

Introduction

Page 0.1

Contents:

Session 1 : SPI and Strategies

A Total Improvement Strategy as a Basis for Software Process Improvement 1.2

Key Success Factors for Business Based Improvement 1.16

SPI – Why isn’t it more used? 1.34

Software Measurement Frameworks to Assess the Value of Process Improvement 1.50

Session 2 : SPI and Testing 1

The QUEST for Quality Test Resources 2.2
Software Inspection Techniques in SMEs 2.18

Productivity Improvement via Software Testing 2.34

Practical Measurements for Reengineering the Software Testing Process 2.48

Session 3 : SPI and Re-Use

Finding a Practical Approach to Organised Reuse 3.2

SEPIOR - Practical Experiences with Reusable CAM Components 3.26

Session 4 : SPI and Requirements Management

The user requirements elicitation and specification process 4.2

Achieving Customer Satisfaction through Requirements Understanding 4.15

Session 5 : SPI and Establishment of Models/Processes I

Process Description and Training: The Two Sides of the SPI? 5.2

The impact of a new software development methodology and how to

afford the changing resistance 5.13

Software process improvement using CASE: lessons from the front-line 5.26

Session 6 : SPI and Virtual Team and QA Systems

Experience with PI in Distributed Virtual Work Environments 6.2

Results from the ESSI process improvement experiment -Virtual Team 6.20

Automating the Use of a Quality System 6.34

Session 7 : SPI and Assessments / Evaluations

SPI Risk Assessment 7.2

Rethinking the Concept of Software Process Assessment 7.11

Philosophies and Approaches to Software Process Improvement 7.24

The General Effect of an Integrated Software Product Evaluation 7.39

Session 8 : SPI Surveys

Software Process Improvement Network in the Satakunta Region- SataSPIN 8.2

Mid-term results of the SPIRAL Network Development 8.12

Software Engineering in the UK – A Brief Report 8.29

An Overview of the SPI Activities in Estonia 8.41

Session 9 : SPI and Establishment of Processes/Models II

Configuration Management Deployment & Practice Experiment 9.2

Quality Assurance for NC-Software with the support of Configuration Management 9.12

session1.doc
session1.doc
session2.doc
session2.doc
session3.doc
session3.doc
session4.doc
session4.doc
session5.doc
session5.doc
session6.doc
session6.doc
session7.doc
session7.doc
session8.doc
session8.doc
session9.doc
session9.doc

Introduction

Page 0.2

Software Process Improvements in a Very Small Company 9.24

Evolutionary Development Process – A Case Study 9.40

Session 10 : SPI and Measurement I

Applying Gilb’s method of inspections into telecommunications software 10.2
Control your projects by improved planning 10.18

An extranet for the improvement of the Outsourcing of Software

Maintenance projects using Function Points Analysis 10.29

Software Metrics for Process Improvement Experiments 10.52

Session 11 : SPI and Measurement II

SUPREME – a Statistical Approach to Support Project Estimation and Management 11.2

Introducing professional project management in an SME 11.17

Experience from process improvement in a SME 11.28

Error Trending - Why and How 11.41

Session 12 : SPI and Strategies

People Management and Development Process to motivate, develop and

retain the best resources 12.2

A Learning Organisation Approach for Process Improvement in the Service Sector 12.14

Process Improvement: The Societal Iceberg 12.34

IPSSI: A European Methodology on PSP 12.44

Session 13 : SPI and Object Orientation

Improvement of the Quality in the Software Development Process by
the Introduction of UML 13.2

Improvement of Extendibility and Modifiability of Embedded Software 13.12

Session 14 : SPI and Testing II

Improvement of development process through enhanced test procedure

& change request management 14.2

Improvement of testing process through systematisation for increasing

software manufacturing assurance 14.22

session10.doc
session10.doc
session11.doc
session11.doc
session12.doc
session12.doc
session13.doc
session13.doc
session14.doc
session14.doc

