to all the Software Engineering team members who contributed to this paper.

A Small software Developer’s Framework

Page 7.15 of 7.47

Centre de Recherche Public Henri Tudor

The Centre de Recherche Public Henri Tudor, founded in 1987 as a public research

centre, was created to promote innovation and technological development in

Luxembourg. The Centre's goal is to improve the innovation capabilities of the

private and public sectors by providing support services across the main

technology-critical areas : information and communication technologies, industrial

and environmental technologies. It is assisted in its mission by a diversified network

of industrial and institutional partners.

The Centre de Recherche Public Henri Tudor participates in European Union

programmes including ESPRIT, Craft, Info 2000, LIFE and Telematics Applications

Programme. As a result, Luxembourg businesses are able to draw on the knowledge

and expertise of Europe’s greatest research centres.

The Centre is also actively engaged in inter-regional co-operations within the

"Grande Région" (Saarland and Rheinland-Pfalz in Germany, Lorraine in France and

the province of Luxembourg in Belgium). It is a co-founder of the European College

of Technology, a tri-state initiative based in the European Development Pole at the

Athus-Longwy-Rodange intersection, and contributes to the innovation programmes

of the EU Structural Funds.

Main figures

a full-time staff of 130

5 research laboratories

4 innovation support services

6 technology resource centres

annual turnover of more than ECU 6 millions

60 % self-funding

Page 7.16 of 7.47

CMM in a Micro Team:

A Case Study

Joao Batista

ISCAA/CISUC, Portugal

A. Dias de Figueiredo

CISUC, Portugal

Abstract

This paper describes the case study of an application of the Capability Maturity

Model (CMM) to a micro team with less than 10 people and very short resources,

clearly placed in the first CMM level of maturity, the Initial Level. One major aim of

the case, which extended over a period of one year, was to study the extent to which

the CMM could be adapted to very small teams. We have concentrated primarily on

those parts of the CMM that regard the achievement of the objectives of Key Process

Areas (KPA) in Level 2, the Repeatable Level. We have identified some KPAs where

improvement could be started, and we have included others as we moved along.

Throughout the year we gathered data from a wide range of management and

engineering tasks. The results obtained after one year have shown a clear

improvement of the process: the number of calls from clients for technical assistance

had decreased to 25% of the initial value; the budget requirements had decreased to

28%; and the time devoted to software production had increased by 137%. The

pragmatic application of the CMM has thus shown that improvement can indeed be

achieved for very small teams. We also came to the conclusion that the model cannot

be applied in a straightforward way to such small teams: it must be used judiciously,

by constantly adapting it to the environment of the team and by selecting just the key

practices that are really relevant to the process. We have also concluded that team

management is just as important as process management in this kind of environment.

Introduction

The CMM, or Capability Maturity Model, has been established in response to the so

called software crisis of the late 70s, which was a motive of very serious

dissatisfaction from the US Department of Defense [1]. This crisis, which has by no

means decreased in the software industry as the years passed, results from the lack of

maturity of the software development process. Its most visible consequences are the

CMM in a Micro Team

Page 7.17 of 7.47

low quality and reliability of most of present day software products.

The bigger problems naturally tended to occur in highly complex systems, for which

very large teams had to be assembled. This explains why the CMM considers a team

to be small if it is composed of less than 70 people, big if more than 200 people are

involved, and medium sized if its dimension falls between those two values [2].

The current software industry is, however, largely made up of very small firms, many

even resorting to less than 10 people for software development. We will refer to

those as micro teams. Micro teams also have very serious problems of maturity in

their software development processes. In fact, in many cases no real process does

even exist, often leading to very chaotic modes of operation that affect the whole

firm. In the words of Davis, "software is burst of creativity and individual genius

rather than teamwork and engineering discipline" [3].

In this paper we describe the case study of an application of the CMM to a micro

team. The main objective of the case, besides the obvious one of improving the

competitiveness of the team, was to study to what extent we could apply, use, and

adapt the CMM to such a small team.

We have chosen the CMM because: a) we view it as the most widely known method

for software process improvement; b) it is very well documented; and c) there is a

close relationship between the CMM and ISO 9000. Other methods, besides the

CMM, that we have not explored include SPR [4], QIP from SEL [5] [6], and SPICE

[7].

The CMM [8] [9] [10] recognises a set of five levels of maturity of the software: 1 -

Initial; 2 - Repeatable; 3 - Defined; 4 - Managed; and 5 - Optimising.

Each one of those levels expresses a different state of maturity in an organisation

devoted to software production. In this scale, level 1 corresponds to the lower state of

maturity and level 5 corresponds to the higher state of maturity. We say that the

process of an organisation is at a given level of maturity, besides level 1, when the

objectives of that level have been attained. The objectives are grouped in Key

Process Areas (KPA). Thus, for instance, level 2 will have been attained when all the

objectives of the following KPA have been met:

KPA 1 - Requirements Management

KPA 2 - Software Project Planning

KPA 3 - Software Project Tracking and Oversight

KPA 4 - Software Subcontract Management

KPA 5 - Software Quality Assurance

KPA 6 - Software Configuration Management

For each KPA, a number of Key Practices (KP) are defined. The KPs establish what

CMM in a Micro Team

Page 7.18 of 7.47

must be realised, but not how it is realised.

In the text that follows, we start by describing the case study and the approach we

have taken. We then present results that show that the process has improved in some

measure. Finally, we discuss those results and present some concluding remarks.

The Background

The case study is about a small business in which we have applied CMM during 12

months. The business has four units, or sectors: a) software sector (SS); b)

commercial sector (CS); c) hardware sector (HS); and, d) finance sector (FS). The SS

was a micro team with less than 10 people, with very short resources, and clearly in

the first level of maturity, the Initial Level.

The mission of the SS is to develop and supply high quality business software

products and services. Clients use software that the SS supplies and the SS make

technical support to clients. In return, clients pay a monthly fee.

The SS was very chaotic when the case begun. There was no effective leadership,

and motivation was very low. Although significant experience had accumulated over

the years, there was no internal or external co-ordination. Technical abilities and

practices had poor sophistication. No managerial or engineering procedures or

policies had been reinforced, and no administrative support existed.

At the technical level, quality was low. No analysis and requisite management were

carried out, version control was poor, no concern existed about reusing code, and no

attempts were made to improve quality. Application development was not planned

and followed through, and the resources for development were almost exclusively

applied in maintaining the existing applications. No one knew exactly what the other

people working on.

From the client side, the lack of satisfaction was also very clearly visible. Indeed: a)

some of the applications did not carry out all the expected tasks; b) other applications

completed the desired tasks, but often in inconsistent manners; and c) support

services were neither effective or efficient.

The other sectors of the business also had their own problems. In particular, the

negotiation and sale of software service contracts by the CS were based on

insufficient knowledge about the corresponding products and services. This often led

to last minute changes and adaptations that had not been planned nor managed. The

HS did not follow any adequate quality assurance procedures regarding the machines

and services they supplied, which often resulted in complaints from clients that put

the blame on the SS. Not surprisingly, the financial situation of the firm was very

fragile.

All those factors contributed to increase the instability and confusion within the SS.

CMM in a Micro Team

Page 7.19 of 7.47

In other words, software was developed but no process existed to do it. And as no

process was identifiable, no repeatability could exist. This clearly put the operation

of the SS in CMM level 1, the Initial Level.

The changes described in this case started when a new leadership was appointed for

the SS. The main objective was to find out how the CMM could be applied, used and

adapted to such a team so that the process could clearly be improved. Particular

objectives were: a) to create a repeatable software process; b) to manage the team so

as to keep high levels of motivation and performance; c) to prepare the SS for

technological evolution; and d) to reason permanently about all items, so that the

process could continuously evolve.

To achieve these objectives, the action plan for the first year included: a) the detailed

study of the Key Process Areas of level 2, and the clear understanding of their

objectives, followed by adaptation and application to the SS; b) the maintenance and

correction of the existing applications and support to the clients that owned them; c)

the creation of new applications, developed using more advanced technology, so as to

induce the analysis and management of requisites, code reuse, version control, and

other correct practices; d) the search for new markets; and e) the permanent review of

the action plan.

To put this plan into practice, some more resources were needed: a) human resources

have been reinforced; b) computers and development software have been upgraded;

and c) access to technical information and to the Internet have been granted.

The Approach

The application of the CMM to the SS took place in three phases. The first phase was

dedicated to an evaluation of the maturity of the software process. As described

above, it was soon found out that the software process was clearly in level 1 of the

maturity scale. It was also found out that the only KPA of level 2 that required no

intervention was KPA 4 – Software Subcontract Management –, simply because the

SS did not resort to software subcontracting. All the other five KPAs were calling for

serious intervention, and it soon became clear that it was not practical to intervene

simultaneously in all of them.

The second phase of application of the CMM to the SS was concentrated on KPAs 1,

3 and 6. In this way, not only the requisites and configuration of the software

products could be controlled, but data could also be collected to describe the

behaviour of the SS through the response to questions such as "How long did it take

to develop program X and how much did it cost?" or "What's the productivity of

programmer Y?".

In possession of data that clarified the time and cost associated to each set of

applications it became possible to start establishing development plans. Thus, the

third phase could be initiated by concentrating now on KPAs 2 and 5, in search of

higher levels of predictability of results for the software process and in questing a

CMM in a Micro Team

Page 7.20 of 7.47

more systematic pursuit for quality.

From the detailed application of the KPAs to the SS, which is described in the

documentation produced for the case, some methodological aspects should be

mentioned here:

the roles established in the CMM have been simplified, given the dimension of the

team;

the norms and procedures have not generally been written down, but rather

transmitted and interiorised by the group at the appropriate times;

all the elements of the SS actively participated in the resolution of any problems and

in determining the direction of the SS, both at the technical and management levels;

the KPAs and their KPs have been evaluated keeping in mind the need to apply the

CMM with pragmatism: a) because the team was small; and b) because the resources

were very scarce.

Given their particular relevance for success, some specific aspects of the application

of the CMM to our SS should also be stressed:

software requisites and their changes were always written down and always resulted

from a process of analysis;

the times and costs associated to the various activities have been measured and

registered. Each element of the team filled up a daily time sheet where the tasks

carried out were specified in agreement with a pre-defined table, and the starting and

finishing times were registered. Those tasks could be merely technical, such as

"programming", in which case they were associated to an application, or they could

be management tasks, such as "technical support", in which case they were

associated to an application and a client. After some "tuning" time, an application has

been developed to register those elements automatically;

the systematic use of metrics led, after some time, to creation of expectations (though

not yet estimates) for the development of the projects. This initial process of

"expectation management" will soon became a more rigorous process of: a)

estimation of the size of the software solutions; b) estimation of the costs involved;

and c) estimation and monitoring of the calendar for each project;

monitoring and supervision became a systematic task of the team leader, who made

sure that changes and improvements were always agreed with the people involved

and made known to the whole team;

development plans for each software project started to be established, though not

fully written down. Each project was regularly discussed with the elements of the SS

before tasks were distributed and resources assigned to each task. The team leader

was responsible for obtaining the required resources in negotiation with the other

sectors of the firm;

the SS accepted the commitment to a permanent search for quality, and as the small

size of the team made it impossible to set up a quality assurance group, some general

practices started to be followed instead. For instance, the systematic revision of a

product or sub-product was carried out by people that were not involved in the

CMM in a Micro Team

Page 7.21 of 7.47

development of that particular product or sub-product. In this way, the whole SS

became responsible for the quality processes. Though this did not grant real

independence in the quality management process, it was found to be the feasible and

acceptable compromise;

the SS recognised the need for a rigorous control of all versions, and applications and

utilities have been developed to build up a digital repository of some of the elements

and to manage the placement and life cycle of those elements that were not available

in digital form.

The Results

After the first year of application of the CMM many results could be gathered and

organised. The most significant ones are shown.

Time Results

It is clearly noticeable that throughout the period of analysis the time dedicated to

software production (which corresponds to the development of new applications and

the maintenance of existing ones) has increased. Conversely, the time dedicated to

other activities, which we described as non-production activities, has decreased. In

this category, the activity with most weight was technical support to clients. Fig.

JBADF.1 shows that: a) the percentage of monthly time dedicated to software

production has increased 137% throughout the 12 months; and b) the percentage of

monthly time dedicated to non-production activities has decrease to 43% of its initial

value.

Fig. JBADF.1 - Time spent in the activities of the software sector (SS): time

dedicated to non-production activities versus time dedicated to production activities.

Those results are reinforced by the comparison between the time dedicated to the

maintenance of existing applications and the time spent developing new applications.

As can be seen from Fig. JBADF.2, the percentage of monthly time dedicated to the

maintenance of existing applications has decreased to 26% of its initial value, while

the time devoted to the production of new applications has increased by 86%.

Client Results

CMM in a Micro Team

Page 7.22 of 7.47

From Fig. JBADF.3, we can see that the number of monthly interventions in response

to client calls has been reduced to 25% of its initial value. During the period of our

analysis the number of clients increased slightly, but not significantly. Some clients

have been lost during the first months, but new ones were brought in the meantime.

Fig. JBADF.2 - Time spent in the activities of the software sector (SS): time

developing new applications versus time maintaining existing applications.

Fig. JBADF.3 - Number of technical support interventions for clients.

Financial Results

To express the financial results that follow an index system is used instead of real

values. The total cost for the first month is expressed as index 100 and all the others

are compared with it.

From Fig. JBADF.4 we can see that: a) monthly costs decreased to 67% of their

initial value; b) monthly benefits increased 17% of their initial value; and c) the

difference between benefits and costs has decresed to 28% of its initial value, nearing

zero and suggesting a trend towards positive values.

Fig. JBADF.5 illustrates monthly costs discriminating production activities and

non-production activities. It shows that: a) the monthly cost of production activities

has increased 59% throughout the 12 months; b) the monthly cost of non-production

CMM in a Micro Team

Page 7.23 of 7.47

activities has decreased to 29% of its initial value; and c) those results are consistent

with those presented in Fig. JBADF.1.

Fig. JBADF.4 - Costs and benefits of the software sector (SS).

Fig. JBADF.5 - Production activities costs versus non-production activities costs.

Discussion and Conclusions

The results we have presented are globally consistent between them. The SS holds a

high degree of autonomy, and during the 12 months of the case study it has not been

subject to any new variables. Thus, the results suggest that the application of the

CMM to the SS has contributed significantly to process improvement.

Some doubts may arise regarding the interpretation of the financial information in

Fig. JBADF.4, since the trend in the reduction of costs is much more evident than the

increase in benefits. We believe that this resulted from the rigour and discipline that

the use of the CMM has imposed within the SS. On the other hand, the increase in

benefits has depended strongly from the development of new applications, which

took some time, and of the subsequent profitability. We believe that, as time goes by,

the trend line for costs will tend to stabilise, or even grow up, and the benefits line

will tend to grow more sharply.

The application of the CMM to the SS was by no means easy. Given the small

dimension of the team and its lack of resources, many simplifications of the method

had to be introduced, and only the KPs that were really important for the process

CMM in a Micro Team

Page 7.24 of 7.47

have been retained. We could say that the CMM has been applied in a very pragmatic

way.

The attempt to move from level 1 to level 2 of the maturity scale has not been

completed. At present, the maturity of the SS lays above level 1 but below level 2.

In general, we may conclude that:

the pragmatic application of the CMM to the SS has led to significant improvements

that put its software process above level 1;

the software process is below level 2, but showing that this level can be achieved;

the application of the CMM to micro teams is possible and contributes to the

improvement of their software process; however, simplifications of the method are

required, namely in the structure of the functions and in the formalism of procedures

and norms; the costs of trying to fully apply the CMM to micro teams such as the one

described would be far too high;

the results obtained are globally positive and consistent between them, which

suggests that they are a consequence of the pragmatic application of the CMM;

the pragmatic application of the CMM leads to higher levels of quality of the

resulting software;

the CMM is exclusively concerned with the software development process.

The application of the CMM to a micro team has shown that another critical factor

must be taken into careful account besides the software process: the human resources

factor of the team and its management. This has shown to be particularly sensitive,

because: a) the level of maturity of the SS was initially very low; and b) the small

dimension of the SS did not facilitate a global cultural change, unless it was

attempted directly through each member. In summary, the application of the CMM to

a micro team must be carried out judiciously by permanently adapting to the

environment of the team, using just the KPs that are really important to the process,

and keeping in mind that team management is just as important as process

management.

The relevance of the factors regarding human resources has been recognised by other

authors [11], and even by the SEI in its publication of CMM V.1.1: "The CMM may

also become multi-dimensional to address technology and human resource issues"

[8]. This resulted, in 1995, in the publication of the P-CMM - People Capability

Maturity Model [12]. Also in 1995, the technological dimension has been addressed

in the SE-CMM - Systems Engineering Capability Maturity Model [13]. These are

factors that must be taken into further account in future refinements of the micro

team approach, so as to make the application of the CMM more consistent with the

dimensions of process, technology and human resources.

Acknowledgements

This work has been partially supported by the Portuguese Foundation for Science and

CMM in a Micro Team

Page 7.25 of 7.47

Technology (FCT) under research contract 326/94. The authors are grateful to

ISCAA and CISUC for all the facilities granted.

References

[1] Humphrey, W., Characterizing the Software Process: A Maturity Framework.

IEEE Software 5, 2 (March, 1988), 73-79

 [2] Goldenson, D., and Herbsler, J., After the Appraisal: A Systematic Survey of

Process Improvement, Its Benefits, and Factors that Influence Success.

CMU/SEI-95-TR-009, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, U.S.A., 1995

[3] Davis, A., and Leffingwell, D., Using Requirements Management to Delivery

of Higher Quality Applications. Rational Software Corporation, U.S.A., 1996

[4] Jones, C., Assessment and Control of Software Risks. Prentice-Hall,

Englewood Cliffs, New Jersey, U.S.A., 1994

[5] Basili, V., and Green, S., Software Process Evolution at the SEL. IEEE

Software 11, 4 (July, 1994), 58

[6] Basili, V., Zelkowitz, M., McGarry, F., Page, J., Waligora, S., and Pajerski,

R., SEL's Software Process-Improvement Program. IEEE Software 12, 6 (November,

1995), 83

[7] Emam, K., Drouin, J.-N., and Melo, W., (editors) Spice: The Theory and

Practice of Software Process Improvement and Capability Determination. IEEE

Computer Society Press, Los Alamitos, California, U.S.A., 1997

[8] Paulk, M., Curtis, B., Chrissis, M., and Weber, C., Capability Maturity

Model for Software, Version 1.1. CMU/SEI-93-TR-24, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A., 1993

[9] Paulk, M., Weber, C., Garcia, S., Chrissis, M., and Bush, M., Key Practices

of the Capability Maturity Model for Software, Version 1.1. CMU/SEI-93-TR-25,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, U.S.A., 1993

[10] Humphrey, W., Introduction to Software Process Improvement.

CMU/SEI-92-TR-7, revised, 1993, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania, U.S.A., 1993

[11] Bach, J., Enough About Process: What We Need Are Heroes. IEEE Software

12, 2 (Março, 1995), 96

CMM in a Micro Team

Page 7.26 of 7.47

[12] Curtis, B., Hefley, W., and Miller, S., People Capability Maturity Model.

CMU/SEI-95-MM-02, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, U.S.A., 1995

[13] Bate, R., Kuhn, D., Wells, C., Armitage, J., Clark, G., Cusick, K., Garcia, S.,

Hanna, M., Jones, R., Malpass, P., Minnich, I., Pierson, H., Powell, T., and Reichner,

A., A Systems Engineering Capability Maturity Model, Version 1.1.

CMU/SEI-95-MM-03, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania, U.S.A., 1995

Joao Lopes Batista is an Adjunct Professor of Informatics at the Higher Institute of

Accounting and Administration of Aveiro (ISCAA) since 1987. He obtained his

Master's Degree in Informatics from the University of Coimbra in 1993, and he is

currently working on his Ph.D. His main research interests concentrate on Strategy

and Management for Information Systems, Software Engineering and Object

Technology. His past professional activities included lecturing at the University of

Aveiro as an invited professor, and he has been a consultant for external companies

in the fields of Software Engineering and Management. He is a researcher of the

Centre for Informatics and Systems of the University of Coimbra (CISUC) since

1994. He is a member of the ACM, of the IEEE, and of the Portuguese Professional

Institution of Engineers. He is the author of several papers, communications and

research reports.

António Dias de Figueiredo is a Full Professor of Informatics Engineering at the

Faculty of Science and Technology of the University of Coimbra, Portugal, since

1984. He obtained his Ph.D. in Computer Science from the University of Manchester,

U.K., in 1976. His main research interests concentrate on Strategy and Management

for Information Systems, Software Engineering, and Information and

Communications Technologies in Education. He is the doyen of the Department of

Informatics Engineering of the University of Coimbra, which he founded in 1994 and

chaired until March 1997. He is the doyen and founder of the Centre for Informatics

and Systems of the University of Coimbra (CISUC), the institution for R&D in

Informatics of the University of Coimbra. He represents Portugal in the

Intergovernmental Informatics Programme of UNESCO, where he acted for two

years as Vice-president elected for the Western Europe Region. He has participated

in various European projects, both as a partner and as a science advisor, and acted in

various occasions as a consultant to the European Commission in matters regarding

the definition of strategies for information and communications technologies in

education. At the invitation of the NATO Science Committee, Brussels, he

integrated, for a period of four years, the NATO Special Programme Panel on

Advanced Educational Technology. At the invitation of the European Commission,

he contributed to the preparation of the White Book on Education and Training for

the XXI Century. He is a member of the Panel for Research and Development in

Consortium of the National Innovation Agency, and integrated various international

panels for the approval and evaluation of research projects. He is a member of the

panel of the IBM Science Prize since its creation in 1989. He is member of the

Portuguese Engineering Academy. He is a member of the ACM, of the Portuguese

Engineering Academy, and of the Portuguese Professional Institution of Engineers.

CMM in a Micro Team

Page 7.27 of 7.47

He is an elected member of the Council for Qualification and Admission of the

Portuguese Professional Institution of Engineers. In 1997 he was awarded an Honoris

Causa by Universidade Aberta, the Portuguese Open University. He is the author of

over 120 papers and presented over 140 communications. He has integrated over

three dozens organising and science committees of conferences held both in Portugal

and abroad.

The Instituto Superior de Contabilidade e Administração de Aveiro, ISCAA,

(Higher Institute of Accounting and Administration of Aveiro) is a well-established

school of Accounting and Administration of the Portuguese network of public

polytechnic institutes. It has been created in 1966, and is currently attended by a

population of 1400 students taking their graduations in "Accounting and Auditing"

and in "Business Administration". In association with the Portuguese Open

University it is running a Master's degree in "Accounting and Business Finances". It

has collaboration protocols with the universities of Sceaux and Brighton within the

Erasmus Program. It has a staff of about 60 professors and lecturers deeply involved

in research projects within their areas.

The Center for Informatics and Systems of the University of Coimbra (CISUC)

is a large Portuguese research institute in the fields of Informatics and

Communications, which has been created in 1991 with the aims of carrying out R&D

at a pre-competitive level, training highly qualified professionals, co-operating in

national and international projects and programs, and promoting the dissemination of

results, namely through contracts with national and international companies. It is

currently composed of eight research groups in the areas of Software Engineering

and Information Systems, Artificial Intelligence, Communications and Telematic

Services, Simulation and Technologies in Education and Training, Control Theory,

Dependable Systems, Combinatorial Optimization, and Theoretical Fundamentals of

Computer Science. Most of its research activities are developed within national and

international projects and research networks, with the support of funding programs,

such as PRAXIS XXI and ESPRIT, thus contributing to the R&D effort of the

European Community. Its scientific results are regularly published in

well-established journals and presented in prestigious conferences. The quality of its

work is expressed in national and international awards that the members of the

CISUC have received since its foundation, their participation in the scientific and

editorial boards of conferences and journals, and their membership to government

and professional committees responsible for the definition of R&D policies.

Interaction with industry and other private and public institutions, national and

international, is strengthened through Instituto Pedro Nunes, a non-profit private

organization founded in 1991 for assisting economic agents in their efforts towards

global competitiveness.

Page 7.28 of 7.47

Improving Estimation

and Requirements

Management:

Experiences from a

very small Norwegian

Enterprise

Svein Are Martinsen (sveinare@invenia.no)

Invenia AS, P.O. Box 282, N-9201 Bardufoss, Norway

Arne-Kristian Groven (groven@nr.no)

Norwegian Computing Center (NR), P.O.Box 114 Blindern,

 N-0314 Oslo, Norway

Invenia AS is a very small Norwegian software development organisation with ten

developers, located in Northern Norway. We are currently performing an ESSI

Process Improvement Experiment (PIE) funded by the European Commission. The

aim has been to improve requirements management in general and estimation in

particular, focusing on object-oriented modelling in this process.

Analysis of previous development projects in the company revealed some

weaknesses. Estimation had previously been performed using expert judgements,

taking some experiences into account. Huge financial losses and schedule overrun

were common on fixed-priced contracts based on poor estimates without proper

knowledge of what to develop. General, yet unspecific and poor, documentation

made it easier for the customers to claim more functionality.

New routines, addressing these problems, have been defined and have been

implemented in two development projects involving 3-5 developers. The new

routines are supported by a tool for documenting and analysing requirements, and are

used in combination with an object-oriented modelling tool. Use case models are

now the analytical basis for estimation of more complex entities.

Improving Estimation and Requirements Management

Page 7.29 of 7.47

The experiences with the software process improvement experiment have been

positive. This paper describes the plan and implementation for our software process

improvements as well as the results and lessons learnt from the experiment. We also

consider specific challenges for small organisations when improving their software

process.

Invenia AS

Our company, Invenia AS, is a small Norwegian enterprise with 14 employees, 10 of

which are producing tailor-made software (client/server) for customers, often on a

fixed-price basis. The business idea of the company is to help customers realise their

business goals through strategic IT-consultancy and development of software

solutions supporting the business processes of the customer’s value chain.

Invenia AS specialises in client/server and collaboration technology for Windows,

Windows NT, and the Internet. Development tools include MS Visual Studio (Visual

Interdev, Visual Basic), MS FrontPage, C++, and PowerBuilder. As a server platform

we focus on Windows NT with Internet Information Server, MS Exchange, and

relational databases such as MS SQL Server, Sybase SQL Server, and Sybase SQL

Anywhere.

All developers have university or college education, and have work experience

ranging from 0 to 8 years.

Starting Scenario

Invenia’s management experienced a growing dissatisfaction with respect to

estimation in particular and requirements management in general [1, 2, 3]. This

resulted in an application for fund within the European Systems & Software Initiative

(ESSI), and the application was accepted. The result was a Process Improvement

Experiment (PIE) called IMPOSE, ESSI PIE project number 23780 [12, 13].

The SPI project started in 1997 and is planned to be finished by December 1998.

Before going into details about the SPI approach itself, we shall first create an initial

setting. We will begin with a brief description about the organisational context and

direction, prior the SPI experiment.

Organisational Orientation towards SPI

Invenia AS has experienced an increasing awareness and orientation towards

software processes and software process improvement. This started some time before

the SPI experiment about which we are going to report. The management considered

software development process control as one of the most important factors by which

to secure the company in the long term. However, experience also showed that this

wasn't always easy, due to the continuously changing technological environment.

In 1995, the company introduced an iterative software process model which can be

Improving Estimation and Requirements Management

Page 7.30 of 7.47

described as follows: From an initial project description, the phases of analysis,

requirement specification, design, implementation, and testing were repeated,

typically three or four times in a nine month project. There were different goals as

main milestones for each iteration, shifting focus gradually from analysis and

requirement specification towards implementation and testing.

The process model had been used in larger projects, while smaller projects were

performed more ad hoc. Experience with the process model was positive in many

senses. However, neither the management nor the development team was yet satisfied

with the results achieved using this approach. Far too often, software products were

delivered too late, with a too high internal cost, since more resources than planned

were needed to finalise them. This condition clearly indicated lack of sufficient

control.

The company started to analyse the problems related to the implementation of their

software development process a bit further. The findings were as follows:

The estimates were usually made in the initial project description, which seems to be

a poor basis for cost estimation.

The requirement specification was only loosely coupled with the effort and cost

estimates. The feasibility of realising the requirements within cost limits was not

judged closely enough.

The requirement specification was written in natural language, and was too informal

to be a good basis for a necessary revision of the cost estimate or a good basis by

which to restrict the implementation within the cost estimate.

Analysis models were not used enough for communicating requirements with the

customer/users, and the difference between analysis and design was not well defined.

The milestones of each iteration were too inaccurate. Too often, there was a problem

deciding when an iteration was completed.

Changes in the implementation were not automatically reflected in analysis and

design documents. They were costly to maintain by hand.

During this period, key personnel had also taken part in both regional and national

IT-networks, including Software Process Improvement networks. Here, experiences

were presented and contacts were made, among others to SPI professionals. These

contacts eventually resulted in the ESSI PIE project.

Analysis of Estimate Overrun

The company had been gathering project data, which turned out to be very useful.

This allowed the SPI initiative to start by analysing a reasonably detailed data set of

all of the company’s fixed price projects in the period between 1993 and 1996.

The results showed that none of the development projects had produced accurate

estimates; more precisely, there were estimate overruns for all the projects. The

following table illustrates the estimate overruns relative to project size, either small,

medium, or large:

Improving Estimation and Requirements Management

Page 7.31 of 7.47

Project size

 (estimated)

Average

overrun

Best-project

overrun

Worst-project

 overrun

< 100 hours 163.6 % 7.3 % 406.7 % (!)

100-1000 hours 30.9 % 9.8 % 53.3 %

> 1000 hours 74.0 % 19.9 % 161.7 % (!!)

Fig. SAM.1: Estimate overruns for previous projects

In general, estimation and scoping are a lot more difficult within a heterogeneous,

evolving technology environment. Our software developing company is a typical

example of such. Some estimation problems could also specifically be related to

project size and the different nature of small projects compared to larger ones.

All projects were vulnerable to so-called "scope creeps". That is: " The propensity of

the scope of application development projects to increase as the project proceeds

through its life cycle " [4]. In the smaller projects, this was possible due to lack of

proper analysis up front, combined with minimal project documentation. Agreements

with customers were signed, based on vague statements about the products to be

developed, making it easy for the customer to require more than he/she actually had

paid for. In the larger projects, analysis was performed prior to estimation. Here also,

estimation accuracy was low, initiating a search for better solutions. Additional

factors regarding project and product complexity also influenced the poor results.

Most alarming was of course the situation for the largest fixed price development

projects. However, it was a clear tendency towards decreased estimate overrun from

one project of that size, to the next. Still, an approximate 20% overrun as in the most

recently analysed large-size project is neither satisfactory nor acceptable.

Here, it is necessary to add a few words about the medium-sized projects. They were

usually performed by, one sometimes two, developers. On the one hand, they had

more available time to perform the work, compared to the smallest projects. On the

other hand, they had less complexity than larger projects (e.g., with regard to project

communication and number of technologies involved. Together, these factors might

have had a positive effect upon estimation.

In the largest projects, there was a tendency towards involving too many new

development technologies within a short period of time.

Improving Estimation and Requirements Management

Page 7.32 of 7.47

Plans and Expected Outcomes

The initial planning of the IMPOSE project took place half a year before it was

accepted by the European Systems & Software Initiative (ESSI). After acceptance, an

official plan document was developed, and the project was ready to start some

months after that.

SPI Goals

The main goal of the SPI experiment was:

Accurate estimation and scope control.

In order to achieve this goal a more detailed set of subgoals was formulated, based on

the analysis of the past projects. Each of these subgoals serves as a mean for

achieving the main goal, based on the underlying hypothesis that they are critical

success factors. Below, an overview of these subgoals is given.

Techniques for requirements elicitation and analysis [1,2], including formal analysis

models, should be used in the initial phases of the software development process to

improve the understanding of the problem domain.

In particular, formal analysis models should be used more actively when

communicating with end users, in order to establish a common understanding of the

problem domain.

The result of the requirements analysis should be a stable set of requirements that is

documented in a requirement specification document and is used as a basis for

further development activities [3].

Such models can be achieved by using object-oriented techniques [5, 6]. Thus,

guidelines for object-oriented analysis and design, encouraging activities leading to a

more complete object-oriented design ready for implementation, have to be

established.

The new software process should support an iterative approach for improving the

effort and cost estimates during the (first phases of the) development life cycle, based

on better understanding of the problem domain.

New and improved estimates should finally be based on the requirement specification

document, possibly resulting in a revision of the legal agreement with the customer

should (substantial) deviations occur.

The first three points cover the topics referred to in literature as requirements

engineering and requirements management. The fourth point specifically mentions

use of object-oriented techniques. This is of particular importance regarding the

agreement between ESSI and the company. The last two points have to do with

estimation, or rather the revision of estimates over time, based upon better

understanding of the problem domain (through improved requirements engineering).

This point can be illustrated as follows:

Improving Estimation and Requirements Management

Page 7.33 of 7.47

Improving

Estimate

Precision

Time

Increasing

Problem Domain

Understanding

Requirements engineering

process

Estimation process

Requirements

Specification

Official Estimate

Fig. SAM.2: Estimation and requirement refinement

The aim is not only to achieve better understanding of the project scope, but also to

document this understanding and to help better motivate the customer towards the

joint development of a better product. All requirements shall be documented in a

requirements specification document, and finalisation of the official estimate the

basis for the legal agreement with the customer shall not take place until a stable

set of requirements exists. Time is critical in this process. A customer will not accept

too long time frame from project initialisation, until an finalisation of estimates. The

challenge is not to compromise quality for time.

The company’s success criteria for the experiment was stated in quantitative terms as

follows:

30% reduction of total overrun time;

20% reduction of financial loss caused by overrunning cost estimates and missing

milestones.

Like the effort estimates described thus far, the schedule estimate overruns have also

been considerable in size. In this paper, we have chosen not to go into many details

about the overruns in the schedule estimates.

SPI Plan and Activity Overview

The IMPOSE Project Programme, the official plan document for the project, defined

the following set of work packages:

WP1: Improve existing and define new methods and routines

WP2: Evaluate and select supporting tools

Improving Estimation and Requirements Management

Page 7.34 of 7.47

WP3: Organisational and technical implementation of tools

WP4: Training in use of new routines and supporting tools

WP5: Evaluate baseline project at milestones

WP6: Report results

WP7: Dissemination

WP8: Project management

The project was originally planned as the following sequence of activities:

analyse weaknesses and prepare for process change by defining improvement goals,

how to reach them and tool support (WP1-4);

implement new process routines in one regular development project called the

baseline;

take measurements, during and after the baseline, and evaluate if it represents an

improvement (WP5).

The IMPOSE project was planned to be implemented as one iteration of the activity

sequence above. This was done many months before the scheduled start of the

baseline. But early in the project it became clear that the originally planned baseline,

scheduled for nine months, had to be cancelled. This resulted in an intensive search

for other suitable development projects as baseline, and in addition an extensive

replanning at an early stage.

After assessing the risks, it was considered to be easier to run the SPI project as two

iterations. This was done because of the uncertainty about suitable baselines and

baseline lengths. It also seemed preferable not to make all the process changes at

once, but instead focus on some of the changes when running the first baseline and

then adjust and augment the first approach when running it on a second baseline.

This seemed to be a wise decision for the SPI experiment, but it generated too many

reports to ESSI.

Implementation of the Improvement Actions

An upcoming project was selected as the first baseline. Due to tough customer time

constraints, it had to start before all preparations regarding process, technology, and

training could be completely finished. Therefore it was natural to focus on what was

considered to be the most important process changes and supporting tools. By

providing only light tool support, it was possible to train the development team in

both process and tool support before running this first baseline project.

Based on the experience from the first baseline, further improvements including

more focus on tool support was considered in the second iteration.

The first Iteration

During the start of the first iteration, a lot of effort was put into improving the

software process. This was based on the broad study of previous projects as referred

to earlier in this paper. During this work a need for establishing a more documented

Improving Estimation and Requirements Management

Page 7.35 of 7.47

software process was identified. Previously, each development project had actually

spent a significant amount of resources just in defining how to run it. The actual

process varied from project to project, and was very dependent on the project leader.

The most important work of the first iteration was:

analyse previous projects;

gain knowledge of software process improvement, object oriented analysis and

design, and estimation;

define how and when to estimate;

define how to find the basis for estimation (object oriented modelling);

suggest changes and describe the resulting process model;

specify requirements for, evaluate and select supporting tool for object oriented

modelling;

brief training of developers;

run the baseline project;

evaluate the baseline project.

Two senior developers did most of the work in defining the new process. This was

positive for the SPI activity in many ways: They had e.g. personal experience with

the company practise over a period of time, and also project management experience.

Also, they had clear vision regarding where to start changing the process. A

consultant from the Norwegian Computing Center was also involved. In addition, all

the developers of the company were involved at a couple of meetings to be updated

and to provide feedback.

Estimation and requirements elicitation, analysis, and documentation were the main

focus. The most important idea behind this estimation approach was to improve

estimate precision by gradually gaining better understanding of what to develop

during the project [7]. A requirements document was no longer a brief, incomplete,

ambiguous description of what the customer wanted. The requirements document

was the result of eliciting, analysing, and prioritising the requirements together with

users/customers.

The new requirements document should first of all describe how to meet the

customer/user requirements, i.e. the (main) functionality. This description should be

done through use case and class modelling. By doing so, design activities were

actually moved into an earlier phase. Estimation was performed, use case by use case

or class structure by class structure. Refinements of use cases should result in

refinements of estimates. Each use case was also prioritised, and analysed regarding

other attributes. A contract should not be signed until a stable set of analysed

requirements existed.

Regarding tool support, a tool for object-oriented analysis and design was most

needed. The Rational Rose tool [8] was selected in competition with a handful of

similar tools. We also briefly considered the need of tool support for managing and

evaluating the requirements, but decided to postpone this to the next iteration, and

Improving Estimation and Requirements Management

Page 7.36 of 7.47

use a more manual approach with a simple MS Excel spreadsheet for this purpose.

The table below summarises the most important activities and tool support in the

defined process model. The focus in the first baseline was on the first two phases.

Phase Important activities Tool support

Pre-study Problem definition
Customer analysis
Brief use case modelling
Identifying important business objects
Rough estimation based on top level use case
and important business objects

Rational Rose for
OO modelling,
MS Word for
documentation, MS
Excel for estimation,
MS Project for
planning

Requirement
specification

Customer analysis
Eliciting requirements through use case
modelling and describing user scenarios
Documenting user requirements (as use cases)
Object oriented design; focus on business
objects
High level user interface design
Prototyping
Requirements analysis and evaluation regarding
attributes like complexity, priority, size,
implementing technology etc.
Bottom up estimation of needed effort to
implement requirements

Rational Rose for
OO modelling,
MS Word for
documentation, MS
Excel for evaluating
requirements and
estimating, MS
Project for planning

Development More detailed design
Database design and implementation
Development, part by part
Module testing

Rational Rose,
Development tools,
MS Excel, MS Word

Testing System integration testing
Error correction
Delivery, ready for deployment

Development tools,
MS Excel, MS Word

Fig. SAM.3: Preliminary process model (as defined in first iteration)

The two developers in charge of IMPOSE participated in an external course in

object-oriented analysis and design with the Unified Modeling Language [6, 9, 10],

before organising a brief training period in the new process and supporting tool.

Due to customer requirements, the project was covered by 3 contracts: one for the

pre-study phase, one for the requirement specification phase, and one which should

cover the development and testing phases. As there were tough negotiations with the

customer regarding the finalisation of the product, the basis for estimation was

re-iterated three times. Although the customer was very satisfied with the work done

on developing a requirement specification with associated models, he also negotiated

with another supplier based on the requirements specification developed by Invenia.

The final offer from the customer was not accepted by Invenia, mostly due to the

detailed knowledge gained by using the new process. Without this knowledge the

company would probably have accepted the project by underestimating the effort.

Invenia was in general satisfied with the new methods and tool support. Although the

Improving Estimation and Requirements Management

Page 7.37 of 7.47

project was not completed through all four phases, the general opinion was positive

regarding the work in the two initial phases. The first brief pre-study phase was

positive in order to elicit the concepts and to get an overview of the size of the

project before detailing the requirements in the next phase. The detailed modelling

prior to estimation provided a less ambiguous understanding of the requirements and

how to build the system. Also, customer and developers had a common, documented

understanding of the requirements, and during the requirement specification phase

several changes in requirements were revealed. Such changes were previously often

revealed later during development, when contracts were unchangeable.

Because of the cancellation, it was impossible to test the produced estimates.

Although the customer later have told us that “it is no secret that the other supplier

missed on their estimate”, there are no useful quantitative results from the first

baseline. Therefore, we were really excited about continuing with the second

iteration.

The second Iteration

Based on the experiences from the first iteration, the software process was somewhat

adjusted. During that work we became aware of the Microsoft Solution Framework

(MSF) [11], which seemed to have interesting similarities with the software process

model used in the first baseline. The impression was that the more standardised MSF

could make further improvements and training easier. MSF also presented interesting

ideas for establishing a shared vision, selecting focus early in the project, as well as

other issues, e.g. a more consistent set of terms, activities and deliverables. Iterations

over conceptual, logical and physical design during the second phase also seemed

useful as it encouraged iterative estimates. The results from the first baseline were

therefore adapted into MSF.

The most important work of the second iteration was:

adopt to the process model of MSF;

make improvements according to experiences of the first iteration;

specify requirements for, evaluate, and select software tools for document

automation and requirements management;

document the new software process, in particular with regard to integration of the

supporting software tools;

more comprehensive training in the new software process and supporting tools;

run the second baseline project;

evaluate the second baseline project.

The four phases of the iterative process model are now (according to MSF) called

envisioning, planning, developing and stabilising. However, a major effort was put

into detailing the process model according to the company's needs and experience

from the previous baseline, focusing on using object-oriented analysis and design to

produce an improved estimation basis.

During the first iteration, a need for more efficient information sharing was

Improving Estimation and Requirements Management

Page 7.38 of 7.47

identified, combined with more written documentation and reviewing. In the first

baseline, too many informal meetings had taken place. How to improve

documentation by more efficient use of Rational Rose and MS Word in combination,

was of particular interest. A search for additional software tool support to help

automate this work also took place, resulting in the selection of Rational SoDA.

Another experience from the first iteration was that managing and evaluating

requirements manually was time consuming and challenging. Requirements for a

supporting tool were therefore defined, and several tools were evaluated. A tool

called Rational Requisite Pro was finally selected. Two senior developers went

through a brief self-study in using the tools on small-scale examples. Then the tool

was integrated into the process, by describing how to use the other tools and methods

together with Rational Rose in order to elicit, document, and manage the basis for

cost estimates. We also defined SoDA templates to automate the production of

requirement specification documents and a “standard” Requisite Pro project template

with requirement types and attribute definitions according to the company needs.

Before starting the second baseline project, the three developers involved were

trained in the new software process, in using Rational Rose for object-oriented

modelling with the Unified Modelling Language, and in using Requisite Pro for

requirements management and evaluation. The training was done more extensively

than for the first baseline project. Worth mentioning is that the project manager in

this baseline was without project management experience.

The table below summarises the most important activities with tool support for each

of the four phases of the new software process.

Phase Important activities Tool support

Envisioning Problem definition
Establishing a shared vision
Customer analysis
Defining a solution concept through brief use case
modelling and high level class design (important
business objects)
Rough estimation based on top level use case and
important business objects

Brief risk assessment (managing top ten risks)
Rough planning of the project

Rational Rose for
OO modelling,
MS Word for
documentation, MS
Excel for estimation,
MS Project for
planning

Planning Customer analysis
Eliciting and documenting requirements through
use case modelling (scenarios)
OO design; focus on business objects
Generate requirement documents
Initial requirements analysis and evaluation
regarding attributes like complexity, priority, size,
responsibility, required skills, etc.
Initial bottom up estimation of needed effort to
implement requirements
High level user interface design
Prototyping
Further use case modelling (more details)

Rational Rose for
OO modelling,
MS Word and
Rational SoDA for
documentation,
Rational Requisite
Pro for managing
and evaluating
requirements, MS
Excel for estimation,
MS Project for
planning

Improving Estimation and Requirements Management

Page 7.39 of 7.47

Detailing use cases with textual descriptions and/or
object interaction diagrams illustrating important
scenarios.
More logical design, defining structure (business,
database, and user interface objects)

Regenerate requirement documents
Requirements analysis and evaluation
Bottom up estimation of needed effort to
implement requirements
If needed, the logical design is evaluated and
estimated similarly
Brief risk assessment (managing top ten risks)
Planning the rest of the project

Developing More detailed design (physical)
Database design and implementation
Development, use case driven

Module testing
Estimate tracking

Rational Rose,
Development tools,
MS Excel, MS Word

Stabilising System integration testing
Error correction
Delivery, ready for deployment
Estimate tracking

Development tools,
MS Excel, MS Word

Fig. SAM.4: The new process model (as defined in the second iteration)

Again, the focus was mainly on the two first phases. As shown in the table, eliciting,

analysing and estimating requirements (conceptual design) should be done at least

twice. If needed several iterations over these may be done.

Compared to the previous baseline project, both information sharing and

requirements management was far more efficient during the planning phase. This was

due to the tool support introduced.

During the development phase, a database design was completed and implemented

before the rest of the system was implemented use case by use case. Each developer

recorded the actual work at use case level. Approximately half way into the

development phase, the company upgraded the time tracking system. Also, the

company introduced biweekly project co-ordination meetings (covering all projects),

supported by weekly status reports from project managers to the development

manager. This improved project tracking, which again revealed some divergence

between estimates and spent resources. The project manager was asked to cut off

requirements, and one use case was dropped after discussion with the customer. The

team also re-estimated the work of completing the necessary requirements. This

estimate was approximately 120 working hours higher than the estimate at the end of

the planning phase. It was taken a strategic company decision not to cut further

functionality, due to the market potential of the product.