Introduction

Page 0.3

Conference Board

Tor Stalhane, Sintef, Norway

Risto Nevalainen, STTF, Finland

Carsten Jorgensen, Jorn Johansen, Delta, Denmark
Yingxu Wang, IVF, Sweden

Richard Messnarz, ISCN, Ireland and Austria

International Organiser

Richard Messnarz, ISCN, Ireland

Local Organiser

Timo Varkoi, Pori School of Technology, Finland

Page 1.1

Session 1

SPI and Strategies

Chairman

Timo Varkoi
Pori School of Technology, Pori, Finland

Session 1: SPI and Strategies

Page 1.2

A Total Improvement

Strategy as a Basis for

Software Process

Improvement

Rolf H. Westgaard

Solveig Gustad

Kongsberg Ericsson Communications ANS
P.O. Box 87

N-1375 BILLINGSTAD

Norway

Introduction
Kongsberg Ericsson is working with improvements at several company levels, driven

from management down and from the “floor” and up.
This paper describes:

 how software process improvements tie up with strategic improvement plans

 some results of our participation in the Norwegian SPIQ project

We decided to join the SPIQ (Software Process Improvement for better Quality)
project in 1997. SPIQ is a company driven research and development project, which

is anticipated to last until 2001. 10 to 15 companies and 3 research institutes work

together to adapt and try out modern methods for systematic process improvement
with focus on software quality.

The reason for our participation is a desire to improve our system for continuous

improvement of the development processes - starting with software. We were looking
for a system, which could give us objective data as a basis for improvement. Before

joining SPIQ our actions to improve the development processes had been mostly

based on single cases, without any statistics as a basis for priority of actions.

Our Values as a Guide
We have decided that the following values are of utmost importance for our success:

1. Competence

We shall have world class competence, which is decisive for our ability to compete
2. Customer Orientation

We shall be better than our competitors regarding customer orientation and nearness

to our customers

Session 1: SPI and Strategies

Page 1.3

3. Quality

We shall continuously identify areas for improvement and we shall prove that we

have the ability to carry out improvements within these areas

4. Concentration
We shall maintain focus; i.e. we shall only work within the areas that are given

priority by company strategies

The Business Process Model
The way we obtain our results is simplified in the Business Process Model below.

Strategic Plan Structure = Organisation Structure = Business Structure:

Fig. KEC_RHW 1: The KEC Business Process Model

 Our customers are at the beginning and end of our Business Process Model

 We are organised in a way, which supports our business processes

 Our strategic plan coincides with the organisation structure and the business

processes

The Strategic Planning Wheel
The company has established a Strategic Planning Wheel with a one-year cycle. The

wheel consists of the following sequences:

 Making or modifying the strategic plan for the coming 4 - 5 years

 Defining next year budget

 Defining goals including plans of action for the next year

The strategic plan part of the wheel includes a Strategic Improvements Plan. This is

based on our business processes and the EFQM business excellence model.

Session 1: SPI and Strategies

Page 1.4

Fig. KEC_RHW 2: The Strategic Planning Wheel

The Strategic Improvements Plan
The Strategic Improvements Plan is based on our business processes and the EFQM

business excellence model. Our version of the EFQM business excellence model has

added “Opportunities” to it, and we say, “We are using our market, product and

technological OPPORTUNITIES by means of ENABLERS to obtain RESULTS”.
During the Strategic Plan Process we decide the areas within “enablers” that need

improving based on long term and short term results. The conclusions are

documented in improvement plans starting at company level and broken down into
lower organisational levels. The plans are finally the basis for each person’s

individual contribution to improvements, agreed during the yearly appraisal

interview.

Session 1: SPI and Strategies

Page 1.5

OPPORTUNITIES ENABLERS RESULTS

M
ar

k
et

P
ro

d
u

ct
s

T
ec

h
n

o
lo

g
y

L
ea

d
er

sh
ip

P
o

li
cy

 &

S
tr

at
eg

y

E
m

p
lo

y
ee

s

R
es

o
u

rc
es

P
ro

ce
ss

es

E
m

p
lo

y
ee

S
at

is
fa

ct
io

n

C
u

st
o

m
er

S
at

is
fa

ct
io

n

Q
u

al
it

y

B
u

si
n

es
s

2000

2001

2002 + =

2003

Technology

Plan

Product

Plan

 Strategic

Improvements Plan

Marketing
Plan

Fig. KEC_RHW 3: Modified EFQM Business Excellence Model

Follow-up of Improvement Plans

The improvement plans at the different levels contain:

 goal definition

 activities to reach the goal

 deadlines

 responsible

and are followed up in regular management meetings:

Opportunities: Market & Product meetings every two weeks
Enablers: Value meetings every month

Results: Result meetings every month

We have all experienced that a well-structured plan and good intentions do not
necessarily guarantee results. Therefore, we have defined some critical factors to

secure success:

1. The Company President must be the owner of the improvement processes, and he

must show the way

2. Make it simple, and make sure the goals are realistic

3. The timing must be right
4. The person who is responsible for reaching the goal should be the one who

defines it through a process of involvement and enthusiasm

Session 1: SPI and Strategies

Page 1.6

Process Improvements

The most comprehensive processes in our company are the ones covering product

development. Improving efficiency and quality of these processes is therefore a high
priority.

The following part of the paper describes our efforts to establish a system for

improvement of our development processes, starting with the software process and
our participation in SPIQ with focus on software of the MRR project.

Software process improvement based on measurements

This case describes the planning, implementation and results of a software process
improvement project. The company has long experience of collecting data, but not to

assemble the data and use them to extract statistics and get experience from them.

What have we done?

 GQM-method to decide what to improve, what to measure and how

 Pareto analysis to analyse the data and identify improvement actions

During 9 analyse meetings, 545 error reports have been analysed. About 14 software

developers have been involved in addition to the software manager, the quality
manager and the software project manager.

The project

The MRR (Multi Role Radio) project is a large electronic project of 1,9 Billion NOK

(230 Million EUR). The product is a portable radio for military use. The project

started in 1989 and is a co-operation between Kongsberg Ericsson and Thomson CSF

Norcom. The pilot project described in this paper involves only the Kongsberg
Ericsson part of the MRR project. MRR was delivered in 1996 as a pre-production

model with reduced functionality. After that all HW and almost all SW has been

redesigned.
Because the MRR project has lasted for almost ten years, there have been some

turnover in labour. The development process is an ordinary waterfall model and this

model was the starting point for improvements.

The starting scenario

Most of the software was finished in the start of the SPIQ project, only testing

remained. That meant that almost all the errors were already done.

To correct all errors, there was established a “system acute” that handles all error

reports every day at 12 a.m. From this meeting the error report is decided whether to

correct or not and the report will be sent to the responsible person with some action
(usually correct a document or code). In this way we know that every error detected

in test will be handled. But there is no analysis of the errors to prevent similar errors

in the future. Here is where the SPIQ project comes in.

The starting point is our written development process (all procedures, checklists,

rules, templates, the tools we use, language, the methods and so on). If we don’t

Session 1: SPI and Strategies

Page 1.7

change anything of this, we will not be better in the future. So we had to change

something, but what? And when would we know that a change had a positive effect?

Work done

To answer the questions above, we joined the measurement and experience-data-

group in SPIQ. We started with a GQM workshop for all the software developers.

The result of this workshop was a GQM abstraction sheet with one goal, eight
questions and 18 metrics. We need to answer the five questions in order to reach the

goal, and we need to collect the 18 metrics in order to answer the questions. The

abstraction sheet also contains a plan of measurements (what should we measure,

how and who etc.).

GQM example

The main goal was to achieve reduction in the number of serious errors found in
integration test and system test by 50%.

The GQM goal then became to analyse the development process in order to reduce

the number of serious errors introduced before FAT (Factory Acceptance Test) seen
from the software group in the environment of the MRR project.