Apart from the left out use case and some detailing (mostly user interface issues) of

one of the use cases, the developed system was quite according to the rather detailed

requirement specification of the planning phase. At the end of the development

phase, the requirement specification was updated according to these changes, and

Improving Estimation and Requirements Management

Page 7.40 of 7.47

user documentation written based on the description of the use cases.

Because the software system was to be used as a demonstrator, the stabilising phase

was rather brief, with only minor integration testing followed by some error

correction. The system was found very stable for demonstration purposes. The

baseline project ended with a demonstration and presentation of the developed

software solution. The customer expressed great satisfaction with the delivered

system. It is not unlikely that the customer will implement the system in a small scale

“production system” – at least for demonstrational purposes.

During and after the baseline projects, results were measured and evaluated. In

addition to continuously tracking actual work effort and progress, the more

qualitative issues were found through meetings with the developers and project

manager. Based on the results and evaluation, we have also come up with ideas for

further improvements. The next section presents further details.

Measured Results and Lessons Learned

Below we describe some measured results and important lessons learned during the

IMPOSE software process improvement project. Before concluding with some future

actions, we also look closer at some lessons learnt in the perspective of a very small

enterprise.

Measured Results

As the first baseline project was not completed, we could not measure actual effort

and compare this to our estimates. Although we know that our competitor missed on

cost estimates, the competitor’s actual effort can not be correctly measured against

our estimates.

However, combined with our detailed understanding of the problem domain and

requirements and the detailed level of bottom-up estimation, this makes us even more

confident that we avoided a significant economic loss and irresponsible commitment.

The second baseline project was completed through all phases, and we were able to

compare the actual effort to our estimates. This is summarised in the figure below:

Overall
Phase Estimate [h] Used [h] Deviation[h] Deviation[%]

1 130 150.5 20.5 15.8

2 217 248.5 31.5 14.5

3 227 300.0 73.0 32.2

4 23 21.5 -1.5 -6.5

Totally 597 720.5 123.5 20.7

Fig. SAM.5: Estimates and actual effort of second baseline project

Improving Estimation and Requirements Management

Page 7.41 of 7.47

Half way into phase 3, the company’s project tracking routines were changed, and

this revealed deviation between actual and estimated costs. Counter measures were

taken, which to some extent resulted in less functionality (in agreement with the

customer). Still, this phase was overrun by 32.2 % compared to the final estimate of

phase 2. The cause for this can to a large extent be linked to the implementation of

two of the use cases, where new technology and development tools were used.

More functionality could have been cut, but a strategic decision was made based on

an evaluation of future market potential for the product. This resulted in a total

overrun for the project by 20.7 %.

The average for a project of this size was 30.9 %, so our baseline is below that. The

project was also delivered practically on time. But, although the quantitative goals

were reached for both time- and cost overrun, we are not completely satisfied with

the cost deviations. There certainly is room for further improvements.

Except for that, we are satisfied with the achieved software process improvements,

which should be a solid foundation for further improvements. A qualitative analysis

supports this view.

Some Lessons Learned

Through the work with the IMPOSE project, we have learnt several interesting

lessons. Some of these are:

The more formal software process with tool support seems to have contributed to less

uncertainty of what to do in the baseline projects. The activities are more

standardised. In the baseline projects – and in particular in the second – far less

resources than previous have been put into defining what to do and how to do it.

To us, use cases and object-oriented modelling are well suited to elicit user

requirements. Also, use cases are also useful in structuring requirements as a basis

for estimation and planning.

Standard deliverables through predefined templates are useful. Developers did not

feel restricted by such templates, but found them to be useful tools in more

efficiently producing and communicating quality documentation. In particular, this

applied to SoDA templates for producing requirement documents based on the

object-oriented modelling, but also for general documents and even MS Project

templates.

In order to deliver a project within customer’s constraints, it is important to know

and understand these. It is important to early define a clear vision, but also a clear

focus for the project, i.e. should features, resources (cost) or schedule be optimised?

In order to succeed the customer, project manager, and the whole team should all

agree on and follow these throughout the project. “Feature creep” or too high

expectations are not necessarily customer-driven.

In both baseline projects, the developers felt that the most uncertain factor of the

estimates was inexperience in the development tools (technology). This was the first

times that project managers and developers felt higher risk concerning development

tools than the software process.

The necessary skills for managing a software project should not be underestimated.

Improving Estimation and Requirements Management

Page 7.42 of 7.47

Also, the project leader should be followed-up regularly by resources external to the

project.

Challenges related to SPI Projects in Small Companies

As a small company with only 14 employees (and only seven when planning the

experiment), the work with the software process experiment has definitively been

challenging.

The project has required key personnel of the company. However, key personnel are

always wanted in other activities of a small company. This was particularly true at

the start of the project, when the company went through a period of reorganisation.

Although the SPI project was considered very important, it did not get enough

backing and priority during the first months, to the extent it definitively deserved.

This clearly improved after company reorganisation, when management could focus

more actively on the SPI approach.

Although most employees have higher education in computer science, the company

did not have much experience in performing software process improvements. As a

very small enterprise, the company did not have resources dedicated to process

improvements or software quality issues. When the IMPOSE project started, we had

no experience in how to run such a project, and in general low competence in

software process improvements. At project start, it might be a good idea to “walk”

through the project in some detail, with some expert resources.

Another challenge has to do with the risk of planning baseline projects months in

advance. Cancellations of development projects and new projects suddenly appearing

implied rapid change of plans. We assume that this is more typical in smaller

companies, and it sometimes makes the planning process difficult.

Improved SPI Maturity

The company has achieved quite a lot even if we are not completely satisfied with the

measured results from the second baseline. An informal evaluation done by the

authors showed that the second baseline project was able to meet the goals of CMMs

key process areas: Requirements management and Software project planning. These

goals can be formulated as follows (slightly rewritten):

software requirements are controlled to establish a requirements baseline (i.e. an

analysed, stable set of documented requirements) for software engineering and

management use;

software plans, products and activities are kept consistent with the software

requirements;

software estimates are documented for use in planning and tracking the software

project;

software project activities and commitments are planned and documented;

affected groups and individuals agree to their commitments related to the software

Improving Estimation and Requirements Management

Page 7.43 of 7.47

project.

Even though this has not been of any major concern in the project, it is still

interesting to notice. In order to achieve this, the following factors are critical:

application of a documented, iterative, use case driven and object-oriented software

process, which clearly defines how to elicit user requirements, how to design the

system, how to estimate the effort/cost and how to plan the project;

standardised and defined milestones and deliverables;

templates for important documents/deliverables, such as the vision/scope document,

project structure document, the requirement specification document, and the project

plan, all of which will be reused in later projects;

high degree of tool support, including tools for object-oriented modelling (with use

case modelling), tools for generating the requirement specifications and tools for

requirements management, analysis, and evaluation (estimation).

From an organisational perspective, we should also mention:

higher knowledge of software process improvements in general, both for the

management and the developers of the company;

acknowledgement of and enthusiasm for the software process improvements among

developers and the management of the company;

higher knowledge and experience in eliciting and managing user requirements, and in

object-oriented modelling using the Unified Modelling Language;

higher competence among developers in using supporting software tools.

A small company has some interesting advantages for software process

improvements. With 7-14 employees during the IMPOSE project period, it has been

relatively easy to involve the whole organisation. Several meetings have been hold

where improvements and results have been presented and discussed. On these

occasions valuable feedback have been given for further improvements.

Future Actions

It is not likely that Invenia will start a software process improvement project of this

size in the near future. This is not because the challenges of the IMPOSE project has

scared us from such projects, but because we believe that smaller adjustments will

now give better cost/benefit. In particular, we will look closer at issues like:

routines and tools (simple Excel spreadsheet or check list / matrix) to ensure that the

customer and team early agree upon whether to optimise features, resources (cost) or

schedule;

a simple project manager’s check list for each of the four phases, to ensure that

important activities are carried out;

further improvements for project management, including simple tool support (like

TimeSheet reports and Excel templates) for regularly (weekly) structuring and

presenting up-to-date actual effort and remaining work for all activities and (use

Improving Estimation and Requirements Management

Page 7.44 of 7.47

cases) of the current phase;

defining more and improving existing templates for “reusable deliverables”, in order

to speed up the activities of particularly the first two phases;

upgrading the supporting software tools and adjust the use of these to improve the

integration between these tools (object-oriented modelling, document automation,

and requirements management).

It is also critical that the software process model is being used in future projects, and

that deviations are discovered and analysed. One of the important tasks of the

company’s development director is to ensure that the process is followed when

possible and analyse deviations in order to assure that possible improvements are

discovered and handled in a controlled manner.

On a longer term, we may define additional software process improvement projects.

Currently, we have defined the following areas as interesting for further process

improvements:

a closer adoption to the team model of the Microsoft Solution Framework;

reuse, including software components/source code as well as conceptual, logical, and

physical design (i.e. reuse of use cases, classes and code);

testing and verification;

configuration management.

Acknowledgement

The IMPOSE project is a Process Improvement Experiment (PIE) sponsored by the

CEC under the ESSI Programme, project no. 23780. The financial support for the

project is gratefully acknowledged.

We also want to acknowledge Peter Holmes and Jon Ølnes, Norwgian Computing

Center, and Lars Kristoffersen, Invenia AS for reviewing this paper.

References

[1] Gause D.C., Weinberg G.M., Exploring Requirements: Quality berfore
Design, Dorset House Publishing Company, 1989.

[2] Sommerville I., P.Sawyer P., Requirements Engineering: A good practical
guide, J.Wiley & Sons, 1997.

[3] Paulk M.C., Weber C. V., Curtis B., M.B.Chrissis (ed.), The Capability
Maturity Model – Guidelines for improving the software process, Addison Wesley
Publishing Company, 1995.

[4] Stone J.A., Developing Software Applications in a Changing IT Environment,
McGraw-Hill, 1997.

[5] Jacobson I., Christerson M., et al., Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison-Wesley, 1992

Improving Estimation and Requirements Management

Page 7.45 of 7.47

[6] Fowler M., Scott K., UML Distilled – Applying the Standard Object Modeling
Language; Addison-Wesley, 1997.

[7] McConnell S., Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996.

[8] Quatrani T., Visual Modeling with Rational Rose and UML, Addison-Wesley,
1998.

[9] Rational Software, et al, Unified Modeling Language: UML Summary, version
1.1; Rational Software, 1997 (document available on the World Wide Web at
www.rational.com/uml.)

[10] Rational Software, et al, Unified Modeling Language: UML Notation Guide,
version 1.1; Rational Software, 1997 (document available on the World Wide Web at
www.rational.com/uml.)

[11] Microsoft Education and Certification, Solutions Development Discipline;
Course No.493; Microsoft Corporation, 1997. (More information is available at
http://www.microsoft.com/solutionsframework)

[12] IMPOSE, Mid-term report, 1998.

[13] IMPOSE, Final report, to be published.

Appendix A: CV for the Authors

Mr. Svein A. Martinsen

At the age of 29 years, Mr. Martinsen is currently working as the Development

Director of Invenia AS. He is responsible for the software process improvements of

the company, including the work with IMPOSE.

Svein has a M.Sc. degree in software engineering from the University of Science and

Technology, Trondheim, Norway (1993). In 1993-1994 he did military service,

where he attended a sergeant course and worked at the IT section of Bardufoss air

station. During 1994-1995 he continued working for the Norwegian Air Force,

mainly with development and implementation of Geographical Information Systems.

In 1995 he joined DataKompetanse AS (now Invenia AS) where he worked as a

software developer until October 1997, when he joined the company management as

the Development Director. He has participated in several client/server development

projects, both as a developer and as a project manager. He has attended several

courses like Requirements Management (1998), Microsoft Solution Framework

(1997), Object-oriented Analysis and Design with the Unified Modeling Language

Using Rational Rose (1997), Risk Management of IT-projects (1997), Software

testing (1996), and Product development (1995).

Mr. Arne-Kristian Groven

He is working as a research scientist at the Norwegian Computing Center (NR) in

http://www.rational.com/uml
http://www.rational.com/uml
http://www.microsoft.com/solutionsframework

Improving Estimation and Requirements Management

Page 7.46 of 7.47

Oslo. In the IMPOSE project he has been involved as a software process

improvement consultant in some of the work packages of the project.

Arne-Kristian has a M.Sc. degree from the Institute for Informatics, University of

Oslo, where he also was employed as a research assistant from 1991 to 1992.

Between 1992 and 1996 he has been working with formal analysis, -specification and

-design methods at the Institute for Energy Technology, OECD Halden Reactor

Project, in Halden, Norway.

Since 1996 he has been working at the Norwegian Computing Center, exclusively

with software process improvement activities. He has been involved in several SPI

projects, both within ESSI and national SPI programs. In these SPI projects he has

been assisting several Norwegian software development companies.

Appendix B: Company descriptions

Invenia AS

Invenia AS is a small software development organisation located in the northern part

of Norway. The company has 14 employees, of which 10 are producing tailor-made

software (client/server) for customers, often on a fixed-price basis. The business idea

of the company is to help customers realise their business goals through strategic

IT-concultancy and development of software solutions supporting the business

processes of the customer’s value chain.

Invenia AS specialises in client/server and collaboration solutions for Windows,

Windows NT, and the Internet. Development tools include MS Visual Studio (Visual

Interdev, Visual Basic), MS FrontPage, C++, and PowerBuilder. As a server platform

we focus on Windows NT with Internet Information Server, MS Exchange, and

relational databases such as MS SQL Server, Sybase SQL Server, and Sybase SQL

Anywhere.

All developers are educated through university studies or college, and have work

experience ranging from 0 to 8 years. The general manager is Mr. Terje Wold, which

also is the owner of the company. Customers come from both the private and public

sector, some of which are large national companies. However, our market focus is in

Northern Norway. During the first half of 1998, Invenia AS (VAT reg. no.:

960930401 MVA) had an operating income of approximately 4,0 million NOK, and

an operating result of approximately 1,6 million NOK.

Norwegian Computing Center

The Norwegian Computing Center (NR) employs a staff of 90 who are engaged in

projects within the fields of information technology, statistical and mathematical

modelling. The main areas include security, object-orientation, interactive media,

electronic commerce and EDI, statistical data analysis, video analysis, remote

sensing, and business development with IT.

Improving Estimation and Requirements Management

Page 7.47 of 7.47

Our main customers are within Norwegian business and public administration. NR

also takes part in national and European research programmes. The author from NR

is working within a group focusing on research and consultancy within the area of

object-orientation, security, and software process improvement.

Page 8.1 of 8.45

Session 8 – Information

and Team Management

Solutions for SPI

NQA - Experience with Integrated Teamwork and Network

based Quality Assurance

Dr Richard Messnarz, Director ISCN Ltd., Dublin, Ireland

Dr Robert Stubenrauch, Joanneum Research, Graz, Austria

Martin Melcher, Rainer Bernhard, NQA Chief Developers,

ISCN, Graz, Austria

Promotion of an ISO9001-based quality system using the

WWW in a software organisation and its experience

Atsuo HAZEYAMA, Katsumi HONDA

Client-server Software Laboratories,

NEC Corporation, Tokyo, Japan

The PASS Software Process Improvement Experiment in

Hungary (PASS EP 21223)

János Ivanyos

MemoLuX Ltd., Hungary

Dr. Miklós Biró

MTA SZTAKI, Hungary

Page 8.2 of 8.45

NQA - Experience with

Integrated Teamwork and

Network based Quality

Assurance

Dr Richard Messnarz, Director ISCN Ltd., Dublin, Ireland

Dr Robert Stubenrauch, Joanneum Research, Graz, Austria

Martin Melcher, Rainer Bernhard, NQA Chief Developers,

ISCN, Graz, Austria

Summary:

This paper describes the experience with a new team management concept

for software quality assurance which has been field tested in firms since 1994

in different countries and resulted in an IEEE book "Better Software Practice

for Business Benefit".

In addition, since 1998, the European Commission supports the development

of a tooling concept on basis of Hyperwave (a leading multimedia system

which won the EU IT Prize in 1997) for computer automating these role

centred team work management paradigms for quality management. At the

time of paper writing it is field tested in leading German and Scandinavian

firms and research centres such as Daimler Benz, FZI, etc.

This paper contains a description of the paradigms followed and a first

summary of the lessons learned.

Richard Messnarz, Dr., Florence House, 1 Florence Villas, Bray, Co.

Wicklow, Ireland, ph.: +353 1 286 1583, fax.: +353 1 286 5078, email:

rmess@iscn.ie

Network Based Quality Assurance

Page 8.3 of 8.45

Introduction

To stay competitive on the global market it is necessary to set up win-win based

agreements in cost sharing projects in which partners from different countries share

the risk and the effort and jointly exploit ideas, products, and services. Through

effective and distributed collaborations organisations can cut down their risk

significantly (e.g. sharing the development cost with other partners) and can reach a

much larger market (e.g. selling the product then in more regions of Europe through

VARs - Value Added Re-sellers).

However, the key problem is that distributed collaboration needs effective co-

ordination of the work of the different partners. And old conservative means such as

direct supervision, local meetings, large local and not distributed teams, do not work

any more. The decomposition into smaller competence teams with clear cooperation

interfaces supported by new and effective communication systems is needed. This

includes a virtual office on the net with project archives and document management,

configuration management, guide-lines and computer support for project

documentation, network and computer supported information flows, and appropriate

security mechanisms assuring privacy of the materials exchanged and produced.

NQA is developed in co-operation with Hyperwave [6], [7], a leading information

management system, and places the required functionality of such a virtual office on

top of it. The system has been field tested in leading German and Scandinavian

industry in the software co-operation and out-sourcing sector.

Most of the large companies (e.g. Siemens re-organises again and centralises more,

Daimler Benz and other manufacturers require a much more closer co-operation

between the teams of suppliers and their internal teams) start to question the simple

out-sourcing concept. They think about a system that will create a virtual office

through which teams from the supplier and the manufacturer work together as if they

are one team in the same office, thus solving the missing-control problem of out-

sourcing.

Another potential is to use it as a virtual office of many smaller companies who

jointly develop and follow joint quality control scenarios over the net.

The development of NQA has been supported by the European Commission under

the ESPRIT project HYMN.

Paradigms Underlying the NQA Concept

The NQA approach bases on three principles which have been discussed and

published at previous ISCN conferences (http://www.iscn.ie/conferences [8]) and

about which there is a book published by IEEE at the end of 1998 [10]: Better

Software Practice for Business Benefit - Principles and Experience (ed. Richard

Messnarz, ISCN).

http://www.iscn.ie/conferences

Network Based Quality Assurance

Page 8.4 of 8.45

The Underlying Management Principle

A software process is not seen as just a sequence of tasks with a planned result [1],

but it is the result of an integrated team work environment [10]. The organisation is

broken down into work scenarios (management use cases, e.g. scenario for planning,

scenario for design, scenario for marketing, etc.) and each scenario is designed with

Roles who have responsibilities

Work steps to which roles and resources are assigned

A network of work steps forming a work-flow

Results produced by roles performing a certain work step in the work flow

The new approach is to think role-centered, so that by staffing of roles work scenarios

in an organisation are initiated.

The advantage of the new approach is

People know their responsibilities better and know their communication interfaces to

other members in the team

New staff can easily be integrated (assign a role, learn the skills required to play the

role, follow the communication flows in the team)

Information technologies like NQA (because the communication interfaces become

visible) can be used to support the team communication, documentation, and

configuration of results.

Benefits Measured

Experiments with this approach ave been carried out since 1993 at firms in Austria,

Germany, Spain, and Ireland, and 7 other countries. Results are [9], [10]

A 50% reduction in effort in new staff integration

A 67% higher team motivation for using documentation efforts like ISO 9001 (share

the work in a team in a defined way)

A 67% reduced maintenance and 50% higher productivity because a decomposed role

based team with clear responsibilities allows good distribution of tasks (parallel and

not sequential work) and avoids monolithic program architectures (all are responsible

for the same software without clear distinction of interfaces and modules).

Management Steps

Define the roles

Identify communication flow between the roles

Formalise communication flows (only where necessary) and define results

(exchanged between roles)

The work-flow, after that, is just a waste product of the team-work model

Example from a planning scenario at Hyperwave

Network Based Quality Assurance

Page 8.5 of 8.45

For each scenario there is an underlying role play clearly describing the roles played

in a team, the responsibilities, and the communication flows. These communication

flows result in a number of work instructions describing the roles’ duties and the

sequence of work steps to be performed. The same working instructions are then used,

for instance, to show compliance with working instructions required by ISO 9001 [2],

[3], [4], [5].

Product Mgmt.

Team

CTOCo-ordinator

Project Manager

4. PM

Installation

Configuration

Manager

Archive

All material

FR, RR,

URD, WP

1.FR

11.
5. URD

and WPf

3. FR

Quality Assurance

9.URDs

and WP

5. URD

and WPf

6.RR

6.RR

7. URDs and WP

8. RR for URDs

 and WP

10.RR

2.RR

 of

 FR

Figure 1: A Role Play for Feature Request Management and Planning

Work Instructions for the Feature Request and Planning Scenario at Hyperwave

The Product Management Team (PMT, customer) makes a Feature Request (FR). The

Chief Technical Officer (CTO) receives it and archives it.

The CTO reviews the features together with the PMT resulting in Review Reports

(RR) for the feature request and decisions about their implementation.

The refined feature request (for which an implementation was decided) is forwarded

to the Co-ordinator (CRD).

The Co-ordinator assigns the feature request to a responsible project manager. For

each release there are many such feature requests so that the previous steps are

repeated many times.

The responsible Project Manager (PM) draws up a draft User Requirements

Document (URD) and a URD specific Work Plan (WPprj), and forwards the draft for

review to the Quality Assurance (QA) and the Co-ordinator (CRD).

The draft URD and WPprj are at the same time reviewed by the Quality Assurance

(QA), and the Co-ordinator (CRD), resulting in Review Reports (RR).

The Co-ordinator approves the WPprj and combines them into an overall Work Plan

(WP) for the organisation, and forwards all URDs and the overall WP for review to

the CTO.

CTO approves the URDs and the WP.

PMT receives URDs and WP for final review.

PMT reviews and gives acceptance to the URDs and the overall WP.

Network Based Quality Assurance

Page 8.6 of 8.45

Configuration Manager (CM) controls that all materials produced in the work flows

have been properly archived. Special care is taken on the trace-ability between feature

requests, requirements in the URD, and proposal/agreement issues.

Only after the establishment of such a role-based model the information flows become

clear and a tool can start to support the team communication and quality control

activities through a virtual office of distributed competence teams.

The Information Technology Principles Underlying an NQA
Concept

Development by Configuration

This paradigm bases on the fact that functionality is to be separated from data, and

that data can be assigned with functionality by the user through configuration. NQA

concepts must developed according to this principle and allow each organisation to

insert their own documentation or result templates, and the NQA system then

automatically generates (with the creation of objects from the templates) the

functionality to the created objects.

This way users can insert and maintain document or result templates and adapt the

system to their own specific documentation requirements without any change or

customization of code (just by configuration of data).

Best Practice

Work Scenarios

Role Models

Doc + Results Templates

Categories e.g.

Planning (wp.htm, …)

Design

Quality

Maintenance

Project Administration

Distribution Lists and

Document Flows

Document Management and

Configuration Management

Link Existing

Functionality

Figure 2: Data and Functional Configurability

Function Base Driven Configuration (Re-Use Pool Concept)

At the moment three basic elements can be configured to which the above

functionality is generated.

Documents - The below picture shows the standard window for document creation,

with SAVE the functionality is generated to the template taken from the pool and a

first version is issued under configuration management)

Network Based Quality Assurance

Page 8.7 of 8.45

Figure 3 : Document Object Creation Window

Reports - The below picture shows the standard window for report creation, after

ADD a report is added to a list and the functionality is generated to the template taken

from the pool and a first version is issued under configuration management.

Figure 4 : Report Object Creation Window

Linked Reports - same as with reports, plus the report is automatically linked

backward and forward to what has been selected in the right combo boxes.

Figure 5 : Linked Report Object Creation Window

Depending on the user needs the three elements are configured. E.g. Linking Feature

Requests (FR) with user Requirements Documents (URD), so that an URD is

automatically created by the links to accepted FRs (example from a customer wish

from Daimler Benz).

Further basic elements might be considered and inserted into the NQA configuration

pool in later releases.

Network Based Quality Assurance

Page 8.8 of 8.45

How an NQA Virtual Office Works

A required functionality of an NQA system comprises the automatic assignment of

the following functionality to created objects -

Document Management

Creation of documents from a template pool (configurable by customer). Automatic

administration within a project structure under a certain documentation category (e.g.

planning document). Electronic submission to a distribution list (workflow). Version

management and change control (see configuration management). Automatic forward

linking to reports (e.g. a number of Review Reports linked forward and back to the

document version, see link management). Download, edit, and publication facilities.

Computer supported test status.

Figure 6: Functional Header Generated for Document Objects

Report Management

Creation of reports from a template pool (configurable by customer). Automatic

administration within a project structure under a certain documentation category (e.g.

quality control reports). Electronic submission to a distribution list (workflow).

Version management and change control (see configuration management). Automatic

forward and backward linking between documents and reports, or reports and reports

(e.g. linking test protocols with problem reports, and problem reports with

modification reports). On-line edit of forms at server side, and on-line submission (no

download necessary for edit).

Network Based Quality Assurance

Page 8.9 of 8.45

Figure 7: Parts of a Typical Report Form

Workflow Management

Electronic submission of reports ad results to team members. Encryption module can

be used. Administration of distribution lists (for automatic forward). A

communication log per project archiving all communication flows between team

members (roles).

Figure 8: A Standard Notification Message for Submissions

Configuration Management

Version management. Registration of versions in a document (result) history. Check-

in and Check-out functions. Revert to previously archived versions. Test status

information in document history.

Network Based Quality Assurance

Page 8.10 of 8.45

Figure 9: Version control with Object History Including Test Status

Link Management (Forward and Backward Tracing)

Definition (see functional configurability) of links between report and document

types. Automatic assignment of linking properties to created objects. Automatic

forward and backward linking according to the defined functional configuration

(configurable by system administrator). E.g. linking review Reports with documents,

so that by a click you switch between the document and the related reports.

Figure 10: Forward and Backward Linking (e.g. Review Reports Linked to a User

Requirements Document)

User Administration

Administration of a team per project (see only their project). An NQA system

administrator nqaadmin (sees all). Administration of a distribution list (for electronic

submission) per team.

Figure 11: Identification and User Control

Security Management

No access without identification possible. The information in the electronic

submissions contains only links to info at the server which requires identification. If

Network Based Quality Assurance

Page 8.11 of 8.45

even these links should be protected an additional encryption module from

Hyperwave can bee installed.

Figure 12: Creation of Projects also Builds Project Teams

By just using Netscape the team members (from home, from any work place, etc.) can

access the NQA virtual server and work on-line through a joint interface.

Experience with NQA Concepts in Industry

Some case sstudies from real practice are -

Case Study 1 - System Use

This relates to an experience from a supplier and large manufacturer relationship. All

Feature Requests (FRs) to know the requirements of a system are jointly collected

over time, and accepted ones result in a User Requirements Document (URD).

This process has been extremely difficult because the teams were locally distributed

resulting in instable URDs with changes and additions lateron.

A stability of approx. only 50% was given, and a high flexibility in the entire process

was needed. A much better situation is the goal with about 80% stability and fewer

additions later, leading to higher effort at the start but much higher productivity

throughout the development and field test.

Now, a virtual office system allows to jointly collect the FRs, to publish them in a

joint planning cluster, to submit them for review over the net, and to automaatically

link them forward and backward with the related reviews leading to either acceptance

or non-acceptance of the FR.

Network Based Quality Assurance

Page 8.12 of 8.45

The most important feature was then the automatic forward and backward linking of

the accepted FRs with the URD, leading to an automatically created URD on the net.

Case Study 2 - Team Management in SMEs

It has to be noted that the role centred team management as a principle works even

without a tool support. It has been tested in SMEs in different countries.

A case study from a Spanish innovation management organisation showed that the use

of role based team scenarios is a perfect tool for training of new staff to be integrated.

The roles are clear from the beginning and to know the interfaces to other team

members in advance led to much easier integration of new staff. The average time to

integrate new staff was reduced by 67%.

A case study at a middle sized software and research company in Austria showed that

the use of real practice work scenarios for the establishment of working instructions

for an ISO certification leads to a large increase of the motivation of staff. (17%

really using to above 70%).

Another factor is that practitioners want to have a system in place (not a paper

handbook) that facilitates them the additionally required documentation effort and is

accessible through a common interface from their normal work place.

Pitfalls

This new concept did not work -

If organisations tried to use it without understanding the required management

principles first.

When middle management realised that the role models also require that their role is

described with interfaces to the roles played by the staff, because this also makes their

duties more visible. (a psychologic barrier)

If the system 's configurability and linking features were neglected or not properly

configured leading to inflexible top-down project administration (hated by technical

staff).

Acknowledgements

We are grateful to the European Commission for supporting us in the development of

this new working concept. The research work and the underlying IEEE book have

been supported under EU Leonardo da Vinci Programme in the PICO project.

The EU ESPRIT Programme supported us to realise the ideas and new comcepts in an

industrial tooling environment on the basis of Hyperwave in the HYMN ESPRIT

project.

We would like to thank Gerhard Pail, Frank Kappe, Mansuet Gaisbauer, Juergen

Schipflinger, Joerg Faschingbauer, and Peter Luttenberger for their active support, the

test, and the use of NQA for ISO 9001 certification of Hyperwave itself.

Network Based Quality Assurance

Page 8.13 of 8.45

We also would like to thank Mr Alejandro Moya from the European Commission for

his strict control to ensure project progress, and all people from Hyperwave, Daimler

Benz, FZI who field tested the system.

References

[1] IEEE Software Engineering Standards Collection, IEEE Standards for Software

Quality Assurance Plans (IEEE 730-1989), Quality Assurance Planning (IEEE 983-

1986), Project Management Plans (IEEE 1058.1-1987), Configuration management

Plans (IEEE 828-1990), Software Verification and Validation Plans (IEEE 1012-

1986), IEEE Computer Society Press, 1991

[2] ISO 9000-3. Quality management and quality assurance standards. International

Standard. Part 3: Guidelines for the Application of ISO 9001 to the Development,

Supply and Maintenance of Software. ISO (1990).

[3] ISO 9001. Quality Systems. Model for Quality Assurance in Design/Development,

Production, Installation and Servicing. International Organisation for Standardisation,

Geneva (1987)

[4] ISO 9126, Information Technology - Software Product Evaluation - Quality

Characteristics and Guidelines for Their Use, 1991

[5] ISO/IEC 12207, Information technology - Software life cycle processes, first

edition Aug. 95.

[6] Maurer H., Necessary Ingredients of Integrated Network Based Learning

Environments; Proc. ED-MEDIA’97, Calgary, AACE (1997), 709-716.

[7] Maurer H., What We Want from WWW as Distributed Multimedia System; Proc.

VSMM’97, Geneva. IEEE, 148-155.

[8] Messnarz R., Mac an Airchinnigh M., Biro M., Tully C., ISCN - An International

Software Collaborative Network, in: Proceedings of the ISCN´96 Conference on

Practical Improvement of Software Processes and Products in December 1996 in

Brighton/London, ISCN Ltd. Dublin, Ireland, 1996

[9] Messnarz R., Kugler H.J., BOOTSTRAP and ISO 9000: From the Software

Process to Software Quality, in: Proceedings of the APSEC´94 Conference, Comput.

Soc. Press of the IEEE, Tokyo, Japan 1994

[10] Messnarz R. , Tully C. (eds.), The PICO - Book : Software Process

Improvement for Business Benefit - Principles and Experience, IEEE Computer Society

Press, November 1998

Page 8.14 of 8.45

Promotion of an ISO9001-based quality system using

the WWW in a software organisation and its

experience
Atsuo HAZEYAMA

Client-server Software Laboratories,

NEC Corporation, Tokyo, Japan

Katsumi HONDA

 Software Design Laboratories,

NEC Corporation, Tokyo, Japan

Introduction

In recent years, software industry have had to overcome global competition in

markets as well as other industries like automobile, semiconductor, home electronics,

computer hardware, etc. Companies/organisations in this industry are required to

provide attractive and high-quality software products on time and within budgetary

limits while continuously improving their processes [1].

NEC Corporation not only is a manufacturer of communications, computers, and

electron devices but also deals with software business. Software business plays a very

important role in NEC in recent years; Around 10 thousands of system engineers (at

the end of March 1998) belong to the C&C1 system business unit where provides

total solutions to wide varieties of customers by the system integration which

combine hardware with software. The non-hardware sales of computer business in

NEC in fiscal ending March 31, 1998 was around 565 billion yen (around US$ 39

million) (increased 13 percent from the previous fiscal year). The ratio of non-

hardware business (including SI business, program products sales, maintenance, etc.)

of all the computer business becomes 31.6% (increased 2.3 percent from the previous

fiscal year) at the end of 1998 fiscal year. The importance of software process

improvement, therefore, has been recognised.

 Based on the background, NEC developed a methodology of software process

innovation. It is consisted of three steps. The first step of the framework is to build an

improvement basis based on the ISO9001 quality system. This step is therefore

important for effective and efficient improvement, especially with respect to

establishing processes based on the ISO9001 requirements, and managing documents

and quality records. This paper describes a methodology of software process

innovation in NEC and a case study of a software development organisation in NEC

for promotion of an ISO9001-based quality system, using the Web computing

especially documents and quality records management and their sharing.

1 trademark of NEC Corporation.

ISO 9001 Quality Systems Using the WWW

Page 8.15 of 8.45

A framework of software process innovation in NEC

This section describes an overview of a framework of software process innovation in

NEC. The detail of the framework is written in [2].

NEC has applied Total Quality Control (TQC) activities to software divisions since

1981[4][5] (we call these activities Software Quality Control (SWQC)) and some

achievements have obtained. However, as these activities were carried out

independently in each business division, the results varied depending on the

improvement approach of each division.

In the last decade, several software process improvement methods such as CMM

(Capability Maturity Model) [6], ISO9001 [3] were proposed.

NEC considers it possible to make effective process improvement by regarding the

above three approaches as having different characteristics respectively and

organically associating their characteristics.

The steps toward process innovation by using the ISO9001-based quality system, the

process maturity model, and the QC techniques are shown as follows.

STEP1: ISO9001 Quality System Construction Stage
Most of software divisions has not yet established software quality system. The first

thing for such an division to do for the process innovation is therefore to build an

improvement basis. ISO9001 is used for constructing this improvement basis. The

following activities are required:

to define the process by documentation and thoroughness of its implementation

to promote improvement activities through periodical audits

to provide a good goal for construction of this quality system, which is ISO9001

certification.

A case study of a software division in this stage is shown in the next section.

STEP2: Improvement Stage
A division which has established the ISO9001 quality system stands in the second

stage in which well-planned improvement is continuously carried out along the

improvement management cycle, Plan-Do-Check-Action (PDCA) Cycle.

 The improvement management cycle is used to comprehend the current situation, to

extract problems, to decide the priority levels, to make well-planned improvements,

and to evaluate the results.

In implementing this improvement management cycle, the ISO9001 quality system,

the process maturity model and the QC techniques are utilised. This ensures real

results including productivity and quality. The improvement activities are carried out

based on analysis not only of problems discovered but also of examples of success.

STEP3: Business Effects Evaluation and Accumulation Stage
The final stage is to evaluate the improvements accumulated in the improvement

management cycle and to check their contribution to business. This is used to verify

the validity of the approach to improvement and gather information on the effects. A

good goal will be to win prizes such as the MB Award of the United States and the

Japan Quality Award, which commended the improvement having contributed to

businesses and played a huge role.

ISO 9001 Quality Systems Using the WWW

Page 8.16 of 8.45

A case study of promotion of an ISO9001-based quality system

using electronic media in a software development organisation

in NEC
This section describes a case study of promotion of an ISO9001-based quality system

using electronic media in a software development organisation in NEC. The

organisation in this case study develops software products that support software

development divisions in our corporation. The top management of the organisation

decided to establish an ISO9001-based quality system to improve the quality of its

own processes and products.

 The organisation has several relatively large projects. Projects in the organisation

are traditionally operated by using electronic media and computer network (E-mail,

the WWW, etc.). Most artefacts are created using computers, and various kinds of

communication (reporting, notification, discussion, review and inspection, document

distribution, etc.) are done using E-mail. Such characteristics were taken into account

in constructing the ISO9001-based quality system.

The characteristics of the ISO9001-based quality system with respect to

document control and information sharing of the organisation

When software development is performed in the form of projects which are consisted

of some people, some rules which should be observed by project members are

required. The larger the size of projects, the more the importance such rules are.

 Before the ISO9001-based quality system was introduced in the organisation, each

project established some procedures for its own project: procedures such as rules for

naming variables and constants in source codes, rules for document control, and

guidance for manual writing. A document control rule of a large software project

which specified document identification number and the storage directory, was

adopted as the basis of the document control standard in the organisation’s quality

system. But because the document control rule of the project did not explicitly define

what documents should be created and managed, the decisions about which

documents were to be recorded was left to each of the project / sub-projects. As a

result, some important documents were not recorded (they remained in E-mail spools

or they were stored only on papers). Some documents were even lost because their

authors moved. As a result, problems have occurred that design rationales could not

be found out.

 In building the ISO9001-based quality system, a document control standard was

established which specified the process from document creation, inspection, approval,

registration, distribution, till invalidation, document structure, document

identification number, the storage directories, as well as a document and quality

record list to be created and maintained through the quality system. Here quality

records are things which are required to maintain by the ISO9001 standard `4.16

Control of quality records'. On the other hand, documents are things except the

quality records of all the things which are required to maintain by the ISO9001

standard.

 This list contains around 50 documents and quality records, and for each the

following attributes are specified: creator, inspector, approver, distribution, whether

or not it is a quality record, the directory within which it is stored, how long it should

be stored, the name of the standard specifying the details about the document and

quality record, and whether or not there exists a template for the document and

quality record (one example is shown in Table HAZEYAMA1).

ISO 9001 Quality Systems Using the WWW

Page 8.17 of 8.45

 Table HAZEYAMA 1: Example attributes and their value of a document

 Controlled under the quality system (development planning document)

Attribute Attribute value

Creator
Inspector
Approver
Distribution
Quality record or not
Storage directory
Storage duration
Standard name
Existence of template

persons who are appointed by project leader

project leader

top management

the whole project

N/A

project directory

five years

planning standard

existence

 Since the ISO9001-based quality system was applying, the amount of documents

and quality records recorded by projects/sub-projects increased rapidly. Table

HAZEYAMA2 shows the changes in the number of documents and quality records

created and stored during the development of a large project within the organisation.

 Table HAZEYAMA 2: The changes in the number of documents and quality

 Records created and stored within a large software project

Product version No.

No. of documents/
quality records

Characteristics of the

development

 V1.0
 V2.0
 V3.0

 V4.0

 V4.1

 V5.0

 190
77
79

1022

461

821

 First release
Minor version-up
Porting to another

platform and bug fix
Major version-up.

Start applying the quality

system to the organisation.

1
st
 survey was performed.

Some enhancement and

bug fix.

Major version-up.

Received the examination.

2nd survey was performed.

 This table shows that the introduction of the ISO9001-based quality system (at the

time of V4.0 development in this table. 1022 documents and quality records were

created in this development.) resulted in a five-fold increase in the number of

recorded documents and quality records over the numbers recorded when the first

version was developed (190 documents and quality records were created in V1.0

development.)

 This increase in the number of documents and quality records resulted in increased

retrieval cost, too, therefore to systematize information sharing was required.

Considering this background, we proposed an information sharing system called

electronic binder system using the WWW and deployed it in the organisation so that

people can share information for software development and can prepare the internal

ISO 9001 Quality Systems Using the WWW

Page 8.18 of 8.45

quality audits and certifications effectively and efficiently.

Overview of the electronic binder system

The electronic binder uses the WWW and HTML (Hyper Text Mark-up Language) to

collect computer-created documents and quality records according to a classification

scheme specified later. It differs from a paper binder in that a lot of binders can quite

easily be constructed from various viewpoints without replicating documents and

quality records themselves.

Fig. HAZEYAMA1 shows the configuration of the electronic binder system. It is a

very simple configuration in that persons register documents and quality records in a

centre file directory and responsible persons create and maintain an electronic binder

by using a template. We can view the electronic binders by using a Web browser.

The electronic binders provide various viewpoints because a lot of entries in a lot of

electronic binders (HTML files) can link to a single document and quality record

regardless of where they are registered.

It is particularly useful in a large software project because such a project is composed
of several sub-projects which have their own sub-project document directory, and the

electronic binder of the whole project can be created by aggregating the binders of its

sub-projects. The electronic binder of each product version can also be created very

easily. Furthermore the construction cost of the electronic binders is very low because

of the use of the WWW.

Fig. HAZEYAMA 1 : Configuration of the Electronic Binder System

Fig. HAZEYAMA1 shows the configuration of the electronic binder of a large

project which is composed of several sub-projects. This figure shows that the binder

of the overall project is composed of documents and quality records which are created

for the overall project, and the binders of its sub-projects. This figure also shows the

binders for multiple product version of the project (version N development and

version N+1 development). Using the electronic binder system, documents which are

shared among several product version such as file-a, file-c, file-e in this figure can be

easily accessed from the binder for each product version. Fig.HAZEYAMA2 shows a

screen image of the electronic binder of a project.

ISO 9001 Quality Systems Using the WWW

Page 8.19 of 8.45

Fig. HAZEYAMA 2 : Screen Image of an Electronic Binder

Deployment of the electronic binder system

The electronic binder system has been deployed throughout the whole organisation in

the following way:

(1) Documents and quality records to be managed according to ISO9001

requirements were extracted and defined by an ISO9001 promotion team (The list of

these documents and quality records forms a part of the quality system). These

documents and quality records were divided into two categories:

Documents and quality records created and maintained by the organisation.

Documents: contract documents, internal quality audit plans, training plans, etc.

Quality records: internal quality audit reports, each personnel’s training records, and

management review reports, etc.

Documents and quality records created and maintained by the projects and/or sub-

projects.).

Documents: development plans, design specifications, test specifications, production

specifications, final inspection and testing specifications, etc.

Quality records: test reports, various review reports, final inspection and testing

reports, corrective / preventive action reports, etc.

 Templates of the electronic binder for the organisation and for the projects / sub-

projects were prepared by the ISO9001 promotion team.

(3) A procedure for the application of the electronic binder system was documented

by the ISO9001 promotion team and approved by the top management.

This procedure defined who should create and maintain each electronic binder and

where each electronic binder should be placed. It also defined the file name

conventions of electronic binders. This document was distributed to the whole

organisation. The organisation and projects / sub-projects are required to create and

maintain their own electronic binders by using corresponding templates.

ISO 9001 Quality Systems Using the WWW

Page 8.20 of 8.45

Survey of the electronic binder usage

As we surveyed the usefulness of the electronic binder system by circulating

questionnaires to the whole organisation, we show the contents of the survey and the

results.

Status at the time when the survey was performed

The 1st survey was performed October 1996, soon after having introduced the

electronic binder system to the organisation. When this survey was performed, the

status of the quality system was as follows: a large project in the organisation had

been applying the quality system for the second time (Version 4.1 in Table

HAZEYAMA 2). Around 65 % of the organisation have been participating in this

project with part-time or full-time. As Table HAZEYAMA 2 shows, V4.1

development was a minor enhancement and bug fix. On the other hand, as activities

for the organisation, planning and training record of the quality system, and each

personnel’s training record had been created and maintained.

When the survey was performed, internal quality audits, and management reviews

had not been performed yet.

The organisation received the ISO9001 formal examination July 1997 and received

the certification September 1997. The 2nd survey was performed September 1997,

soon after having received the certification.

Contents of the survey

We asked all the employees of the organisation, and employees of subsidiary

companies associated with projects of the organisation for the following information:

(1) their affiliation

(2) whether they had accessed the electronic binders

(3) the frequency with which they had accessed the electronic binders

(4) which electronic binders they had accessed

(5) what documents and quality records in the electronic binders they accessed

(6) how useful they had found the electronic binders

(7) reasons that the electronic binders are useful

(8) reasons that the electronic binders are not useful

(9) key success factors of software process improvement via ISO9001

(9) is an item which was asked only in the second survey.

Results of the survey

In the 1st survey, sixty-three percent responded and seventy-three percent of those

responding had referred to the electronic binders. In the 2nd survey, fifty-six percent

responded and eighty-three percent of those responding had referred to the electronic

binders. The following results came from the data which people who had accessed to

the electronic binder responded.

 The results on evaluating the usefulness of the electronic binder are shown in Fig.

HAZEYAMA 3.

ISO 9001 Quality Systems Using the WWW

Page 8.21 of 8.45

Fig. HAZEYAMA 3: Evaluation Result on Usefulness of the Electronic Binder

In the 1st survey, half of the respondents who had ever accessed the electronic

binders evaluated the electronic binders positively. The other half, however, did not.

But in the 2nd survey, 90 % people evaluated the electronic binders positively.

We think this result come from permeation of the quality system and acquisition of

the ISO9001 certification.

 Of those who evaluated the electronic binders positively, we asked why they found

the electronic binders useful. We did this by asking them to select from the following

six choices (A) - (F)(multiple choices were permitted). Item (E) was enumerated in

the 2nd survey only.

(A) documents and quality records of projects or sub-projects that a respondent

belongs to have been ordered by the electronic binders and can be shared/accessed

easily.

(B) documents and quality records of other projects or sub-projects have been ordered

by the electronic binders and can be shared/accessed easily.