GQM abstraction sheet:

Analyse the development process in order to reduce the number of serious

errors seen from SW group in the MRR project

Quality Focus

Q1 In which phase was the error
introduced?

Q2 Why was the error introduced (the

cause)?

Q3 What is the cost distributed over
phase/products?

Q4 What is the distribution over error

categories?
Q5 What is the error density

– totally?

– per module/product?

Validation Factors

Qa What is the complexity of:
project, product and modules?

Qb What is the quality level of the

technology/tools?

Qc What is the knowledge level in the
project?

Baseline Hypothesis
Q1:

Impact on Baseline Hypothesis

Qa Increased complexity

- More errors (increased Q5)

- Errors introduced in earlier
phases (Q1 shifts to left)

– Increased error cost (increased

Q3)
Qb High quality technology/tools

positive effect on Q1, Q4 and Q5

Qc Sufficient qualifications in the
project positive effect on Q1,

Q2 and Q5

Session 1: SPI and Strategies

Page 1.8

Measurement plan:

Question Q1 In which phase was the error introduced?

Metric M1: Phase Introduced

Definition

Presentation

and analysis

Bar chart (one bar per phase)

Baseline

hypothesis

See GQM abstraction sheet

Question Q2 Why was the error introduced (the cause)?

Metric M2: Error cause

Definition

Presentation

and analysis

Bar chart (one bar per error cause)

Baseline

hypothesis

Metrics:

Metric M1 Phase introduced

Definition The phase, where the oldest document that has to be changed, was

created

Procedure for

collecting

Each error shall be classified in one of the following phases:

 Phase 2 (system specification)

 Phase 3 (functional design)

 Phase 4 (realisation)

 Phase 5 (functional verification)

 Phase 6 (system verification)

When Each time an error is corrected

Expected value

Responsible The person who is responsible for correcting the error

Metric M2 The cause of the error/change

Definition

Procedure for

collecting

Each error/change shall be classified in one of the following

causes:
1. A wish for a change or improvement

2. Lack of system knowledge

3. Carelessness/heavy time schedule
4. Lack of or poor source document

5. Other causes

When Each time an error is corrected

Expected value

Responsible The person who is responsible for correcting the error

Results from two of totally five focus questions

About every six weeks, we analyse the error reports and define actions. The actions
are mostly of three kinds:

 adjust/change the improvement process itself

 change the development process (i.e. procedures, review rules, checklists)

Session 1: SPI and Strategies

Page 1.9

 collect more information

 improve knowledge

The results after 9 analysis meetings and 545 errors are shown below.

In which phase are the errors introduced?

Fig. KEC_RHW 5: Errors distributed on phases

The error is per definition introduced in the earliest document that has to be corrected
or changed. If a software developer has misunderstood the specification, then it is the

specification that is wrong, because we have a review rule that says that a document

shall not contain possibilities for misunderstanding.

The figure above shows that no errors have been introduced in the system test phase.

This is because the system test has not started at the time of writing. The integration

test has not finished either, so we have to wait until the end of the system test phase
until we get the exact answer on this question (Q1 in the GQM abstraction sheet).

The figure above also tells us how well we know our own development process.

Phase introduced

0,0 %
10,0 %

20,0 %
30,0 %
40,0 %
50,0 %

60,0 %
70,0 %

Spe
ci
fic

at
io
n

Fun
ct
io
na

l d
es

ig
n

R
ea

lis
at

io
n

In
te
gr

at
io
n

te
st

Sys
te

m
 te

st

Measured

Hypothesis

Session 1: SPI and Strategies

Page 1.10

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

1 2 3 4 5 6 7

specification

functional
design

realisation

integration-test

system-test

Feedback meetings

Fig. KEC_RHW 6: Accumulated distribution over time

This figure tells us that errors distributed over phase have become stable over time

and can be used as a baseline.

Why are the errors introduced?