(C) understanding of the ISO9001 standard has been facilitated.

(D) preparing for internal quality audits or ISO9001 formal examinations could be

done efficiently.

(E) internal quality audits and ISO9001 formal examinations could be done smoothly.

(F) the other (the reason can be described free)

 The result is shown in Fig. HAZEYAMA 4. In both surveys, (A) `documents and

quality records of projects or sub-projects that a respondent belongs to have been

ordered by the electronic binders and can be shared/accessed easily' was the most

answer (around 75 %), and then (B) `documents and quality records of other projects

or sub-projects have been ordered by the electronic binders and can be

shared/accessed easily' was the second most answer (around 65 %). The percentage is

also almost same in both surveys.

 Fig. HAZEYAMA 4: Reasons of Positive Usefulness of the Electronic Binder

ISO 9001 Quality Systems Using the WWW

Page 8.22 of 8.45

 We also asked those who had evaluated the electronic binders negatively why they

had evaluated them that way by selecting from the following four choices (multiple

choices were permitted).

the benefit was not worth the effort.

necessary information has not been found out.

information has not been latest.

the other (the reason can be described free)

The result is shown in Fig. HAZEYAMA 5.

Fig. HAZEYAMA 5: Reasons of Negative Usefulness of the Electronic Binder

In the 1st survey, the most common answer was that the benefit was not worth the

effort. The main reason was that almost all documents and quality records registered

in the electronic binders had been distributed to the appropriate members by E-mail

or that the members had been able to access those documents and quality records by

other means (for example, by book-marking necessary documents and quality

records/pages of their own on a WWW browser). Therefore it turned out that the

members have not necessarily accessed such documents and quality records via the

electronic binders (each person manages his/her necessary documents and quality

records for him / herself). But as the number of documents and quality records

increases, they are used to access documents and quality records via the electronic

binder system.

Conclusion
This paper has described a methodology of software process innovation in NEC and a

case study of a software development organisation in NEC for promotion of an

ISO9001-based quality system using the Web computing and its result. It is important

to manage documents and quality records from the point of view of ISO9001

requirements and for software development projects to do so. We think it is necessary

for the ISO9001 promotion to define documents and quality records to be managed in

the company / organisation. Once documents and quality records are defined, the

templates of the electronic binders can be standardised in the company / organisation

level. If a company / organisation can establish this kind of framework, people only

link to the registered documents or quality records from the electronic binders in the

operation stage. The maintenance cost is very small, therefore the return on

investment is substantial.

 The organisation in this case study has got the ISO9001 certification and therefore

ISO 9001 Quality Systems Using the WWW

Page 8.23 of 8.45

accomplished the first stage of the innovation methodology and now stands in the

improvement stage. The organisation is improving the quality system based on the

corrective actions and quality goal setting and its follow-up. Some actions are taken

as follows:

Improvement of SI (System Integration) and configuration management processes:

these processes are very important, in general, especially for large-scale projects.

Collecting a variety of quality data, its analysis (drawing trend curve of faults, root

cause analysis of faults, etc.), and feedback to quality goals and management process.

Writing post mortem report after project completion.

 For the evaluation of projects from the viewpoint of business (cf. ISO9001 clause

4.1), the organisation now starts to use a framework of the Quality Award.

 Such information can be seen from the electronic binder system. The electronic

binder system is therefore evolving as an information infrastructure for software

projects.

Acknowledgement

The first author would like to thank Mr. H. Oka and Mr. T. Fujimura for support of

this work. The authors also would like to thank the anonymous referees for their

useful comments to improve this paper.

References

Humphery W. S., Managing the Software Process, Addison Wesley Publishing Co.,

Inc., 1989.

Honda K., Sunazuka T., and Miyashita Y., Software Process Innovation
Methodology - Multiple Approach Including ISO9001, Maturity Model and QC
Technique: in the NEC Research & Development, Vol. 38, No. 1, pp.96-104, 1997.

ISO9001: Quality Systems - Model for quality assurance in design, development,

production, installation, and servicing, 1994.

Kajihara J., Amamiya G., and Saya T., Learning from Bugs, IEEE Software, Vol. 10.

No. 5, pp.46-54, 1993.

Mizuno, Y. (ed.), Software Total Quality Control - NEC’s SWQC -, Nikka Giren,

1990 (In Japanese).

Paulk M. C., Curtis B., Chrissis M. B., and Weber C. V., Capability Maturity Model

for Software, Version1.1, CMU/SEI-93-TR-024, February 1993.

Page 8.24 of 8.45

The PASS Software

Process Improvement

Experiment in Hungary

(PASS EP 21223)

János Ivanyos

MemoLuX Ltd., Hungary

Dr. Miklós Biró

MTA SZTAKI, Hungary

Dr. Richard Messnarz

ISCN, Ireland

Introduction
The PASS (Pay-roll Accounting and Settlement System) project is the first Central and

Eastern European ESSI PIE project directly supported by the European Commission. The

PASS project is carried out under the ESSI initiative with the financial support of the

Commission of the European Communities under the ESPRIT Programme EP21223.

The PASS (Pay-roll Accounting and Settlement System) project started as a new business

project of MemoLuX. Its business purpose is to develop a modular, platform independent,

integrated networked software system satisfying the functional requirements of EU standards

in public accountancy and applicable for the Hungarian as well as for the international market.

The system provides direct service among Employers, Employees and Banks. The PASS

project is the baseline project for the Process Improvement Experiment.

In the PIE the quality of MemoLuX´s development process was enhanced to become well

defined and predictable, and during the dissemination supported by ISCN, this PIE is used as

a master example to adapt Eastern European processes to the high quality norms of Western

Europe, this way facilitating the integration of Eastern Europe into a joint EU in the long term.

Objectives and expected results are improving the control of the development process (QA

Unit, structured system analysis, improved testing process, efficient project planning, ISO

9001 documentation), raising the maturity level (CMM) to 3 and achieving compliance with

ISO 9001 requirements at this high level of maturity.

ISO 9001 Quality Systems Using the WWW

Page 8.25 of 8.45 PASS ESSI EP 21223

Background Information
On March 16, 1995 The IT Program (Esprit) published its sixth call for proposals under the Fourth Framework

Program. The changing policy of the European Commission brought the opportunity for CEEC participants to

apply directly to the Commission with proposals and under the Process Improvement Experiments (PIE) Tasks

MemoLuX produced an accepted proposal. The uniqueness of the situation came from the fact that it was the

first time that a proposal was submitted with a non-EU Prime User and Co-ordinator. Nevertheless, the call

allowed the formation of a consortium from one country only, which caused legal difficulties during the

contracting period. The legal issue was solved by the involvement of ISCN as associated partner of the project

and finally the contract came into force by the end of June 1997.

See Figure 1. The new features of process improvement under the ESSI PIE project in the Annex.

Objectives

Since MemoLuX Ltd. is steadily growing and is managing larger and larger and a greater number of projects,

MemoLuX has to achieve better control of the software development process, a quantitative view of the

production process, and higher credibility among Hungarian and EU customers through an improved

BOOTSTRAP maturity profile and an increased level of compliance with ISO 9001. The aimed maturity level 3

is fairly high on the international scale. The progress is monitored according to a well planned quality

measurement process and corresponding tasks are scheduled as separate workpackages.

See Figure 2. Specific measurable objectives in the Annex.

Involved companies and their roles

MemoLuX Ltd.

MemoLuX Ltd., (URL: http://www.memolux.hu) a Hungarian private company with professional experience is

a service provider in finance and public accountancy, management organization, software development and

information system engineering.

ISCN The International Software Consulting Network

ISCN (URL: http://www.iscn.ie) offers professional services in the fields of process analysis, process modeling,

process and product measurement, and practical experience with the installation and performance of

improvement projects.

MTA SZTAKI (Computer and Automation Institute of the Hungarian Academy of

Sciences)

MTA SZTAKI (URL: http://www.sztaki.hu) is the largest research institute of the Hungarian Academy of

Sciences. Contract-based target research, development, training and expert support for domestic and foreign

industrial, governmental and other partners have been key activities of MTA SZTAKI since its foundation

(1972).

The participating organizations’ roles:

MemoLuX Ltd co-ordinator/prime user, baseline project , improving the software

development process, dissemination

ISCNassociated partner, requirements for control & measurement of results, preparing all

results as best practice reports, project monitoring, dissemination of results for EU

MTA SZTAKI subcontractor, consultation, training, implementation of the

measurement plan, BOOTSTRAP methodology

Starting scenario
Before starting the ESSI PIE project, significant improvement of the software development process had been

achieved. During the period from November 1995 to March 1997 MemoLuX performed improvement actions,

the software development process improved significantly by the work of MemoLuX’s own staff, and the results

were approved by the second BOOTSTRAP assessment. The maturity level of MemoLuX rose above the

repeatable process level (2.5 CMM score achieved). The succes of the former project led MemoLuX to a better

starting position than the one it had when the EU Software Best Practice started.

ISO 9001 Quality Systems Using the WWW

Page 8.26 of 8.45 PASS ESSI EP 21223

The BOOTSTRAP assessment was carried out by MTA SZTAKI, the only Hungarian licensed assessor, in

order to clarify the strengths and weaknesses in the software development process at MemoLuX. This gave the

following conclusion:

The maturity level was 2.5 in the SPU (Software Producing Unit) global environment and the same score was

measured in the selected SPU project. The main strengths and weaknesses as deviations from the average are

outlined based on BOOTSTRAP attributes in Figure 3. Strength and weaknesses at starting phase in the

Annex.

Looking at the status of software engineering practice at MemoLuX, the quality management of IT projects

needed enhancement. Improvement steps, to be carried out first with the guidance of Subcontractors, were

planned in several areas:

Organization

 setting up a Quality Management Unit

 setting up a Project Management Unit

 providing quality management training for the project management and staff

Methodology

 preparing the Quality Manual for the software development activities

 establishing a standardized and documented software development process

 introducing standards to software product documentation

 introducing standardized testing methods (including metrics, documentation)

 creating and using metrics for measuring project progress, collecting and analyzing progress and

product metrics

Technology

 in the software development unit:

 unified methods and tools for configuration and change management,

 planning tools possible with graphical representation for the planning model, software

development plan and schedules.

The business purpose of project PASS is to develop a modular, platform independent, integrated networked

software system satisfying functional requirements of EU standards in public accountancy at a European

business level and applicable for either small or medium or even large enterprises working for the Hungarian as

well as for the international market. The system provides the direct service among Employers, Employees and

Banks for applying bank transfers. More and more companies are willing to outsource their pay-roll accounting.

However, the PC based pay-roll account systems available in the Hungarian market are not suitable for

Employers having several thousands of Employees. The need for pay-roll systems with 100.000 items is

emerging. The creation of a nation-wide networked software system for supporting up-to-date banking services

in Hungary is a kind of solution for solving these problems. The result of PASS project is a nation-wide IT

system for pay-roll accounting and settlement, providing services at a European level in three sectors of

economic life: small, medium or large enterprises, banks and active population.

To complete the phases of the PIE and the baseline project new organizations were defined. These were the

project organization for PIE, the project organization for the baseline project, Steering Committee, Project

Board, QMU (Quality Management Unit) setup for MemoLuX, establishment of the risk management team, etc.

The next step was to define the roles, the persons and the organizations involved in each workphase.

Since the problem of who does what was solved by defining the roles and the associated responsible persons,

we had to make decisions on how we were going to put our thoughts together. At the premises of MemoLuX an

FTP server was set up and all the released and work documentation are stored there. The server is always on-

line. The system administrator distributes the e-mails from here to everybody on the list. Additionally, the

useable software standards were fixed for scheduling and documentation, common templates were made,

reviewed, accepted and distributed.

ISO 9001 Quality Systems Using the WWW

Page 8.27 of 8.45 PASS ESSI EP 21223

Expected outcome
MemoLuX Ltd. is steadily growing and is managing more and more larger projects. While introducing best

practices, the company can effectively manage a large number of projects in the future by reusing the lessons

learned.

In our opinion, any company in a situation similar to that of MemoLuX could benefit from the PASS process

improvement results which show how to start improvement programs in those sectors that are of critical

importance in businesses between Eastern and Western Europe.

MemoLuX is able to establish a stable and predictable development process, Subcontractors support MemoLuX

in effectively implementing and using the new quality system, and ISCN ensures a European wide

dissemination of results plus consulting about how to measure and control process improvement. ISCN ensures

that the results will be discussed in a broader community in the EU via WWW and conferences to make the

Hungarian efforts and results visible as well as to enable a feedback loop between EU PIEs and this Hungarian

PIE.

The anticipated benefits of the better control of the software process and of achieving a quantitative view of the

quality of the system/product are the ability to make decisions based on quantitative data resulting in higher

credibility for Hungarian, EU, and other customers through the improved BOOTSTRAP maturity profile and

increased level of compliance with ISO 9001.

Implementation of Process Improvement
MemoLuX decided to improve its development process. This Process Improvement Experiment project gave

MemoLuX a good opportunity to evaluate new methods, procedures and tools in a real life environment to

model their processes and to implement a quality system.

Nowadays the formal modeling of processes is gaining increasing interest in the field of analyzing organizations

with respect to the quality of their products, productivity and efficiency. The process models are the basis for

improvement actions and comparisons.

The development of a process model is a process itself. This process had to be adapted to the specific needs of

MemoLuX. The level of detail to be specified depends on the level of the development process (see

BOOTSTRAP assessments), the available computer system configuration, skills and experience of the

personnel, and the size of the organization.

Four scenarios were selected for trying out how to build a workflow and for using these experiences:

Project Planning Scenario

Review Modeling Scenario

Configuration Management Scenario

Testing Scenario

After the technical implementation of the selected scenarios into the LBMS PE tool, there were two main

streams of work performed. At first the implemented workflows were converted to working instructions of the

ISO 9001 Quality System Documentation, and after the coaching and training steps, the usage and data

collection started within the baseline software development project as well.

The usage of workflows and quality system documents started during the baseline project

initiation (December, 1997). Due to the decision after the investigation of the results of the

mid-term self assessment, the overall implementation of the ISO 9001 Quality System for the

whole IT organization started in April, 1998.

In the PASS project the quality of MemoLuX’s development processes were largely enhanced to become well

defined and predictable, so the measurement plan supported the collection and presentation of a set of objective

data for illustrating success and / or failure, and the lessons learned.

Performance metrics were applied to show the progress in the field of business performance and software

maturity. Workpackage metrics were applied to give quantitative feedback. The measurement plan

implementation described how to apply the metrics given in the measurement plan to the workpackages of the

PIE and to the baseline project. The measurement plan implementation included measurement issues related to

all workphases of the PIE and the baseline project.

Business performance metrics were taken before and after the completed PASS project and are compared in

Figure 4. Business performance metrics in the Annex.

Maturity metrics were taken three times: at first in 1996, at mid-term of the project by performing BootCheck

self assessment and finally Bootstrap assessment was done in October, 1998. The overall maturity level and the

ISO 9001 Quality Systems Using the WWW

Page 8.28 of 8.45 PASS ESSI EP 21223

maturity level of each attribute are compared to the project’s final Bootstrap assessment in the standard

Bootstrap form. See Figure 5. Bootstrap maturity profiles in the Annex.

Organization

To complete the phases of the PIE and the baseline project new organizations were defined. These were the

project organization for PIE, the project organization for the baseline project, Steering Committee, Project

Board, QMU (Quality Management Unit) setup for MemoLuX, establishment of the risk management team, etc.

The next step was to define the roles, the persons and the organizations involved for each workphase. See

Figure 6. Organizational structure of the PIE in the Annex.

Technical environment

MemoLuX made an evaluation process to select the most suitable process modeling tool. The LBMS Process

Engineer tool is a system for developing systems. It consists of a set of processes for planning, managing, and

developing Information Systems and gives a technology for automating the use of the system. LBMS offers a

product that not only provides an extensive library of best practices, but can help an IT organization to capture

its own existing intelligence as the organization’s best practices. The components of LBMS Process Engineer

ordered by MemoLuX are the Process Manager with the Process Library and the Project Manager. The Process

Library stores best practices of which MemoLuX’s repeatable processes can be built, making a standard for

development and raising the expertise of the entire organization. Process Management is the method to capture,

deploy, execute and improve best practices for continuous improvement. Applying Process Management new

processes can be authored, or the best practices from the Process Library can be customized to satisfy

MemoLuX’s needs so they can become organization standards. The Project Manager provides the ability to

generate detailed project plans based on the processes, define and store information on the progress of

deliverables, roles and resources and apply metrics and estimating models.

See Figure 7. LBMS Process Management

Training

Training and participation on conferences are basic activities of the project. Specific training was performed

regarding the usage of the LBMS Process Engineer tools, implementation of the four selected scenarios and the

ISO 9001 Quality System. External assistance was provided by MTA SZTAKI and the ISO 9000 consultant

Qualyfore. During the training period the permanent improvement of quality system deliverables and the

internal dissemination were given priority due to the concept of ISO 9001 preparations.

Role of the consultants

ISCN as the associated partner, provided requirements for control & measurement of results, prepared all results

as best practice reports, contributed to project monitoring and dissemination of results for EU. MTA SZTAKI as

subcontractor, provided consultation, training, implementation of the measurement plan and made

BOOTSTRAP assessments. Qualyfore as ISO 9000 consultant subcontractor provided ISO 9001 training on the

improved quality system deliverables.

Phases of the experiment

As part of the project initiation, 6 main stages (see Figure 8. Phases of the experiment in the Annex) were set

up covering the workpackage structure to provide checkpoints for project progress. Due to the fact that there are

strong connections between the baseline software development tasks and PIE tasks in measurement and quality

monitoring issues, the set up and implementation of the Quality System were performed before completing the

system planning phase of the PASS development, so only the project initiation of the baseline was completed at

the first stage.

At the endstage review of the first stage performed in December, 1997 corrective actions were indicated in time,

during the detailed planning and scheduling of the next stages:

- resources were re-allocated from the project management task to the use-steps of the scenario

development to support actual try-out in the baseline project

- MemoLuX re-allocated management days to technical days because the try out needs much more

technical resources

- a software circle as a feedback mechanism was founded

- all intermediate results of each scenario and quality development were discussed in this circle.

ISO 9001 Quality Systems Using the WWW

Page 8.29 of 8.45 PASS ESSI EP 21223

Corrective actions succeeded. Two critical problems were solved. On the one hand the full ISO 9001 Quality

System documentation was completed in compliance with the redefined process workflows, on the other hand

internal dissemination connected with continuos improvement of the deliverables was working due to the new

feedback mechanism.

After the completion of the ISO 9001 Quality System documentation based on the implemented quality

scenarios and successful training and coaching period at the closure of the second stage, the decision was made

to complete the implementation tasks of the Quality System in the third stage. This meant the overall

introduction of the Quality System in the whole IT organization which had been originally planned at later

stage. This meant extra effort for the IT staff during the third stage so the baseline project was suspended for

one and a half period. The success of the performance of this stage was measured by the mid-term self

assessment, and after internal audits, a successful ISO 9001 certification was achieved.

On the basis of the results of the first three stages, the baseline project schedule was updated. The parallel

activities of the baseline and the PIE projects regarding measurement and quality monitoring were performed in

stage 4 and 5. The fifth stage ended by the final Bootstrap assessment of the project. The expected maturity

level of the IT department was 3.

In stage 6 the external dissemination activities were completed.

Internal dissemination

Based on the results of the mid-term BootCheck self-assessment, the commitment of management helped in

disseminating the results within the company.

Due to the repeatable actions carried out and the transferable results of the process improvement, the

introduction of the ISO 9001 Quality System came into force in April instead of the planned date of November,

1998. This means that the results of the PIE were not only disseminated at mid-term, but influenced the whole

IT organization of MemoLuX by the overall introduction of the Quality System.

Results and Analysis

Technical

The technical implementation of the scenarios and the customized software development process contributes to

the replicability of the PIE results due to the availability of the Process Library and the direct and comfortable

usage of the workflows in project planning and scheduling.

The implemented quality scenarios were directly used for creating the working instructions of the ISO 9001

Quality System documentation. This was the key issue to achieve compliance with the ISO 9001 requirements

on the basis of a high capability maturity level. The direct result was the extremely short period of the overall

introduction of the Quality System, which is one of the main experiments of this PIE.

The complaince of the software process related quality scenarios with the chapters of the ISO 9001 Quality

System documentation was defined as follows:

Project Planning Scenario was implemented as the working instruction of Design Control in order to establish

and maintain documented procedures to control and verify the design of the - software - product.

The working instruction implemented from the Configuration Management Scenario was referred at the

chapters of Document and Data Control, Product Identification and Traceability, Inspection and Test Status,

Control of Nonconforming Product, Handling, Storage, Packeging, Preservation and Delivery.

Review Modeling Scenario and Testing Scenario were implemented as the working instructions of Inspection

and Testing. See Figure 10. Inspection and testing during software development.

In most of the workpackages starting the work meant making a plan of performing the tasks. Before the

beginning of the completion of this plan, it had to be preceded by a review of the plan to make sure that the

goals and objectives were correct and that the requirements would be met. This is called the design review. At

appropriate stages of the software development project, typically at endstage, formal documented reviews of the

project plan were planned and conducted.

In the PASS PIE project the products of each workpackage were documents, so the document review path was

followed using the Review Modeling Scenario.

In the case of the PASS baseline project the products of the workpackages were either software or documents,

so the appropriate path (of Figure 10. Inspection and testing during software development) was applied to

decide the type of test and review to be executed.

The ability of a software was examined by running tests and the test reports were discussed in the appropriate

reviews, these are called test case reviews.

ISO 9001 Quality Systems Using the WWW

Page 8.30 of 8.45 PASS ESSI EP 21223

Depending on the life cycle phase of the software product the following tests and reviews were executed:

The design review is a review of the software development process.

The test strategy review is a review of the tailored test startegy.

The module test is completed on the program modules, followed by the module test case review.

The integration test is completed when the complete modul is ready and proves that the parts of the

product co-operate correctly, followed by the integration test case review.

The system test is completed on subsystems or systems, followed by the system test case review.

The acceptance test is usually done in the presence of the customer followed by the approval review,

where both software and documentation are checked.

The main quantitative result of the project regarding scheduling is the two-month delay in baseline development

compared to the one-month introduction period of the ISO 9001 Quality System. The software industry based

expectation for the introduction was 6 months. This means that the formerly achieved process improvement

maturity level 3 causes delay in the first project, but this delay is comparable to the introduction period of the

ISO 9001 Quality System. The clear advantage is the extremely fast achievement of compliance with ISO 9001

requirements for the whole IT organization.

Business

The following goals, as leveraging effects on business performance, were measured at the end of the project:

Extension of business activities to financial services (number of financial transactions)

More competitive service charges due to decreased production costs (price per employee)

Increased volume of pay-roll services (number of employees processed per month)

The PIE has a direct leveraging effect on business performance, achieved by improving the control of the

development process measured by the increased maturity level of the organization’s software development

capabilities.

The maturity results of the experiment were measured even at midterm (April, 1998) by BootCheck Self

Assessment Tool. BootCheck is a joint initiative sponsored by ESI (European Software Institute) and Bootstrap

Institute. The aim of BootCheck is to enable individual Software Producing Units in an organization to make

quantified assessments of their software capabilities, and to use this information as a key element in continued

process improvement programmes.

According to the Bootstrap overall maturity profile, SPU Maturity level was 2.75, near the Defined level, which

means that the software process is documented, standardized, and integrated into a standard software process for

the organization. Organizational profile was also rated at 2.75, with the relative weakness of resource

management. From the methodology point of view the process related functions scored at 3.75, life cycle

functions at 2.5 and life cycle independent functions at 2.75.

The final maturity metrics are produced by the Bootstrap assessment performed in October, 1998. The main

improvements compared to the mid-term status are achieved in resource management, life cycle and life cycle

independent functions due to the running Quality System and further improvements in development cycle

modeling and architectural design. See Figure 5. Bootstrap maturity profiles in the Annex.

Due to the shorter - one instead of a six-month - introduction period of the ISO 9001 Quality System, the

certification was achieved half a year earlier than it had been expected. The publication of the ISO 9001

certification towards MemoLuX’s clients met with their appreciation, and helps MemoLuX utilize the

advantage of having higher credibility in the eyes of Hungarian, EU and other customers.

Organization

The Quality Assurance Unit is the really new structure element appearing from the improvement of the quality

processes. It is important, that the Quality Management organization is separate from the software development

units. Project schedules are always tight, and project managers should not be worried about inadequate test

plans, human factor problems, or documentation errors. If the size or complexity of a project requires, quality

management functions can be dedicated to a person at project level as well.

The Quality Manager or the member of the Quality Assurance Unit works closely with the developement

organization. It is relevant to understand every part of the process customized for the development activities.

ISO 9001 Quality Systems Using the WWW

Page 8.31 of 8.45 PASS ESSI EP 21223

Culture

The implementation of the whole ISO 9001 Quality System regarding the IT department of MemoLuX started

in April, 1998 after continuous training and consultation on the materials. The quality policy was fully

understood and accepted by the whole staff. The fulfillment of ISO 9001 requirements for the software

development organization aiming at a defined maturity level at the same time was a great effort, but a real

challenge for the well educated staff of MemoLuX.

The earlier resistance to adopting the new working instructions was overcome by the continuous involvement of

the staff members through the so called Software Circle discussion forum and after the introduction of the

Quality System two immediate internal audits helped the staff to get the correct adaptations. The compliance

was measured by the ISO 9001 certification within an extremely short time.

Skills

Regarding the Quality Management personnel it is very important to have sufficiently experienced and

knowledgeable people. In our practice the Quality Manager, as a system design expert with quality skills, can

monitor whether the methods and standards used by the software development experts are consistently and

correctly applied. The following skills are necessary for doing this job properly:

knowledge of quality control procedures

knowledge of the software development process

knowledge of statistical methods

and it is very important to have the ability to deal effectively with people in controversial situations.

Key Lessons
This section summarizes the key lessons we have learnt from undertaking the experiment.

Technological point of view

One of the fundamental principles of the BOOTSTRAP software process improvement methodology is that

before any investments are made in technology, the methodological questions on how to build solutions have to

be answered, the methodological solutions to be institutionalized have to gain organizational acceptance and be

compatible with the existing or improved processes of the organization.

This principle conforms to the philosophy promulgated by Watts Humphrey in his inseminating work on

Managing the Software Process where he writes the following:

"They are thus prone to embrace some magic technological "silver bullet" that will painlessly solve all their

problems. While technology is important and is the long-term key to improving the software process, it is rarely

of much help in solving problems that are not precisely understood. Since most people object to having

someone else's solutions to undefined problems imposed on them, the unplanned introduction of technology

generally causes resistance to change."

The above BOOTSTRAP priorities are usually summarized by the following formula:

O > M > T

where O stands for Organization, M stands for Methodology, and T stands for Technology.

Armed with all the above wisdom, we still fell in a double trap. Since there was a budget allocated in the project

for buying a tool, we wiped out our wisdom and carefully selected the LBMS tool before institutionalizing the

necessary processes. Then, with the tool at hand, we could not wait plunging into learning it, expecting that it

would provide us ready-made solutions for all of our problems. Nevertheless, we had to realize the facts of life

quickly. Not all of the necessary processes were readily usable in our case in LBMS.

At this point, remembering the wisdom, we returned to defining both the planning and review processes

independently from the tool. On the one hand, this approach proved well to be necessary for the review

scenario. On the other hand, we also invested a lot of work into the planning scenario until we discovered that in

this case, the model coming with LBMS was actually fully applicable. This is the point where we came to

appreciate that LBMS was not simply a tool but also an experience library to which the above wisdom does not

directly apply.

The lessons from the above experience are the following:

1. Do not yield to the temptation of immersing into the use of however expensive tools before having analyzed

the real problems and processes the tool is intended to solve. This was the reformulation of the above wisdom.

ISO 9001 Quality Systems Using the WWW

Page 8.32 of 8.45 PASS ESSI EP 21223

2. Today, most products on the market, that are positioned or considered as tools, go much further than that.

They include a library of templates or experiences which may well be more valuable and have a validity

independent from the tool itself. The above wisdom does not apply to these libraries which are most of the time

worth being examined before starting to analyze our own problems.

3. After examining the libraries, do not yield to the second temptation of immersing into the use of the tool.

Listening to the wisdom, examine your real problems and processes and try to critically match the solutions

offered by the library to them. If the match is not perfect, try to adapt first and ultimately develop your own

solutions. This is the point where the use of the tool may become valid and also appreciated.

The above lessons allow us to extend the scheduling priorities the BOOTSTRAP methodology is based on.

Using the formula, the priorities look like the following:

L > O > M > T

where L stands for Library of experiences or templates. The importance of the extension lies in the fact that the

cornerstone of the model is still O while the so called tools include L, M, and T.

Business point of view

It was the development of MemoLuX's organization in compliance with ISO 9001 requirements and not the

certification itself which was an objective of the PIE. We recognized in time however that the improvement of

our maturity level brought us within short reach of the ISO 9001 certification level. We decided at this point to

reallocate resources so that we can achieve this business objective. The consequences of our decision were the

following:

- The baseline project was delayed by two months which caused a minor rescheduling of the PIE itself.

- The maturity level previously improved in the framework of the PIE allowed us to reach ISO 9001 compliance

and actual certification within one month as compared to the originally expected duration of 6 months.

- The higher credibility due to our ISO 9001 certificate brought immediate business benefits significantly earlier

than originally anticipated in the PIE.

- Process improvement could be perfectly continued after the certification.

The lessons from the above experience are the following:

1. The approach of considering the improvement of the maturity level as the principal objective and the

achievement of ISO 9001 certification as a side-effect is valid from the efficiency point of view.

2. Even if ISO 9001 certification is not the principal objective of process improvement, it may be worth

capitalizing on its high recognition by allocating appropriate resources to its achievement at the right stage

during the process improvement project. The business benefits may well outweigh the effect of the resulting

delays in the process improvement itself.

3. The ISO 9001 certification does not only have direct business benefits. According to international

experiences, there is usually a significant decline of attention towards the quality system after the certificate is

granted. The approach of considering certification as a side-effect of overall process improvement not only

helps avoiding this trap but the quick success even has a spurring effect on the whole IT organization regarding

further process improvement.

Strengths and weaknesses of the experiment

The main strength of the experiment is that most of the weaknesses could be corrected. Due to the strong project

monitoring, the need for corrective actions was recognized in time (at the closure of the first stage).

- resources were re-allocated from the project management task to the use-steps of the scenario development to

further actual try-out in the baseline project

- a software circle as feedback mechanism was founded

- all intermediate results of each scenario and quality development were discussed in this circle.

The corrective actions resulted in success. Two critical problems were solved. On the one hand the full ISO

9001 quality system documentation was completed in compliance with the redefined process workflows, on the

other hand internal dissemination connected with continuos improvement of the deliverables worked due to the

new feedback mechanism.

Further lessons derived from recognized and corrected weaknesses are summarized below.

The quality system and the scenario development were running in parallel, however at the beginning no links

were taken into account. A quality system consists of the Quality Manual, Procedures, and detailed Working

Instructions for the procedures. The scenarios should have been aligned with the Procedures and Working

Instructions in the Quality Manual, or at least there should have been a mapping.

The introduction of a scenario (e.g. review scenario) was done following a predefined series of steps

ISO 9001 Quality Systems Using the WWW

Page 8.33 of 8.45 PASS ESSI EP 21223

- analyzing the model

- implementing

- coaching and training

- use

- feedback (data collection)

There was however a misunderstanding of the "use" step. In order to overcoming such misunderstandings, a

software circle had to be created, consisting of the experts and the staff that in future would have to work with

the results produced by experts. The software circle had a meeting every two weeks for 2 hours. The result of

each step was presented to this circle, opinions were discussed, and feedback was recorded. Without this

complementary action, it is questionable whether the results (new workflows) would have ever been accepted

by the staff.

Conclusions and Future Actions
MemoLuX, with its partner and subcontractor, has achieved its main goals. It significantly improved the control

of the development process, increased the maturity level, completed the ISO 9001 quality system

documentation and made headway in running the quality system. The dissemination of the experiment

contributes to the replicability of these results for other SMEs from the region which is not only a potential

marketplace, but also a strong battlefield for competition.

Future actions planned and designed in new projects being set up upon compilation of the PIE. These are the

Process Improvement Project and the Quality Improvement Project based on the achieved results detailed in this

article. Running the quality system helps us to control the development of our software and quality processes.

New scenarios are planned to be defined and implemented into the process library as it has been successfully

done with the four basic quality scenarios.

MemoLuX is going to utilize the advantage of having practice in quality system implementation as working

together with Hungarian, EU and other customers to support them to achieve improved software maturity and

increased level of compliance with ISO 9001 especially in fastly growing software development organizations.

Glossary
BootCheck BootCheck Self Assessment Tool sponsored by ESI and Bootstrap Institute

BOOTSTRAP European Software Process Assessment and Improvement methodology developed by an

ESPRIT project.

CASE Computer Aided Software Engineering

CEEC Central and Eastern European Countries

CMM Capability Maturity Model

ESI European Software Institute

ESSI European Systems & Software Initiative

EU European Union

ISCN International Software Consulting Network

ISO International Standards Organization

IT Information Technology

LBMS LBMS Process Engineer Tools developed by LBMS Inc.

OMFB Hungarian National Committee for Technological Development

OOP Object-Oriented Programming

PASS Pay-roll Accounting and Settlement System

PIE Process Improvement Experiment

QA Quality Assurance

QMU Quality Management Unit

SPU Software Producing Unit

SQA Software Quality Assurance

WWW World-Wide Web

References

[1] Biró M.; Feuer É.; Haase V.; Koch G.R.; Kugler H.J.; Messnarz R.; Remzsõ T. BOOTSTRAP
and ISCN a current look at the European Software Quality Network. In: The Challenge of Networking:

ISO 9001 Quality Systems Using the WWW

Page 8.34 of 8.45 PASS ESSI EP 21223

Connecting Equipment, Humans, Institutions (ed. by D. Sima, G. Haring). (R.Oldenbourg, Wien,
München, 1993) pp.97-106.

[2] Walk K., Messnarz R., Object Oriented Modelling of Work Processes. In: Proceedings of the
ISCN’96 Conference on Practical Improvement of Software Processes and Products (ed. by
R.Messnarz). (International Software Collaborative Network, Brighton, 1996) pp. 264-287.

[3] Biró,M.; Feuer,É; Ivanyos,J. Process Improvement Experiment at MemoLuX. In: Proceedings
of the ESI&ISCN 1997 Conference on Practical Improvement of Software Processes and Products
(ed. by R.Messnarz). (International Software Collaborative Network, Budapest, 1997) pp.6.18-6.29.

[4] Biró,M; Remzsõ,T. Business Motivations for Software Process Improvement. ERCIM News
(European Research Consortium for Informatics and Mathematics) No.32 (1998) pp.40-41.
(http://www-ercim.inria.fr/www-ercim.inria.fr/publication/Ercim_News/enw32/biro.html)

Annex

Figure 1. The new features of process improvement under the ESSI PIE project:

MemoLuX role as the prime user of the software development activities (Payroll

Accounting and Settlement System chosen as baseline development project for process

improvement)

Starting the practice from higher level of maturity model (CMM score was about 2.5)

Consulting work on quality issues is given by MTA SZTAKI as subcontractor of the

project

Utilizing EU funds for investing in technology (LBMS Process Engineer Tools)

Implementation of measurement procedures in the project

Connection to EU dissemination activities by ISCN from the very beginning of the

project

 Figure 2. Strength and weaknesses at starting phase

 Strength Weaknesses

Organization management responsibility quality system

Methodology process description

process measurement

operation and maintenance

testing

integration

architectural design

risk management

Technology communication

user requirements

CASE tools

ISO 9001 Quality Systems Using the WWW

Page 8.35 of 8.45 PASS ESSI EP 21223

Figure 3. Structure of measurement

Business

Performance

Metrics

Bootstrap Maturity

Metrics

PASS Measurement

Organization Methodology Technology PIE Project Baseline Project

Life Cycle Functions

Life Cycle Independent Functions

Process Related Functios

Project Planning

Quality Assurance

Project Planning

System Planning

Testing

Config. Management

Quality Assurance

ISO 9001 Quality Systems Using the WWW

Page 8.36 of 8.45 PASS ESSI EP 21223

 Figure 4. Organizational structure of IT department

Information Technology
Department

Managing Director

Co-ordination

Customer Representative

Planning Co-ordinator

Technical Co-ordinator

Deployment Co-ordinator

Consulting

Consultant

System Development

Business Analyst

System Designer

Developer

Tester

Quality Assurance Unit

Quality Manager

Process Management

Process Manager

Process Librarian

Library

Project Librarian

Product Librarian

System Operations

Operations Manager / System
Supervisor

Purchasing Agent

IT Stock Keeper

Deployment / Servicing

Contact Agent

Trainer

Delivery Agent Audit

Senior Auditor

Auditor

ISO 9001 Quality Systems Using the WWW

Page 8.37 of 8.45 PASS ESSI EP 21223

Figure 5. Criteria for process modeling tool selection

Product: LBMS Process Engineer

Supplier: LBMS Inc.

Local vendor: KFKI IBIS Kft

Date: 22. July 1997.

Assessor: MemoLuX Kft.

Value(0=no,1=part

ially,2=fully) Notes
Proportion
(1-10)

Result
(Value*Proportion)

System Requirements
 Functionality

Support to improve the organization's development process to

reach leveraging effect on business performance 2

definition, feedback,

reusablity 10 20

 Supporting of ISO 9000 standard system 5 8 40

 Built-in templates 2 kernels

 Possibility to link to different databases 1 command line

 Possibility to create ISO compliant documents 2

 Improving the software development process 4 10 40

 Best practice templates for all phases of software development 2 process templates

 Functions to support the maintainance of documents (conf. man.) 2

 Project management promotion 4 10 40

 Workflow management 2

 Possibility to link to external project scheduler 2

 Logical access level management 0 6 0

 Support audit trail 1 version management 8 8

 General document management 2 6 12

 Document version management (internal, external) 1 internal only

 Possibility to build external documents into the system 1

 Connectivity Considerations

 Possibility to link to external tools 1 OLE 6 6

 Possibility to link to Windows 95 applications (Office,WINPROJ,VISIO) 2 8 16

 Hardware Requirements 2 8 16

 Platform independence 0 Windows 95

Possibility to integrate the system with our present hw/sw

platforms 2

insignificant capacity

extension require

Financial stability of software supplier 4 8 32

 Financial stability of international supplier 2

 Financial stability of local vendor 2

Availability of Complete and Reliable Documentation 1 electronical 10 10

Vendor Support 9 10 90

 Installation 2 local vendor

 On-site training 2

local vendor, international

supplier

 Error correction 2 international supplier

 Product upgrades 2 int.supplier,local vendor

 Hot-line 1 local vendor

Source Code Availibility 1

international supplier has

the ownership 5 5

Experience in Offering the Product 1

is not used widely in

Hungary 8 8

List of Planned Enhancements to the Product 2

continuing broadcast on

home page of supplier 8 16

User Reference List 1 international 6 6

Availibility of Demonstration Version 0 8 0

Occasional Price 2 8 16

Final Result 381

ISO 9001 Quality Systems Using the WWW

Page 8.38 of 8.45 PASS ESSI EP 21223

Figure 6. Process Management supported by LBMS PE tool

ISO 9001 Quality Systems Using the WWW

Page 8.39 of 8.45 PASS ESSI EP 21223

Figure 7. Project schedule

 Milestones Effort

Stages Project Main Deliverables Planned Actual Deviation

(months)

Planned

(mandays)

Actual

(mandays)

Deviation

(mandays)

1. PASS PIE Project Set-up, Tool Purchase

Measurement Plan Implementation

October

1997

December

1997.

 313 354 41

 Quality System Implementation (Project

Management, Reviewing)

 2

 PASS

Baseline

Project Initiation Documentation October

1997

December

1997.

2 40 40 0

2. PASS PIE Quality System Implementation (Testing,

Configuration Management)

Quality System Documentation

January

1998

March 1998. 2 150 253 103

 PASS

Baseline

/System Planning completed in Stage 3/

3. PASS PIE Midterm Evaluation April 1998 April 1998 0 59 45 -14

 PASS

Baseline

System Plan February

1998

May 1998. 3 120 315,5 195,5

4. PASS PIE /Baseline Project Activities/ July 1998. Oct. 1998. 258 225 -33

 PASS

Baseline

Implementation, Testing

System Documentation (Basic)

July 1998. October

1998.

3 410 357 -53

5. PASS PIE Quality Assurance Documentation

Measurement Documentation

BOOTSTRAP Assessment

November

1998.

October

1998.

-1 47 80 33

6. PASS PIE Best Practice Report, Dissemination

Project Closure

January

1999.

December

1998.

-1 60 51 -9

Summerized values

 PASS PIE -1 887 1008 121

 PASS Baseline 3 570 712,5 142,5

Summerized delay / overrun

 PASS PIE -5% 13,6%

 PASS Baseline 27% 25%

ISO 9001 Quality Systems Using the WWW

Page 8.40 of 8.45 PASS ESSI EP 21223

Figure 8. Implementation of Configuration Management Scenario into LBMS PE tool

ISO 9001 Quality Systems Using the WWW

Page 8.41 of 8.45 PASS ESSI EP 21223

Figure 9. Inspection and testing during software development

System Deliverables

Software product Document

Test strategy Test strategy review

Module test Module test case review

Integration test Integration test case review

System test System test case review

Acceptance test Approval review Approval review

Project Plan

Design review

Process

ISO 9001 Quality Systems Using the WWW

Page 8.42 of 8.45 PASS ESSI EP 21223

Figure 10. Measurement of results

Measurement of Development Process Control

 Project Planning System Planning Testing Configuration

Management

Quality Assurance

Complexity Total effort 734

mandays

Number of

modules

25 Number of

test cases

395 Number of

Deliverables

17 Number of

quality records

1141

Effort used for process 94 59 147 27 83

Effort used for review 21 14 21 2 4

Number of review reports 20 3 10 6 20

Number of non-

conformances

4 2 5 0 0

Number of feedback 59 27 37 6 20

Number of feedback

reported to project team

37 23 22 4 19

Number of non-

conformances recognized

after approval

- 1 3 - -

ISO 9001 Quality Systems Using the WWW

Page 8.43 of 8.45 PASS ESSI EP 21223

ISO 9001 Quality System for the organisation

Organisational standards

Number of ISO 9001 compliant quality system documentation 53

Rate of the new standards resulting PIE 85%

ISO 9001 documentation (quality records)

Reviewed period Apr.-Oct. 1998

Total number of ISO 9001 documentation of the projects 2560 records

Number of the projects 19

Average number of ISO 9001 documentation of the projects 135 records

Total size (effort) of the projects during the reviewed period 1600 mandays

Average size of the projects during the reviewed period 84 mandays/project (6 months)

ISO 9001 Quality Systems Using the WWW

Page 8.44 of 8.45 PASS ESSI EP 21223

 Maturity tree of BootCollector 2.31

 org1020/unit1020 Algorithm 1.00

 Questionnaire 2.3

 MATURITY LEVEL 3.00 Date 20-10-98

ORGANIZATION 3.00 METHODOLOGY 3.00 TECHNOLOGY B

Management Responsibility Existence

Quality System Effective use

Resource Management

LIFE CYCLE FUNCTIONS 2.75 LIFE CYCLE INDEPENDENT
FUNCTIONS

3.25 PROCESS RELATED
FUNCTIONS

3.25

Development Cycle Model Conf.& Cha. Management Process Description

User Requirements Risk Avoidance & Management. Process Measurement

Software Requirements Project Management. Process Control

Architectural Design Quality Management.

Detailed Des.& Implementation Subcontactor Management.

Testing

Integration

Acceptance testing & Transfer

Operation & Maintenanace

Special purpose systems

The PASS Experiment

Page 8.45 of 8.45 PASS ESSI EP 21223

0

1

2

3

4

5

M
A

T
U

R
IT

Y
 L

E
V

E
L

O
R

G
A

N
IZ

A
T

IO
N

M
a

n
a
g

e
m

e
n
t

R
e

s
p
o

n
s
ib

il
it
z

Q
u

a
li
ty

 S
y
s
te

m

R
e

s
o
u

rc
e
 M

a
n

a
g

e
m

e
n
t

M
E

T
H

O
D

O
L
O

G
Y

P
R

O
C

E
S

S
 R

E
L
A

T
E

D

F
U

N
C

T
IO

N
S

L
IF

E
 C

Y
C

L
E

IN
D

E
P

E
N

D
E

N
T

F
U

N
C

T
IO

N
S

L
IF

E
 C

Y
C

L
E

F
U

N
C

T
IO

N
S

Profile of main categories

org 1020/unit1020

Page 9.1 of9.37

Session 9 – SPI and

Software Life Cycle

Support

Enhancing software configuration management for a

process control system

23891

Mr (M.SC) Antti Välimäki

Valmet Automation Inc, Tampere, Finland

(PCS) Project Management and Engineering Global

Control System

PJ King

Unit 8, IDA Centre, Pearse St, Dublin 2, Ireland

Dr. K Arthur

Unit 8, IDA Centre, Pearse St, Dublin 2, Ireland

Multi-Platform Configuration Management

Process Improvement Experiment

Dr G. Roth

Transaction Software GmbH

Page 9.2 of9.37

Enhancing software

configuration

management for a

process control system

23891

Mr (M.SC) Antti Välimäki

Valmet Automation Inc, Tampere, Finland

.

Introduction

This is the final report of ESSI project 23891- Enhancing software configuration

management for a process control system, Confmanag. The objectives of this PIE are

to improve software configuration management practices and to introduce

measurements as part of our software development process in order to achieve faster

delivery of products and improve customer response times, as well as support parallel

development, geographically distributed teams and multiplatform environment.

This report describes our experiences about ClearCase and MultiSite tool applications

in our baseline project and how these tools have been utilized in achieving our

objectives. Furthermore, this report contains our objective related measurement

results and the conclusions we have come to about the effects of tools on our working

methods and organization.

Many software product developing European companies share similar software

configuration management problems and the results of this experiment are useful for

these companies. The European Commission through the ESSI/PIE program has

supported this project.

CM for Process Control Systems

Page 9.3 of9.37

Background Information

Objectives

Project objectives are to improve software configuration management methods in

software development process and make measurements. The specific objectives are to

provide good support

* for parallel development,

* for geographically distributed teams,

* for multiplatform environment and

* for faster customer responses and delivery of products.

One more objective is to measure our maturity level by applying the ISO-SPICE [1]

which is being developed within the ISO-framework.

Starting Scenario

Valmet Automation Inc. develops and supplies control and management systems for

pulp and paper, chemical and petrochemical industries, as well as power and

desulphurization plants. Valmet is the world's leading supplier of distributed control

systems for the pulp and paper industry. The distributed control system Damatic

XDi is a complex and software intensive product in a demanding market, where high

reliability and quality level are the key competitive factors.

Our quality and improvement level

Valmet Automation Inc. received ISO-9000 certification in the year 1992. Ever since

we have continued improving the quality of our products.

The next step was to audit our software development process against ISO-SPICE

(Software Process Improvement and Capability dEtermination). The audit was held in

January 1997 and as a result baseline project’s configuration management [2,3,4]

received the capability rating of 3. However, the new requirements will cause our

rating to drop, since the current SCCS-based version management do not support the

new requirements which are parallel development, geographically decentralised

development and multiplatform environment.

Our software development environment and the main problems

The main software development process has been described in our quality system. It

in itself consists of several processes, e.g. product development process, project

management process and project development support process. Product development

process consists of subprocesses: requirement specification, functional specification,

design, implementation, module testing, integration testing and system testing. The

configuration management is a subprocess of the product development support

process and it has links to many subprocesses of the product development.

Rapid prototyping has been applied in development projects. Some pilot projects

CM for Process Control Systems

Page 9.4 of9.37

have been carried out with object-oriented methodology based on OMT (Object

Modelling Technique by Rumbaugh et. al.). Our development environment includes:

 different UNIX-platforms,

 Microsoft Windows 95 and

 Microsoft Windows NT.

Our major development languages are

 C++ and

 C.

The baseline project consisted of porting of the software of Damatic XIS -information

system to Windows NT -platform and the development of additional features of XIS.

The project was driven by economic needs to keep our competitiveness high.

Our strengths in technical issues were thorough knowledge of UNIX and the

functionality of SCCS-based version management in UNIX-platforms. Our

weaknesses were the unfamiliarity with new environments and tools.

Our strengths in business were the high quality and usability of UNIX-based

XIS-product, and our weakness was the absence of Windows NT –based products,

since our customers were interested in Windows NT –based XIS-products –

especially when user interfaces were concerned.

One of our strengths in organisation was that our personnel consist mostly of

developers with university degrees in software or electrical engineering. Also our

experience and knowledge are of high level.

Plans And Expected Outcome

Working Plan

This working plan includes three major activity groups:

1. Starting activities

2. Applying and measurement activities

3. Management and dissemination.

The first phase consisted of starting activities that include ClearCase training courses,

the making of instruction documentation and the support for ClearCase users. It

started in May 1997 and ended in June 1997. The planned deliverables were the

measurement plan and configuration management instructions for the baseline

project.

The second phase consisted of applying ClearCase and making measurement

activities for software configuration methods. It started in July 1997 and ended in

June 1998. The planned deliverables were measurement documents and new versions

of configuration management instructions for the baseline project.

Management and dissemination happened during both phases. The planned

CM for Process Control Systems

Page 9.5 of9.37

deliverables were periodic progress reports, mid-term report, final report,

consolidated cost statement, other dissemination documents and Spice assessment

report.

Expected Outcomes

 The common method for software configuration management

makes this process more efficient.

 The quality and productivity will be increased with automated and

checked procedures

 Configuration management will increase visibility of changes. The

better visibility will raise the quality of the change management.

It will also be easier to analyse possible software configuration

management problems and fix them more accurately.

 ClearCase Multisite will enable efficient co-operation with

geographically distributed project teams. These teams can be

either subcontractors or other offices of Valmet Automation Inc.

 Parallel development projects will decrease the throughput time

and improve responses for customers’ needs.

 Customers will be satisfied because they will get new versions

faster for their current release of the product.

Work Performed

Organisation

PIE-project was handled as a project of its own in Valmet’s system development. It

had its own PIE project manager and method support persons as its members.

Baseline project operated in system development as well and it has its own project

manager. The members of baseline project included both Valmet’s and

subcontractors’ engineers. PIE project manager arranged e.g. project meetings and

other occasions which were participated by both method support persons and, above

all, the members of the baseline project. Thus it was ensured that the members of the

baseline project were sufficiently supported in introduction of new methods and tools.

CM for Process Control Systems

Page 9.6 of9.37

Technical Environment

The focus of our PIE was on the evaluation of new methods, procedures,

measurements and tools for software confguration management.

Tools used in the project were ClearCase and Multisite for UNIX and Windows NT.

Windows NT, HP-UX and Digital UNIX were used as operating systems and Disk

Access as NFS software. Before this PIE only HP-UX and Digital UNIX, and of

course the SCCS-based homemade version control system, were already familiar to

baseline project members.

Fig. ATV.1 : The technology used in experiment

Training

A training course of one day was held in the beginning of PIE-project in June 1997

for our ClearCase administrator. ClearCase users (i.e. the members of the baseline

project) went through two days’ training. In addition to this, one of the members of

the method support group, who was the actual ClearCase and Windows NT support

person, gave the members of the baseline project support during the PIE-project when

needed. This person had familiarised himself thoroughly with ClearCase before the

beginning of PIE-project.The basics of ClearCase were easily learned in this training,

but of course this was not sufficient, so the support person made method instructions

during the summer and held a training course based on these instructions for the

members of the baseline project in autumn 1997. The method instructions described

how to utilise ClearCase in the baseline project.

CM for Process Control Systems

Page 9.7 of9.37

Phases of the Experiment

This working plan includes three major activity groups:

1. Starting activities

2. Applying and measurement activities

3. Management and dissemination.

The first phase was realised almost according to the plan and we made the

deliverables which were the measurement plan and instruction documents. The

installation of ClearCase and MultiSite succeeded well both in Valmet and in its

subcontractor.

The second phase consists of applying ClearCase and making measurement activities

for software configuration methods.

ClearCase was used contemporaneously with both stages. Because the decisions

about configuration management methods, compiler, the structure of makefile and

scripts etc. were already made in the early stages of the project, software designing

had a good start. The transfer of source code files to ClearCase database went also

quite well, since we transferred only the latest version to ClearCase and left the older

versions in the SCCS based version controlling system. Most of the problems were

naturally caused by new tools the features of which were not yet all that familiar. In

spring 1998 ClearCase 3.0 was introduced in Valmet Automation Inc., which

remarkably improved the usability of Windows NT. ClearCase 3.2 was introduced in

August 1998, which gave a solution to our performance problem by introducing

snapshot view –feature. We were now able to compile locally without using the

server.

Project management and dissemination occurred during both phases. Project

management consisted of project meetings, reports etc. The first public dissemination

was held in December 1997 in Tampere University of Technology in Finland (web

page: http://www.cs.tut.fi/configurationmanagement.html). The second public

dissemination was held in January 1998 in Eurex project at Stockholm, Sweden (web

page: http://www.sisu.se/projects/eurex/WorkshopConfig.html). The third and official

Mid Term dissemination were held in April 1998 in Venice, Italy (web page:

http://galileo.iei.pi.cnr.it/AQUIS98/). The next dissemination action was the

creation of the web page of our project (http://www .valmet.com/automation/essi/

confmana.html). The final dissemination will be held in EuroSPI’98 which will take

place in Gothenburg, Sweden (web page: http://www.iscn.ie/conferences/iscn98).

Results and Analysis

After training courses and instruction making we started the use of ClearCase and

Multisite in our baseline project.

At the same time we started taking measurements and comparing current SCCS-based

version management with new ClearCase-based management. Measurements were

taken from a group of 64 files from which were generated seven libraries. The

measurements were made in an environment where UNIX-servers were used. Files

were read from their drives through NFS using UNIX-Client when the files were

CM for Process Control Systems

Page 9.8 of9.37

either in SCCS-files or in ClearCase database.

Technical

GENERAL COMMENTS ABOUT USING CLEARCASE AND MULTISITE

ClearCase and Multisite are good but complicated tools. The software configuration

method of one’s own is important to efficiently use these tools.

SUPPORT FOR PARALLEL DEVELOPMENT

Parallel development is much more complicated way to develop software than

nonparallel development. Especially here you will need good software process

method to manage these situations. There is also a possibility to mistakenly change

wrong version of file if you choose the wrong parallel branch from ClearCase. The

use of branches is the way how ClearCase supports parallel development.

Fig. ATV.2 : Version tree and Parallel development

Version tree is a hierarchical structure in which all the versions of file1.cpp are

organized. The arrows show merge operations between different versions of file1.cpp.

Parallel development is a concurrent creation of versions on e.g. two branches in the

version tree.

CM for Process Control Systems

Page 9.9 of9.37

Fig. ATV.3 : More configuration management and ClearCase concepts.

In the ClearCase parallel development and file merging is supported well. ClearCase

also tries to minimise the likelihood that developers would work on the wrong branch

by built-in Wizards and View profiles. According to Rational, the process

development tool ClearGuide will take it a step further and is able to enforce users to

work only on the appropriate branch of the task they are working on.

We also made measurements between SCCS- and ClearCase-based method in parallel

development when five different versions of the same files were changed in two

different branches and these changed files were combined into one branch. According

to this test ClearCase-based method took only one third of the time which was taken

with SCCS-based method. To be more specific, it took ClearCase ten minutes to

combine the changed files, while SCCS-based method needed thirty minutes for the

task.

Time to make parallel change with SCCS or

ClearCase

0

5

10

15

20

25

30

35

SCCS ClearCase

Minutes

Fig. ATV.4 : Time comparison when making change

CM for Process Control Systems

Page 9.10 of9.37

SUPPORT FOR GEOGRAPHICALLY DISTRIBUTED TEAMS

Remote development is supported well in Multisite, because Multisite will

automatically transfer the changes one has made from one development site to

another. Firewalls may cause some problems. One might also experience some

errors in sending changed packets. There is a recovery procedure for these kinds of

situation, but it is a little bit complex to use. If one wants to read the files which have

been developed with Multisite, he needs licenses for both ClearCase and Multisite.

In our measurements we compared the use of Multisite to the use of an ordinary

FTP-program (File Transfer Protocol) in transferring changes between two agencies

and we came to the following conclusion: In cases when during product development

there are three or less subcontractors developing their own part of a system in their

own offices, the amount of time and work needed to install and administrate Multisite

is comparable to that what is needed to transfer the changed files using an ordinary

FTP-program. In all other cases product management becomes so complicated that it

is a good investment to acquire Multisite in order to reduce the total amount of work.

The latest version (3.2) of ClearCase includes a snapshot feature that is able to utilise

the use of an FTP-program described above and reduces the need to acquire Multisite

licences for each developer separately.

SUPPORT FOR MULTIPLATFORM ENVIRONMENTS

Multiplatform environment is supported well: one can use e.g. Visual C++ with

Windows NT and Emacs with UNIX. Makefiles, however, might become a problem,

because they cannot be totally similar in UNIX and Windows NT. There are also

many ClearCase properties to ensure the easy use of ClearCase and other tools in a

mixed UNIX and Windows NT environment in the same project. This is also one of

the ClearCase’s strengths when compared to other SCM tools.

PERFORMANCE IN MULTIPLATFORM ENVIRONMENTS

During measurement we have come to conclusion that in UNIX environment

compilation of small number of files is equally efficient in both SCCS- and

ClearCase-based environments. When hundreds of files are compiled, a

ClearCase-based environment requires considerably more efficient UNIX-server

(especially because of memory requirements) than an SCCS-based environment.

In Windows NT environment the compilation of files in a local drive was twice as

fast as it was in a ClearCase database located in a UNIX-server. Fortunately the latest

version (3.2) of ClearCase has snapshot feature which can be used to transfer the files

to a local drive to be compiled there instead of a server drive thus considerably

improving ClearCase’s performance in Windows NT environment.

SUPPORT FOR FASTER CUSTOMER RESPONSES AND DELIVERY OF

PRODUCTS

New releases of product can be released fast because of short release build time. The

delivery of product releases depends on manufacturer’s policy on this process area,

but ClearCase gives quite a good support for fast building of new product releases.

When comparing release build times we came to conclusion that ClearCase-based

environment was about 30% faster than SCCS-based environment. In our

SCCS-based environment old release was searched from an optical drive in which old

release has been copied during delivery. In ClearCase based environment it was

CM for Process Control Systems

Page 9.11 of9.37

searched from a database. ClearCase-based solution has some other strengths like

easy labelling of delivered release thus making old releases easier to find, and the

possibility to easily combine these kinds of corrections with an old release as has

been earlier described under item ‘SUPPORT FOR PARALLEL DEVELOPMENT’.

Business

ClearCase and Multisite are good but complicated tools and they require a lot of

hardware resources. The licences are also quite expensive. Furthermore, a dedicated

support person is needed to help beginners in using these tools and in exceptional

cases.

Parallel development support will decrease the throughput time and improve

responses for customers’ needs - especially with short release build time of the old

releases. This is essentially realised in maintenance phase, when possible error

corrections are needed for the customers as soon as possible.

Multisite has enabled a co-operation between geographically distributed project

teams. It enables the flexible use of subcontractors from the sites with sufficient

technical knowledge.

The final audit of the baseline project was held in May 1998 and as a result baseline

project’s configuration management received a capability rating of 3- which is a good

achievement and shows that the new requirements have been fulfilled.

Multiplatform environment support has enabled easier and faster offer of Windows

NT –based products to our customers. This has been economically remarkable

change, since customers’ interest in Windows NT –based products has been

considerable.

Organisation

A dedicated ClearCase support person is needed to help beginners in using these tools

and in exceptional cases. This support person can support many development projects

if needed.

The possibility for parallel development has made the development work more

complicated. Therefore one additional person is needed to control the configuration

management issues inside the project. The next chart shows the number of support

calls ClearCase support person received during the PIE-project:

CM for Process Control Systems

Page 9.12 of9.37

Support calls / Month

0

2

4

6

8

10

12

A
ug

us
t -

97

S
ep

te
m

be
r

O
ct
ob

er

N
ove

m
be

r

D
ece

m
be

r

Ja
nu

ar
y
-9

8

Feb
ru

ar
y

M
ar

ch
A
pr

il

M
ay

Ju
ne

Ju
ly

A
ug

us
t

Calls

Fig. ATV.5 : Support calls / month

The average amount of work used in support was ½ days / week while the maximum

was 2 days / week and the minimum 0 days / week.

In autumn 1997 the greatest cause of increased workload was the introduction of new

methods in PIE-project. However, the amount of work spent in support remained

reasonable, because we were able to provide PIE-project with good product

management instructions and training. In spring 1998 ClearCase was updated to

version 3.0 and in August to version 3.2.

What circumstances concerning tools reduce the need for support?

+ if users know how to use the tool correctly

+ if tool recovers from incorrect usage

+ if the rest of the development environment e.g. Windows NT –environment,

UNIX-servers and compilers function correctly

+ if other members of the group are able to help if need arises i.e. the general level of

knowledge about ClearCase and operating systems is high enough

+ ClearCase support person takes care of the most difficult parts, if it takes too much

of actual designer’s time to learn them

What circumstances concerning methods reduce the need for support?

+ correctness and exactness of documentation

+ some kind of version control management (e.g. SCCS) is already familiar

What circumstances increase the number of support calls?

+ if support person is competent and polite

+ if support person can find a solution to the problem

CM for Process Control Systems

Page 9.13 of9.37

Culture

The new methods and tools always meet some resistance from people. Because of

this, training courses and good support were needed to help people to learn these new

methods when working with ClearCase and Windows NT. Users have, however,

understood the importance of new product management requirements and been

satisfied with ClearCase since it facilitates working especially in Windows NT

environment. The introduction of Windows NT in addition to UNIX as a

development environment has required a lot of work as such.

Skills

The members of the baseline project in this PIE gained valuable additional skills as

they learnt to use ClearCase in their project.

Key Lessons

This section summarises the key lessons that we have learnt from the process

improvement experiences.

Technological Point of View

From a technological point of view we have learnt the following issues:

 ClearCase and Multisite are good but complicated tools for software configuration

management.

 Parallel development and file merging are supported well, but specific rules and

roles are needed to manage this kind of development.

 Remote development with Multisite is supported well, because Multisite is able to

automatically transfer your changes between the differenent development sites.

 Development environment’s change from UNIX to Windows NT is a complicated

matter and requires a lot of work.

Economic Point of View

From an economic point of view we have learnt the following issues:

 Parallel development support will decrease the throughput time and improve

responses for customers’ needs, especially with short release build time of the old

releases. This is essentially realised in maintenance phase, when possible error

corrections are needed for the customers as soon as possible.

 ClearCase requires a lot of hardware resources. Developers need licenced

versions. Furthermore, a dedicated support person is needed to help beginners in

using these tools and in exceptional cases.

 Multisite has enabled a co-operation between geographically distributed project

teams. It enables the flexible use of subcontractors from the sites with sufficient

technical knowledge.

 Multiplatform environment support has enabled easier and faster offer of

Windows NT –based products to our customers. This has been economically

CM for Process Control Systems

Page 9.14 of9.37

remarkable change, since customers’ interest in Windows NT –based products has

been considerable.

 Tools and methods are good investments, because if they are utilized efficiently, it

reduces time wasted in product management problems thus enabling designers to

concentrate on developing new features.

Strengths and Weaknesses of the Experiment

The PIE provided us a chance to use and measure the using of ClearCase and

Multisite in a real project. This kind of opportunity itself was valuable for us.

From the organisational perspective, the experiment was a success because ClearCase

and Multisite seem to be suitable tools for our other development projects.

One of our strengths was that we started the experiment from proportions supported

by Windows NT (e.g. user interface). We also had a good ClearCase support person

who had profound knowledge about ClearCase and Windows NT and was thus able

to give good support. To mention some other strengths, the members of the baseline

project had high level of knowledge and experience and we had other development

projects where ClearCase was used as well so we could diversify gained results and

their analysis.

Our weakness was, as always in development projects, the lack of time which is the

reason why new tools and methods can be tested and utilised step by step.

When looking back now, it seems that we have succeeded in our objectives in this

experiment.

Conclusions and Future Actions

As a conclusion we can state that our process improvement experiment was useful.

The baseline project consisted of porting certain parts of the software of Damatic XIS

-information system to Windows NT -platform and the development of additional

features of XIS. This work will continue and we are going to use ClearCase more in

our other development projects.

We are also going to try to model our software configuration process by use

case method [5] which seems to be a good method to describe rules and roles.

Glossary

C++ A programming language

Confmanag Enhancing software configuration management for a

 process control system

PI Process improvement

PIE Process improvement experiment

SCM Software Configuration Management

CM for Process Control Systems

Page 9.15 of9.37

References

 [1] ISO/IEC 15504. SPICE - Software Process Assessment - Part 5:

Construction, Selection and Use of Assessment Instruments and Tools,
Version 1.00, ISO/IEC Copyright Office, Geneva, Switzerland, 1995, 130 p.

[2] H. Ronald Berlack, Software Configuration Management, John Wiley and

Sons, Inc., New York, New York, USA, 1992; ISBN 0-471-53049-2.

[3] Stephen B.Compton and Guy R.Conner, Configuration management for

software, Van Nostrand Reinhold, ISBN 0-422-01746-4, 1994.

[4] Fletcher J. Buckley, Implementing Configuration Management: Hardware,

Software and Firmware, IEEE Computer Society Press, 1992.

[5] Jacobson I., Christerson M., Johnsson P. and Övergaard G., Object Oriented
Software Engineering, A Use Case Driven Approach. Addison-Wesley, 1992.

CM for Process Control Systems

Page 9.16 of9.37

Appendix 1

Antti Välimäki’s CV

Mr Antti Välimäki was born in Jalasjärvi (Finland) in 1961. He graduated as Master

of Science from the department of Electrical Engineering in Tampere University of

Technology in 1986. Since then Antti Välimäki has continued his postgraduate

studies studying software development in Tampere University of Technology

After graduation he has been an employee of Valmet in various positions as follows:

1986 - 1988 software designer in Valmet Process Automation Inc.

1988 - 1990 chief designer in Valmet Process Automation Inc.

1990 - 1994 group manager in Valmet Automation Inc.

During the years mentioned above, Antti Välimäki participated in the development of

Damatic XDi Distributed Control System in several tasks including implementation,

design, specification, project and configuration management.

Since 1994 he has been as a software development manager in Valmet Automation

Inc. In this current position his main responsibility is to develop software

development methods and quality system for the whole R&D department.

CM for Process Control Systems

Page 9.17 of9.37

Appendix 2

Valmet Automation Inc. (VAI)

The first part of VAI is Control Systems which develops and supplies control and

management systems for the pulp and paper industry, the chemical and petrochemical

industries, the metallurgical industries, and power and desulphurization plants.

Valmet is the world's leading supplier of distributed control systems for the pulp and

paper industry.

The second part of VAI is Measurements which has designed and manufactured

transmitters for the process industry since the early 1950's. The greatest

developmental challenge has always been to keep measuring technology in line with

the changing needs of process industry.

The third part of VAI is SAGE Systems which is the leading North American

supplier of supervisory control and data acquisition (SCADA) systems for the remote

monitoring and control of oil and gas pipelines.

The fourth part of VAI is Sensodec which offers you the most advanced technology,

proven reliability and a wealth of experience in analyzing your paper making

machinery condition, process stability and product quality.

If you want to know more, visit our web page which is

www.valmet.com/automation.

http://www.valmet.com/automation

Page 9.18 of9.37

(PCS) Project

Management and

Engineering Global

Control System

PJ King

Unit 8, IDA Centre, Pearse St, Dublin 2, Ireland

Dr. K Arthur

Unit 8, IDA Centre, Pearse St, Dublin 2, Ireland

Introduction

Clockworks International specialises in the development and localisation of software

and Internet products for the global market. Founded by software engineers and run

along the technical and management principles of a software company, Clockworks

positions its software engineering culture as its competitive differentiator. Activities

include localisation of business software, multimedia systems development and

development of consumer software.

Starting scenario

Procedures Analysis

The objective of this experiment was to improve the software configuration

management and version control systems used by Clockworks. To do this we had to

analyse how Clockworks performed. Before the start of the experiment Clockworks

had a relatively informal approach to the software process. With small projects

involving only one or two trusted staff this approach had been adequate. However, as

Clockworks’ client base and work force expanded, it became increasingly difficult to

ensure that procedures were observed and that difficulties caused by loss of version

control could be avoided. Consequently, we conducted a series of sessions to look at

working methods and discuss potential improvements. This was not a complete

PCS Control System

Page 9.19 of9.37

software process assessment, but allowed us to begin to address the quality of our

software process.

The main requirements that were identified from the analysis of Clockworks’

procedures and working methods are listed below:

 A system capable of managing large number of separate items (source code,

bitmaps, etc…). Configuration Management tools, such as MS SourceSafe, PVCS

or RCE, would be tested to assess if they would meet Clockworks needs.

 Good organisation would allow Clockworks to incorporate new releases of a

product while the localisation is in progress.

 Good communication was seen as necessary to allow Clockworks to co-ordinate

the localisation activity, which is often carried out by many separate organisations

and individuals, frequently at great distance from one another.

 Information about the localisation files involved in a project needed to be recorded

so that new staff would have sufficient knowledge about ongoing work. This

information would also be useful if a project were delayed and then restarted some

months later.

 Faults had to be recorded since it was often difficult to know which faults had

been corrected in which versions of products.

Team Structure

The experiment team involved five people with specific responsibilities in the various

stages of the PIE. A brief description of the members' skills is given below:

 The Project Manager has a high degree of technical understanding, knowledge of

quality issues and good communication skills to maintain the required level of

co-ordination between the PIE team and the baseline project team.

 The Production Manager is an expert in localisation projects and highly trained in

the procedures and resources that are necessary to carry out a localisation project.

 The Network Administrator is an expert in Clockworks' technology and network

structure.

 The Engineers are highly involved in the technical aspects of the project. They are

responsible for the application of procedures and the use of technology in the

localisation of the different components involved in the project.

Company Context

Clockworks’ localisation process is a software process with all of the attendant

considerations and problems normally associated with the production of complex

systems. However, it is further complicated by several factors. It has been estimated

that a typical software localisation project can involve up to 60 separate organisations

acting in one capacity or another, whether it be to provide programming skills or

project management (as in the case of Clockworks), translation services, art work, or

other services.

Clockworks must track the location and progress of every single item that forms part

of a software product as it is exchanged between the different project participants.

Prior to the commencement of the project, developers were being asked to use a file

directory structure and naming convention intended to provide a reasonably

PCS Control System

Page 9.20 of9.37

consistent way of storing the different versions of each product that arrived and were

despatched for various purposes. The files were stored on a central server and

available for read and write access by all project teams. This approach offered no

means of documenting which items of a given version had been altered, and which

items were currently being worked on by which individual.

Once all of the elements had been re-engineered, each distinct new version of the

software was consolidated by Clockworks staff and checked. Any detected defects

were logged and corrected. No consistent procedures were used for reporting and

tracking defects.

The checked and corrected product versions were then passed to the customer who

conducted acceptance testing. Faults were reported by the customer to Clockworks,

and these had to be rectified before a new version of the software was returned.

The increase in workload and growth in number of staff members led Clockworks’

management to look for more structured and sophisticated ways of organising the

work.

Baseline project context

The localisation of the product “Oil Change” from Cybermedia Corporation was the

first project where the new configuration management system was tested. The project

involved localising the product from US English into German, French, Italian, UK

English and Japanese.

Shipments to the client involved approximately 125 small software files each week

for a period of six months. The client provided acceptance QA on the files, reporting

any defects and returning defective files for rework. The localisation of this product

had already started and the error rates appeared to be too high. The failure error rate

for the delivery of files was in the 30% to 40% range and the repeat failure error rate

was almost 90% (refer to figures from week 24 to week 32 in Appendix C). At this

stage the project was suspended in order to formalise the testing procedure and apply

the new configuration management procedures and Lotus Notes approach with the

hope of improving the quality. The project was resumed in week 34 of 1997.

Metrics to assess the success or failure of the experiment were collected during the

project. It provided an ideal scenario to compare figures before and after the new

procedures came into effect (refer to Appendix C for a summary of figures from the

baseline project).

This project consisted in the localisation of 5000 files and it was one of the larger

projects that Clockworks was dealing with when the experiment started. At the

moment it would be average in comparison with the size of other Clockworks

assignments.

The turnover in the baseline project team was static. The project team consisted

always of the same individuals.

Plans and expected outcome

PCS Control System

Page 9.21 of9.37

Technical Objectives of the PIE

Given the analysis of the methods then current a set of goals were devised. The

technical measurable objectives of this PIE were:

 To reduce by 50% the incidence of incorrect configuration when versions of

software products are released, avoiding the need for rework and thereby

increasing customer satisfaction. The error rates before and after the new

technology and procedures were measured in the baseline project, allowing us to

assess the impact of the new approach in the configuration management of

localisation projects.

 To provide better control over the defect correction process, reducing by 50%

instances of reported defects being missed or recurring after having been

corrected. Measuring the repeat failure rate allowed us to assess the impact of

introducing the new defect correction procedures in the baseline project.

 To allow control to be exercised over changes to products so that the complete

change history of any component of any product version is available, showing

who made each change, when it was made and why. The Lotus Notes database

system that was developed as part of this experiment stores this and other

information.

Business Objectives of the PIE

The specific measurable commercial objectives of this PIE were:

 To reduce by 30% costs attributable to rework caused by software defects and

errors in configuration when software is released to the client (which should have

been achievable if configuration management were improved).

 To reduce by 30% costs of time spent on configuration-related administration.

Other less measurable but important commercial objectives were:

 To lessen the current dependence on specific key members of staff, allowing

Clockworks to introduce new staff into the software process more easily by

documenting project knowledge as part of the formal software configuration

management procedures. It was envisaged that this would allow Clockworks to

take on more projects and run larger projects and that the ability to tender for

larger pieces of work would provide Clockworks with a strong commercial

advantage.

 To strengthen Clockworks’ relationships with its clients. Taking more

responsibility for correct configuration and detection of defects was expected to

boost Clockworks’ credibility as it tried for increased business and larger projects.

PIE Implementation

PCS Control System

Page 9.22 of9.37

Overview

A critical part of this PIE was in selecting the correct software tools. After meetings

were held, project members decided to consider three version control tools for

experimentation. PVCS Version Manager, which has management of multiple

versions of files and protection of software assets among its main features, was soon

rejected due to its incompatibility with the current computer system. For instance

developers resisted using its DOS interface as Clockworks uses a Windows NT

operating system.

Another tool, MS SourceSafe, was tried on the localisation of Corel Printhouse, a

product from Corel Corporation. SourceSafe was preferred to PVCS as closer to

current practice and although developers agreed to use it, it was finally discarded due

to its low capacity to adapt to the nature of the project and the delays that its use was

introducing. A list of the main problems identified while trying this tool in the Corel

Printhouse project is given below:

 Library differencing is not implemented. This means that full copies of different

versions of each file have to be stored. Consequently, the amount of storage used

is too large to be acceptable. At the same time retrieval of documents is very slow.

 Code files that are text can be stored without major problems. On the other hand,

retrieval and management of binary files (AVI, BMP, QuickTime,…) is slow and

does not always work.

 The tool performs too much redundancy checking, which encourages people to

ignore warning messages.

 The file structure is difficult to modify.

Similarly, only some features of RCE (the third tool considered) were found useful. It

automates the storage, retrieval, logging and identification of multiple revisions of

files and it runs on several platforms (Windows NT and 95, OS/2). However, it was

not easily adaptable to the different localisation projects.

In conclusion, we found that established packages allow for little variation from

project to project and for little variance in file structure. This clashes with the high

diversity of our projects (some of them need a lot of testing, some others have a great

diversity of file types, some only involve one file whereas others involve hundreds of

different files). Instead the project team decided to implement a more flexible

alternative, which uses a Lotus Notes Database to store information about files. This

approach places a great emphasis in training individuals, and relies on them to

perform procedures correctly.

Clockworks management and staff participated in workshop sessions to develop

improved procedures that affect the file management, defect correction and error

tracking processes.

Phases of the Experiment

The PIE involved the following steps (Appendix A contains the schedule of the

project phases):

1. Preparatory Work and Management.

 WP1 Project Management. During the course of the project ongoing scheduling

and progress monitoring ensured that the work in the project was coordinated and

PCS Control System

Page 9.23 of9.37

issues resolved.

Deliverables Monthly Progress Summary.

 WP2 Needs Analysis. In this stage Clockworks management and staff identified

and documented the outline requirements for improved software configuration

management procedures and tools. These requirements were identified by

exploring problems and concerns in current methods of operation.

Deliverables Software Configuration Management Requirements and Selection

Criteria (Clockworks Internal Document “Configuration Management”[1]).

 WP3 Tool Selection. Objectives of this phase include examination of available

automated software configuration management tools, recommendation on suitable

tools, and a decision to purchase one or more. It was considered unlikely that we

would be able to find one single tool that would do everything required. In fact we

found existing version control tools unsuitable to manage the great number of files

and versions and the diversity of files, platforms, languages and applications that

are present in localisation projects.

Deliverables “Recommendations on Software Configuration Management

Tools”(Sections 2 and 3 of Clockworks Internal Document “Configuration

Management”[1]).

 WP4 Procedure Definition. This phase involved the formulation of specific

procedures for software configuration management (and adaptation of other

procedures for testing, defect recording, change control, etc., as appropriate).

Recommendations were made on reorganised file structure, team structures and

developer’s roles.

Deliverables “Software Configuration Management Procedures and Deliverables”

(Section 1 of Clockworks Internal Document “Configuration Management”[1] and

in “File Management”[2]).

 WP5 Staff Training. Training courses in the procedures identified in Workpackage

W4, in the new methodology, and in the new tool, were prepared. The courses

include topics such as general localisation issues, Lotus Notes usage, file

management and other procedures. Employees directly concerned with the PIE

attended these courses but all other employees were free to attend. Also, weekly

meetings where held exclusively by participants in the PIE to discuss the

experiment progress.

Great importance has been given to this stage of the PIE. A full-time employee

was responsible for the organisation and exposition of these training courses and

we have obtained very positive benefits from this practise.

The course materials were formulated so that they would be useful after the PIE is

complete for training of new Clockworks staff.

To assess the success of the training courses, multiple choice questionnaires were

given to the participants. They allowed participants to measure their own

knowledge and were used in staff performance reviews.

Deliverables Methodology Training Course; Procedures Training Course; Lotus

Notes Database Training Course; Reusable Training Materials.

 WP6 Mid-Term Review. A comprehensive mid-term review was held involving

all PIE participants and Clockworks management. The review assessed the likely

impact and risks of adopting the new procedures and the Lotus Notes Database in

the baseline project and other projects. The decision was to adopt the new

procedures and the Lotus notes approach in the baseline project.

Deliverables Mid-Term Report; Periodic Progress Report.

PCS Control System

Page 9.24 of9.37

2. Application of the Procedures and Tools in the Baseline Project

 WP7 Project Set-Up and Planning. The initial software configuration of the

baseline project was recorded using the Lotus Notes Database. The file structure

given in Figure KAPJ.1 was customised to conform to this project. The product

had to be localised into German, French, Italian, UK English and Japanese and the

source program was in US English.

Deliverables Implemented Configuration Management Tool; Initial Version

Configurations (The initial file structure and baseline project files are stored in the

baseline project Lotus Notes database).

 WP8 Product Preparation. Preparatory work involved separating source code from

text to be translated. The files after preparation were the same for each language.

A different set of the same files was sent to translation for each language. All

these files were placed in the correct location in the file structure and the status of

each of these sets of files was recorded in the Lotus Notes Database and tracked

during the process.

Deliverables Prepared Version Configurations; Initial File Status Report (this

information is stored in the baseline project Lotus Notes database).

 WP9 Engineering and Translation. When the various sections were sent out to

contractors or assigned internally for work to be carried out, their status was

recorded using the software configuration management tool.

Deliverables Re-engineered Version Configurations; Interim File Status Report

(the file structure and file status reports are stored in the baseline project Lotus

Notes database).

 WP10 Assembly and Checking. As the re-engineered components of each new

version of the product were received, their status and location were recorded using

the Lotus Notes Database.

 The QA cycle explained in W4 was applied to the project. Each of the six

engineers involved in the project was given a set of files to test that was different

from the set of files that the same engineer was given to localise. Faults arising

from this testing and the checking following reassembly of the product were

logged in the Lotus Notes Database and tracked.

Deliverables Checked Version Configurations; Final File Status Report; Defect

logs (this information is stored in the baseline project Lotus Notes database).

 WP11 Delivery (and subsequent maintenance). The software configuration

management tool was used to record the status of software components supplied to

the customer, and customer-reported defects were recorded. The PIE monitored

defect correction work to ensure that the new procedures and tools were usable

and functioned correctly. Any changes to software arising from corrections were

recorded using the tool and the status of product versions supplied to the customer

for retesting were also recorded.

Deliverables Final Version Configurations; File Status at Delivery; Defect Logs;

Change Control Logs (this information is stored in the baseline project Lotus

Notes database).

3. PIE Review and Dissemination Activities

 WP12 Review of Experiment. A comprehensive review was held by PIE

participants and Clockworks management to assess the effectiveness of the

measures introduced in the PIE. The review team recommended adopting the new

PCS Control System

Page 9.25 of9.37

procedures to all Clockworks projects. The file structure has been revised to allow

customisation in each different project. This framework maximises the

organisation of the projects, reduces management costs, and ensures flexibility in

the workplace, leading to greater freedom for the engineer.

Deliverables Final Report; Consolidated Cost Statement

 WP13 Dissemination. During the course of the PIE the results have been and will

be communicated to Clockworks staff via a series of seminars.

The first series of seminars was held at the beginning of June’97, at which time the

new methodology had been chosen. Configuration tools had been tested, and the new

procedures had been defined. This seminar provided a forum which enabled

Clockworks to communicate the extent of progress made in the PIE thus far. It

provided a clear picture of the objectives of the PIE and of how the desired results

were going to be achieved.

The second series of seminars was held once the new methodology, the new

procedures, and the new technology had been implemented. An analysis of results

was presented in this seminar.

The third series of seminars will be held in the near future, once the effectiveness of

the new method has been assessed and a decision made regarding further use of the

method. The decision will be made known at the third series of seminars and the

possible company-wide changes ensuing from this decision will be dealt with.

A case study report based on the PIE will be developed for external dissemination

and a World Wide Web site containing related information set up. A presentation

based on the case study will be given at international software process improvement

events.

Flexible Database Approach

The approach we have adopted has been a more flexible one using Lotus Notes to

store information about the files involved in a project. The following information is

stored for each file:

 Version, name and location.

 Who updated the file and when.

 Status of each file

In addition to tracking the progress of each file, an e-mail address is assigned that

contains all the correspondence sent and received regarding the particular project.

This e-mail address acts as a discussion repository of the progress and issues arising

in the project.

The approach of using a Notes database to store information about files does not stop

developers being given the responsibility for storing files in the correct location and

consequently the possibility remains of mistakes being made and files being lost. To

lessen the risk of making such mistakes, a new directory structure and new

procedures for storage of files have been introduced. The new file structure is given

in Figure 5.1.

PCS Control System

Page 9.26 of9.37

97 101CW Co proj

The project server directory

structure, showing 2 levels of

backup. Dashed lines indicate

subdirectory is optional.

Communications

Language X

Client

Engineering

Log

Vendor

Internal

Translation Kit

Other Languages

English (US)

3/1/99

4/1/99

latest

Audio

Desk Top Publishing

Glossary

Graphics

Help

Install

Directories.txt

Softw are

Audio

Desk Top Publishing

Glossary

Graphics

Help

Install

directories.txt

Softw are

Audio

Desk Top Publishing

Glossary

Graphics

Help

Install

Directories.txt

Softw are

Fig. KAPJ.1 : Directory structure for localisation projects. Ref. [1]

The file storage procedures can be summarised as follows:

 In starting a new project, the production manager assigns a name to the project,

which will be the first item of the tree structure above, and the directory structure

for the project will be created. The production manager is the only person entitled

to name a project and this project name cannot be changed.

 The directory structure will be customised according to the specific project by

deleting unnecessary language or component directories.

 Access rights to the directory structure are restricted.

 The project is then assigned to an engineer. The directory structure is copied into

the engineer’s computer where the pertinent work will be carried out.

 At the end of the day the modified files are automatically copied to the network

project directory.

 At the end of a project the lead engineer and the production manager check that all

files are properly localised and in the correct locations. When both the lead

engineer and the production manager agree that everything is correct, the project

files and the change history of each file are archived.

There is also a defect correction procedure in place, which consists of logging the

identified defects in the database and keeping track of them. Clockworks’ Quality

Assurance (QA) cycle helped considerably to minimise the defect rate. Each file goes

through three different quality states (Alpha, Beta and Gold). In the Alpha State

quality tests are carried out in 15% of the total volume of files. In the Beta State files

are moved from the Alpha directory into the Beta directory and new quality tests are

performed in 10 to 20% of the volume of files. If the client rejects any file it goes

through all three quality stages again. In the Gold State the client has approved the

files.

Also, a semi-automated system (a program written in SQA) is being developed that

PCS Control System

Page 9.27 of9.37

automatically copies the modified files from the engineer’s own PC to the Project

Server at the end of a working day. This feature eliminates the risk of overriding or

deleting useful files.

Plans also include the introduction of Domino servers that will allow data to be

published on the Web. This new system will allow our clients to check the state of

their products being localised and give them direct access to project budgeting data

and other project information. Most importantly it will allow external translators to

download files to be translated and then upload them in the right location when they

have finished working with them.

In the localisation of ‘Oil Change’, the baseline project, the file structure that was

used was different from the structure given in Figure 5.1. The structure in Figure 5.1

is the final refined structure. In the localisation of the baseline project a customisation

of a more general structure outlined in [1] was used (see Figure KAPJ.2). The initial

software configuration of the baseline project was recorded using the Lotus Notes

Database. The product had to be localised into German, French, Italian, UK English

and Japanese and the source program was in US English. The file structure under the

directory ‘Language X’ in Figure 5.2 was replicated for each of these languages.

97 101CW Co proj

Directory Structure for

Software Engineering Projects

Communications

Language X

Client

Engineering

Log

Vendor

Internal

Audio

Desk Top Publishing

Glossary

Graphics

Help

Install

Video

Backup by date

Fixed

Work Backup by date

Fixed

WorkBackup by date

Fixed

Work Backup by date

Fixed

WorkBackup by date

Fixed

Work Backup by date

Fixed

WorkBackup by date

Fixed

Work

Translation Kit

Other Languages

The directory structure is an

important tool in the process of

localisation.
Software

Backup by date

Fixed

Work

English (US)

Fig. KAPJ.2 : Customised file structure Ref [2]

Measured Results

PCS Control System

Page 9.28 of9.37

Drastic Improvement

The localisation of ‘Oil Change’ required Clockworks to deliver approximately 125

small files every week for a period of six months. The improvement after the new

configuration tool and procedures were introduced is remarkable. The failure rate

dropped from an average of 35% to an average of 5%. The best results were found in

the repeat failure rate that dropped from an average of 90% to almost zero. See Fig.

KAPJ.3

At the end of the project the production manager and the lead engineer checked that

the files were properly localised. They also reviewed all e-mails received during the

project and the lead engineer produced a report stating the main issues that had arisen

in the localisation of ‘Oil Change’. This report was stored in the engineering log and

the file structure and Lotus Notes database were archived after the project was signed

off by the project manager and the production manager.

The following list summarises the final technical results of this PIE:

 The incidence of incorrect configuration was reduced by 85% with the

introduction of the Lotus Notes-based system and the new procedures.

 The complexity of localisation projects makes it difficult to use one of the existing

configuration tools. Instead, a more flexible approach had to be implemented. A

Lotus Notes system is used to track changes and the status of files and a new

directory structure has been put in place. These two measures make Clockworks’

software system organised and reliable.

 A defect correction system was implemented to be able to track defects once they

have been reported by the client. This system avoided the need to report defects

repeatedly. In the baseline project, the instances of errors being reported after

delivery was reduced by 90% with the introduction of the defect correction and

tracking procedures.

 The new system makes available the complete change history of any component

of any product version, showing who made each change, when it was made and

why.

 The new procedures improve the archiving and general structure of files.

 The information stored in the database allows us to analyse results to identify

possible causes of errors (e.g. individuals not following the procedures right).

 A benefit of this approach is the fact that the solution is not specific to the baseline

project and consequently will allow us to reuse the findings in other localisation

projects. The database approach is expected to be most useful in larger and longer

projects. In small, quick projects it will be far less useful, due to the fact that small

projects need less organisation and monitoring.

PCS Control System

Page 9.29 of9.37

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W
e
e
k
 2

4

W
e
e
k
 2

6

W
e
e
k
 2

8

W
e
e
k
 3

0

W
e
e
k
 3

2

W
e
e
k
 3

4

W
e
e
k
 3

6

W
e
e
k
 3

8

W
e
e
k
 4

0

W
e
e
k
 4

2

W
e
e
k
 4

4

W
e
e
k
 4

6

W
e
e
k
 4

8

W
e
e
k
 5

0

Weeks 1997

Q
u

a
li
ty

 m
e
a
s
u

re
s

Failure rate

repeat failure rate

Fig. KAPJ.3 : Failure rate versus time showing the dramatic results Ref [5]

3. Projects Server
4. Notes Project

Management Server 5. Projects Server

Evaluation software

installed on Projects

Server with an Eval tag

on its name.

Engineer evaluates which

files in the project will

require work and compiles

the evaluation for Sales.

Evaluation data stored in the

Project Management

database.

1. Client sends software

for evaluation

Project evaluation sent to the client

for approval

Client approves evaluation & gives

approval to commence project.

Project is kicked off by production

Manager. PM database

(i) assigns the project a tracking

number eg 98100CW

(ii) creates an email account eg

98100.clockworks.ie

(iii) Generates the standard

directory structure

7. Projects Server8. PC Client 1

PC Client 2

10. Projects Server

Full software environment deployed on server.

Environment replicated on engineer's machine using

Filesync & Windows Commander. Engineer configures

SQA tool for replication automation.

9. Translation Studio

Localisation Kit to Linguist

(Subset of project files &

instructions)

Daily automatic replication of the project server with the client project

directory. Server rename its 'latest' directory to today's date, creates

new latest directory and copies client files to it.

11. DAT

Backup

2. Client CD Received

Files to

client

Translated files sent

via Internet to the

appropriate language

directory, which has

restricted access.

Backup

nightly

6. Notes Project

Management Server

Fig. KAPJ.4 : Process flow of files from US to localised Ref [8]

Business impact

PCS Control System

Page 9.30 of9.37

Some of the final business benefits brought about by the new configuration

management policy are listed below:

 The new configuration management system improves Clockworks’ file

management and general organisation. This allows new staff members to be

introduced easily to ongoing projects.

 The reduction in the error rate led to a decrease in the costs of rework and

increased customer satisfaction.

 Improved organisation led to an increase in the level of customer satisfaction.

 Clockworks’ productivity has improved considerably from the start of this

experiment. Training staff members has been a very worthwhile experience and

has been one of the major causes of our productivity growth.

 Clockworks’ work force has increased to meet the increase in business growth.

Currently, Clockworks team consists of 50 employees (at the beginning of the

project it consisted of 12 employees). We believe that this business growth is due

in large part to the improved customer satisfaction brought about by the new

procedures and technology.

 The cost of rework caused by software defects and errors in configuration was

reduced by 69% in the baseline project after the introduction of the Lotus Notes

database and new procedures.

 The costs related to project configuration and administration were reduced by 52%

with the introduction of the Lotus Notes database.

Organisation impact

Participants in the experiment had to learn to use the new Lotus Notes Database and

follow the new procedures. They had to record in the database changes made to each

file. The network administrator was the only person that could move files to the

project server at the end of the day.

Clockworks' workload and work force have increased considerably during the

duration of this PIE. At the beginning of this experiment Clockworks employed 12

employees, currently our work force consists of a team of 50 employees.

Culture impact

People involved in the project were unwilling to use any of the existing version

control tools. The tools slowed down developers’ work and could not hold the great

number of files present in localisation projects. However, the organisation was aware

of the need for new procedures to support the growth in staff and productivity and

people involved in the project presented no resistance to the new procedures and

technology. Seminars and training courses made clear to people the objectives and

usage of the new system. The new, more structured file management procedure

makes work easier for the people using it. Files are easier to track and organisation in

general has improved.

The approach used in the localisation of a project before the experiment started was

quite informal. The new procedures and the Lotus Notes approach gave structure and

guidance to the engineers to the extent that they would not work without them.

PCS Control System

Page 9.31 of9.37

Skills impact

People involved in the experiment had to become familiar with the new directory

structure and with the new storage procedures. They also had to learn to use the Lotus

database to record any progress or change.

Key Lessons learned

Technological point of view

The main lessons learnt from a technological point of view are:

 The diverse nature of localisation projects requires a flexible tool. Existing

configuration management tools are too inflexible. The system that has been

developed in this experiment is very flexible and cost-effective.

 We believe that improving the organisation of the projects has been a major

benefit. The new file structure and notation and the new procedures reduce error

rates.

 The new system allows us to keep track of file change history and status. This

allows us to reuse this information when a new version of the same product has to

be localised. It also allows us to perform data analysis and to identify causes of

errors.

Business point of view

Some of the lessons learnt from a business point of view are the following:

 Training people in the new procedures has been an important part of this PIE.

Training will be an ongoing task in Clockworks as procedures evolve.

 The solution to our configuration management problems is not reliance on a tool.

The responsibility still lies with people who are trained to follow the new

procedures.

 Improved organisation increases customer satisfaction because error rates are

reduced. Credibility has also improved which is reflected in the increase of

business growth that Clockworks has experienced in the past year.

 There are important hidden costs in rework. For instance, it has effects of stress

and pressure on staff members reducing productivity and it causes the customer to

turn to the competition in future projects.

Strengths and weaknesses of the experiment

The experiment stages were accurately planned and they have been performed as

expected. In some cases previous steps had to be repeated or changed in the light of

new findings and ideas. For instance the fact that we could not use any of the existing

configuration management tools forced us to look for alternative solutions that

focused strongly on the development of new file management and storage procedures.

PCS Control System

Page 9.32 of9.37

The fact that a production project was used to test the experiment results proved that

the new system was capable of being used in real settings. At the same time, this fact

presented some disadvantages, for instance, due to the complexity and severe time

pressure present in localisation projects metrics were not easy to collect in some

cases.

Fig. KAPJ.5 : QA process through which Oil Change files go. Ref [5].

Conclusions

The new procedures and technology were tested first in the localisation of “Oil

PCS Control System

Page 9.33 of9.37

Change”, a product from Cybermedia Corporation. However, the new way of

working has been designed with the intention of applying it to other future

localisation projects and Clockworks intends to reuse it in all its projects. For each

new project the Quality Assurance policy will be agreed with the customer and then

the Lotus Notes database and directory structure will be customised to satisfy specific

needs.

The final assessment of the experiment is that is was satisfactory. We believe that the

solution that has been developed in this PIE is highly beneficial for Clockworks and it

will provide even more competitive advantage when the new technology and

procedures are applied to all Clockworks projects.

We believe that the new technology and procedures are the best option available to

the specific needs of our organisation. The preparation stage of the experiment and

accurate examination of requirements was a major step which has allowed us to come

up with a flexible solution that can be applied to serve a large diversity of projects.

From a technical point of view we plan to extend the functionality of the Lotus Notes

database. We also intend to introduce Domino servers that will allow file status and

project related data to be published on the Web so that our customers and translators

can access it directly. This new Web part of the system will improve communication

between the various companies that are involved in a localisation process and will

reduce management and file tracking effort. From an organisational point of view we

will continue training people in the new procedures.

References

[1] “Configuration Management”, Clockworks Internal Document.

[2] “File Management” Clockworks Internal Document.

[3] “Configuration Management” Clockworks Internal Document.

[4] “File Management” Clockworks Internal Document.

[5] “Cybermedia QA cycle document” Clockworks Internal Document.

[6] “Oil Change QA cycle” Clockworks Internal Document.

[7] “Project Management server”. Clockworks Internal Document.

PCS Control System

Page 9.34 of9.37

Appendix 1

PJ King is Managing Director of Clockworks International. PJ set the company up in

1994 and since then has seen a doubling of staff and more importantly turnover each

year since. Currently Clockworks employs fifty people in Dublin and is currently

opening an office on the west coast of the United States.

Dr. Kieran Arthur is a former lecturer in Tallaght RTC and Mary Immaculate College

Limerick, where he taught mathematics and computer programming. He received his

MSc and PhD degrees in Applied Mathematics from Dublin City University, where

he worked on problems in non-linear optics and superconductivity.

Kieran joined Clockworks International to set up a training program that takes

engineers with a strong background in PC skills and turns them into localisation

engineers. When this training program was complete and running smoothly, he

approached the challenge of developing training programs for all of the other

platforms which Clockworks requires.

He maintains research interests in numerical methods.

PCS Control System

Page 9.35 of9.37

Appendix 2 Clockworks International

Clockworks International specialises in the development and localisation of software

and Internet products for the global market. Founded by software engineers and run

along the technical and management principles of a software company, Clockworks

positions its software engineering culture as its competitive differentiator.

Clockworks services allows, our clients to bring their products and services to a

world wide audience in the most efficient, cost effective manner and in the shortest

possible time frame. To date the company has experienced 100% repeat business.

Services

Our core business activities are software and multimedia localisation. Clockworks is

one of the few companies that can provide a total localisation solution to its

customers, this encompasses:

 Translation

 DTP

 Graphics

 2D / 3D graphic animation

 Project management

 Internationalisation

 Audio production and post production (Clockworks has its own in house studio)

 Software engineering - cross platform

 QA / Testing

In keeping with Clockworks development strength, the company has invested heavily

in developing competencies in localisation of the UNIX, Aix, Solaris and AS400

platforms.

Clockworks Executive Engineering

This area of our business focuses on on-site Engineering, consulting on

internationalisation and localisation management support.

Clockworks Internet Services Centre

Clockworks Internet Service Centre is an new development which facilitates the

localisation of Web based products. It covers Web localisation, as well as issues

concerning site mirroring and information maintenance.

The Clockworks Approach

Clockworks International is seen as a software localisation company with a

difference. As a company founded by software engineers we are in a position to

provide our customers with a high quality, highly efficient localisation service.

As a highly focused and respected localisation company, working with leading

international software companies, we are renowned for being experts in our own

field.

Multi Platform CM

Page 9.36 of9.37

Multi-Platform Configuration Management

Process Improvement Experiment

Abstract

The Process Improvement Experiment (PIE) ‘Multi Platform Configuration

Management’ is focused especially on the situation and problems in a multi-platform

multi-version software development environment which is typical for our company.

The goal of this PIE was to reduce the overall costs of the development and maintenance
process, to improve code stability and to achieve higher security during the porting and
maintenance phases.

TransAction Software is the developer of the relational database system TransBase which
runs on many different platforms ranging from Mac to main frame VMS or CDC.
About twice a year new main software releases are generated; in addition some customer
specific versions have to be maintained and administered.
We have one source code for all platforms which over the time lead to many
compile-switches and made the source code hard to read; in addition, many negligible
warnings were produced on the different platforms, which made it hard to detect the
fundamental ones.
As source code code control system the rudimentary UNIX-based SCCS was used.

The deficiencies mentioned above had significant impact on the porting efforts to the
supported platforms which were about 50% per platform of the original development costs.

Our main targets and activities were:

 Design, establish and introduce multi-platform oriented programming conventions to
increase platform independency and code readability especially by eliminating platform
specific switches from the source code. By the usage and strict obedience of these
conventions we can deploy more and stricter code checkers. This enables us to detect
and eliminate platform and porting specific problems in an earlier development phase.

 Improve our multi-version source code control, configuration and maintenance
management. We hereby have replaced SCCS by the system MKS which also supports
different development releases, paths and so-called sandboxes.

 Improve and formalize our procedures and processes for porting and multi-platform
validation. In addition, a formal problem and error tracking facility has been introduced.

To implement and evaluate our approach, our new database recovery component has
been chosen as a baseline project. It amounts to about 1500 lines of code which is ca. 3% of
the total TransBase code size.

The experiences gained so far are very encouraging. As we had expected, the
development costs on the development platform increased. The ratio of porting to
development efforts however decreased to about 34%. The reduction of maintenance efforts
due to improvements of code quality and portability can be assessed only after a longer
period of observation.
The use of the more sophisticated source code control system increased both the security
and the concurrency of our development.

Thanks to the positive experience we plan to extend these procedures to all other
TransBase modules.

Dr. Roth, TransAction Software GmbH, D-81739-Munich Phone: +49/89/62709-0

PCS Control System

Page 9.37 of9.37

Page 10.1 of 10.30

Session 10 – SPI &

Systems Development

Part II

Defect Prevention Techniques for High Quality and
Reduced Cycle Time

An ESSI Process Improvement Experiment (PIE)

Abraham Peled, Leeba Salzman, Abraham Danon,

Paul Rogoway

Motorola Communications Israel Ltd.

 Tel Aviv, Israel

Practical Implementation of a CleanBase

Malgorzata Warne

Ericsson Radio Systems , Sweden

Reuse of software development experience at Telenor
Telecom Software

Magne Jørgensen, magne.jorgensen@ifi.uio.no, Dag

Sjøberg, Dag.Sjoberg@ifi.uio.no, University of Oslo,

Reidar Conradi

The Norwegian University of Science and Technology,

Reidar.Conradi@idi.ntnu.no

mailto:magne.jorgensen@ifi.uio.no
mailto:Dag.Sjoberg@ifi.uio.no
mailto:Reidar.Conradi@idi.ntnu.no

Page 10.2 of 10.30

Defect Prevention

Techniques for High

Quality and Reduced

Cycle Time

An ESSI Process Improvement Experiment (PIE)

Abraham Peled

Leeba Salzman

Abraham Danon

Paul Rogoway

Motorola Communications Israel Ltd.

 Tel Aviv, Israel

Background

Motorola Communications Israel Ltd. (MCIL) is an industrial company which

develops and manufactures radio equipment and radio related products. MCIL’s

Development Division is one of Motorola’s largest development group outside of the

United States, and is involved in many main-line development projects of Motorola’s

Communication Enterprise (CE).

Motorola’s products and systems are becoming software intensive at a remarkable

rate. In the last five years, the amount of software in MCIL’s products has increased

dramatically and the number of software engineers has more than doubled. More and

more engineering assets are becoming software intensive, and the company estimates

that in the coming years, the software content in its products will grow to 90%, and

software will become increasingly vital to its competitiveness and success.

DEFECT PREVENTION

Page 10.3 of 10.30

In order to meet the increased market demands in functionality of new products,

MCIL needs to constantly apply more engineering resources in the development

process.

The company has invested heavily in quality, and is eager and committed to preserve

this important asset. With new, sophisticated and complex products and systems, it is

becoming increasingly difficult to maintain higher levels of quality while reducing

the development cycle time, to “rush” to market.

Project Description

The “Defect Prevention Techniques” Process Improvement Experiment (PIE) was

established to investigate patterns of defects that commonly occur in the Software

Development Process. The Goal of the PIE was to define and implement techniques

to reduce the total number of defects in the Development Life-cycle and to prevent

certain classes of defects from recurring. [1]

It is well known that correcting defects in later stages of the Development Life-cycle

is more complicated, expensive and time-consuming than correcting them in earlier

stages. Preferable even to early detection, is the avoidance of defects altogether - the

Defect Prevention method. Defect Prevention is therefore the best way to optimize

the development process costs and to shorten the development cycle time. [2]

The objective of the experiment was to define and implement Defect Prevention

methods and techniques, for the various phases of the Development Life-cycle, to

reduce the quantity of defects and then to determine a Strategy for decreasing the

Testing effort needed for development projects.

The PIE has produced a better understanding of common defect types, suggested and

implemented solutions to avoid them, and established a mechanism to investigate

new / remaining defects with the goal of eliminating them.

Starting Scenario

MCIL is a well-established Level 3 organization, with a phased development process,

institutionalized formal reviews, automated defect tracking, and a long history of

pioneering state-of-the-art software tools and technologies.

In order to initiate the PIE, we selected a project from our Digital Radio development

group as the baseline project. The project selected is TETRA - Trans European

Trunked RAdio - a new all-European digital radio system which integrates, in a

single subscriber unit, Cellular and Dispatch (two-way) communication, as well as

short paging messages.

DEFECT PREVENTION

Page 10.4 of 10.30

The project has more than one release, and we used one for determining the reference

line and a consecutive one to measure the improvements effected by the PIE.

Selecting a multi-generation project, with two releases, rather than two distinct

projects, helped neutralize the effects of several important variables, which could

have otherwise distorted the findings. Thus we ensured commonality with respect to

development environment, application domain, work culture, working methods,

engineering team and tools.

Plans and Expected Outcome

The PIE plan was comprised of several steps :

1. Create a reference line of root causes based on defects recorded in the initial

 project release.

2. Based on the profile of common defects, define techniques to prevent specific

 problems in each phase of development.

3. Implement and disseminate techniques to engineering team at phase kickoffs.

4. During subsequent project development, support modified software development

 process (see Figure 1) and ongoing causal analysis of new defects detected.

5. Review root causes, analyze changes in defect trends. Evaluate efficacy of new

 techniques. Determine strategy to reduce test effort while focusing on the most

 error-prone areas.

6. Disseminate findings and recommend changes to the OSSP (Organizational

 Standard Software Process).

The existing CMM Level 3 development process was modified to include Defect

Prevention activities. A first-stage causal analysis was added to the defect closing

procedure, whereby the engineer handling the error/defect would fill out a new

Analysis form. This Analysis form which includes Beizer Taxonomy classification,

cause category, root cause analysis, containment method and suggestion, is physically

attached to the problem report and remains part of the database.

A second-stage causal analysis was added to verify the correctness of the first stage

and identify trends and extreme cases which require attention. Phase kickoffs were

added to the process to educate the engineers on the common errors of the phase and

on causal analysis techniques.

Based on the trends identified in the second stage of analysis, defect prevention

techniques and strategies were recommended and implemented. This activity was

performed by the PIE team and managed as a separate process.

DEFECT PREVENTION

Page 10.5 of 10.30

Phase

Kickoff

Development

Problem recording

 and tracking

 1st stage

causal analysis

Causal analysis

 trend review

Defect

Database
Process

Improvements

OSSP

Legend

standard

OSSP

D.P.

enhancement

Figure 1 - CMM Level 3 Software Process enhanced for Defect Prevention

The Reference Line : The first step was to perform “Defect Analysis of Past

Projects” in order to create a reference line for the PIE. We analysed 1336 defects

from the baseline project (TETRA Release 1) and two other projects (to increase the

statistical significance). Detailed Root Cause Analysis was performed on all the

defects, and the Beizer [3] Taxonomy was used as the “classification vehicle”.

Analysis was done for five of the development phases, namely : Requirement

Specifications, Architectural Design, Detailed Design, Coding and System Test Case

Preparation. Based on this analysis, specific Defect Prevention solutions were

determined for each of these phases.

The Beizer Taxonomy used for the classification includes ten major categories, each

of which is divided into three levels, resulting in a 4-digit number which specifies

unique defects. The ten top level categories are :

 0xxx Planning

 1xxx Requirements and Features

 2xxx Functionality as Implemented

 3xxx Structural Bugs

 4xxx Data

 5xxx Implementation

 6xxx Integration

 7xxx Real-Time and Operating System

 8xxx Test Definition or Execution Bugs

 9xxx Other

DEFECT PREVENTION

Page 10.6 of 10.30

The causes of the defects as determined by the engineers doing the
classification, fall into four major categories:

 * Communication
 * Education
 * Oversight
 * Transcription

In creating the reference line, detailed interviews with 24 software engineers took

place, in order to fully understand the reason for each defect, to classify the cause

and to understand how the defect could have been prevented. This “data mining” was

performed on all the defects, resulting in a series of “classification tables” and a good

Pareto analysis of the most common problems.

The following Pareto represents the breakdown (in descending order) of the defect

analysis according to the Beizer Taxonomy top level categories :

Requirements and Features (1xxx) 47.0%

Functionality as Implemented (2xxx) 13.5%

Structural Bugs (3xxx) 9.3%

Implementation (5xxx) 8.3%

Data (4xxx) 6.9%

Integration (6xxx) 5.7%

Real time and Operating system (7xxx) 4.9%

Test definition or Execution bug (8xxx) 4.3%

Within each development phase in the baseline project, we further classified the

defects, based on the Beizer Taxonomy. For example, in the Requirement

Specifications Phase, the second level breakdown of the main defects was as follows:

Requirement Completeness (13xx) 37.5%

Requirement Presentation (15xx) 34.7%

Requirement Changes (16xx) 11.2%

Requirement Incorrect (11xx) 8.7%

The third level breakdown of the main “Requirement Completeness” defects was :

Incomplete Requirements (131x) 73.4%

Missing, unspecified requirements (132x) 11.2%

Overly generalised requirements (134x) 4.6%

The same type of data analysis was performed for each of the development phases

selected for the PIE.

The next step was to identify a tool-set of phase-specific improvement activities,

based on the root cause analysis, that would prevent the defects from recurring in the

next release. Highest priority was given to the most common defect types.

DEFECT PREVENTION

Page 10.7 of 10.30

Extensive training and phase kickoff meetings were held to empower the

development team to integrate Defect Prevention into the existing process. The

improvement activities determined in the analysis phase were then applied by the

development team in the different development phases, and ongoing defect recording

and measurements were performed.

The final step was to compare the numbers and types of TETRA Release 2 defects

with those of the reference line. The effectiveness of the “prevention tool-set” was

measured in the quantity and types of defects found in the second release of the

project. The prevention actions which were found to be effective could then be

integrated into the OSSP to improve quality and cycle time for all the projects in

MCIL. The impact on the OSSP, including changes to Review Guidelines and

changes to the Phase Kickoffs, are considered to be part of the PIE results.

The Expected Outcomes :

1. A framework for establishing a Defect Prevention program in a software

 development environment

2. A list of improvement actions to be taken by the TETRA project development

 group in order to prevent defects, including :

 * Method to number the Requirements in the SRS document

 * A Writing Strategy procedure to reduce the ambiguities in the Requirement

 Specification phase

 * A utility to support/implement the Writing Strategy

 * Improved Software Requirement Specifications (SRS) template

 * Formalised Context Diagram / Feature Interface Chart for the Requirement

 and Design phases

 * Improved Review Checklists for all phases of the development life-cycle

 * Causal Analysis procedures and meeting guidelines

 * Improved Kickoff meeting templates and guidelines, for all phases of the

 development process

 * Testing Strategy

3. Improved quality of the Tetra product, including :

 * Decrease in the overall number of defects found in the various development

 phases

 * Shift in the distribution of defects, by phases

 * Lower development costs

 * Shorter cycle time

Implementation of the Improvement Actions

DEFECT PREVENTION

Page 10.8 of 10.30

Kickoff meetings were held for each phase, where the importance of Defect

Prevention and causal analysis were explained and emphasised. The improvement

actions for the specific phase were presented and discussed. The actions, as suggested

by the PIE team, were generally well received by the TETRA development engineers

and managers. Techniques such as improved review checklists were applied

immediately after the kickoff at formal peer reviews.

In each progressive phase, engineers became more adept at recording the defects

using DDTs® - Distributed Defect Tracking System, and at performing causal

analysis. They became more open minded about reporting and recording their own

defects, understanding the importance of a systematic tracking approach to the

quality of the product and the process.

Many TETRA engineers expressed satisfaction with the causal analysis process and

kickoff meetings, which made them feel better equipped to prevent defects, and

improved their general attitude towards the software process.

The PIE is considered by the technical staff as well as the business staff, to be a

positive process, which gives us an advantage in better quality of the products, and

reduced cycle time of the development process. As such, the TETRA development

group has adopted several changes to its processes, to accommodate the Defect

Prevention environment.

Internal dissemination outside of the TETRA development group, has yet to be done

and will begin with the presentation of the Defect Prevention method to the SEPG -

Software Engineering Process Group, the owner of MCIL’s OSSP. This group will

analyse the results of the PIE project, and update the OSSP accordingly. The SEPG

will also be responsible for deploying the new process and training the other

development groups. This will be done through a series of technical meetings with

engineers and managers, dealing with Defect Prevention, the PIE and the updated

OSSP.

Measured Results

The overall number of defects in Tetra Release 2 has decreased by 60%, in

comparison to the number of defects detected in TETRA Release 1 (the reference

line project). In part, this can be attributed to the fact that Release 2 is a continuation

project and not an initial project as Release 1, and that later releases usually have less

defects due to more cohesive teams, greater familiarity with the application domain,

experience, and fewer undefined issues.

Based on numbers from other MCIL projects, we estimate that half of the defect

decrease (30%) can be attributed to the implementation of the PIE.

A breakdown of the defects, by Phase of Origin, shows the following results :

Kommentar [PA1]:

DEFECT PREVENTION

Page 10.9 of 10.30

Phase of Origin

TETRA Release 2 Past Projects

% Improvement

Requirement Spec. 20% 40.8% 80.6%

Preliminary Design 2.5% 11.8% 93%

Detailed Design 23% 23.9% 61.4%

Coding 54.5% 23.4% 8%

 100% 100% 60%

The absolute reduction in defects, which relates to the % improvement shown in the

above table, can be observed in the following chart :

Reduction of Defects

Requirement Specs. Preliminary Design Detailed Design Coding

Phase of Origin

#
 o

f
d

e
fe

c
ts

BaseLine Project

TETRA R2

The obvious observation is that a higher percentage of the defects “migrated” to later

phases of the development process : from Requirement Specifications, Preliminary

Design and Detailed Design, to Coding. In Tetra Release 1, 76.5% of the defects are

in the Requirement and Design phases and only 23.4% are in Coding, while in Tetra

Release 2, only 45.5% of defects are in Requirement and Design and 54.5% are in

Coding. This implies that the defect prevention methods employed in the early phases

of development were very effective.

The % Improvement column, shows the improvement within each development

phase, with respect to the absolute number of defects. This is a different view of the

improvement in the number of defects, partially attributable to the Improvement

Actions.

Another comparison was made in respect to the Cause category. Following are the

results :

DEFECT PREVENTION

Page 10.10 of 10.30

Cause category TETRA Release 2 Past Projects

Communication 10% 11%

Education 13% 13%

Oversight 74% 74%

Transcription 3% 2%

The obvious observation here is that the differences are not significant. The largest

bulk of the defects are caused by human errors.

Lessons Learned

There are several key lessons learned from this PIE project :

1. Although Defect Prevention is considered an SEI/CMM Level-5 KPA, we found

 that a strong Level-3 organization, with a Defect Prevention infrastructure, can

 build an effective Defect Prevention Process, and obtain excellent results.

2. The primary cause of defects as classified by the development team is oversight,

 or human error (almost 75%). Our experience shows that the term “oversight”

 is too broad and should be broken down somewhat, probably based on the Beizer

 classifications of those defects which were categorised as “oversight”.

3. The Timing of the Phase Kickoff meetings is critical. A Phase Kickoff should be

 planned early and performed as close as possible to the beginning of the phase.

4. In order for the Defect Prevention process to be effective, the software teams

 need in-depth training and initial support in using the taxonomy and performing

 the root cause analysis.

5. A tool to input the classification of defects, according to the Beizer Taxonomy is

 essential. An automatic tool is needed to analyze the defects and to get statistical

 results. The current vehicle we have for input of cause analysis and defect

 classification is deficient. A better interface is needed, as well as a mechanism

 for adding new categories to the Beizer Taxonomy. Standardized statistical

 analysis reports are needed for use by all projects for ongoing Defect Prevention

 and process improvement.

References

DEFECT PREVENTION

Page 10.11 of 10.30

[1] R.G. Mays, C.L. Jones, G.J. Holloway, D.P. Studinski, “Experiences with

 Defect Prevention”, IBM Systems Journal, Vol 29, No. 1, 1990

[2] Watts S. Humphrey, “Managing the Software Process”, Chapter 17 - Defect

 Prevention, ISBN-0-201-18095-2

[3] Beizer Boris., “Software Testing Techniques”, Second edition, 1990,

 ISBN-0-442-20672-0

Appendix A - Authors’ CV

Paul Rogoway

Director of Software Quality Standards, Motorola

Motorola Experience (16 Years)

Coordinates all Motorola activities relating to software quality standards, including

participation in national and international software standards working groups;

identification, development and promotion of internal Motorola standards; and

dissemination of information to Motorolans concerning risks and opportunities

related to software standards.

Serves on Corporate Software Engineering Technology Steering Committee and on

various international committees and working groups in areas such as software life

cycle models, capability assessment, technology and tools, and process improvement.

Israel's delegate to several international software standards organizations, including

those responsible for SPICE and ISO 9000-3. Chairperson of the Israel Software

Process Improvement Network (I-SPIN).

Member of Motorola's Science Advisory Board Associates (SABA). Winner of

Motorola Outstanding Impact Award for contribution to ISO 9000-3 revision project.

Authorized Lead Assessor in the SEI Appraiser Program.

Previously established and managed two software development groups, headed a

Motorola Senior Executive Program team which produced a methodology for

software engineering technology planning, founded and managed "4S" to help

Motorola and non-Motorola organizations accelerate their improvement in software

development capability, served as process improvement coach/consultant to several

Motorola software development organizations and to leading non-Motorola software

development organizations in Israel, and was responsible for the first phase of the

CASE* project to define an Integrated Project Support Environment for Motorola

worldwide.

Other Experience :

Adjunct Professor of Computer Science, Bar-Ilan University, Israel.

DEFECT PREVENTION

Page 10.12 of 10.30

Before joining Motorola, Prof. Rogoway held senior technical and management

positions at major U.S. and Israel companies, including TRW, Informatics, IBM,

Elbit and Tadiran.

Publications :

More than 40 papers, articles, and lectures on various software engineering topics

Abraham Peled
Software Process Improvement Manager, MCIL

Motorola experience (12 years) :

Currently, manager of Software Process Improvement activities in MCIL’s

Development Division, which recently achieved Level 3 in a SEI CMM assessment.

The chair-person of two internal Software Process related committees : The Software

Engineering Steering Committee and the Software Engineering Process Group

(SEPG). Responsible for and coordinating the activities of the various Process

Improvement Groups.

A member of the Software Quality Committee (SQC), a corporate level committee,

dealing with software quality issues, with Software Quality Metrics, and with

deployment of the Quality System Review (QSR) within Motorola facilities,

worldwide.

Previously, established and managed for 9 years the Systems & Software Quality

Assurance, MCIL’s Box and System Testing group, who is responsible for testing

and releasing all the Software/Firmware products of MCIL. Most of the tests

performed, were “shifted” from manual testing to the automatic testing environment,

developed internally over the years. Also, Manager of the PQE group - who is

responsible for Hardware and Environmental testing of all MCIL’s released products.

Responsible for the planning, installation and maintenance of MCIL’s conventional

SmartZone System, and for the new Digital Tetra/Dimetra System.

Leeba Salzman

Software Quality Manager, MCIL

Motorola experience (12 years)

Currently Software Quality Manager in the Digital Radio Group, responsible for

process adherence, new employee training, and process improvement deployment.

Member of the Software Engineering Process Group (SEPG). Responsible for MCIL

training on Software Peer Reviews, Problem Tracking and DDTs. Head of MCIL

DDTs Empowerment Team.

Abraham Danon

Systems & Software Quality Assurance Manager, MCIL

Motorola experience (16 years)

DEFECT PREVENTION

Page 10.13 of 10.30

Currently, manager of MCIL’s Software Box/System testing group. Member of

MCIL’s Software Engineering Steering Committee and editor of MCIL’s publication

on Software Engineering : “Touch Of Quality”.

During years with Motorola, carried on technical and managerial software tasks

including responsibility for software process, tools and technology.

Appendix B - Company Profile

Motorola Communications Israel, Ltd. (MCIL) is an industrial company which

develops and manufactures radio equipment and radio related products. MCIL’s

Development Division is one of Motorola’s largest development group outside of the

United States, and is involved in many main-line development projects of Motorola’s

Communication Enterprise (CE).

MCIL is a fully-owned subsidiary of Motorola Inc., the world-wide leader in wireless

communication. Motorola develops and manufactures components, products and

systems in the following domains : Semiconductors, Cellular Systems, Paging

Systems, Two-way Radio Communication, Modems and Integrated Management

Systems, Automotive Electronics, Government and Space Systems (Irridium), and

Multimedia.

According to the latest “Fortune 500” list, Motorola is the 29th largest company in

the U.S., with revenues of $30B in 1997, and 150,000 employees worldwide.

Page 10.14 of 10.30

Practical

Implementation of a

CleanBase

Malgorzata Warne

Ericsson Radio Systems , Sweden

Product Description
Cello is a system platform with an ATM (Asynchronous Transfer Mode) switch used by

the wide-band cellular telephone system using the WCDMA (Wide-band Code-Division

Multiple Access) world-wide radio standard.

Cello includes a real-time multi processor system, miscellaneous ATM services (based on

our own developed ATM switch) and operation & maintenance support as well.

Recently, Cello has been delivered, as part of the experimental system, to one of the

biggest telecommunication company in the world, NTT in Japan. As soon as next year,

Ericsson a fairly new commercial system with new base stations and new transmission

solutions will offer NTT and other customers.

Starting Scenario
There is a unique situation: a new world-wide radio standard is born and a new product

generation is under development. The market window has opened now and a major

development organisation (over 1,000 people involved) has started.

Our department (over 130 people involved) is developing a communication switch

platform, Cello. We are a “Subcontractor” for a development of mobile radio network.

There is an outstanding opportunity for the department: Cello is a brand new, high-tech

product.

At the same time, this is a huge responsibility for the project management: the delivery

time is not negotiable and the product quality should minimise/exclude the need for

product support in the future.

There we have the CleanBase Process.

Plans and Expected Outcome
All employees in the department are very familiar and pleased with incremental

development and teamwork. No one wants to “go back” but, on other hand, no one has

A CLEANBASE PROCESS

Page 10.15 of 10.30

time with improvements such as more frequent or improved code reviews.

I discussed the situation with the system integrators who have been subjected to our

delivery quality. We decided to do a very basic measurement afterwards: to count error

occurrence, in other words, a number of code lines divided with the reported code faults

per subsystem. I.e. in the ACT subsystem SW, statistically every 562 lines there was an

error. The AMS subsystem had the least number of the reported faults and the CS had the

highest number of the reported faults.

The graph layout of the collected metric values was perhaps not so professional, but still

showed the arrangement of metrics (see next page).

Our goal was to get a motivation factor for improvement for all project members. Then

we presented the metrics results at the project meeting and found out that the presented

metrics data was really appreciated.

The metrics indicated a very clear tendency: the reviews contribute to higher product

quality by preventing defects.

During the project, the members of the subproject, which have had the highest fault

occurrence in their SW, have had no time for reviews. In fact they have had it very hectic,

but unfortunately it was their consensus that they have had no time for reviews. In reality,

just this particular subproject was delayed several times with their incremental deliveries

(only a few days, but still) and their delivery quality needed some correction releases of

the product.

It was a great pleasure to see and give the evidence to others that the theory and practise

are in accordance.

At the same time I was picking up the metrics, I interviewed subsystem representatives to

get a broader picture of code reviews usage. I asked them five simple questions:

 Have your teams done code reviews?

 Have your teams had some code review template?

 Have the reviews been incremental during one assignment?

 How have your teams experienced the reviews: as a quality increases, as a help to

sharing knowledge or was it a waste of time?

 Have your teams some proposal about improving the code reviews?

The common opinion in all answers was very positive to code reviews and their outcome.

A CLEANBASE PROCESS

Page 10.16 of 10.30

Implementation of Improvement

Actions
Now our department is involved in the upstart of a new project with a goal to develop a

commercial product after we completed our experimental system.

All subproject managers discussed the metrics results (from the earlier project) at their

project meetings with a goal to carry out the review improvements.

Simultaneously, we have planned a few metrics to follow the progress in the code review

improvement as a goal and objectives for the project quality plan.

Measured Results and Lessons

Learned
The measured results are:

 The code reviews were very useful in sharing knowledge between team members and

contributing to the “next best” competence within the department.

 Initially, the reviews demand discipline and some time, but in the long run you get

better delivery precision with a predictable quality.

The lessons learned are:

Fault Occurrence

2246

1003

631 618 562

277
485

0

500

1000

1500

2000

2500

AMS AET SPAS SEM ACT CS

A CLEANBASE PROCESS

Page 10.17 of 10.30

 The first step for the successful SW improvement is to implement an improvement’s

need in the consciousness of the project members and than they will support you with

willingness for future improvements.

 Already the first simple measurement gives an outcome that is a base for future

improvements.

Appendix:

Ericsson is the leading provider in the new telecom world, with communications
solutions that combine telecom and datacom technologies with the freedom of
mobility for the user. With more than 100,000 employees in 140 countries, Ericsson
simplifies communications for its customers – network operators, service providers,
enterprises and consumers – the world over.

Page 10.18 of 10.30

Reuse of software

development

experience at Telenor

Telecom Software

Magne Jørgensen,

University of Oslo, magne.jorgensen@ifi.uio.no

Dag Sjøberg

University of Oslo, Dag.Sjoberg@ifi.uio.no

Reidar Conradi

The Norwegian University of Science and Technology,

Reidar.Conradi@idi.ntnu.no

Abstract
In this paper we describe how Telenor Telecom Software (TTS) developed and

implemented processes, roles and tools to achieve reuse of estimation and

risk management experience, i.e. organizational learning. The results from

the case study include:

the development and introduction of an experience database integrated

with the software development process – offering relevant experience "just in

time"

examples of types of experience useful for software developers

recommendations on how to collect, package and distribute experience

experience on roles and process to support reuse of software development

experience

Key words: Experience database, software improvement, organizational

mailto:magne.jorgensen@ifi.uio.no
mailto:Reidar.Conradi@idi.ntnu.no

RE-USE OF EXPERIENCE

Page 10.19 of 10.30

learning

1 Introduction
The reported case study on reuse of software development experience was

carried out in 1997-1998, supported by the national research project SPIQ

(Software Process Improvement for better Quality). The case study was,

among others, motivated by the following challenges:

1) How can software development experience be efficiently shared between

different development teams?

2) What types of experience are worth reusing?

3) What is the role of reuse of "local" (context-dependent) experience

compared with more "global" (best practice) experience?

Our approach and results to help meeting these challenges, we believe, can

be useful for other organizations facing similar challenges.

The remainder of the paper is organized as follows. First we describe the

research project SPIQ, then organization studied. Section 2 describes and

argues for the approach chosen. Section 3 describes the results. Section 4

describes related work. Section 5 concludes, summarizes and suggests

further work.

Software Process Improvement for better Quality (SPIQ)

In April 1997, following a pre-project in 1996, the software process

improvement project SPIQ started. The program is sponsored by the

Research Council of Norway (NFR) for at least three years. Its main goal is

to:

”increase the competitiveness and profitability of Norwegian IT-industry

through systematic and continues process improvement”

The SPIQ project is based on the software process improvement principles of

“Total Quality Management”, see for example [10], and the “Quality

Improvement Paradigm”, see for example [2]. An important aspect of SPIQ is

that it provides a means for the academia and the software industry to meet

and discuss software improvement experiences and research results. The

work described in this paper has benefited from SPIQ in at least three ways:

1) The experience database design and results were discussed at the SPIQ

meetings.

2) SPIQ has provided valuable research support.

3) SPIQ has financed parts of the Telenor Telecom Software’s (TTS's) internal

work on “reuse of experience”.

RE-USE OF EXPERIENCE

Page 10.20 of 10.30

The organization

TTS is split into five geographical locations and has more than 400

employees, most of them software developers. In other words, reuse of

software development experience is an important but not trivial task. In

1995-1996 the company went through a “Business Process Reengineering”,

see [14], resulting in a well documented, standardized software development

processes. The process descriptions and documents are available to all

employees through the Intranet using an Internet browser.

The software development process used by the developers is called “solution

delivery” and is based on incremental delivery of software functionality in so

called “time-boxes”. Each “time-box” lasts 3-6 month, which provides good

conditions for experience reuse, at least compared with organizations with a

waterfall development model leading to projects with cycles of 1-2 years. The

organization includes several support teams (development tool support team,

measurement and estimation support team, test support team, quality team,

etc.) for the development and maintenance processes. These teams turned out

to be very important in the implementation of the process changes and

collecting experience. A recent, informal, in-house assessment (carried out by

one of the authors of this paper) of the company, in accordance with the CMM

framework, gave maturity levels on different key process areas between 2

and 4, i.e. TTS is a reasonable mature software development organization.

The company’s software development process prescribes several steps

motivated by the need for reuse of development experience: Each project

should 1) be measured according to a measurement model and 2) deliver an

experience reports when completed. The "Measurement and Estimation

Team” was allocated to carry out the measurement and the "Quality Team"

was the receiver of the experience reports. We found that the project

measurement and the experience reporting were to some extent carried out.

However, there was not much systematic use of the information to improve

the process. This observation was a major motive for our focus on reuse of

experience in TTS.

2 The approach

Our approach can be characterized as action science [1], which is a typical

research method when studying industrial software development. Action

science has both advantages and disadvantages. Advantages are, for

example, that action science may be the most efficient way to get:

 In-depth knowledge about software development organizations. This belief is

among others supported by the learning model of [11], which focuses on the role

of collecting concrete and context-dependent experience to support the learning

process. According to this learning model only the lower levels of knowledge is

context-independent and rule-based. In order to achieve higher levels of

knowledge (being an expert) lots of context-dependent experience (local

RE-USE OF EXPERIENCE

Page 10.21 of 10.30

experience) have to be collected. Our observations support this learning model.

For example, while inexperienced project leaders asked for rule based methods

regarding risk management, more experienced project leaders were more

interested in how other projects had carried out their risk management activities.

 Representative and realistic information on how terms and models important for

meaningful reuse of experience are used. For example, when we cooperated with

the projected leaders on estimation of effort, we found a variety of

interpretations of the term “effort estimate”. This variety clearly reduced the

potential for reuse of the effort estimation experience and data. Three major

types of interprations were found: Estimated effort means a) “most likely effort”,

b) “the effort with the probability of 50% not to exceed” (median) or c) “the

most likely effort + a (project dependent) risk buffer”.
Disadvantages of action science are, on the other hand, that:

 Action science studies are not carried out as strict experiments with control of

the variables. Thus, a formal cause-effect relationship between the actions and

the results cannot be established. In particular, the mixing of the participation

and observer role makes objective analyses difficult. In addition, it is unlikely

that anyone will (be able to) repeat the study to validate our observations.

 There is no available observational language or theory to remove subjectivity and

bias in the description of the observations. See for example the discussion of how

the expectations impact the observational language in [13] — i.e. there is a

danger of “theory loaded observations”.

It is important to be aware of these disadvantages, but it should not stop

anyone from carrying out studies like ours. Currently, action science (or

similar methods) seems to be the only practical way of achieving in-depth

“real-world” results about software improvement. We believe, however, that

more quantitative and experimental research on software processes should

be the long-term goal of the software improvement research, leading to more

general and objective knowledge. A more general discussion and comparison

of research methods, particularly the role of case studies, can be found in

[12].

Stimulated by the work at NASA-Software Engineering Laboratory on

Experience Factory, see for example [4] and the opportunities we had at TTS,

we started a search for “pilots” where reuse of experience would improve the

development process. Based on an informal analysis of the availability of

information, availability of resources, time, probability of success, estimated

cost and benefit we decided to focus on the following two topics within the

software development process:

 estimation of software development effort

 risk management

A brief analysis gave that in order to support reuse of estimation and risk

management experience, there was a need for:

 an experience reuse process, including new or modified role descriptions

 a supporting tool (the experience database)

RE-USE OF EXPERIENCE

Page 10.22 of 10.30

3 The results

 allocated experience reuse resources, both for implementing the experience reuse

processes and for administrating the experience database

This section describes the work and some of the results achieved in the

period Spring 1997 - Spring 1998. The organization continues to focus on

experience reuse, i.e. the results and products are to some extent

preliminary.

Manifestation of experience

During the requirement analysis we soon discovered that the manifestation

of experience can and should take many forms to be useful to the developers,

such as:

 quantitative and qualitative information that can be stored in traditional

databases.

 general tools implementing or based on “best practice” within the organization

 rule based systems (expert systems) reflecting expert experience and knowledge

 pointers to people with useful experience (this may be the only way of

“representing” experience that cannot be articulated, i.e. tacit knowledge)

 process descriptions at different levels and with different degrees of context

dependence

In addition, it was considered important that the experience database (the tool

enabling the access to the stored experience) was available to all the developers at a

low cost, integrated with the quality system, easy to use and easy to maintain.

Technical platform

The technical platform chosen to meet these requirements was based on:

 The organization’s own Intranet. This made the experience database available to

all the developers and well integrated with the organization’s quality system.

 A user interface based on a web-browser with links to experience of different

types. This removed the need for local installation.

 An “experience database” based on tables of data, spreadsheets, documents and

rules implemented in executable programs, i.e. no traditional database.

Further, we decided to integrate the experience reuse support with the

organization’s process descriptions, i.e. from the relevant steps in the process

descriptions we had links to useful information and tools in the experience

database. The idea was to offer useful experience “just in time”.

Reuse of effort estimation experience

The effort estimation experience we offered was of the following types (linked

to the relevant process steps):

RE-USE OF EXPERIENCE

Page 10.23 of 10.30

A) Determine the appropriate estimation model and process.

An “expert system” recommending one or more estimation models was

developed based on the collection and analysis of the experience of the

organization’s estimation experts. Following an analysis of whether

formalized effort estimation is recommended or not, the expert system asks

the user to answers nine questions. A simplified description of the questions

and some implications of different answers are indicated in Table 1 and 2.

The estimation models are briefly described below. This expert system uses,

in addition to the answers from the users, empirical data from TTS on the

accuracy of the different estimation models, see Table 3, and the quality of

the relevant historical data, i.e. a high degree of organizational dependent

experience.

Table 1

Questions (Yes or No-answers)

Q1) Will there be a high degree of infrastructure development and/or complex

algorithms?

Q2) Is the project context significantly different from previous TTS-projects?

Q3) Are most of the requirements described?

Q4) Is a data model available or can easily be developed?

Q5) Does the delivery consists of many small, not logically connected

changes/modules?

Q6) Will the effort to complete the project probably be more than six months?

Q7) Is the project willing to spend 1-2 man-days of effort on estimation for small

project (less than 12 man-months) and 2-4 man-days for larger projects?

Q8) Will developers with experience from similar projects be available when

estimating the effort?

Q9) Will there be more than five deliveries similar to this one?

Table 2

Estimation model Recommendation rule

 (Qi has the value TRUE when the user answers YES
on question Qi, and the value FALSE given the
answer NO. If Ri is assigned the value TRUE, then
model Ei is recommended.

E1) FPA R1 = not Q1 AND not Q2 AND Q3 AND not Q5

AND Q6 AND Q7

E2) ROPD R2 = not Q2 AND Q8

E3) FPA simplified R3 = not Q1 AND not Q2 AND Q4 AND not Q5

AND not Q7

RE-USE OF EXPERIENCE

Page 10.24 of 10.30

E4) Tailor made estimation

model

R4 = Q2 AND Q9

E5) No model recommended R5 = not (R1 OR R2 OR R3 OR R4)

When more than one model is recommended we give the estimation model with

the lowest index the highest recommendation and presents the other recommended

models as alternatives.

Table 3

Estimation model TTS historical accuracy of

model (average)

Full MarkII Function Point Analysis 15% (mean magnitude of error)

Simplified Function Point Analysis 30% (mean magnitude of error)

ROPD 20% (mean magnitude of error)

B) Estimate effort
Depending on estimation model, different types of experience data are available.
Among others, the following estimation models and planning tools were supported by
the experience database:

1) MarkII Function Point Analysis (MkII FPA), see [22]. We improved and

extended an existing spreadsheet implementing the MkII FPA estimation model. This

estimation model takes as main input the estimated size of the functionality to be

developed in function points.

Earlier we had analyzed data from more than 30 software development projects

regarding how different variables, such as use of CASE tool, had had an impact on

the development productivity, see [15]. This study indicated that the choice of

development environment explained most of the productivity variance.

(For example, an effort estimation model for Cobol and Powerbuilder-projects,

based on log-linear regression on the collected data, including only the size of the

task and the development tool "level" as independent variables gave a R
2
 of 0,52.)

We provided the estimator with historical data on previous projects similar to the

current project. Table 4 shows some of the historical information that the estimator

could make use of. The productivity is measured as UFP/w-h, unadjusted function

points per work hour. Notice that the estimator has to predict a productivity category

for his project, i.e. expert knowledge is still required.

RE-USE OF EXPERIENCE

Page 10.25 of 10.30

Table 4

Batch-

development

Low prod. Medium

prod.

High

prod.

Turbo

prod.

Cobol – environment 0.05 UFP/w-h 0.10 UFP/w-h 0.20

UFP/w-h

0.30 FP/w-h

Powerbuilder –

environment

0.15 UFP/w-h 0.25 UFP/w-h 0.50

UFP/w-h

0.70 UFP/w-

h

On-line

development

Low prod. Medium

prod.

High

prod.

Turbo

prod.

Cobol – environment 0.07 UFP/w-h 0.15 UFP/w-h 0.20

UFP/w-h

0.30 UFP/w-

h

Powerbuilder –

environment

0.20 UFP/w-h 0.35 UFP/w-h 0.70

UFP/w-h

1.00 UFP/w-

h

2) A bottom up, task and risk based estimation model was developed. This estimation

model was supported with experience in the form of lists of “tasks to remember” and

suggestions on the effort distribution between the phases. Currently, there is ongoing

work on how to improve the collection and reuse of historical data to support this

bottom-up, task and risk based estimation model, see [20]. We labeled this model

ROPD (the Norwegian acronym for Risk Based Division into Sub-tasks).

3) A risk analysis tool integrated in the estimation tools (or to be used

separately) was developed. The risk analysis tool contains risk models,

textual advise and guidelines based on previous experience. The content

varies from a simple (but useful) checklist of tasks and risk factors to more

sophisticated probability (beta-distribution) based risk models. Typically, the

content was based on general frameworks and models, then adapted to the

organization's needs according to expert knowledge and experience. This tool

resulted in a probability based effort estimate and predictions such as "there

is an 80% probability of not exceeding 3000 w-h of effort".

It turned out that this type of probability based predictions were essential to

introduce the distinction between planned and estimated effort in the

organization. Similar to the results in (Conolly and Dean 1997) we believe

that probability based estimation had a positive impact on the realism in the

effort estimates.

4)Finally, pointers to the human estimation experts were provided.

Reuse of risk management experience

Similar to the estimation support we linked our experience database to the

risk management process. The experience database offers support through

several tools to identify, analyze and manage software project risks. We

interviewed several experienced project leaders in the organization to get the

most relevant risk factors and the most relevant methods to reduce and

RE-USE OF EXPERIENCE

Page 10.26 of 10.30

control the risks. In addition, data from quality revisions was used to tailor

the risk management support.

Based on the collected information we developed:

 a “TTS best practice” risk management process (extensions to the existing

development process)

 a tool to identify, assess and store risk factors, and suggestions on how to reduce

or control the risks

 a tool to visualize the risk exposure over time

In many ways, what we did was to collect only a small fraction of the

organization's knowledge about risk management. To become a learning

organization the organization will need to continuously collect and distribute

experience, i.e. new roles and a changed process is needed. Since systematic

experience reuse in risk management has a short history in TTS, we found

that we needed to start small in order to understand what sort of risk

experience would be useful to collect.

Roles and process

The studies and results described earlier in this paper resulted in the

identification of needs for new roles and an increased focus on the

implementation of the development process.

Roles:

 An “experience database administrator” (a “gardener”) responsible for the

availability and usability of the experience to be reused. This role may be split

into two roles dividing the responsibility into a technical administrator and a

content administrator. We suggest that the “gardener” should be a part of the

software process improvement team of the organization.

 Several “process analysts” responsible for analysis of information from each

sub-process, such as the estimating process, the project management process or

the testing process. The “process analysts” is responsible for collecting and

analyzing relevant information from completed projects and to generalize, tailor

and package the useful experience.

 A network of “support teams” teaching and guiding the project leaders and

members how to properly reuse the experience within each sub-process/topic.

 A process owner for the experience reuse process.

Notice the distinction between role and person. In a small organization a

small team or (at least in theory) one single person may fill all these roles.

Based on our experience at TTS, a critical minimum central effort to enable

substantial reuse of estimation and risk management experience seems to be

2-3 man-years to fill the roles above.

Process

When we started our study, the organization did collect project data and it was

mandatory to write experience reports, i.e. the process description had elements of

experience reuse. However, the collected information was not systematically used to

improve the processes. In other words, the process (or even more, the implementation

RE-USE OF EXPERIENCE

Page 10.27 of 10.30

of the process) had not had enough focus on the use of the collected information.

Looking at other case studies of software process improvement, see for example [8],

this seems to be a typical problem leading to graveyards of data and unused

documents. In our opinion, this is a situation even worse than the situation where no

data is collected and no reports written, and there is probably no more efficient way

of destroying the respect for a measurement and experience report.

We believe that the current process description of TTS is sufficient to enable

experience reuse, given sufficient resource to fill the experience reuse roles described

earlier. For a more general experience reuse process and organization, see [4].

Benefits

An underlying initial hypothesis on experience reuse is, of course, that it has a long

term benefit higher than the costs. Currently, we are not in the situation to decide

whether this is true or not. We cannot validate the hypothesis, partly because it is too

early, and partly because it is difficult to isolate the impact of our work from the

impact of other parallel process improvement initiatives. However, even without a

formal impact study, we believe to see the following results of the experience reuse

work:

 Improved estimation accuracy and more widespread use of the estimation models

 An increased focus on experience based risk management in the projects.

 An acceptance in the organization for the need to collect and share experience

In addition, we have made a number of interesting observations increasing the

probability of sucessful reuse of experience in TTS, such as:

 Currently, the experience reports written by the projects were of little use to

other projects. This may indicate that without a clear model on how the

experience will be reused, there is a great danger of reporting and collecting

useless information.

 The mere focus on reuse of experience had a positive impact on the

“improvement culture” in the organization. It would have been very interesting to

carry out controlled experiments on how different actions impacts the software

improvement culture. An experimental design similar to the one described in

“Goals and performance in computer programming” [23] may be appropriate.

4 Related Work

The Experience Factory or EF [4,5] is a framework for reuse of software life

cycle experiences and products. EF relies on the Quality Improvement

Paradigm [3] for continuous and goal-oriented process improvement,

resembling the Shewhart/Deming Plan-Do-Check-Act cycle [9].

The EF framework prescribes an improvement organization inside a company, a kind
of "extended quality department". This implies the "logical separation of project
development (performed by the Project Organization) from the systematic learning
and packaging of reusable experiences (performed by the Experience Factory)" [6].

RE-USE OF EXPERIENCE

Page 10.28 of 10.30

The PERFECT EF framework extends this model by adding a third organizational
component: the Sponsoring Organization, which uses the EF for strategic purposes
[18].

Within the EF framework, the NASA-Software Engineering Laboratory with its 275
developers has collected information about 150 projects in the period 1976-1996. The
purpose is to record the effects of various software technologies (methods, tools,
programming languages, QA techniques, etc.). However, NASA represents a special
kind of stable and resourceful organization. It is a challenge to apply the EF ideas
outside of NASA, i.e. to downscale it to companies with typically 10-30 developers,
and where the EF roles are partly being played by the developers themselves. More
applications of the EF framework in other contexts are therefore needed, see e.g.
[18]. Our case study is a contribution in that respect.

5 Conclusions
We believe to have contributed to the answers regarding the challenges we

described in Section 1 through an in-depth example of how the

questions/challenges were approached by TTS. TTS has introduced a

standardized development process documented on the web and made the

processes available for all the software developers through the organization’s

Intranet. In many ways, this opens new possibilities for software

development organizations. We have found that software development

experience efficiently can be linked to the process steps and made available

to all the developers in a very flexible way. However, the main challenges

regarding becoming a learning organization and reusing experience is not the

technology. We found that a lot of “trial and error” and pragmatism is needed

to find the useful experience and ways to formulate and spread this

experience.

We found it useful to be very pragmatic regarding the manifestation of experience.
For example, a very useful information in our experience database was the links to
the experts having the required experience. Regarding the role of local (organization
dependent) experience vs. best practice experience we found that the local
experience made the best practice processes significantly more useful. In other
words, optimal use of best practice processes seems to require collection and reuse
of more local experience.

Achieving a learning organization is a formidable task. Senge claims that the following
five disciplines are essential to creating learning organizations: personal mastery,
mental models, shared visions, team learning and systems thinking [21]. An
experience database like the one we have designed and implemented in TTS can
serve as a basis for activities involved in all five disciplines. An experience database is
also a useful means to agree on a common understanding of the current situation.
“An accurate, insightful view of current reality is as important as a clear vision” [21].

Future work will address the major issue of how projects (contexts) should be
characterized so that experiences collected in one project (context) are applicable to
another project (context). How can we judge whether a project is sufficiently similar to
(a subset of) the projects for which we have experience? The approaches described
in [6] will be taken as a starting point.

Acknowledgments

RE-USE OF EXPERIENCE

Page 10.29 of 10.30

The authors wish to thank the TTS employees Pål Woje, Geir Ove Espås,

Majeed Hosseiney, Oddmar Aasebø and Tor Larsen for their enthusiasm and

contribution to the work described in this paper.

[1] C. Argyris et al, 1985, Action Science: Concepts, Methods and Skills for
Research and Intervention. San Francisco: Joosey-Bass.

[2] V. R. Basili, 1985, Quantitative evaluation of software engineering
methodology, Proceedings of the First Pan Pacific Computer Conference,
Melbourne, Australia.

[3] V R. Basili and H. D. Rombach, 1988, The TAME Project: Towards
improvement--oriented software environments, IEEE Transactions on
Software Engineering, vol. SE-14, pp. 758–773.

[4] V. R. Basili et al. 1992, The software engineering laboratory — An operational

software experience factory. In: Proceeding of the 14
th

 international
conference in software engineering, Melbourne, pp. 370-381.

[5] V. R. Basili, 1993, The experience Factory and its Relationship to Other
Improvement Paradigms, pp. 68-83, in I. Sommerville and M. Paul (eds),

Proc. From ESEC’93, 4
th

 European Software Engineering Conference,
Garmisch-Partenkirchen, Germany, September 1993, Springer-Verlag,
Lecture Notes in Computer Science 717.

[6] V. Basili, L. Briand, and W. Thomas, 1994, Domain Analysis for the Reuse of

Software Development Experiences, In Proc. of the 19th Annual Software

Engineering Workshop, NASA/GSFC, Greenbelt, MD..

[7] T. Conolly and D. Dean, 1997, Decomposed versus holistic estimates of effort
required for software writing tasks, Management Science, vol. 43, no 7.,
1029-1045.

[8] M. A. Cusumano and R. W. Selby, 1996, Microsoft Secrets, Harper Collins
Business, ISBN 0006387780.

[9] W. E. Deming, 1982, Quality, productivity, and competitive position.
Massachusetts Institute of Technology Center for Advanced Engineering
Study, Cambridge, Mass.

[10] W. E. Deming, 1986, Out of the crisis. MIT Center for Advanced Engineering
Study, MIT Press, Cambridge, MA.

[11] H. Dreyfus and S. Dreyfus. 1986, Mind over machine: The power of human
intuition and expertise in the era of the computer, Free Press, New York.

[12] B. Flyvebjerg, 1991, Rationalitet og magt, det konkretes videnskap (bind I),
Akademisk Forlag.

References

RE-USE OF EXPERIENCE

Page 10.30 of 10.30

[13] N. Goodman, 1951, The Structure of Appearance, Cambridge, Mass.

[14] M. Hammer, 1996, Beyond reengineering, Harper Collins, New York.

[15] M. Jørgensen, 1995, Empirical evaluation of CASE Tool efficiency. Proc.
Sixth Int. Conf. on applications of Software Measurement, Orlando, 207-230.

[16] G. Morgan, 1993, Imagination — the art of creative management, SAGE
Publications, London, 1993, ISBN 0-8039-5299-6.

[17] M. Paulk et al, 1995, The Capability Maturity Model, Guidelines for improving
the software process. Software Engineering Institute, ISBN 0-201-54664-7.

[18] PERFECT Consortium, 1996, PIA Experience Factory, The PEF Model,
ESPRIT Project 9090, D-BL-PEF-2-PERFECT9090.

[19] E. H. Schein, 1987, Process consultation (volume II), Addison-Wesley, ISBN
0 201 06744 7.

[20] T. Schrader, 1998, A bottom-up project cost estimation method using historic
data and a standardized work breakdown structure, Project Report, The
Norwegian University of Science and Thechnology.

[21] P. M. Senge, 1995, The Fifth Discipline: The Art and Practice of the Learning

Organization, Currency/Doubleday.

[22] C. R. Symons, 1993. Software sizing and estimation, MkII FPA, New York:
John Wiley and Sons.

[23] G. Weinberg and E. Shulman, 1974, Goals and performace in computer
programming. Human Factors, vol. 16.

Page 11.1 of 11.22

Session 11

Personal Software

Process implementation

In a production

environment

Stavros K Menegos, MSc

Computer Logic SA, Senior S/W Architect

Dr. Charalampos Avratoglou

Computer Logic SA, S/W R&D Director

PSP Implementation

Page 11.2 of 11.22

Chapter 1: Introduction

Findings of the ESSI Process Improvement Experiment (PERSPI) will be presented,

in the context of the overall effort of Computer Logic towards Software Process

Improvement.

PERSPI is an experiment that aims at improving the way individuals perform their

day-to-day activities in the context of software development. More specifically,

PERSPI is an attempt to introduce the PSP methodology in an industrial environment,

putting emphasis on its gradual employment in a real-life project, rather than on an

introduction through formal and long-term training.

The presentation gives an overview of the environment on which the experiment is

applied, i.e. Company’s business area and strategy, the objectives of the experiment

and the baseline process characteristics. Next the PIE’s structure is given and the

findings and lessons-learned are presented. Finally future actions and areas of

investigation are discussed.

PSP Implementation

Page 11.3 of 11.22

Chapter 2: Project Description

Business & Products

Computer Logic S.A.’s main function is to produce, market, distribute and support

business application software products. The produced software products are:

 capable to adhere to a wide spectrum of needs and cultural environments,

 easily maintainable, upgradable and configurable (from the user’s point of view),

 able to handle business critical applications.

Furthermore, the company’s software development department

 undertakes custom software projects of variable size and complexity,

 studies and provides solutions and services to specific customer IS-related

requirements.

During the last three years the company is dealing explicitly with the improvement of

its development process, focusing initially on the software-engineering field, and

then, on the organisational - managerial infrastructure of its software development

process.

The above efforts where formed to support the business strategy for a development

process based on State-of-the art technology, Software Reuse and Process

Repeatability.

The PERSPI PIE has been designed to complement the above efforts, addressing the

finest instrument of the software development process, the individual developer.

The starting scenario

The current mainstream development process is code-named the OMEGA process.

The figure SME.1 presents a schema of this structure.

OMEGA S/W Development Process

Software Development

OMEGA Application

framework & tools

S/W Engineering

Methodology

Organisational

infrastructure

 Process refinement and

improvement

Roles, responsibilities,

process definitions

Deliverables definition
and quality control

specification

Measurements,

Monitoring

Quality rules,

reusable components,

patterns

PSP Implementation

Page 11.4 of 11.22

Fig SME.1: Omega Process

In the software-engineering field a comprehensive OMT-based object-oriented

methodology is currently used. A set of tools are used including an upper CASE tool,

requirements-features-development items tracking database, a version control tool

and an effort tracking and measurement tool.

The language is C++ and visual programming tools are used for the user-interface

parts. Productivity is greatly enhanced by an in-house developed repository-based,

OO-aware, dedicated application framework (the OMEGA framework) which

encapsulates the generic application architecture and provides a set of reusable

components. The framework also encapsulates a host of standardised quality rules

that apply to the user and to the application developer interface.

The Organisational and Process infrastructure has been reorganised according to the

CMM model and has been assessed as a level-2 with traces of level-3 process.

Additionally the company is ISO-9001 certified for the development, maintenance

and support of S/W.

The above top-down approach to process improvement, while promising and

essential, seems to have low penetration to the micro-processes of individual

developers, while it presents a significant cost for managerial overhead. On the other

hand, the size of the development department and the traditional reliance on

individual developers for quality and efficiency justify the need of improving the

individual developer’s process, and this idea has immediately gained management

commitment.

PERSPI Objectives

The main objective of PERSPI was to facilitate Computer Logic’s process

improvement by applying software process best practices at the individual level.

It was anticipated that the successful introduction of Personal Software Process

principles would improve both product quality, development efficiency and

productivity by introducing best practices at the finest level of the development

process, the individual developer.

It was also expected that this approach would directly involve developers in process

improvement and would facilitate the institutionalisation of several improvement

efforts done in the past in the software engineering, the quality assurance and the

process management fields.

The following were expected at the end of the PERSPI project:

 Developers to be better able to define, measure and track their work.

 Developers to have a defined personal process structure and measurable criteria

for evaluating and learning from their own and others experiences

 Developers to be better able to select those methods and practices that best suit

their particular skills and abilities.

 Developers to be more effective and reliable members of their development

teams and projects through a customised set of orderly, consistent, and high-

quality personal practices.

 The results and experiences were expected to be fed back to improve the overall

development process in order for it to support and promote individual best

practices

PSP Implementation

Page 11.5 of 11.22

 Based on the experiences and the measured results of PERSPI, a curriculum and a

mentoring plan was planned to be prepared to apply personal best practice

mentality through-out in the development department.

From the business point of view, the driving target was to improve product quality,

predictability and development efficiency by enhancing individual developer process

skills while reducing the managerial overhead. This improvement approach, at the

individual level, is considered most compatible with the company’s size and tradition.

The reference points and desired outcome determining the success of the experiment

for the experiment have been set:

 to reduce by at least 25% the individual developers error rates,

 to increase the predictability for individual work products by reducing the

slippage to +/-20%,

 to decrease time spend for a work-product by at least 10%

 to increase job satisfaction, personal commitment and process improvement

awareness for the individual developers

The criterion for adoption of PSP at large, was set to be able to demonstrate that the

investment per developer could be covered by the productivity gains with-in an

approximately six-months period.

PSP Implementation

Page 11.6 of 11.22

Chapter 3: PERSPI Experiment – Case study

The project of introducing the PSP in the Omega S/W Development process consisted

of four phases. In the first phase a pilot team was assembled and acquired training to

the PSP. In the second phase, the PSP process was evaluated in the context of the

Computer Logic’s needs and targets and in the context of the S/W development

Framework and infrastructure. Upon the modification and customisation of the PSP

the new process (modified PSP) was applied and monitored in the S/W development

process of certain core projects. In the third phase the results of the PSP were

assessed and evaluated according to the improvements in the quality of the delivered

S/W, the productivity and the predictability. In the fourth phase the PSP was

introduced into the process of MIS Reports of the Omega development life cycle. The

process of the development of MIS reports on top of the Omega applications has

many common characteristics with the development of S/W code and is of strategic

importance for the success of the applications and for the achievement of high degree

of customer satisfaction. Thus, an improvement in the quality and productivity of the

individuals involved in this process was crucial.

Phase 1: PSP Training

In order to be able to apply PSP in our company development process we had to

acquire training on the PSP. For this purpose, we selected the advance academic

course for PSP given by the Carnegie Mellon University, Distance Education

Program. The course is specifically designed for professionals and is given over the

Internet. The duration of the course was eight weeks, which in our case was expanded

to ten weeks. The course consisted of eight lectures and seven lab projects that had to

be submitted every week. One significant advantage we had with this program was

that we were allowed to form our class of students that attended this course

(Computer Logic’s class). Every week there was a chat session (over the Internet)

between the class members and the Professor and his assistant who were assigned to

the class. The purpose of this session was to discuss any problems with the PSP,

address questions to the professor and in general to exchange ideas and

considerations on applying PSP in a production environment.

The next step was to select the developers that would form the PSP class and

participate in this distance learning course. We selected five Senior S/W Engineers

that were involved in the development of core S/W Omega projects. In this team, the

Omega Framework S/W Architect was also included. This role is responsible for the

Analysis, Design and Implementation of the key features of the Omega library

Framework on top of which all the Omega applications are implemented. All of the

engineers had a very good experience in C++ programming language and in the

development of high-quality S/W products under strict deadlines. They were also

heavily involved in the previous Process Improvement efforts, mainly the CMM

Process Improvement Project and the ISO 9000-1 certification. That means, that the

necessity for the process improvement in the finest level of the developer was realised

and very well understood by the whole team.

The participation in the PSP class required a significant amount of time and effort for

the successful completion of the course. The estimated time was twenty hours per

week per developer but the actual effort averaged to twenty-five hours. However, the

training took place during a very demanding period, which did not allow for proper

PSP Implementation

Page 11.7 of 11.22

buffering of the developers from their projects. Thus commitment and self-sacrifice

was necessary for the success of the training.

One of the advantages of having the education program in parallel to the work was

that even from the first lectures on the PSP the developers applied certain aspects and

guidelines in their everyday S/W development practice. This was a promising issue

for the success of introduction of the PSP in our production environment.

A very important criterion for the construction of the pilot PSP team was the ability

of the team members to train the whole Omega S/W development community to the

PSP in the context of the existing practices and needs. For this purpose, we assembled

a second team of five S/W Engineers who were recently introduced in the Omega

S/W development process. Two members of the first pilot team trained this second

team on the PSP. The education program for the second team started four weeks after

the commencement of the PSP course. The reasons for which we established this

second team were:

 Assess the ability and the difficulties of training the developers of the Omega

S/W development process by the members of the pilot team.

 Identify the problems and the intricacies of introducing PSP in the every day

practice of Junior S/W Engineers. Understanding the way junior or recently

introduced developers think and tackle the implementation of S/W products

(academic vs. production environment).

 Smoothly introduce the junior developer members of the Omega development

process into the required discipline in both the personal and team level. This is an

important issue since developers usually face difficulties in conforming to guide

lines, discipline and company wise standards.

 Construct a broader team of developers that can share ideas and discuss self-

improvement issues in the context of the Omega framework and PSP.

The remote training of the team had very good results. The participants managed to

complete all the study and the course-works in due time in parallel to their full

scheduled product work (Appendix B contains certain indicative results from the PSP

training course). This is a critical point because full commitment and understanding

of the responsibility the developers undertake is required for the completion of the

training. The chat sessions proved very helpful because they gave the opportunity to

share ideas between the academic and the professional perspectives of PSP. One

problem we did face with the training material is that the programming exercises and

the programming environment used in the course did not correspond to the tools and

programming environments that are in use in modern production environments. Even

though the exercises have the purpose to demonstrate PSP principles they could have

been more complex and realistic. These thoughts and suggestions have been shared

with the PSP course staff and they plan to modify the structure of the lab work

projects.

As far as it concerns the training of the second team, this was a more difficult task to

complete. The main problem was that the commitment of the participants to this

effort was not as high as necessary. The result was that only two of the five

developers actually completed the course. The second problem was that the

instructors (two developers from the pilot team) did not have the available time to

thoroughly examine the submitted lab work. However, as explained in the previous

paragraphs this training effort gave us better insight on the possible implications we

would meet when introducing PSP in junior members of the Omega development

process. Actually we reached to the conclusion that the PSP training should be

PSP Implementation

Page 11.8 of 11.22

combined with the education – training of the new comers in Omega processes and

Infrastructure. Another interesting conclusion is that having the PSP training

performed by external institutes through distant learning is a better motivation for the

participants for they are individually awarded.

Phase 2: PSP Evaluation – Modification

The next phase in the PERSPI experiment was to evaluate the PSP in the context of

the Omega Development Framework and Process. For this purpose a committee was

assembled that consisted of the five members of the pilot team, one member from the

second team and the R&D Director who is responsible for the Omega Development

process. The task of the committee was to thoroughly examine the pros and cons of

the PSP and how the PSP will be modified and introduced into two kernel projects of

the Computer Logic.

The main characteristic of the Omega S/W development process is the ability to

quickly address the diverse needs of the enterprises and to develop competitive

products for a wide range of business domains. The development process is assisted

and supported to large extent by our custom developed library framework on top of

which applications are developed.

The PSP as a means for improving predictability, productivity and quality is very

promising. However, introducing and integrating the PSP as described in theory our

development process and framework has certain advantages and disadvantages. The

cons and pros are summarised as following:

Cons

 The volume of the data that the developer has to gather and maintain during the

development cycle is very large. This does not only increase the overhead of PSP

but also increases the disruption of the developer from his development tasks.

The everyday process of writing code differs significantly from the well-

established and defined examples that are given during the training courses or

encountered in the introductory projects. In the latter, PSP tools are easy to apply

and use, while in the former developers seldom have the time to use these tools

when dealing with complex problems under strict deadlines. This issue was

thoroughly considered and discussed in the chat sessions with the course’s

academic staff and it seems that it is the first and main issue for arguing for using

PSP.

 Even the use of tools such as spreadsheets, text documents and database tools

does not facilitate the extraction of the raw data PSP requires, especially data that

have to do with Lines Of Code (LOC).

 The PSP assumes the existence of a well-defined and complete analysis and

design prior to the implementation. While this is a sound prerequisite, it is not

usually satisfied in a production environment such as Computer Logic’s that has

to address as fast as possible to a wide variety of customer needs in a very

competitive market. The model implied in the context of PSP is more applicable

in S/W Projects that the cost of development is very high justifying an extended

cycle in the Analysis and Design phases. Typically not the case for Computer

Logic.

 The PSP requires the existence of tools that will facilitate and automate the

processing of the raw data as well as the historical data. These tools should be

integrated to the existing tools and furthermore increase the cost of the

PSP Implementation

Page 11.9 of 11.22

development. Another alternative that is discussed in later section is to build our

own tools that address the modifications of the PSP methodology and focus on

the issues we are interested in.

 Another point in the PSP that was a major issue for discussion is the concept of

LOC and Object LOC. The most difficult part in applying PSP was the gathering

of data that had to do with LOC and mainly the Base, Modified, Added and

Deleted lines of code. This type of data is difficult and time-consuming to gather

even with the assistance of automated Configuration Management tools that are

used in the Omega Development process. Furthermore, we have reached the

conclusion that in our case the size estimation in terms of LOC is not applicable.

Even the Object LOC that is a higher level aggregation of LOC that defines the

average Lines of Code per type of object, is not applicable. We have concluded

that the categorisation of objects according to their difficulty and complexity is a

better candidate for size estimation and is easier to count during or after the

development cycle.

 A problem that is related to LOC issue is the code handled (inserted, deleted and

modified) by the Source Code wizards that are in use in the Omega development

Framework. These wizards handle the start-up code for the projects and for the

various types of objects that are implemented. Furthermore, they do facilitate the

insertion of code for typical cases e.g. handling events, handling User Interface

elements, etc. This makes more difficult the counting and tracking of LOCs

added, deleted or modified in the on going projects.

 Regarding the Reuse, PSP focuses in code reuse and mainly in LOCs

implemented for reuse and objects reuse. However, in our Omega development

process reusability is handled at the analysis and design phases. That means that

the objects that exhibit reusable behaviour are explicitly designed for reuse either

in the same project or in other projects. Thus the overhead and the gains of

reusability are already taken into account in the early stages of development.

Pros

 The concept of Design and Code Reviews along with the checklists was

considered as very significant and helpful for achieving high-quality S/W with

minimised testing effort. The benefits of formally introducing Design and Code

reviews and checklists are manifold. First of all, the lists could be easily

combined with the Omega Framework Guidelines and the Computer Logic’s

standards and code policy statements reaching thus a high degree of conformance

and uniformity. An important characteristic is that the checklists always, due to

their continuous refinement, reflect issues for the most common error patterns,

the best practices and quality assurance aspects that assess the completeness and

correctness of the designs and the delivered code. Furthermore, reviews can be

easily performed on a regular basis, they have low overhead and they exhibit a

high degree of ROI.

 In the context of the Omega S/W development process the compilation errors

were not related to the quality and productivity. On the contrary, PSP considers

compilation errors as an important factor that should be taken into account. The

pilot team was totally convinced that this is true. Thus trying to eliminate or

reduce the compilation errors at the coding stage would lead to higher quality

products with less development effort in less time. It has been justified and

proved in practice that writing code that has almost zero compilation errors

implies mature and complete implementation. Furthermore, the time spent in

PSP Implementation

Page 11.10 of 11.22

compilation was reduced by 20% depending on the size of the project – even

now-days with the very fast compilers and fast machines, compilation is still a

time consuming stage for product builds.

 Concerning Time-logging PSP addresses a very important factor that the Omega

Development process had not considered in its Activity-Log (O Work In Progress

System – WIPS) system. This factor is the number of interrupts along with the

time spent on interrupts. Most of the developers of the Omega development

process are involved in more than one project and impersonate more that one

role. Thus interrupts are quite often and certainly have an implicit contribution to

the number of defects.

 The discrimination and categorisation of defects as proposed by PSP is very

promising and helpful. In general, PSP tackles very well the issue of tracking

down defects in all the stages of the development (Defect Log List). The

existence of historical data on defects is very crucial for the compilation and

production of accurate and up-to-date Design and Code Review checklists.

Furthermore, the Omega library framework would consider the most frequent

defects and put an effort to incorporate work around solutions or even to

eliminate certain type of errors. At the individual level, the Omega developer

could study his defect patterns and categories of errors and eventually be more

careful when designing or coding (self-imposed checklists).

 The categorisation of objects and the existence of historical data per type of

object are very promising aspects of PSP. This classification enables the tracking

of size estimation data, based on the complexity and the type of objects rather

than relying on the Object LOC. The Omega development library framework, as

described in previous sections of this paper, provides a set of reusable classes and

constructs that facilitate the implementation of new objects for the Business

Domain and the User Interface of the applications. The available objects and

constructs are already classified in terms of estimated effort and complexity by

the Omega. This classification could be easily transferred in the PSP context in

order to improve the predictability of time and size.

 Unit Testing process and the Test results are handled in PSP in a very well

defined and efficient manner. The Test templates and forms that introduced in

PSP are similar to the Test scenarios being used in the Omega Development

process. The vast majority of these test cases is derived from the Requirements

Lists and the Use Cases description documents. However, PSP’s Test templates

are more thorough and formal and are dealing mainly with the validation rather

than the verification of certain project’s issues or behaviour.

 One implicit advantage of PSP is that explicitly introduces and requires a

discipline at the S/W Engineering level that is difficult to enforce otherwise. The

developers by nature tend to resist in rules and enforced guidelines. Furthermore,

it is not company’s will to have all the developers working and thinking in a

predefined and identical way. On the contrary Computer Logic is relying on the

individual’s skills, capabilities and ideas that have put in the top S/W companies

of Greece. The PSP gives individual developers the freedom to work as they used

to while complying to certain guidelines and procedures that come from their

own past data and by the expertise of their colleagues.

Having discussed and considered the aforementioned issues concerning PSP the next

step was to modify the PSP in order to be easily applied in two kernel projects of the

PSP Implementation

Page 11.11 of 11.22

Omega development process. The pilot projects that have been selected for the

application of PSP were:

 Omega Application Framework.

This project was selected because the framework is the foundation of all the

Omega applications. The on-time delivery of high-quality Omega versions is

crucial for the success of all the projects. Furthermore, all the guidelines, reviews

and checklists that apply for the Omega framework are also applicable to all the

applications for the development follows similar patterns and it is based on

classes and constructs of the Omega. After all this was the reason for which

Omega development platform was designed and implemented.

 Omega Finance. This was a recently launched project that co-operates with the

already developed Omega business module of Accounting. The development of

this project was at that time at the Design stage, so the modified PSP could be

applied from the very beginning of the implementation. Two senior S/W

engineers from the PSP pilot team were involved in this project.

 The next step was to modify PSP to address our needs. The modified PSP was

designed by taking into account the pros and cons of the PSP as well as the

capabilities of the existing Development methodology and tools. The requirements of

the modified PSP were as following:

 Introduce as low overhead and disruption as possible.

 Focus on improving time and size predictability.

 Reduce the number of defects found in the delivered modules/products.

 Track and maintain historical data for each Omega project for later evaluation.

 Produce appropriate and complete Design and Code Reviews and Checklists.

 Reduce the overall development time and effort spent on the projects.

 Improve individual’s job satisfaction and establish process improvement as an

ever-going effort for the benefit of both the developers and the company.

The modified PSP is based on PSP version 1.1 as designed by Watts Humphrey [1]

and in the Carnegie Mellon PSP lecture notes [2]. The majority of the scripts and the

template forms were introduced in our PSP without any modifications. However, we

did eliminate the entries that had to do with Base LOCs, Added, Deleted and

Modified LOCs, Object LOCs and Reuse LOCs. We gave the modified PSP the alias

of CL_PSP1. For this first version we introduced the Object’s classification as

described in Appendix A: Table SME.1. With this categorisation and with the

estimation of the number of objects in the project it is possible to provide estimation

for the size and the effort for the project using the PSP PROBE method.

Phase 3: Applying CL_PSP1

The modified PSP, CL_PSP1 was applied in the Omega Development library

framework and in the Omega Finance business module. In order to facilitate the

tracking of CL_PSP1 data we extended the structure and the functionality of three

main utilities used in the Omega Development Process. These are:

 O To-Do Lists

PSP Implementation

Page 11.12 of 11.22

This system is responsible for tracking all the development (Analysis, Design,

Implementation and Testing) issues that are related to a specific project per

developer. The information stored per issue was extended to accommodate the

following CL_PSP1 data:

 Estimated Time – Effort (hours)

 Actual Time – Effort (hours)

 Number of defects found in Compilation

 Number of defects found in Unit Testing

 Number of defects found in Integration Testing

 Work In Progress System (WIPS)

This system is responsible for tracking the effort spent by each individual on

every day activities that are related to projects or other responsibilities. For the

developers involved in the pilot projects (Omega Library and Omega Finance) a

new activity has been added called PSP, in order to be able to measure the

overhead imposed by the introduction of PSP.

 Requirements Management System

This system is responsible for tracking down the Requirements (Analysis and

Design) for every project undertaken. This system has been modified in order to

accommodate the following CL_PSP1 data (for the Categories of objects used in

the CL_PSP1 refer to Table SME.1):

 Estimated Number of Objects Per Category in the Analysis – Design stage

 Actual Number of Objects Per Category in the Analysis – Design stage

 Estimated Number of Objects Per Category in the Implementation stage

 Actual Number of Objects Per Category in the Implementation stage

The next step was to train all the developers (four S/W Engineers) involved in these

projects on the CL_PSP1. The training was based on the curriculum of the PSP1.1

course that the pilot has attended. This first effort of training Omega developers in

CL_PSP1 gave us a better insight of the anticipated problems we would face when

introducing PSP in all the Omega development projects. The main problem we faced

was to convince the developers for the necessity of using PSP. They considered PSP

as an effort of the top-level management to pinpoint the way they should work rather

than a means to improve their-selves. This form of resistance and scepticism was

expected but it was overcome by having the two pilot teams organise a free

discussion session in which they explained and shared their impressions and results

from the PSP course.

Phase 4: Introducing PSP in MIS Reports

The Reports and Management Information Systems components development process

has many common characteristics with the S/W – code development process. The

Omega development infrastructure has focused on the improvement of the S/W

process. However, the Reporting and Information Processing subsystems (OLAP,

Data Drilling, Data Warehouse) on top of the Omega applications have become very

important for the overall success of the products being delivered and for achieving

high degree of customer satisfaction (Total Solutions).

PSP Implementation

Page 11.13 of 11.22

The productivity of the MIS Reports development process was poor and the quality of

the delivered systems was rather low. In order to improve this process we performed

two combined actions. The first one was to improve the technological infrastructure

(Omega Development platform) and to provide the Report developers with a

powerful platform that encapsulates the difficulties of Report writing and facilitates

this process. The second action was to experimentally introduce CL_PSPR1 into the

Report development process.

The CL_PSPR1 process is a modified version of CL_PSP1 that has been tailored and

customised to address the needs and the individual characteristics of Report

development process. This was a rather interesting experiment with very promising

results. First of all we had to provide the semantics of the mapping of the S/W Code

world to the Report development world. For example the concept of object was

mapped to the concept of the Report or Report Element (Cross-tab report, Section

Element, Group Element, etc.). The next step was to provide the appropriate

categorisation of Report Elements and their estimated effort based on the data we

gathered from the Report Development process. The categorisation of Report

Elements is described in Appendix A: Table SME.2.

Furthermore, we introduced the following Defect Type standard for the defect

categorisation in the Report Development process as described in Table SME.3.

The action of compilation was mapped to the action of Preview – Run of the Report.

Testing remains the same in principle with the CLP_PSP1 (we used the same Test

Templates and test forms as in CL_PSP1) since the semantics of testing is to validate

that the delivered item performs correctly according to the specifications. Regarding

the reviews and the checklists, CL_PSPR1 has also a Design Review and a Design

Checklist while instead of Code review it defines a Report Layout Review (Report

Layout checklist) and a Database Processing Review (Database Processing checklist).

The report developers were not formally trained to PSP but only to CL_PSPR1

process and to the significance of the introduced metrics. Since CL_PSPR1 is rather a

simple and straightforward process with minimal overhead no significant resistance

has been identified. On the contrary, the report developers showed enthusiasm and

commitment to fill-in and take advantage of the collected data.

PSP Implementation

Page 11.14 of 11.22

Chapter 4: Measured Results and Lessons Learned

The CL_PSP1 was applied in the Omega development Library for a period of four

months during which three major versions and three minor versions of the Omega

library framework were released. Concerning the Omega Finance project, CL_PSP1

was also applied for the same period of time during which four internal versions

(development increments) have been released.

The raw data from enacting CL_PSP1 were processed and interpreted and we reached

to the following results:

 Number of defects found in test was reduced by 15%. This was a very promising

indication especially for the case of the Omega development library because

these effects impact all the Omega applications.

 The average estimation error for well-defined development tasks was measured

around +/- 10% which is a significant improvement from what we were used to

(+/- 20%). The above measurements exclude the cases where the requirements or

the specifications were changed during development. These cases do not meet the

assumptions for applying PSP (sound and complete specs) but they often occur in

real-life.

 Thorough processing of the collected data revealed that the Estimation – Effort

table (Table SME.1) was not accurate enough in the case of the complex UI

elements and objects. So we reached the conclusion that we do need to fine-tune

these two categories. One possible solution is to split these categories into more

so we could cover a wider range of objects or require splitting these complex

entities into more manageable and predictable units.

 No actual improvements in the productivity were identified. This was justified by

the fact that the period of four months is not enough to justify improvements at

the level of individual. We do expect that in one year of systematic use of

CL_PSP1 there would be significant improvement in the overall development

productivity. We should also take into account that the Omega Development

process has been improved in terms of productivity in the context of CMM Level

2 [3] (strong indications of Level 3) (top-down approach) and the ISO 9000-1

assessment. However, the time spent in compilation was reduced and thus we had

an indirect productivity improvement (in most of the Omega projects a full-build

compilation requires a substantial amount of time).

 The measured overhead of applying CL_PSP1 was on average 15%. However,

we do believe that the systematic use of PSP will reduce this overhead to 5%

since it will become a natural way of doing the every day tasks.

 Self-discipline and visibility to each individual’s progress has been increased. We

did observe that the acceptance of the significance of the compilation errors, lead

the developers to produce more mature code at the coding stage (prior to the first

compilation). Furthermore, they exhibited a self-motivated behaviour to minimise

the number of defects found after Unit Testing reducing thus in the long term the

effort spent in Integration Testing.

Concerning the Report Development process the CL_PSPR1 was applied for a period

of three months in the development of MIS components for the Omega Accounting

business module. The results obtained from the enacted CL_PSPR1 data were quite

promising:

PSP Implementation

Page 11.15 of 11.22

 The number of defects found in the Test stage was reduced significantly (40 %).

 The effort estimation accuracy was as good as +/- 20 %. This is considered as a

significant improvement since prior data indicated a high distribution of the

estimation error.

 The overall productivity i.e. the number of MIS components developed per

category per time unit, was increased by an average of 15%. This was expected to

be higher but we do believe that in the future will be increased even further.

 The overall quality of the delivered components was increased due to the

compilation of appropriate Report Review checklists (Design Review, Report

Layout Review, and Database Processing Review). The measurement was based

on the number of Fix Issues allocated to a Released MIS component. However,

this improvement cannot be attributed solely to PSP for during the experiment we

had also modified the Report development technology.

 The Report development process was prior to CL_PSPR1 considered as a black

box. Tracking of the process was very difficult and even the developers could not

evaluate the percentage of the work done. Even worse, it was difficult to estimate

how much effort was spent on certain reports. With the pilot introduction of

CL_PSPR1 we managed to establish discipline and re-organise the Report

development process. Maintaining data on effort, defects, report element types

and size made possible the accurate evaluation and therefore better estimation of

the cost of the MIS components.

 Increased job satisfaction for the roles involved in the Report Development

process. This was very important because the CL_PSPR1 acted as a proof of

management attention and demonstrated the significance of the process to the

developers.

The results we obtained from applying CL_PSPR1 were very promising and proved

that the experiment was successful. The top-level management was convinced about

the benefits we would gain from further improvement of CL_PSP_R2 (version 2) and

from the introduction of PSP in other development tasks apart from coding.

Conclusions

The experiment of introducing PSP in the Omega production environment has shown

promising results and it has indicated ways and practices to improve the company’s

S/W Development process.

PSP has been proven to be a quite effective approach in improving the development

process from CMM Level 3 to Level 4. There is a significant gap between these

levels that has mainly to do with measurements (metrics) and discipline. PSP

manages to make the developers believe in the importance of certain measurements

thus reducing the resistance and the overhead of performing Level 4 activities.

Furthermore, the measurements introduced by PSP are at the right granularity level so

that statistical processing would facilitate the control of the process.

Through the experiment it became evident that a repeatable process infrastructure

(CMM Level 2) substantially supported the use of PSP. In our case, relatively simple

modifications to existing processes and tools provided the means to smoothly enact

PSP.

PSP Training in parallel with the every day workload and commitments has presented

major obstacles to the developers which were overcome with the exceptional

commitment from their part. However, this can not be considered as the normal case

PSP Implementation

Page 11.16 of 11.22

so top management commitment and proper scheduling of the training period are

required.

The measurements collected from the use of CL_PSP1 and CL_PSPR1 were in

general less than what has been set as target. However, the improvements are still

significant and they are certainly promising. Furthermore, the benefits from the PSP

are manifold indicating that the systematic use of PSP will improve the performance

and maturity of the Omega development process at large.

In our case the use of PSP is justified and recommended in the development of core,

critical or highly reusable components, where the cost of errors and the need for

accurate time estimations is very large. At the current state, top management is

convinced about the ROI benefits of applying PSP on the above type of development.

The formal PSP training is not performed at the initial Omega training but rather is

provided as an incentive to best performing developers so that they can be used in

critical developments. However, the PSP concepts and the CL_PSPxx processes have

been included in the Omega training curriculum.

Future actions include the refinement of CL_PSP1 and CL_PSPR1 and the training of

more developers in PSP. Furthermore, we plan to introduce PSP in more processes

and activities of the Omega infrastructure such as the Customer Implementation

Services process.

Having PSP introduced into core processes of the Omega our following process

improvement efforts will be targeted for the CMM Level 4.

PSP Implementation

Page 11.17 of 11.22

Appendix A: CL_PSP1 and CL_PSPR1 tables

Object Category Description Estimated Effort

CLISUD_SIMPLE Simple UI component for the handling of
high level domain object

2 – 4 hours

CLISUD_MEDIUM UI component of medium complexity for

the handling of high level domain object

4 – 8 hours

CLISUD_COMPLEX UI component for the handling of two or

more high level domain objects or objects
with complex interaction with the user

8 – 16 hours

CL_EXPLORER UI component for the presentation and

management of multi-dimensional
information in hierarchical layout

1 – 2 hours per actual level

CL_SCROLLER UI component for the presentation of
information in a tabular layout

1 – 4 hours

CLUI_CUSTOM Custom UI component 2 – 8 hours (depends on the
complexity of the controller)

CLDOM_SIMPLE Domain object of zero – low complexity 1 – 2 hours

CLDOM_MEDIUM Domain object medium complexity and
medium interaction with other objects.

2 – 8 hours (depends on the number

of associations to other objects and
on business domain)

CLDOM_COMPLEX Domain object high complexity and heavy

interaction with other objects of the

system

8 – 32 hours

Table SME.1: CL_PSP1 Omega Object Categories – Effort Estimation.

Report Element Category Description Estimated Effort

CLR_SIMPLE_DBOBJ A report based on low complexity
database processing

0,5 – 1 hour

CLR_MEDIUM_DBOBJ A report based on medium

complexity database processing

1 – 3 hours

CLR_COMPLEX_DBOBJ A report based on medium

complexity database processing

(either large number of database
objects or complex queries)

3 – 16 hours (depends on the

report’s requirements and domain’s
complexity)

CLR_SUBREPORT_OBJ A report object that is interfaced to

the main report

1 – 2 hours (plus the effort for the

sub-report development)

CLR_GRAPH_OBJ A graphics object included in the
report

0,5 – 1 hour

CLR_CROSSTAB_OBJ A cross-tab object included in the
report

1 – 2 hours

CLR_DESIGN_OBJ All the layout elements that

implement the UI of the report

1 – 8 hour (depends on the

complexity of the UI requirements
of the report)

CLR_GRP_SORT_OBJ Grouping and sorting aspects of a
report

1 – 2 hours

Table SME.2: CL_PSPR1 Omega Report Element Categories – Effort Estimation.

PSP Implementation

Page 11.18 of 11.22

Defect ID Defect Description

10 Design object error

20 Design object logical error

30 Database query processing error

40 Database query processing logical error

50 Layout – UI error

60 Report’s logic error

70 Parameter error

80 Omega Interface error

90 Configuration system error

Table SME.3: CL_PSPR1 Defect Types in Report Development Process.

Defect ID Defect Description

10 Documentation

20 Syntax

30 Build, Package

31 Configuration Management

40 Assignment

50 Interface

51 COM – OLE

60 Checking

70 Data

80 Function

90 System

100 Environment

Table SME.4: CL_PSPR1 Defect Types in Omega Development Process.

PSP Implementation

Page 11.19 of 11.22

Appendix B: PSP course aggregated results

Chart SME.1: Accuracy of the size estimation throughout the course-works. The two

lines should be as close as possible increasing thus the predictability of size.

Chart SME.2: Similar to SME.1 with the difference that it demonstrates the accuracy

of time estimation.

Chart SME.3: The percentage for each type of defect injected in the Coding phase.

These data would form the basis for the compilation of the appropriate Code Review

Checklists. The PSP 1.1 and CL_PSP1 categorisation of errors is shown in Table

SME.4

Chart 1: Size Estimation vs Actual

0

50

100

150

200

250

1B 2B 2A 3B 4B 5B 6B

Program Number

N
e

w
 a

n
d

 C
h

a
n

g
e

d
 L

O
C

Estimated

Actual

Chart 2: Time Estimation vs Actual

0

50

100

150

200

250

1B 2B 2A 3B 4B 5B 6B

Program Number

M
n

iu
te

s

Estimated

Actual

Chart 3: Defects Injected in Coding per

Type

2%

33%

10%
12%

12%

7%

14%

10% 0%0%

10

20

30

40

50

60

70

80

90

100

PSP Implementation

Page 11.20 of 11.22

Chart SME.4: The percentage for each type of defect that is removed in the Test

phase. These data would guide the construction of the most appropriate Test cases

instructions for the testers. The feedback provided to the developer helps him to

understand to which type of errors is more vulnerable.

Chart SME.5: The distribution of the defects found in Code Review per defect type.

This information along with the data from Chart 4 form the guide lines for the Code

Review Checklists.

Chart 1: Size Estimation vs Actual

0

50

100

150

200

250

1B 2B 2A 3B 4B 5B 6B

Program Number

N
e

w
 a

n
d

 C
h

a
n

g
e

d
 L

O
C

Estimated

Actual

Chart 5: Defects found in Code Review per

Type

0%

67%0%

22%

0% 11% 0%0%0%0%

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

Chart 6: Code Review vs Compile

Code Review

Compile

PSP Implementation

Page 11.21 of 11.22

Chart SME.6: Comparison of defects found in Code Review versus Compile phase.

We should try to maximise the number of defects found in Code Review and

minimise those found in Compile phase.

Chart SME.7: Percentage of defects found in each phase. The ultimate goal of PSP

and therefore CL_PSP1 is to minimise the number of defects found in Test because

they are more expensive to fix.

Chart SME.8: The percentage of defects removed in each phase. Similarly, PSP’s

goal is to remove defects in the early stages of development.

0%

20%

40%

60%

80%

100%

1B 2B 2A 3B 4B 5B 6B

Program Number

Chart 7: Defects Removed per phase

Test

Compile

Code Review

Chart 8: Defects Removal Distribution

21%

35%

44%
Defects found in code review

Defects found in compile

Defects found in Test

PSP Implementation

Page 11.22 of 11.22

References

[1] Watts S. Humphrey, A Discipline for Software Engineering, Addison Wesley.

[2] Carnegie Mellon University, Personal Software Process, lecture notes

[3] Avratoglou Ch., Process Management Improvement for Software

Development, ESSI Project: 21551, Final Report, 25 Aug 1997

(http://www.esi.es/VASIE/Reports/All/21551/Report/index.htm)

Page 12.1 of 12.59

Session 12 – SPI

Processes and

Modeling

Integrated Requirements Engineering Approach for
Systems and Software

Ulrich Zanker

Liebherr-Aerospace Lindenberg, Germany

Modelling Guidelines for Outsourcing Projects

Christian Zwanzig

ATB Institute for Applied Systems Technology Bremen GmbH,

 Bremen (Germany)

CCM - A fundamental Process for Improving Quality

Clemens Gasser

Joanneum Research, Graz, Austria

Edwin Deutschl

Joanneum Research, Graz, Austria.

Page 12.2 of 12.59

Integrated Requirements

Engineering Approach for

Systems and Software

Ulrich Zanker

Liebherr-Aerospace Lindenberg, Germany

Introduction

Executive Summary

This paper describes the process improvement experiment conducted on a helicopter

fly-by-wire flight control project.

A typical development project is sequenced in the following main activities:

System Requirements Analysis -> Software Requirements Analysis -> Software

Design -> Software Coding -> Software Verification.

The process activity to be improved is in the area of system/software requirements

analysis and capturing. To reach such an improvement, the idea was to use the

dynamic system modelling technique for the behaviour system model (System

Requirements Analysis) and directly link mathematical performance simulation

models for early specification validation and rapid prototyping.

The new requirements engineering approach integrates all electronic design

disciplines, system, software, hardware and quality assurance. Benefits for the

software design process is a direct target and to establish a solid basement for further

process improvements (i.e. hardware/software co-design) is the expected positive

long term spin-off.

The original goals already achieved are the selection of an appropriate tool, training

of the involved engineers, implementation and settlement of the tool and method

within the system/software process. An initial package of the baseline projects

specification is captured, validated by simulation and transformed to software

requirements. These initial software requirements are rapidly prototyped and the risk

areas are checked. A second run through system and software requirements analysis

and capture was performed (enhanced application software functionality). Currently

the documentation generation, result analysis and measurement and dissemination

activities are in progress. The lessons learned are:

SP I PROCESSES AND MO DEL ING

Page 12.3 of 12.59

 A significant effort is necessary to select a tool/method to fit both, the systems

and the software engineers needs and to be appropriate for the application to be

developed.

 Having such a tool/method in place and disciplines/engineers working close

together for specification validation is very beneficial in terms of selecting the

appropriate system architecture.

 Specification validation and rapid prototyping gives a good confidence in the

selected hardware/software architecture at an earlier stage than with conventional

projects.

 A further early result is the fact that the automatic code generation capability,

provided by the simulation tools, are could not be used for this project due to the

selected „unique“ hardware/software design. This leads to the expectation that

automatic code generation cannot contribute a significant benefit to this type of

application (dedicated, unique airborne equipment), but could have an enormous

potential when using standard (off-the-shelf) equipment, which is a clear trend in

the avionics community.

 Tool having excellent simulation capabilities, can be quite poor in documentation

generation.

For future projects it can be assumed that the integrated engineering approach will be

conducted. The selected method and tool chain will be improved even beyond this

PIE project objectives.

The details of this report may be of a particular interest for the aerospace community

but also for organisations producing embedded system software using none-standard

equipment.

This project is carried out by the electronic division of Liebherr-Aerospace

Lindenberg with financial support from the European Commission under European

Software and Systems Initiative ESSI, Software Best Practice, Process Improvement

Experiment PIE.

Article Content

 a short description of the company / business / product

 the starting scenario

 the plans and the expected outcome

 the implementation of the improvement actions

 the measured results and the lessons learned

SP I PROCESSES AND MO DEL ING

Page 12.4 of 12.59

A Short Description of the Company/Business/Product

LIEBHERR-AEROSPACE LINDENBERG GmbH, part of the LIEBHERR

international group, works with about 1200 employees exclusively in the aerospace

business, being one of the leading European equipment suppliers for civil and

military aircraft’s.

The product spectrum of LIEBHERR-AEROSPACE LINDENBERG GmbH is

diverted into the following areas:

 primary and secondary flight controls actuation systems

 landing gears

 environmental control systems

 embedded electronics

This products are supplied to aircraft- and helicopter manufacturers like: Airbus,

Dornier, Embraer, IPTN, Canadair, IAI, Eurocopter, Boeing, etc...

LIEBHERR-AEROSPACE LINDENBERG is regarding itself as a system rather than

a component supplier. This causes the demand to deal with control applications,

which is electronics in general and software in particular. About 100 employees are

dedicated to electronics development and production, 15 of them are in charge with

software development and test for advanced fly-by-wire systems, environmental

control systems and actuator embedded electronics applications.

The importance of software within these systems is steadily increasing, but also the

costs of developing and maintaining software has increased to a level hardly

tolerable. Nevertheless there is no way for a system supplier to omit electronics and

software development, while keeping its position within this highly competitive

global market. Assessments have shown that the only way to manage the situation is

an incremental but continuous improvement of the development process.

The establishment of a solid basis (advanced requirements engineering methods) for

this improvement activity is manpower, time and money consuming and risky in

terms of immediate success. The european process improvement experiment (PIE)

has been an opportunity to lower these risky items (in context with a real world

program) to manageable values.

SP I PROCESSES AND MO DEL ING

Page 12.5 of 12.59

The Starting Scenario

The system and software development process for aircraft equipment is strictly

regulated by advisory papers like ARP4754, DO-178B or DOD-STD 2167A. In order

to be compliant with those papers a V-Model software development process is

established at LIEBHERR.

Fig. IREASS.1 : Software Lifecycle

System Requirements Analysis

The customer requirements are analysed and a system specification is developed, by

making use of simulation tools (Matlab) and system design experience. The results of

the analysis is documented and made available by pure paper output (specification).

This specification is now used by the special departments, to derive system test

cases, test equipment requirements, hardware requirements and software

requirements.

The strengths of this proceeding is in having no formal or method overhead, design

engineers work with best effort dependant on experience only.

The weak points are in having no general method, isolated tool data (simulation),

communication problems with other system designers and special departments, no

consistency analysis, no support for test case generation, no database export for sub-

specifications.

The envisaged corrective actions is the establishment of an state of the art

requirements engineering method with integrated tool support.

SP I PROCESSES AND MO DEL ING

Page 12.6 of 12.59

Software Requirements Analysis

The system requirements are analyses and the software requirements are developed,

by making use CASE-tool supported structured analysis (SA) and real time analysis

(RT). The results of the analysis is documented and made available with the software

requirements document. This software requirements are now used to derive

hardware/software integration test cases and the software design.

The strengths of this proceeding is in having structured method, tools constancy

checking capabilities, tools database can be exported to software design process and

software testing process.

The weak points are in having no database import from system process,

communication problem with system designers, uncovered specification

inconsistencies to be fed into time consuming specification change loop, hardware

and software development are separated, no support for test case generation,

documentation generation semi-automated instead of fully automated.

The envisaged corrective actions is the establishment of an state of the art

requirements engineering method with integrated tool support, tool supported test

case and documentation generation.

Software Design

The software requirements forms the basis for software design work, making use of

CASE-tool supported structured design (SD). The two-phase software design,

structure charts (architecture) and module specifications (software unit detail), is

fully embedded in CASE-tool environment. The results of the software design is

documented and made available with the design description document, now used to

develop software integration test cases, software unit test cases and the software

code.

The strengths of this proceeding is in having structured method, tools constancy

checking capabilities, tools database can be exported to software coding process and

software testing process.

The weak points are in having no support for test case generation, documentation

generation semi-automated instead of fully automated, limited code generation

capabilities.

The envisaged corrective actions is the implementation of tool supported test case

definition, enhanced code- and automated documentation -generation.

Software Coding

The software design forms the basis for coding work, using standard cross

development tools. C-compilers, host based simulators, ROM debuggers and

emulators are integrated within an effective Unix workstation cluster. The software

structure is translated to C-code via a code generator while the detailed design is

translated manually.

The strengths of this proceeding is in having an effective and integrated cross

development tool environment.

The weak points is having very limited code generation capabilities.

The envisaged corrective actions is the gradual upgrade of tool environment to

enhanced code generation.

SP I PROCESSES AND MO DEL ING

Page 12.7 of 12.59

Software Verification

The software verification process consists of reviews, analysis and tests in terms of

software unit (modules), software integration (design) and hardware software

integration (requirements) verification activities. The depth and the effort of this

activities depends on software criticality category. The software verification process

activities are documented and made available with appropriate plans, procedures and

results.

The strengths of this proceeding is in having review and analysis techniques are

supported by CASE environment and requirements traceability tool, statical software

unit tests are automated.

The weak points are in having no sophisticated tool support for dynamic unit test, sw

integration test and hardware/software integration test, documentation generation

semi-automated instead of fully automated.

The envisaged corrective actions is the tool supported software test and automated

documentation generation.

Conclusion

With the software fault trend analysis (reasons for software changes), undertaken for

a fly-by-wire flight controls project, can be shown that the areas, „customer request“

and „project requirements“ have a proportional high share in the reasons for software

changes. The majority of these changes can be dedicated to inconsistencies or white

spots of the specification and to communication problems between system and

software development disciplines.

Fig. IREASS.2 : Software Fault Trend Analysis

This lead to the conclusion that the utilisation of suitable methods and CASE-tools

SP I PROCESSES AND MO DEL ING

Page 12.8 of 12.59

for the system specification work would result in best benefits for the development

process by founding the solid basement for further process improvement. Such the

corrective action encountered above can be prioritised:

 establishment of a requirements engineering method with integrated tool support

(Priority 1).

 hardware/software Co-design (Priority 2)

 tool supported software test (Priority 3)

 automated documentation generation (Priority 4)

 enhanced code generation (Priority 5)

The process improvement activities at LIEBHERR are considered as important and

essential for the company and its products. The processes are subject to continuous

analysis and from today knowledge, the above indicated corrective actions will be

released step by step, following the prioritising.

Quality Management

Quality assurance activities are involved in the development process from start of a

project to the end of a systems useful life and plays an active role in any process

definition/improvement activity. The involvement of the quality assurance

organisation, into development and manufacturing processes, is laid down in the

company quality manual. LIEBHERR is certified to AQAP-1 and the quality system

is compliant to ISO 9001. Compliance to ISO 9000/3 (Software) is a short term

target, while certification to ISO 900X is planned for some date in the future.

SP I PROCESSES AND MO DEL ING

Page 12.9 of 12.59

The Implementation of the Improvement Action

Introduction

The experiments main focus is the definition and introduction of dynamic system

modelling methods and techniques with integrated tool support. The selection of the

appropriate method and tools has marked the starting point of the experiment,

followed by an intensive training suite for the experiment involved system and

software engineers. The experiment is finished when having evaluated the results by

comparing the experiment overlaid sub-project (ACE) with the reference

project(COS).

This PIE-project is completely managed and carried out by Liebherr, the prime user.

For training and coaching (consultant) Scientific Computer was selected as a

subcontractor, the tool producing company.

The requirements for the actuator control electronic (ACE) shall be developed in

conjunction with the process improvement experiment, while the cockpit

interface(COS) will serve as a reference project, with a conventional requirements

engineering approach. The baseline projects are split into two work-packages each,

the „initial package“ implementing the minimum functionality required to make the

whole system run and the „final package“ implementing full functionality.

The workpackages (WP 1 - 13) defined below, are in relationship to those „initial“

and „final packages“ and introduced around requirements analysis, capture,

simulation and validation. The termination of those workpackages are marked by

internal deliverables and internal dissemination activities as defined with the

workpackages. This marks serve as measured reference points for the project

Fig. IREASS.3 : Integrated Tool Overview

SP I PROCESSES AND MO DEL ING

Page 12.10 of 12.59

The Selected Project

Within the baseline project an electronic flight control system is to be developed for

the existing EC 135 helicopter. This program contains two kinds of electronic boxes,

a cockpit interface COS and a actuator control electronic ACE. A general system

overview is given in figure below:

Fig. IREASS.4 : System Overview

Reference Project Cockpit Interface (COS)

Specification of functional requirements, hardware and software requirements,

software development, software test and system integration are the activities to be

accomplished for that sub-project. The COS is designed to receive and process data

from sensors and upstream flight control computers. The resulting commands are

transmitted via fibre distributed data buses to the actuator control electronics. In

addition the COS has to collect the actual data from the actuator electronics and

transmit that data to the cockpit for indication and analysis purposes.

SP I PROCESSES AND MO DEL ING

Page 12.11 of 12.59

Baseline Project Actuator Control Electronic (ACE)

Specification of functional requirements, hardware and software requirements,

software development, software test and system integration are the activities to be

accomplished for that sub-project. The functional requirements, laid down within the

customer specification, have to be analyses and subsequent system requirements have

to be established, captured and validated, in the context of integrated tool support

from requirements analysis, via the software design, coding, integration to

verification and test. The ACE is designed to receive command values from the COS,

closing the actuator regulation loop by calculating the servo-drive current, monitor

hardware and behaviour of the connected actuator and transmit status and monitor

data back to the COS.

Sub-Projects Date&Time

COS initial package mid 97 - mid 98

COS final package end 98 - mid 98

ACE initial package mid 97 - mid 98

ACE final package End 98 - mid 98

Method and Tool Selection WP 1

Selection of appropriate method and tool for the requirements engineering task. The

methods and tools were finally analysed for adequacy. The result was the selection of

the Matlab/Simulink/Stateflow tool chain.

Fig. IREASS.5 : Selected Tool

SP I PROCESSES AND MO DEL ING

Page 12.12 of 12.59

Basic Training and Tool Installation WP 2

Basic training of method and tool. Engineers of the different disciplines (system

design, software design, hardware design and quality assurance which are

contributing to the PIE) have been trained together. This was the first step towards

the integrated approach.

Fig. IREASS.6 : Basic Training (Example Model)

Add On Training WP 3

Sophisticated add on training of method and tool. The engineers of the PIE core team

(system design and software design) have been trained together. The aim of this

training was to enable the engineers to start a project by utilising system modelling

methods and technologies.

SP I PROCESSES AND MO DEL ING

Page 12.13 of 12.59

Fig. IREASS.7 : Add On Training (Example Model)

Familiarisation with Method and Tool (Example Application) WP 4

A small example application was modelled from system specification to the software

requirements. This has given the chance to familiarise with method and tool.

Fig. IREASS.8 : Example Application (Control Loop Model)

SP I PROCESSES AND MO DEL ING

Page 12.14 of 12.59

System Requirements Capture „initial package“ WP 5

The system requirements for the baseline projects, already formulated with

conventional specifications, have been reworked by utilising the systematic methods

of dynamic system modelling and the modelling tool support to implement the

minimum functionality required to make the whole system run („initial package“).

An activity requiring a co-ordination of all design disciplines (system, software,

hardware and quality assurance).

Fig. IREASS.9 : Baseline Application (Control Loop Model)

System Simulation and Specification Validation „initial package“ WP 6

The system requirements for the baseline projects („initial package“) have been

validated by analysis and simulation. This activity was concentrated on system

design personal (system engineers) but software engineers and coaching support

have been involved to reach the goal of an integrated requirements engineering

approach.

Fig. IREASS.10 : Control Algorithm, Simplex Simulation Model

SP I PROCESSES AND MO DEL ING

Page 12.15 of 12.59

Export of System Model Database and Software Requirements Capture

„initial package“ WP 7

The system models database has been exported to the software process, suitable for

refinement of the software requirements from the system requirements. This activity

was accomplished by the software engineers actively supported by the system

engineers.

Fig. IREASS.11 : Example Application (Mode Control)

SP I PROCESSES AND MO DEL ING

Page 12.16 of 12.59

Rapid Prototyping „initial package“ WP 8

Rapid prototyping via automated code generation should have been used to validate

the sensitive edges (control loop) of the system/software design, an activity intended

to deal with risk management involving mainly software engineers.

Fig. IREASS.12 : Quadruplex Voting Control Loop

System and Software Requirements Capture „final package“ WP 9

The system requirements for the baseline projects, are reworked by utilising the

systematic methods of dynamic system modelling and the modelling tool support to

implement the full functionality („final package“). The „ final package“ has to be

validated by analysis and simulation. After export of suitable data to software

development, the software requirements for the full functionality is refined and fed to

the software design process. An activity requiring a co-ordination of system and

software engineers.

Documentation Generation for System and Software Specification WP 10

Automated documentation generation of system specification and software

requirements document This activity is accomplished by the software engineers

actively supported by the coaching experts.

Analysis and Measurement of Results WP 11

SP I PROCESSES AND MO DEL ING

Page 12.17 of 12.59

Analysis of measured result and comparison with reference project.

SP I PROCESSES AND MO DEL ING

Page 12.18 of 12.59

External and Internal Dissemination Activities WP 12

Preparation of report and presentation material and subsequent presentation for the

intended audience.

Project Management WP 13

Preparation of PIE-project schedules, observation of effort and results and

applicability of measured reference points. The project schedules and resources are

co-ordinated with the companies product planning system PPS. The technical co-

ordination and observation is accomplished by an assigned engineer, assisted by the

integrated configuration management and problem reporting tool STS.

SP I PROCESSES AND MO DEL ING

Page 12.19 of 12.59

The Measurement Results and the Lessons Learned

At this time, the experiment is ongoing and especially the results and analysis are of

preliminary nature and not complete. The full and final results will not become

apparent until the remainder of the experiment is completed.

Measurement of Results

The measurement of results in form a fault trend analysis is in progress. As a

preliminary result we can see good stability of system/software requirements for the

ACE control loop (baseline project), whilst the requirements of the COS are still

moving.

We expect that the early detection of the ACE functional architecture inadequacy has

already contributed positively to the return on investment but this is difficult to

quantify. The exceptional "early" stability of the requirements we can observe let us

expect positive results from the fault trend analysis and a better lines of code per

hour relationship compared to the reference projects measurement.

Lessons Learned

Technical

Tool Selection: - The CASE/Simulation tools available on the market fitting best for

standard (off-the-shelf) hardware/software architectures. To select a specification

tool for a dedicated and unique application, as it is currently the case in the aircraft

actuation and control business, is a complex and sensitive task. Finally a

mathematical performance simulation tool (Matlab/Simulink) with its extensions

Stateflow and Real-Time Workshop was selected. This tool chain is highly

integrated, fits best for inter-discipline (system, software, hardware) specification

task, offers an adequate rapid prototyping capability and has, from our point of view,

an enormous potential for future extensions. The weak point of the selected tool

chain is the documentation feature which is quite poor in comparison with classical

CASE tools, but announcements from the suppliers are in place to improve this in the

near future.

Training and Familiarisation with Method and Tool: - After the intensive

training, the core part of the system specification of a small sample application

(landing gear steering system) have been validated. The positive effect, compared to

a none PIE overlaid project, was a very detailed knowledge of the steering control

problems and side-effects, despite the application is completely new and no

prototype hardware is available at that time.

System Requirements Capture and Specification Validation: - The intensive

simulation activity for specification validation, driven mainly by the PIE-activity, has

SP I PROCESSES AND MO DEL ING

Page 12.20 of 12.59

finally shown that the selected hardware/software architecture (control-monitor

philosophy) is not adequate for this actuator control application. This inadequacy

was detected at an very early stage of the project, compared to conventional projects,

where the problem would have been discovered much later, probably during system

integration phase.

Software Requirements Capture and Rapid Prototyping: - The software

requirements capturing activity is considered to be more effective due to involvement

of software engineers in specification validation and due to increased confidence into

correctness of specified functions and algorithms. The rapid prototyping (within a

target prototype) is considered as a second key activity (beside the specification

validation). This activity has to deliver the final confidence into the selected

hardware/software design to be adequate in terms of performance. An early result is

the fact that the automatic code generation capability, provided by the simulation

tools, are could not be used for this project due to the selected „unique“

hardware/software design.

This leads to the expectation that automatic code generation cannot contribute a

significant benefit to this type of application (dedicated, unique airborne equipment),

but could have an enormous potential when using standard (off-the-shelf) equipment,

which is a clear trend in the avionics community.

Documentation Generation: - The documentation generation capability is currently

an extremely weak point of the selected method/tool. In that area we are missing the

automated assistance of a "traditional" CASE tool. The documentation generation for

the project is not automated as expected.

Business

It is to early to describe results in terms of their business impacts definitely, but as an

outlook, the assumption of the program plan, that a development process, effective in

terms of cost and time to market is essential, is still valid and the selected

tool/method has the potential to deliver this.

Organisation

The project had no direct impact on the organisational environment, but the project

results clearly confirms and support of the recent trend within the company to

establish a product related organisation network, in addition to the pure departmental

structure of the past.

Culture

In general there are mainly positive impacts related to people. The different design

disciplines improved there communication basis dramatically. The early involvement

of software engineers in specification related activities and the get in touch of the

system engineers with software related problems can both be considered positive.

SP I PROCESSES AND MO DEL ING

Page 12.21 of 12.59

The natural resistance of our system engineers to do their daily business by using

complex tools and methods led to the selection of a tool chain fitting both, solving

real world practical problems and the more academic philosophy of the software

staff. The final success, discovering design inadequacy at this early stage and having

solid requirements proved by rapid prototyping, already convinced the two parties

having done the right selection.

Skills

The additional skills learned from training and practising wit the PIE-project gives a

broader knowledge the formerly specialised experts. Especially the system and

software designers are found together to an integrated team with better understanding

of each others problems which is beneficial for the entire product.

SP I PROCESSES AND MO DEL ING

Page 12.22 of 12.59

Key Lessons

For the time being, the key lessons cannot be complete neither have the final format

but first lessons already learnt and formulated.

Technological Point of View

A tool chain which is expected to fit for requirements engineering and enhance

productivity needs to:

 have an excellent user interface provide good mathematical performance

simulation capabilities

 have behavioral simulation capabilities

 provide automatic code generationhave standard interface to other tools (i.e.

prototyping tools, configuration management, etc..)

 provide state of the art documentation capabilityhave future extension potential

There is no such tool on the market. You have to compromise, set priorities.

The use of standard tools is most effective if using standard hardware/software

architectures/platforms and less effective when working with dedicated, unique

designs.

Early specification validation is a key feature for adequate system, hardware and

software design.

Rapid prototyping, with target prototypes is essential for design confidence in case of

embedded real time applications.

Business Point of View

There is a definitive need of continuos improvement of the development process in

terms of cost effectiveness and time to market.

The market provides new tools, technology and knowledge within very short update

rates, but not every technology or tool fits to a given application.

There is an excellent return of investment if choosing an adequate tool and method

and there is only cost if selecting an inadequate.

Strength and Weakness of the Experiment

Despite the analysis and measurement activity is not completed, a preliminary view

on experiments pros and cons can be made.

Pros:

SP I PROCESSES AND MO DEL ING

Page 12.23 of 12.59

 having selected good tool and method for integrated approach

 intensive specification validation show benefits as expected

 integrated approach shows positive results (communication, problem

understanding, etc.)

 adequate specification process is a good basis for further improvements- the

experiments theory is continually proofed by the baseline projects real world

problems

Cons:

 compromises at tool selection for software development (simulation tool - not

CASE tool)

 finding an integrated approach (system, software, hardware) can be costly in time

and money

 the experiments success may be influenced by baseline project success

SP I PROCESSES AND MO DEL ING

Page 12.24 of 12.59

Conclusions and Future Actions

The experiment is ongoing and especially the results and analysis are of preliminary

nature and not complete. The full and final conclusions will not become apparent

until the remainder of the experiment is completed.

As a first and preliminary conclusion the conduction of the experiment has shown the

correctness and adequacy of experiments philosophy - founding a solid basement

with the integrated requirements approach for future process improvements. It

became obvious that process improvement has to be a continuos action driven by the

appearance of new technologies.

A key feature to gain good support from the market (tools, expert knowledge) is to

change to standard architectures in software and hardware as far as it is possible in

our field of applications.

It is evident that we have to apply the selected simulation environment to a new

project, having in mind the strength and weakness encountered during the

experiment. And we shall try to introduce the next step, identified when analysing the

starting scenario - the hardware/software co-design.

SP I PROCESSES AND MO DEL ING

Page 12.25 of 12.59

References

 [1] RTCA/DO-178B, Software Consideration in Airborne Systems and

Equipment Certification, RTCA-Requirements and Technical Concepts for

Aviation, RTCA, Inc. 1140 Connecticut Avenue, N. W., Suite 1020

Washington, D.C: 200036, USA 1992

[2] ARP 4754, Certification Considerations for Highly-Integrated or Complex

Aircraft Systems, System Integration Requirements Task Group, SAE-

Society of Automotive Engineers, Inc., USA

[3] DOD-STD-2167A, Defense System Software Development, Military

Standard, Department of Defense Washington D.C. 20301, USA 1988

Glossary

ACE Actuator Control Electronic

ACT/FHS Active Control Technologie Demonstrator - Fliegender

Hubschraubersimulator

CASE Computer Aided Software Engineering

COS Cockpit Interface

DLR Deutsche Forschungsanstalt für Luft- und Raumfahrt

ECD Eurocopter Deutschland

LLI Liebherr-Aerospace Lindenberg GmbH

PIE Process Improvement Experiment

PPS Product Planning System

SA Structured Analysis

SD Structured Design

RT Real Time

SP I PROCESSES AND MO DEL ING

Page 12.26 of 12.59

Appendix

Author

Ulrich Zanker, graduated at Fachhochschule Munich with Dipl. Ing. (FH), is working

for Liebherr-Aerospace Lindenberg since 1983.

He has experience in developing software for airborne computers like: Airbus A310

Slat Flap Control Computers (Flight Controls) and Airbus A320 Zone Controller

(Environmental Control System).

Another field of experience is the introduction and administration of the technical

computer system for the electronic department (VAX-Cluster, Unix Workstations

and networked PCs).

Since 1993 he is heading the software group (currently 16 software engineers) of the

Liebherr-Aerospace electronic department, producing safety critical software for

airborne computers as well as software for the associated test systems (test benches

and simulators).

Company

LIEBHERR-AEROSPACE LINDENBERG GmbH, part of the LIEBHERR

international group, works with about 1200 employees exclusively in the aerospace

business, being one of the leading European equipment suppliers for civil and

military aircraft’s.

The product spectrum of LIEBHERR-AEROSPACE LINDENBERG GmbH is

diverted into the following areas:

 primary and secondary flight controls actuation systems

 landing gears

 environmental control systems

 embedded electronics

this products are supplied to aircraft- and helicopter manufacturers like: Airbus,

Dornier, Embraer, IPTN, Canadair, IAI, Eurocopter, Boeing, etc..

Page 12.27 of 12.59

Modelling Guidelines

for Outsourcing

Projects

Christian Zwanzig

ATB Institute for Applied Systems Technology Bremen GmbH,

 Bremen (Germany)

Introduction

Project Background

A lot of commercial and industrial organisations need and use application-

specific software systems in order to fulfil their daily business according to

market requirements and in order to gain, save and expand their market

shares. The necessity for application-specific software systems will even

dramatically increase in the future because of the steadily increasing

international competitive pressure apparent in the growing market demands

placed on cost-efficiency, quality and flexibility with respect to services and

products. The development of application-specific software needed for

running daily business is on the one hand often independently executed by

these organisations. On the other hand, organisations due to the lack of

required developmental resources have to use external software suppliers to

fulfil this task.

Extensive experience has shown that it is often much more efficient (i.e. cost

and time aspects) not to develop software systems fully in-house, even for

commercial and industrial organisations with their own software

development departments. However, being aware of the additional

development risks connected with outsourcing, organisations still are

reluctant to extensively use this possibility. Thus, the advantages of a short

time to market period and the cost efficiency of a specialised software

supplier are not fully exploited.

A key factor for successful outsourcing is the possibility for the customer to

ensure control of the software project during the entire software development

GUIDEL INES FOR OUTSO URCING

Page 12.28 of 12.59

process. In this context, the requirements analysis, the system specification

and the system design phases are the most critical phases with regard to

outsourcing. Insight lost at these phases can normally only be recovered in

further life-cycle phases with immense efforts. Therefore, these phases have

been addressed by the ESSI Project No. 24176 OutSource (Software Process

Improvement Experiment Concerning Effective Outsourcing Mechanisms).

The results presented in this paper have been elaborated within the

framework of this project.

Project Objectives

The OutSource project had the objective to improve the software development

processes at the OutSource project partners with respect to outsourcing: Both

project partners should be supplied with the best prerequisites to execute

outsourcing projects just in time with higher quality and lower costs in

reference to former software development projects.

In this context, special emphasis should be given to an improvement of the

transparency and the controllability of the software development process

from a management and a technical point of view.

The Project Partners and the Starting Scenario

The partners of the OutSource project are ATB Institute for Applied Systems

Technology Bremen GmbH, a highly innovative and successful technology

centre (prime contractor of the OutSource project), and BLG Automobile

Logistics GmbH & Co., one of the largest port operating companies in Europe.

The idea for the OutSource project had the following origin: ATB had

identified that a number of companies were reluctant to outsource software

development because they were apprehensive of becoming dependent on the

particular software suppliers. Therefore, ATB - in order to better serve

customers and to increase its market share in the software business - wanted

to establish a software development process which would remove such

barriers at potential customers.

In contrast to ATB, BLG was faced with the following situation: In order to

react to the increasing market requirements, BLG urgently needed future-

oriented information systems for its operational business. Although BLG was

supported by a central software department with respect to the development,

installation and maintenance of operation-supporting software systems, BLG

intended to emphasise outsourcing in the future in order to be more flexible

and cost-efficient in software development and to reduce the time-to-market

of new systems. However, BLG realised that for the effective management of

outsourcing, its software engineering process had to be improved

significantly.

The Baseline Project

The OutSource project has been connected to a baseline project in which ATB

as a software supplier of BLG has developed an entire ‘Quality Information

and Control System (QISS)’ concerning the loading and distribution of cars.

GUIDEL INES FOR OUTSO URCING

Page 12.29 of 12.59

QISS is a typical business-oriented system which required efforts of more

than 30 man months for realisation. QISS was urgently needed by BLG in

order to maintain its competitive position as the leading port operating

company in Europe for the import and export of cars. In the baseline project,

BLG and ATB represented a typical "customer - software supplier" relation.

Key Aspects of the OutSource Experimentation

In order to achieve the objectives connected to outsourcing, the

experimentation within the OutSource project focused on four key aspects

which are closely connected and which are relevant for outsourcing

altogether. These aspects are shown in figure CZW.1.

Incremental Software Development Approach

Software

Development

Process

Guidelines for

Communication and Team Organisation

Modelling

and

Design

Guidelines

Outsourcing

Milestones

and

Metrics

Focus of this

 paper

Fig. CZW.1: Key aspects of the OutSource experimentation

The subsequent sections of this paper are - in addition to some remarks

concerning the incremental software development approach - focusing on

modelling guidelines which have been elaborated and tested in the

framework of experimentation.

The Incremental Software Development Approach

The objective to provide sufficient project transparency and controllability to

the customer can be successfully achieved by applying an incremental

software development approach, the basic idea of which is to subdivide a

software system to be developed into operational subsystems and subsystem

expansions (see [7]). The first subsystem is an appropriate basic system of

the final software system. By successive integration of the different

subsystem expansions, the basic system evolves into the final software

system (see figure CZW.2). The main benefits of this approach are:

 The development risk is minimised for the customer.

 The customer has good chances to get sound insight into the project

progress.

 Feedback from real system operation is available at an early stage of the

GUIDEL INES FOR OUTSO URCING

Page 12.30 of 12.59

project.

For the success of an incremental software development approach, it is essential that the

subsystems and subsystem expansions are defined in an appropriate way. They should be

tailored on the basis of

1. the business processes of the customer (in order to allow for a smooth software

introduction) and

2. a global software specification (in order to secure that the different subsystem

expansions will fit together).

Based upon the global system specification and the business processes of the customer

(current processes and appropriately reengineered processes), a realisation stage plan

should be elaborated which describes the relevant functionality for each realisation stage

and its integration into the existing business processes. Each subsystem must have a high

maturity level as a basis for its usability as an operational system. This requirement

increases the amount of work that has to be performed for system integration and testing.

Therefore, appropriate test procedures should be applied to reduce the work expenditure

necessary to secure software quality.

It has to be emphasised that the structure of the subsystems and subsystem expansions is

not necessarily correlated to the structure of the software components reflecting the

internal software architecture.

Initial

 Realisation

Stage

Basic

System

First

 Extension

Stage

Final

 Extension

Stage

Final

System

Software Units

Software

Components

Software Modules

Database

Results

Requirements

 Analysis

Design

and

Implementation

Solution

Dependent

Specification

Solution

Independent

Specification

Activ
iti

es

Specification

Documents

Business

Process

Model

Time

Fig. CZW.2: The incremental software development approach

An incremental software development approach is useful in all software

development projects where there is a customer - supplier relationship. With

respect to the special requirements of outsourcing projects, ATB has

expanded the incremental software development approach by additional

guidelines concerning technical and organisational aspects in order to further

improve outsourcing project transparency and controllability on the part of

the customer. The modelling guidelines presented below are one part of these

additional guidelines. The resulting concept which was used and verified by

ATB in field studies correlated to the above-mentioned baseline project is

called ‘Incremental Software Development Concept for Outsourcing (ISDC)’.

It has to be emphasised that the guidelines which have been developed and

GUIDEL INES FOR OUTSO URCING

Page 12.31 of 12.59

validated by experimentation are beyond the scope of definitions and

guidelines which are made for example by the German V-Model (see [6] and

[7]) or similar standards like for e.g. the DoD 2167A standard or the ESA

software engineering standards (see [9]). The outsourcing guidelines are

neither based upon nor in conflict with such standards.

Modelling Guidelines

A key essential in order to achieve a successful outsourcing process is to

involve the user more intensively in the software development process

throughout the whole development life cycle. The key challenge for this task

is to find a common communication level between the users and the company

management of the customer on the one hand, and the software development

team on the other hand. To realise this communication, so called ‘models’ of

information gathered and decisions made are required throughout the entire

development process. A key criterion for an efficient communication process

is a good quality of the created models. Experience gained not only in the

OutSource project but also in several other projects has shown, however, that

in modelling often one or more of the following typical problems occur:

 The modelling width is overly extensive in relation to the objectives of modelling, i.e.

parts have been modelled which are not relevant with respect to the objectives of

modelling.

 The modelling depth is overly extensive (too many details) in relation to the objectives

of modelling.

 The models are poorly understandable and legible (because of missing guidelines with

respect to naming, placing of symbols, general layout etc.).

 Different models are insufficiently comparable (because of insufficient guidelines for

modelling).

 Within the models, consistency conditions are violated.

 The models contain useless redundancies.

 The number of hierarchical decomposition levels is too excessive.

 The models are poorly structured (different levels of abstraction are mixed).

The Methodology Reference Model

To overcome the above-mentioned problems, ATB has - as the first step of the

experimentation - elaborated a so-called ‘Methodology Reference Model’

which describes different layers of topics for which modelling and

documentational guidelines should be defined in order to reduce the

corresponding degrees of freedom and by this to improve the communication

process between the customer and the software supplier (see figure CZW.3).

The Methodology Reference Model (the detailed structure of which is

presented in [1]) can be used for any kind of modelling within the software

development process.

Normally, if a special modelling method or modelling tool is applied, then

only parts of the above-mentioned Methodology Reference Model are covered

by the rules and conventions which are inherent in the method or tool.

Especially the layers ‘Objectives of Modelling’, ‘Basic Modelling Principles’,

‘Attribute Generation’ and ‘Placing of Element Symbols’ are normally not

GUIDEL INES FOR OUTSO URCING

Page 12.32 of 12.59

covered by common methods and tools. The other layers are often only

partially covered or are subject to a configuration of the modelling tool. This

implies that - according to the Methodology Reference Model - degrees of

freedom remain which have to be covered by appropriate additional

guidelines. Allowing the individual analyst to cover the remaining degrees of

freedom without any additional guidelines, normally leads to the following

problems:

 The modelling diagrams and documents concerning one project are difficult to read

and understand, especially for the customer, because the remaining degrees of

freedom are covered in a different way from diagram to diagram and from document

to document. Usually, this effect increases significantly if more than one analyst is

involved in modelling.

 It is even more difficult to compare the modelling diagrams and documents of

different projects.

Therefore, a modelling method or tool to be applied has to be systematically

analysed concerning which layers of the Methodology Reference Model are

covered by this method or tool (a corresponding example is shown in figure

CZW.3). The remaining degrees of freedom have to be covered by appropriate

guidelines with respect to outsourcing. As a contribution to customer

orientation of the software engineering process, special emphasis has to be

given to the fact that such guidelines indeed do lead to models and diagrams

which the customer can easily understand and verify.

Methodology Reference Model

A

A

A

A

A

A

T

T

T

Definitions by

UML 1.2 and

‘Rational Rose 98’

Additional

Guidelines

A

T

T

T

A

Layer 2: Basic Modelling PrinciplesLayer 2: Basic Modelling Principles

Layer 1: Objectives of ModellingLayer 1: Objectives of Modelling

Layer 4: Views to be Created

Layer 6: Attribute GenerationLayer 6: Attribute Generation

Layer 7: Representation of Elements (Element Symbols)Layer 7: Representation of Elements (Element Symbols)

Layer 8: Placing of Element SymbolsLayer 8: Placing of Element Symbols

Layer 5: Modelling SyntaxLayer 5: Modelling Syntax

Layer 9: Structures and Layout of ReportsLayer 9: Structures and Layout of Reports

Layer 3: Element Types to be UsedLayer 3: Element Types to be Used

Fig. CZW.3: The different layers of the Methodology Reference Model

Based on the above-mentioned Methodology Reference Model and in

reference to the outsourcing requirements, for the following types of models

appropriate guidelines have been applied and tested in the scope of

experimentation:

1. Business process models based upon ATB’s ‘Task Analysis Methodology

(TAM)’ (created with ‘ABC FlowCharter’ in combination with ‘MS Access’)

2. ARIS-type business process models (created with the ARIS Toolset)

3. Functional models (created with the ‘Select SSADM’ CASE tool, see [10])

GUIDEL INES FOR OUTSO URCING

Page 12.33 of 12.59

4. Entity relationship models (created with ‘Select SSADM’)

5. Use case models (based upon UML and ‘Rational Rose 98’)

6. Class diagrams (based upon UML and ‘Rational Rose 98’)

7. Sequence diagrams (based upon UML and ‘Rational Rose 98’)

The model types 1 and 2 have been applied in the scope of experimenting

with different approaches for business process modelling as a pre-step of

software development (see [1], [2], [3] and [15]). The model types 3 and 4 have

been applied in the scope of experimentation with base technologies which

belong to a more classical approach for system specification, whereas the

model/diagram types 5, 6 and 7 are part of the relatively new Unified

Modeling Language Version 1.2 (UML 1.2, see [5], [8], [13] and [14]) the

importance of which, however, with respect to outsourcing projects will

significantly increase in future. In the following sections, some examples of

the results achieved are given.

Functional Model

In the baseline project, the project partners elaborated - based upon the

business processes of the customer - a solution-independent system

specification which consists of a functional model and an entity relationship

data model.

As a part of the OutSource project, different representation approaches for

the functional model have been applied and tested. Included in the

experimentation were data flow diagrams, function tree diagrams and

function/entity matrices showing the correlation between functions and data

entities.

Experimentation disclosed that data flow diagrams require a lot of layout

work in order to make these diagrams easily readable. The benefits yielded

by data flow diagrams proved inadequate when compared to the efforts

required for the layout work concerning these diagrams. As a consequence,

data flow diagrams were elaborated only for presentations of the context

situation, of the 1st functional decomposition level and of some branches of

the second functional decomposition level. For the presentation of the entire

functionality of the software system, function tree diagrams proved to be very

useful. For the specification of the correlation between functions and data

entities, function entity matrices were applied successfully. The individual

functions of the system were described in a textual manner without any

additional guidelines to describe the functional flow of events.

Use Case Model

The more classical approach of a functional model was compared to a use

case model approach (see [11] and [12]) which is compliant with the future-

oriented Unified Modeling Language (UML). Based upon the business

processes of the customer, in the scope of the OutSource experimentation

parts of the system functionality were modelled on the basis of use cases with

the aid of the ‘Rational Rose 98’ CASE tool. This use case model is an

alternative part of the solution-independent system specification.

The decision to use the ‘Rational Rose 98’ CASE tool had on the one hand

company-strategic reasons but was on the other hand also based on the

GUIDEL INES FOR OUTSO URCING

Page 12.34 of 12.59

results of a comparison of ‘Rational Rose 98’ to the ‘SELECT Enterprise

Modeler’ CASE tool with respect to use case modelling. The comparison

showed that ‘Rational Rose 98’ has a wider spectrum of functionalities for

example concerning the possibility to define associations between actors or

the possibility to refine every model element with different types of diagrams.

During experimentation, due to the existence of a higher number of different

use cases, the necessity of an appropriate grouping of use cases was

identified in order to yield better understandability and legibility of the use

case diagrams. The grouping was carried out analogous to a classical

functional hierarchy.

The first approach for the grouping of use cases was to use the UML

construct of packages. In this context, the intention was to show all

associations between actors and use cases not only on the use case level but

also on the package level. This, however, is not possible because associations

between actors and packages are not allowed within UML 1.2 (see [13]) and

‘Rational Rose 98’.

As an alternative approach, use cases with special stereotypes were used for

the logical grouping of use cases. For all stereotypes of use cases, the

corresponding actors and their associations (interactions) with the use cases

were included in the diagrams. After several refinements, the stereotypes

‘system’, ‘process’, ‘operation’ and ‘sub-operation’ were defined: The ‘system’

stereotype was used in the top-level (level 0) use case diagram. This diagram

is a context diagram which contains on the one hand a use case representing

the software system with all its use cases, and on the other hand all the

different actors (roles and external systems) including their interactions with

the system. The ‘process’ stereotype was used for all use cases below the

context level which represent a logical grouping of other use cases. For every

use case with the ‘process’ stereotype, a separate use case diagram was

created. The ‘operation’ stereotype was used for all ‘original’ use cases, i.e.

use cases which do not represent a logical grouping of other use cases. By

means of the ‘sub-operation’ stereotype, all use cases were indicated which

appeared as a consequence of the ‘uses’ and the ‘extends’ associations and

which do not represent independent and complete operations.

In correlation with the above-mentioned Methodology Reference Model,

guidelines were elaborated which include - among other things - the naming

of use cases, the structure of use case descriptions, the placing of element

symbols in use case diagrams and the structure and layout of use case model

reports.

Experimentation has shown that the semantic approach for the definition

and identification of use cases is very useful in reference to the outsourcing

requirements. In classical functional modelling, it is often not obvious which

sets of functionality should be defined as functions and it is often difficult to

identify whether important functionality which should belong to a specific

function has not been included. These problems have been solved quite

practically for use cases by the inventor of use cases, i.e. by I. Jacobson (see

[11] and [12]). Experimentation, however, showed that the use case diagrams

are not as easily legible and understandable, as compared for example to

function tree diagrams. Therefore, an approach for future activities could be

the use, for example, of classical function tree diagrams in which, however,

every elementary function has the identity of a use case.

Figure CZW.4 shows an example of a level 2 use case diagram which has

GUIDEL INES FOR OUTSO URCING

Page 12.35 of 12.59

been created as a result of experimentation.

Fig. CZW.4: Example of a level 2 use case diagram

Class Diagrams

Based on the use case model and also as a part of the solution-independent

system specification, hierarchically structured class diagrams were created.

In this context, it should be emphasised that - according to the well-proven

principle of separation between solution independent and solution dependent

specification - these class diagrams (called ‘specification class diagrams’)

should be structured with respect to customer requirements and not with

respect to a desired software architecture. The different classes occurring

during specification were structured into different packages in order to

facilitate an easier communication with the customer.

It has proved to be recommendable that the specification class diagrams

should include not more than two or three hierarchical decomposition levels:

The top level (level 1) specification class diagram contains only the different

packages and their relationships (see figure CZW.5). On the second

hierarchical level, for every package a separate specification class diagram is

created which contains on the one hand all classes of the corresponding

package including all the class attributes and operations, and on the other

hand those classes of other packages to which direct relationships exist.

Classes belonging to other packages are represented without attributes and

operations. In cases of a bigger number of classes, it may be necessary to

present in some branches of the second hierarchical level again packages

GUIDEL INES FOR OUTSO URCING

Page 12.36 of 12.59

instead of classes. In this case, for those branches a third hierarchical level is

required.

In addition to these diagrams - if desired - class diagrams can be created

which contain all classes with their interactions. Dependent on project needs,

these diagrams can include only class names but can also include class

attributes and/or class operations, if desired.

In correlation to the Methodology Reference Model, guidelines were

elaborated and tested which include - among other things - the naming of

classes, attributes, operations and relationships and the placing of element

symbols in the class diagrams.

Fig. CZW.5: Example of a top level (level 1) specification class diagram

When the specification class diagrams have reached a certain level of

maturity, the corresponding class model has to be re-structured under

aspects of optimal software architecture, optimal software design and

software re-usability. The re-structuring results in a set of ‘design class

diagrams’ for which - in reference to the outsourcing requirements - also

appropriate guidelines were elaborated and tested.

Sequence Diagrams

In several software development projects, ATB has applied a classical

modelling approach including a functional model and an entity relationship

data model, but not including a special dynamic model. This modelling

approach was also applied in the baseline project since dynamic aspects were

relatively simple to handle. Due to this fact, in the OutSource

experimentation only for a few selected scenarios dynamic modelling has

been carried out using sequence diagrams.

Measurement of Results

GUIDEL INES FOR OUTSO URCING

Page 12.37 of 12.59

In the scope of the OutSource project, various parameters were measured in

order to assess the different improvement actions. Measurement parameters

were communication and team organisation parameters (e.g. the duration

and frequency of meetings), change request parameters (e.g. the number of

change requests and the efforts per change request), general effort

parameters (e.g. efforts for integration, testing and installation), milestone

parameters (e.g. time intervals between milestones), legibility parameters

(legibility of the different diagram types), quality parameters (e.g. the quality

of the software system w. r. t. functionality and usability and the number of

errors grouped into different error classes) and business parameters (e.g. the

increase of ATB’s annual turnover in the software business). The

measurement results indicate that the objectives of the OutSource project

have been fully achieved.

Lessons Learnt

In the following, an extraction of the most important lessons learnt is given

which are derived from the OutSource experimentation. The lessons 1 - 3

refer to the incremental software development approach, whereas the lessons

4 - 7 refer to modelling aspects.

1. By the use of an incremental software development approach, customer

satisfaction can be increased significantly. An incremental software

development approach, however, requires additional organisational,

integration, testing and communication efforts compared to a more

classical software development approach.

2. During the course of the incremental software development approach,

temporarily unanticipated efforts occurred which were caused by

insufficiencies in the applied test procedures, resulting in unexpected

incompatibilities and inadequate reliability levels of some operational

extension stages (subsystems).

3. The number of change requests increased significantly compared to former

baseline projects because the customer was encouraged to articulate

change requests in order to increase software quality.

4. Software tools for modelling leave quite a lot of degrees of freedom which -

if they are not reduced by additional guidelines - lead to models of bad

quality, among other things, with respect to the quality characteristics

‘understandability’ and ‘legibility’. Such models complicate the

communication process between the customer and the software supplier in

a significant manner. In order to improve the communication process,

additional guidelines for modelling and documentation have to be defined

and applied which reduce the degrees of freedom remaining by the applied

modelling methods and software tools. With the aid of efficient modelling

and documentation guidelines, a consistent and by all partners easily

readable documentation can be achieved. As a consequence, the efficiency

of meetings and interviews and by this the quality of feedback information

from the customer can be significantly increased.

5. Experimentation within the OutSource project confirmed previous ATB

experiences that a high abstraction level of applied methods for the

acquisition of user requirements can lead to significant

GUIDEL INES FOR OUTSO URCING

Page 12.38 of 12.59

misunderstandings between the project partners, process inefficiencies

and expensive failures of the software. In order to avoid such problems, for

the acquisition of user requirements, methods should be applied which

have a low level of abstraction. An example of such a method is the ‘Task

Analysis Methodology (TAM)’ which was developed by ATB and further

refined in the scope of the OutSource experimentation with respect to

outsourcing requirements (see [2]).

6. Redundancy in modelling reports can bear significant advantages

compared to a non-redundant presentation. Especially for reports which

had to be intensively discussed with the customer, structures were chosen

in which for every diagram the textual descriptions of all occurring

modelling elements had been grouped together below the diagram. Due to

the fact that the same modelling elements occur in several diagrams, such

a structure leads to redundancy in the presentation. The advantage,

however, is that the individual diagrams are more easily readable because

all corresponding textual descriptions are grouped together, i.e. the

customer does not have to search for textual descriptions in different

chapters of the report. It has to be emphasised, however, that all textual

descriptions should be kept in a tool database in a non-redundant manner

because otherwise the effort for changing textual descriptions would be

unacceptable.

7. For the specification of software functionality, the semantic approach for

the definition and identification of use cases proved useful.

Experimentation, however, showed that the use case diagrams are not as

easily legible and understandable for the customer, as compared for

example to function tree diagrams.

Conclusions and Future Plans

As a result of the experience gained in experimentation within the OutSource

project, the project partners ATB and BLG have improved the quality of their

software engineering processes significantly with respect to the outsourcing

problematic. Both project partners intend to apply the results in future

software development projects. The results obtained in the OutSource project

have a high potential for external replication because they are beneficial not

only for software suppliers but also for customers with the intention to

practise outsourcing.

Based on the results which have been achieved within the OutSource project,

ATB and BLG have set up company-internal implementation plans

concerning upcoming future activities for further improvements of their

software engineering processes with respect to outsourcing requirements:

ATB will continue the improvement of its software development process,

especially with respect to the reduction of unforeseen efforts connected to an

incremental software development approach and the elaboration of

appropriate outsourcing guidelines for additional UML diagram types (for

e.g. activity diagrams and component diagrams). Beyond that, ATB will use

the OutSource results as marketing arguments in order to further increase

ATB’s annual turnover in the software business. BLG will - based upon the

results of the OutSource project - further improve its internal business

GUIDEL INES FOR OUTSO URCING

Page 12.39 of 12.59

processes especially with respect to the cost-efficient management of

outsourcing projects. Beyond that, BLG will define types of projects and

development tasks for which outsourcing will be intensified in future.

References

[1] ATB Institute for Applied Systems Technology Bremen GmbH: ESSI Project

No. 24176 OutSource: Software Process Improvement Experiment

Concerning Effective Outsourcing Mechanisms, Final Report, Bremen

(Germany), December 1998

[2] ATB Institute for Applied Systems Technology Bremen GmbH: Model-

lierung von Geschäftsprozessen mit TAM: Richtlinien und Festlegungen,

Document-Id.: SW-QM-AA-ATB-CZW-026/02, Version 1.1, Bremen

(Germany), September 1998

[3] ATB Institute for Applied Systems Technology Bremen GmbH: Model-

lierung von Geschäftsprozessen mit ARIS: Richtlinien und Festlegungen,

Document-Id.: SW-QM-AA-ATB-CZW-022/03, Version 1.2, Bremen

(Germany), October 1998

[4] ATB Institute for Applied Systems Technology Bremen GmbH: Model-

lierung mit UML und Rational Rose: Richtlinien und Festlegungen

Document-Id.: SW-QM-AA-ATB-CZW-023/02, Version 2.0, Bremen

(Germany), May 1998

[5] Burkhardt R.: UML - Unified Modeling Language, Objektorientierte Model-

lierung für die Praxis, Addison-Wesley, 1997, ISBN 3-8273-1226-4

[6] Der Bundesminister der Verteidigung (BMVg): Entwicklungsstandard für

IT-Systeme des Bundes: Vorgehensmodell (V-Modell) Version ’97, Inter-

aktive CD-ROM Version ’97, October 1997

[7] Dröschel W., Heuser W., Midderhoff R. (Editors): Inkrementelle und

objektorientierte Vorgehensweisen mit dem V-Modell 97, R. Oldenbourg

Verlag München Wien 1998, ISBN 3-486-24276-8

[8] Eriksson H.-E., Penker M.: UML Toolkit, John Wiley & Sons 1998, ISBN 0-

471-19161-2

[9] European Space Agency: ESA Software Engineering Standards Issue 2 (ESA

PSS-05-0 Issue 2), Noordwijk (The Netherlands), February 1991

[10] Goodland M., Slater C.: SSADM Version 4, A Practical Approach, McGraw-

Hill Book Company Europe, 1995, ISBN 0-07-709073-x

[11] Jacobson I., Christerson M., Jonsson P., Övergaard G.: Object-Oriented

Software Engineering, A Use Case Driven Approach, Addison-Wesley

Publishing Company; ACM Press, 1992, ISBN 0-201-54435-0

GUIDEL INES FOR OUTSO URCING

Page 12.40 of 12.59

[12] Jacobson I., Ericsson M., Jacobson A.: The Object Advantage - Business

Process Reengineering with Object Technology, Addison-Wesley Publishing

Company; ACM Press, 1995, ISBN 0-201-42289-1

[13] Object Management Group, Inc.: OMG Unified Modeling Language

Specification, Version 1.2, July 1998

[14] Quatrani T.: Visual Modeling with Rational Rose and UML, Addison-

Wesley, 1998, ISBN 0-201-31016-3

[15] Scheer A.-W.: Wirtschaftsinformatik: Referenzmodelle für industrielle

Geschäftsprozesse, Springer-Verlag, 1994, ISBN 3-540-58203-7

[16] Zwanzig Ch., Schulz H.S.: The Incremental Software Development Concept:

A Key Aspect for Successful Outsourcing, in: Proceedings of the European

Software Day (EUROMICRO ’98 Conference), pp. 71-88, Västerås

(Sweden), August 27, 1998

Appendix

ATB Institute for Applied Systems Technology Bremen GmbH

ATB Institute for Applied Systems Technology Bremen GmbH, located in

Bremen (Germany), was founded in 1991 and has the status of a non-profit

organisation. The shareholders of ATB are the State of Bremen and a group

of important industrial companies. Among others, ATB shareholders are

Daimler-Benz AG, STN ATLAS Elektronik GmbH, Bremer Lagerhaus-

Gesellschaft AG and also a number of medium-sized enterprises which are

located in the region of Bremen. ATB has established a research team of 17

scientists which is supported by about 20 employees working on a temporary

or part-time basis. ATB employees have expertise and sound experience in

manufacturing, logistics, control theory and software engineering. ATB

operates on the basis of a quality management system which is fully

compliant with ISO 9001. The main strategic business areas of ATB are

software systems technology, systems analysis & design and quality

management.

One basic objective of ATB is to apply system technology methods and tools

in order to improve the quality and efficiency of processes in various

application areas. Special emphasis is given to the improvement of software

engineering processes. The general concept of ATB is to establish in close co-

operation with its industrial partners well-balanced application-oriented

research activities, which should result both in solving the specific problems

of the partners, and in contributing to the further development of system

technology sciences. About one third of ATB’s annual turnover is realised in

the business area of software systems technology. Within this domain, ATB

has gained a comprehensive overview concerning the large variety of

software best practice methods and tools available on the market. ATB is

applying and evaluating these advanced software engineering technologies in

the scope of developing application specific software systems for industrial

GUIDEL INES FOR OUTSO URCING

Page 12.41 of 12.59

customers.

Curriculum Vitae of the Author

Name: Christian Zwanzig

Age: 42

Education/Degree: Dr.-Ing.

Experience: 1981 - 1989

Research assistant at the Institute for Control Theory

and System Dynamics of the Technical University of

Berlin. Research in the field of non-linear and adaptive

control theory; lecturing on digital signal processing.

Co-operation in an industrial project to develop a lab

prototype. Co-author of a textbook on non-linear and

adaptive control theory.

1989 - 1995

Project engineer at STN ATLAS Elektronik GmbH in

Bremen. Section leader for software engineering

concerning hydrographic data acquisition systems and

marine environmental monitoring systems. Marketing

activities in the area of marine environmental

monitoring systems. Strong involvement in the

establishment of a company-wide software engineering

norm.

Since 01.09.1995

Senior researcher at ATB Institute for Applied Systems Technology

Bremen GmbH, responsible for ATB’s business area of software systems

technology. Involved in all software process improvement activities at ATB.

Leader of several industrial software development and business process

reengineering projects. Execution of training seminars on various software

topics.

Page 12.42 of 12.59

CCM - A fundamental

Process for Improving

Quality

Clemens Gasser

Joanneum Research, Graz, Austria

Edwin Deutschl

Joanneum Research, Graz, Austria.

1. Introduction

This paper describes the practical work done and the experience made

during the introduction of Change and Configuration Management (CCM) – a

key process in software developing - in a small department of a RESEARCH

company, which has a certified ISO-9001 system in whole, but no formal

defined or practically used software developing process in detail.

The goals of the Process Improvement Experiment (PIE) were to shorten

the software developing cycle, to increase the reuse of source code by

introducing a well defined Software Developing Process (SDP) and a CCM.

Faster maintenance by better reproducibility and readability of code and by a

better documentation were further goals of the project.

Up to now, the SDP and the CCM-plan were defined and introduced to the

baseline project DIBIT, a photogrammetic measuring system for the

documentation of tunnel advances and underground constructions. This

project is in an intensive maintenance phase, with steady new releases and

variants for different customers and therefore best suited for an experiment

with CCM. In the moment the measurement phase of the PIE is in progress.

First results and key lessons learned are, that the introduction of the

CCM-tool was more time consuming than planned and that it is very hard to

find expressive metrics.

The next proposed actions are the consolidation of the introduced

processes and better documentation of them. But the focus will lie on the

metrics, which data gathering process is in full progress. International and

internal dissemination are further actions to propose.

Background Information

The Industrial Image Analysis department of the Institute for Digital

Image Processing at JOANNEUM RESEARCH develops customer applied

CCM PROCESS

Page 12.43 of 12.59

systems for industrial fields concerning image processing technologies [7].

The list of customers reaches from steel-, forest-, pharmaceutical- and

automotive industry to tunnel construction (see also Appendix II: About

JOANNEUM RESEARCH).

Most of the systems are built as prototypes, which are adapted to the

customers and their needs. In recent years systems were placed on the

market, that were produced in a higher number of units. This required, in

addition to normal maintenance for a prototype, further development and

adoption to customer specific variants.

Additionally, most of the systems require a software development that depends

extremely on hardware restrictions (Intelligent cameras, framegrabber, sensor

interfaces, SPS process control, heavy duty environments, etc). Several systems have

to fulfill real-time requirements (e.g. optical inspection systems in production lines).

This special requirements need a well defined and quality oriented software

engineering.

The experiment should help to get closer to a high level software engineering at the

department by introducing the key process Configuration Management as an

important supporting activity in software development.

2. Starting scenario

In 1995 JOANNEUM RESEARCH was certified to the ISO 9001

standards. Thereby the attention was directed at administrative processes.

Within JOANNEUM RESEARCH there are only a few institutes concerned

with major software development. Because of this fact, certification of the

software development process was not accomplished.

The state of software development within the department Industrial

Image Analysis at the beginning of the experiment depends strongly on the

initiative of the individual project leaders. No common guidelines or defined

processes existed for the entire department. The major problems, like

exploding budgets or overrun milestones, were partially lead back to

inefficient software development.

An overview of the strengths and weaknesses in software development at

the starting point of the IECS was received by a SynQuest-Assessment,

which is based on the Bootstrap method [13]. These assessments are

performed at the beginning and at the end of the experiment. They are used

to establish the impacts of the newly introduced processes in the attitude and

behaviour of the employees. The guided SynQuest assessment showed the

following results concerning strengths and weaknesses of the organisational

unit.

The strengths: The weaknesses:

Organization and project

management.

Configuration- and change-

management.

Well pronounced

responsibilities.

Testing.

Comparably high degree of Metrics and inspections.

CCM PROCESS

Page 12.44 of 12.59

training.

Fig. CGAS. 1: Results of the SynQuest assessment – Process fields

Fig. CGAS. 2: Results of the SynQuest assessment – Process attributes

Fig. CGAS. 1 and Fig. CGAS. 2 show the average results of four project

groups, each containing three or four employees.

Apart from common organisational aspects the maturity of the software

developing process could be judged as ad-hoc and therefore comparable to a

CMM level 1.

Split up into the following different points of view the analysis of the

strengths and weaknesses brought up:

Technical

CCM PROCESS

Page 12.45 of 12.59

The employees used regularly software development tools, like C/C++

compilers together with integrated developing workspaces (e.g. Microsoft

Developer Studio, Microware Os9 – Cross Compiler). Software developing

was focused on the source-code and low-level debugging, rather than on

supporting activities like configuration management or documentation. Only

a central administrated GroupWare tool (DIGITAL Linkworks) supported

corporate working, especially in documentation and project management. The

absence of a shared source code repository lead to different variants of equal

software components also among individual employees. No co-ordinated

software reuse existed. The use of different hardware-platforms also

complicated the software developing.

Business

Most of the systems are developed completely new and are therefore very

cost intensive. On the other hand such expensive systems can hardly be sold

to customer. So there had to be made some retrenches, which often concerned

the part of budget for software development. Because customer can easier

grasp the amount for hardware than for software.

Organisational

Because of the small sized organisation, lean organisational structures are

used. The head of department is supported by a number of project managers,

who themselves are involved in different projects and who lead a small

number of collaborator. The typical size of project teams is about three

employees. How the SynQuest assessment confirmed, organisation was on a

high level. The reasons therefore may be find in the ISO-9001 certification as

mentioned above. This high level of organisation concerned more to common

aspects, than to software development. The guidelines ISO 9000-3 were

nearly not established.

Cultural

Most of the employees of the department are graduated or technical

engineers and are from their nature very interested in new technologies and

new working practices. It could be observed, that older engineers, who have

consolidated working practices are more sceptical against new techniques

than younger one.

Skills

The base skills of the employees can be summarised as technical experts

in the field of electrical engineering, algorithms and mathematics. The skills

in software development evolved in practical work or - in other words - in

learning by doing. Most of the baseline project team members master the

programming language C, but more from an algorithmically point of view

than from an informational. None of the employees had advanced experiences

in software engineering or software quality. The average time of experience

CCM PROCESS

Page 12.46 of 12.59

in programming of the baseline project team was about seven years. One

team member had also skills in the language C++ for implementing user

interfaces.

3. Expected outcomes

Most of this expected outcomes concern to the maintainability quality

characteristic.

Shorter software development cycles to reduce personal and resource costs

(obviously a very common objective).

 Higher quotas of software reuse to reduce costs for development and to

increase the software reliability .

 Increase of reproducibility and readability of code for easier and faster

maintenance.

 More efficient configuration and change management for higher

maintainability and portability.

 Introduction of problem tracking mechanisms to guarantee consistent

and permanent correction of errors and increasing usability.

 Better documentation for easier maintenance.

4. The plans and their implementation

This section describes in detail the working plans and their

implementation in the ESSI-PIE.

Organisation

The IECS project is organised in a structure as presented in Fig. CGAS. 3.

The head of the department reviews and controls the project from a business

point of view. The main work of the IECS-project is performed by the project

manager of IECS. On his side, a so called Software Quality Group (SQG,

comparable with SEPG in [8]) was installed.

The IECS project manager co-operates intensively with the project

manager of the baseline project as well with the baseline project team in the

sense of the objectives of the experiment.

It is worth mentioning, that a lean organisational structure has been

chosen in respect to the limited personal resources of our department as an

SME.

CCM PROCESS

Page 12.47 of 12.59

SQG
Project manager

IECS

Head of

Department
Project manager

DIBIT

Project team

DIBIT

leer

lller

leer

Fig. CGAS. 3: Organisational structure

Technical environment

Main changes in the technical environment were necessary for the

installation of the CCM – Tool. A Unix File-Server was installed on a SUN-

workstation under the Solaris Operating system. It serves as repository for

the CCM – Tool as well as an Internet Server (Netscape Enterprise) for the

new introduced Intranet DIBIS (DIB – Information System). This Intranet

supports the transmission of the new methods and the access to guidelines,

templates and forms to all employees involved in the experiment.

MKS Source Integrity [11] was selected as CCM – Tool. It was evaluated

as best fitting to our criterions for a configuration management tool based on

the CCM - plan. The following important requirements were identified to be

served by the tool:

 Platform independence (Solaris Sun and Windows/PC).

 High usability (short time for learning to use the tool appropriately).

 Good ratio of price to performance.

 Common CCM - functionality.

 Guaranty of a good technical support.

Other evaluated CCM - Tools are listed in Table 1.

For metric purposes the tool Provista from 3Soft was installed. As metric

databases MS-Access and MS-Excel are in use. For documentation of both

customer and internal requests a MS-Access database was designed and

installed.

Tool Firm

PVCS Intersolv, USA

Source Integrity MKS, BRD

Lifespan BAeSema, UK

Continuus/CM Continuus Software GmbH.,

BRD

ClearCase/ClearCase

Attache

Atria, USA

CCM PROCESS

Page 12.48 of 12.59

Voodoo Uni Software Plus, Austria

Versionmaster Soft Systems, Canada

SourceSafe Microsoft, USA

RCS f. UNIX PD Software

Table 1: Evaluated CCM - Tools

Training

Selected topics of the Definition of the Software Developing Process and

the CCM – plan were presented in individual sessions at the department to

all employees. An external expert in software engineering from the

University of Dundee held a training lesson about ”Software quality and the

Software Live Cycle”.

Most of the training for an efficient use of the CCM Tools was done by

training on the job of the concerned staff members. A preceding self-training,

by studying the manuals, making pilot-experiments with example-projects

and contacting the software supplier in difficult questions, puts one person

into ability to train the others.

Self-training can be done by every employee by studying the guidelines

and documented processes either by the GroupWare tool LinkWorks or by the

Intranet DIBIS. Two people were also trained by an external consultant into

an overview in the methods and practises of CCM.

External consultants

In the starting phase of the experiment, an external consultant was

engaged, to train some employees on CCM. He also formulated the draft

version of the CCM-plan.

An other external consultant was engaged for supplying the guided

SynQuest Assessment. He guided the whole assessment and worked out the

documentation of the results. In a separate session he presented the results

to the employees of the department.

Phases of the experiment

The IECS project splits up into the following planned main phases:

CCM PROCESS

Page 12.49 of 12.59

Phases Deliverables

Project management and co-ordination

Contacts to EC, periodic reporting, planning,

communication

Mid Term report, Final

report, Cost statement

Basic Assessment

Holding of a guided SynQuest assessment

Basic Assessment

report

SDP definition

Definition of the phases of the Software

developing process

PES

CCM process definition

Definition of the CCM-Plan and requirements for

a CCM-Tool

CCM-Plan (draft)

CCM - Tool selection, installation, training CCM-Evaluation

report

Experiments, improvements and

surveillance

Work with the baseline project, definition of

measurements

Measurement

reports

Final assessment (Not actually performed)

Holding of a guided SynQuest assessment and

comparison with the initial assessment

Final Assessment

report

Reporting and dissemination (Not fully

performed)

Writing of final reports and papers and

preparation for dissemination events.

CCM-Plan (final),

Final report

The work, which is actually performed, will be described in the following

section.

Project planning: The first phase of the IECS was characterised by

project planning and settling into the topics of the experiment. That means,

that adequate personal resources were fixed and a detailed work-plan was

performed. The installed project manager was not involved in acquiring the

PIE, so there was an additional amount to get into the project topics. Special

literature had to be obtained and had to be studied.

Basic Assessment: In parallel the initial basic SynQuest Assessment

was organised. The assessment was guided by a professional consultant of

HM&S, the company which developed the SynQuest tool. The experience and

results of keeping a lot of guided assessments in other companies provides a

possibility to compare the own maturity-level in software developing with

that of other organisations. The consultant showed this comparison at the

presentation of the assessment results. The average results lies clearly over

the average result of all assessed organisations with the exceptions CCM,

metrics and testing.

SDP definition: Also in parallel the SDP was worked out and

documented in the PES. For practicability it was attempted to keep it as

compact and clear as possible. The formulation of the PES was done with

respect to practices and standards already used by the engineers. The

resulting subdivision of phases (see Table 2) is related with the classical

Waterfall Lifecycle model. It is still used by a wide area of standards and

CCM PROCESS

Page 12.50 of 12.59

guidelines (see ISO 9000-3 [9], TickIt [5], CMM [8] and the summary of [14]).

As part of the SDP Coding conventions were worked out. They define a

uniform appearance of the source code and are therefore an essential method

to increase the software readability.

Phase Purpose Outputs
User

Requirements

Problem

definition

"User Requirements Document", test

plans, Project Management Plan

SW Speci-

fication

Problem

analysis, Logical

model

"SW Specification Document",

test plans

Design System design,

Physical model

"Architectural Design

Document"

Production Software

implementation,

tests

"Detailed Design Document",

Source code, User Manuals

Transfer Installation and

acceptance

"Software Transfer Document",

acceptance protocols

Maintenance Maintenance,

improvements

Maintenance protocols, SW-

Releases

Table 2: The phases of the software developing process (SDP)

CCM-Process definition: The phase of defining the CCM-Process was

supported by an external consultant. In initial sessions the CCM-

requirements depending on the SDP were defined. Individual CCM –

activities were discussed and documented in a CCM – plan (see Table 3), to

which various standards gave helpful hints. Again the guidelines of ISO

9000-3 [9], TickIt [5] and CMM [8] were taken into account and used as

templates.

CCM – plan topics Description

Configuration

management

Description of the CCM organisation, CCM

responsibilities, relationship to the SDP.

Configuration

identification

Specification identification, Identification of the

baseline

Change control

procedures

How to Check-In, Check-Out, make

checkpoints.

Build management. How to build new releases.

Change Requests. How to handle requests, bugs,

modifications.

CCM - Tools, Techniques,

Repository.

Specification and description of the

technical environment.

CCM - Reporting. How to trace changes, and make report

about them.

Table 3: Overview of the CCM-plan

CCM - Tool selection, installation, training: The next phase was the

evaluation and selection of an adequate CCM – tool. First a list of potential

tools and their suppliers were prepared. The evaluation was based on the

inspection of demo versions, documentation material and information

CCM PROCESS

Page 12.51 of 12.59

received from the tool suppliers. The best rating on this evaluation was

accomplished by the tool packet Source Integrity by MKS [11]. Later good

references for CCM – tools were found in the Internet, which get a more and

more valuable information pool (see [15] as a very extensive storehouse for

configuration management). The installation and initial administration of

the CCM - tool spent more time than estimated. A lot of small problems

(technical but also in comprehension) must be taken into account at

introducing a totally new tool.

Experiments, improvements and surveillance: The following phase

concerned the work with the baseline project. The originally provided

baseline project had to be dropped, because it fells in a status, where no

further development. Therefore it was necessary to take an other baseline

project. A project for an optical 3D-surface reconstructing tool was selected.

This project is called DIBIT (Digital Image Observation System for

Tunnelling). The DIBIT tunnel scanner (see the system in practical use in

Fig. CGAS. 4) is a photogrammetic measuring system for the documentation

of tunnel advances and underground constructions.

Fig. CGAS. 4: The DIBIT system in practical use.

It was developed during the last four years at our institute. At the

moment there are three delivered systems in practical use. Each system has

varying configurations for the different tunnels and requirements of the

customers. Furthermore there must be a handling of error requests and new

requirements, which come in permanently. The main problems to solve

concern to configuration management.

After the approval for the exchange of the baseline projects the initial

work for the new baseline project had to be performed. The theoretically

outworked measurement program was adapted to practical use for the

experiment with the new baseline project. For evaluation of appropriate

metrics the GQM (Goal - Question - Measurement) method [14], [12] was

CCM PROCESS

Page 12.52 of 12.59

used. Four classes of metrics together with the results of the SynQuest

assessment form the essential points of the metric program (see Table 4):

QO.1 defines the transparency in amount of time for different tasks,

performed either for IECS and the baseline project. The spent time is

recorded in Excel forms (see Fig. CGAS. 5) by all involved employees. The

forms are analysed each month and stored in a database.

Quality

objectives

Quality

characteristics

Metrics

QO.1:

Transparenc

y in amount of

time

QC.1.1:

Documentation of

spent time for all

project tasks

ME.1.1.1: Spent time per

working tasks

ME.1.1.2: Duration of individual

task to the entire duration in

percent

QO.2:

Efficiency in

maintenance

QC.2.1: Handling

of customer requests

ME.2.1.1: Number of customer

requests

ME.2.1.2: Duration of processing

the requests

QC.2.2: SW –

documentation

ME.2.2.1: Percentage of

comments in code

ME.2.2.1: Number and size of the

in the SDP specified documents

QC.2.3: SW –

complexity

ME.2.3.1: McCabe - Factor,

Function Points

QO.3:

Efficiency of

configuration -

management

QC.3.1: Release

Activities

ME.3.1.1: Number of Check-In’s

QC.3.2:

Documentation of the

CIs

ME.3.2.1: Percentage of

documented CIs to entire number of

CIs.

QO.4:

Higher reuse

of source code

QC.4.1: Reuse in

other projects

ME.4.1.1: Number of library

modules used by other projects

Table 4: Defined metrics

QO.2 is concerned with the efficiency of maintenance. The three quality

characteristics ”Handling of customer requests”, ”SW – documentation” and

”SW – complexity” are measured by number and duration of processing

customer requests, by analysing the documentation and source code

comments. All customer requests just as internal detected bugs and faults

are registered.

QO.3 bother the efficiency of configuration management. Quality

characteristics are the intensity of use of the CCM – tool (e.g. see Fig. CGAS.

6) and the documentation of the CIs.

QO.4 defines a quality objective of higher reuse of source code. It will be

measured at the end of the project by the number of library modules, which

are used by other

Additionally the results of the SynQuest assessment (see Fig. CGAS. 1

and Fig. CGAS. 2) will be used as an overall metric concerned to the

subjective opinion about a performed improvement.

CCM PROCESS

Page 12.53 of 12.59

Fig. CGAS. 5: Example of a time recording form

Fig. CGAS. 6: Number of Check-In’s in DIBIT (ME.3.2.1)

The actual state of the measurement activities is described by intensive

data gathering. The technical conditions and infrastructure were installed.

The tool Provista/QS together with MKS Source Integrity supports the

analysis of source-code, Releases and CIs. All data out of these tools are

collected in central MS-Access databases.

Final assessment - Reporting and dissemination: The final phases of

the experiment represent the Final SynQuest Assessment, which should

provide a comparison to the initial assessment, and dissemination at

international just as at internal events.

CCM PROCESS

Page 12.54 of 12.59

5. Results and Analysis

At of the experiment following results and analysis could be given.

In the moment there exists not so many quantitative data to publish,

establishing the results came out from the PIE. Especially trends are – at the

moment - hard to observe. Therefore the time of data gathering is to short.

Nevertheless, we recognised, that the introduction of metrics is absolutely

necessary. It initiates new sights on different areas of the software

developing process. And the famous sentence from Tom DeMarco [3] "You

cannot control what you cannot measure.'' is hard to disprove.

From a technical point of view, the new tools and defined processes, have a

deep influence on practical working of the employees. In some cases the

benefits in daily work is obvious and gets from there a great acceptance. E.g.

the CCM-Tool integration in the developing environment enhances the

version management compared to earlier hand made versioning, e.g.

organised in directory structures.

The CCM-Tool makes it possible for the first time to reuse software

components, which is one important objectives of the PIE. Before the

experiment no common software pool was installed. A lot of different versions

and variants of software components were spread over local PCs and local

directories on workstations. In the meantime two common libraries are in the

repository (17020 LOC in 51 modules and 1495 LOC in 12 modules), which

are of great interest for other projects. QO.4 will measure the reuse of such

libraries in other projects.

Also the Intranet DIBIS, as information pool, has some similar benefits.

Before IECS, documentation spread over different platforms and file-formats,

which made it impossible to integrate them. With the HTML – standard this

problem can be solved. All the advantages from an Intranet can be used

under a homogeneous environment. The acceptance of DIBIS is growing and

can be measured by the access count of the Internet Server.

The very common objective of shorter development cycles is also

influenced in a hard measurable manner by the CCM – tool as a repository.

Indirect by the now possible reuse of software – components and directly by

accessing a well defined baseline stored in the repository. Before the

experiment, available components had to be searched at different places and

in the care of other employees.

The request database provides an easy to use and automated tool, to

document all requests. It was therefore well accepted by the baseline–project

staff. There existed no structured documentation or recording of customer

requests or internally detected bugs in the past. The actual statistic of

recorded request (e.g. 22 entries in May, 39 in June, 14 in July, 21 in August,

24 in September, 5 in October) can be used to illustrate the improvement

triggered by the new introduced technologies. Before recording requests,

some of them were easily forgotten and had therefore not enhanced the

confidence of the customers.

The improvement of the business matters of the baseline-project was the

major goal specified by the project manager of DIBIT, however a major

impact on the business operation is not yet measurable.

CCM PROCESS

Page 12.55 of 12.59

The expenditure for installing and maintaining the CCM – tool was higher

than calculated. It took some time to cope with some initial problems. An

experiment with a small pilot project or better, but more expensive, the

commissioning of the tool supplier to installation and training could reduce

time. About 143 person days (only 60 were planned) were used for

installation and training and solving initial problems.

The more detailed time recordings supports the project controlling and

thereby indirect the project business results. For the quality objective QO.1

(see Table 4) the record of time spent for all project tasks is unavoidable.

Before the experiment only monthly time recordings had to be prepared. For

the internal use a more detailed recording scheme was installed. Based on

MS-Excel a detailed time recording form had to be filled out daily (see Fig.

CGAS. 5). All times spend for work packages defined in the DIBIT project

had to be recorded. For some employees this was a great readjustment in

their working practices, other uses this forms now for their whole time

recording.

The now available common repository showed us the strength’s of parts of

our software. Currently we are engaged in a negotiations, where we have the

opportunity to sell great parts of our image processing software as a library

for a hardware manufacturer.

Support and resistance of concerned employees depends strongly on the

individual. People with higher responsibilities and more experience in

handling problems are more interested but also more critical than people

with lower responsibilities. The greatest resistance raised at the

programmer’s level.

Resistance could best overcome by convincing that changes are necessary

and that the initial overhead (e.g. administrative, settling into new tools)

becomes smaller and the benefits of the new methods will predominate in

long term. Several times there exist convincing arguments with a practical

context. Therefore only examples and data in good literature can taken to

argue.

It has turned out, that it is very important to include all concerned people

into the decision making process. A commanding style doesn’t work really

today.

6. Lessons learned

The following lessons have we learned up to now. Maybe some of them will

be overruled in the last time of the experiment.

Technological point of view

 Keep quality Documents as short and concise as possible! PES, CCM-

Plan, etc. must be as short as possible to find acceptance by all

employees. The effort of studying them must be low. Long and boring

documents would not be read.

 Don’t be lost in perfectionism, if some initials are not quite optimal! By

introducing a new method it can sometimes happen, that also other fields

CCM PROCESS

Page 12.56 of 12.59

seems to need a ”face lifting”. That means, if the introduction of CCM is

the focus of the experiment, you can’t also focus on an excellent intro-

duction of a metric program, a well defined and approved software

developing process and in addition an ingenious automated

documentation administration system. You have only one PIE for one

new process to introduce. Furthermore, that means not to completely

forgot related areas.

 Consider the human being as the most important resource of the software

engineering process (see [3], [16] and [2])! The best new method will not

trigger the interest of dissatisfied, frustrated or slave driven employees. If

there is only one professional who is not convinced of the new methods, he

is able to disturb the whole process. Take more care to this employee to

turn him in the same direction as the remaining team.

 Easy available information about reusable software is essential for

acceptance! Without an appropriate mechanism to spread documentation

of available libraries to all programmers the reusable software will not be

utilised.

Business point of view

 Reusable components are investments for future! Even if the effort for

design and implementation of reusable software should not be

underestimated, business advantages are obvious in the long term.

 Not underestimate the expenditure for introducing a CCM-Tool! We have

underestimated the expenditure for introducing a completely new

technology. Next time it may be a consideration to ”outsource” the

installation, administration and training on a new tool with this

importance. Don’t let yourself be fooled by brochures, which promise

”easy to use”.

 Define the requirements for an external consultancy precisely! You and

also the external consultant should work out the requirements and extent

of the consultancy. The excellent references of a consultant are not

enough to go directly into the consultation. Specify your needs and your

questions and work out requirements, which must be fulfilled for

acceptance of the consultation.

Strengths and weaknesses of the experiment

 We locate a weakness of the PIEs in common in the obligate

dissemination events, which are hard to attend with pure practical but

not scientific or innovative reports. We think a PIE is not the platform for

new scientific discoveries. Instead stable and well adopted practices are

introduced, which are not so interesting for the academic world. The gap

between practice and theory seems to be hard to reconcile. For

dissemination it seems to be profitable to exchange experiences between

PIEs like in the ESPINODE program or at EPIC.

 Introduction of new techniques was usually done on the fly. Using a

separate project (e.g. a PIE) is a much more powerful method to introduce

something new.

CCM PROCESS

Page 12.57 of 12.59

Common lessons learnt

 Take more frequently a look into the Internet for good information as well

as for managing the ESSI-PIE (e.g. VASIE - or ESSI homepage, with good

hints and disseminated information from other PIEs)! In evaluating

software tools excellent comparison reports could be found.

 Concentrate on the baseline project and don’t try to introduce new

technologies to the whole organisation! Especially in the earlier phases of

the PIE, don’t forget that the experiment should be carried out on one

baseline project. You can focus to the objectives and only to a limited

number of different opinions. This is important, if you have to convince

people for new technologies.

7. Conclusions and Future Actions

The introduction of CCM as a supporting process for the software

developing process in the course of the ESSI PIE IECS is in a final state. The

baseline project is in a busy phase of maintenance and distributes a lot of

data for measuring. The new processes are in use and are well accepted by

the project staff.

Without listing quantitative data, the most objectives seems to be

achieved. Especially the software reuse and the configuration and change

management goals are obviously achieved. Also documentation and the

higher degree of reproducibility and readability of code has been improved.

Most of the concerned employees are high motivated and very interested in

the new methods and technologies.

Many of the processes introduced in the first half of the PIE have to be

consolidated during the second half of the experiment. Especially the

documentation of the new procedures must be improved. Precise, but if

possible not voluminous descriptions of procedures, templates and checklists

shall make it possible to support others than the baseline project, which

stands in a privileged position to the PIE.

The higher degree of automation of the metric data gathering process, but

also the exploitation and interpretation of the gathered data must be

improved.

Glossary

CCM Change and Configuration Management

CI Configuration Item

DIB German abbreviation for the department Digital Image

Processing: Institute für Digitale Bildverarbeitung

DIBIS Abbreviation for the DIB Intranet: DIB Information System

DIBIT Abbreviation for the baseline project: Digital Image

Observation System for Tunnelling

IECS Improvement of Efficiency by introduction of CCM and

Software engineering standards

ME Metrics

CCM PROCESS

Page 12.58 of 12.59

PES Project Engineering Standards

QC Quality Characteristic

QO Quality Objective

SDP Software Developing Process

SME Small and Medium sized Enterprise

SQG Software Quality Group

Appendix I: About the authors

Clemens Gasser is a staff member of 3D Vision Group and some other

project groups at the JOANNEUM RESEARCH Industrial Analysis

department in the Institute of Digital Image Processing (DIB). He is Diploma

Engineer in Telematics (University of Technology Graz) on studies in the

field of artificial intelligence (neural networks, fuzzy reasoning and control)

and industrial image analysis. He has collected experience on DSP, parallel

computing, software engineering and software quality. In 1995 Clemens

Gasser received his Diploma with thesis on intelligence adaptive fuzzy

control systems. Since May 1995 he is a fixed employee at JOANNEUM

RESEARCH. Between 1995 – 1997 he leads and assists in different indust-

rial image processing projects. He was a staff member of the project team,

which developed a system for stereo-vision based tunnel surface recon-

struction (DIBIT). Since March 1997 he is the project manager of the ESSI-

PIE IECS. This ESPRIT - project (Nr. 23760) experiments with the

Introduction of CCM into the software developing cycle. Since September

1998 he works as internal auditor of the ISO 9001 QM system.

Edwin Deutschl is a staff member of the Linescan Vision Group at the

JOANNEUM RESEARCH Industrial Analysis department in the Institute of

Digital Image Processing (DIB). He studied Applied Mathematics at the

University of Technology in Graz, Austria. In 1994 he received his Diploma

with a thesis on light reflections. Since 1995 he works at the JOANNEUM

RESEARCH Center in Graz as application developer and project manager of

Online Quality Assurance Systems. His research interests are in real time

and parallel computing for applications in wood- and pharmaceutical

industry as well as related Software Engineering issues. Since 1997 he is a

permanent member of the Software Quality Group at the Institute of Digital

Image Processing.

Appendix II: About JOANNEUM RESEARCH

JOANNEUM RESEARCH is one of the largest technology centres in

central Europe, making its expertise available to business, industry and

administration. Our highly-qualified staff of 300 people that work in 20

research units implement their know-how in all sectors of innovation, both at

national and in international levels. Our service includes specifically geared

development tasks for small- and medium-sized companies, complex

interdisciplinary national and international research assignments as well as

tailored techno-economic consulting. Our highest priority in all our activities

CCM PROCESS

Page 12.59 of 12.59

is to meet the top quality standards demanded by our clients.

References

[1

]

Babich, Wayne A.: Software Configuration Management, Addison –

Wesley, 1986

[2

]

Brooks F.: The Mythical Man-Month. Reading, MA, Addison Wesley,

1975

[3

]

DeMarco T., Lister T.: Wien wartet auf Dich! Der Faktor Mensch im

DV-Management. München, Wien; Hanser, 1991

[4

]

DeMarco T.: Structured Analysis and System Specification, Englewood

Cliffs, NJ, Yourdon Press/Prentice Hall, 1978.

[5

]

DISC TickIT Office: The TickIT Guide - A Guide to Software Quality

Management System Construction and Certification to ISO 9001,

London, ISBN 0 580 25107 1, 1995.

[6

]

El Emam K., Drouin J. N., Melo W.: SPICE - The Theory and Practice

of SPI and Capability Determination, IEEE Computer Society, 1998.

[7

]

Paar G., Kuijpers N., Gasser C.: Stereo Vision and 3D Reconstruction

on a Processor Network. Machine Perception Applications, Graz,

September 2-3 1996. IAPR/TC8.

[8

]

Humphrey, Watts S.: Managing the Software Process. Reading, MA,

Addison Wesley, 1989.

[9

]

ISO 9000-3, 1.Ausgabe, 1991-06-01, Part 3: Guidelines for the

application of ISO 9001 to the development, supply and maintenance

of software. 1991.

[1

0]

Kehoe R., Jarvis A.: ISO 9000-3 - A tool for software product and

Process Improvement, Springer-Verlag New York, 1996.

[1

1]

Mortice Kern System Inc., Canada: http://www.mks.com.

[1

2]

Möller K.H., Paulish D. J.: Software Metrics - A practitioner's guide to

improved product development.

[1

3]

Muelleitner G., Steinmann C.: Minimum Metrics for Software

Production. IIG-Report 395, TU Graz 1994.

[1

4]

Sanders J., Curran E.: Software Quality - A Framework for Success in

SW- Development and Support. Addison Wesley, ISBN 0-201-63198-9,

1995.

[1

5]

http://www.cs.colorado.edu/homes/andre/public_html/configuration_

management.html

[1

6]

Yourdon E.: Die Westliche Programmierkunst am Scheideweg - die

Schlüsseltechniken der SW-Eentwicklung für das 21. Jahrhundert.

Hauser Verlag, 1993

http://www.mks.com/
http://www.cs.colorado.edu/homes/andre/public_html/configuration_management.html
http://www.cs.colorado.edu/homes/andre/public_html/configuration_management.html