Fig. KEC_RHW 7: Why are the errors introduced (the cause)?

Maybe the most important question is to know the cause of the errors.

The most frequently cause is the lack of system knowledge.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

45 %

50 %

L
a
ck

 o
f

sy
s
te

m

kn
o
w

le
d
g
e

N
e
g
lig

e
n
ce

 o
r

ti
g
h
t

ti
m

e

sc
h

e
d
u
le

A
 w

is
h
 f

o
r

a

ch
a
n

g
e
 o

r

im
p
ro

ve
m

e
n
t

In
co

m
p
le

te

so
u
rc

e

d
o
cu

m
e
n
ts

O
th

e
r

c
a
u
se

s

Session 1: SPI and Strategies

Page 1.11

Actions:

One action was therefore to check what the cause lack of system knowledge really

means. What kind of competence is insufficient?

A request scheme was distributed among all software developers.
The following answers were the most common:

 Lack of understanding of how a function is distributed in the system/product

 Lack of understanding of the function to be implemented

 Lack of skills about the building system

 Lack of competence of software analysis/design

Out of these answers, the following actions are/will be taken:
1. Joint seminar with the system group, to understand the functions better

2. Internal course in building systems

3. The software group shall increase their competence in software design

Another cause we checked closer was the cause lack of or poor source documents.

We wondered; which kind of source documents is poor or lacks information? Are

these documents written by us (the software group) or by the system group? When we
study the errors, over 60% of the errors were introduced in phase 3, which is the

functional design phase. 22% belonged to the specification phase (phase 2).

Additionally, the distribution of the error categories showed that most of the errors
were related to sequence diagrams.

Examples of actions identified:

1. Describe and improve the written procedures in phase 3

2. Improve the procedures, guidelines, templates and checklist for writing Message

Sequence Charts

Session 1: SPI and Strategies

Page 1.12

What is the distribution over error categories?

Fig. KEC_RHW 8: Errors distributed on categories

Actions:

One thing that is noticed is that the category “other code errors” is very large. This

category was meant to be a small omnibus item. We thought that the categories would
cover most of our faults, but obvious it doesn’t. The action will therefore be to

reconsider the categories.

Beside that, the category “errors in protocols/sequences” and “faults in parameters”

covers 31% of the faults. These are faults made in Message Sequence Charts and
Signal Survey. The action is therefore to improve the quality of these two document

types by using a new tool (Telelogic SDT) and to learn the MSC standard.

Another action is to improve the specification documents. It is the system division
that writes the specification documents, so we must appeal to them on making better

specifications. The action for the software division was to organise a seminar with the

system division to obtain a mutual understanding on each other’s need.

The seminar between the software division and the system division, cover at least two

needs: information about the functions in the radio and an understanding for the need

of better source documents (seen from the software developers).

Lessons learnt

We have not succeeded answering question Q3: What is the cost of the errors

0,00 %

5,00 %

10,00 %

15,00 %

20,00 %

25,00 %

Tim
in
g/

dy
nam

ic
 b

eh
av

io
ur

E
rro

rs
 in

 p
ro

to
co

l/s
eq

uen
ce

s

O
th

er
 c

od
e

er
ro

rs

S
pe

ci
fic

atio
n e

rr
or

s

E
rro

rs
 in

 p
ar

am
et
ers

La
ck

 o
f c

od
e

C
onf

ig
ur

at
io
n

er
ro

rs

E
rro

rs
 in

 th
e
to

ol
s

C
opy

/p
as

te
 e
rr
or

C
ode

ru
le
s
ar

e n
ot f

ollo
w
ed

N
ot r

el
ev

an
t

Session 1: SPI and Strategies

Page 1.13

distributed to the different phases and products?

It seems to be very difficult to identify the cost of the errors. Some reasons of that

are:

 One symptom more causes

 One error more corrections, i.e. more developers involved

 Some of the developers are working in another company and are not involved in

the SPIQ project

Another important aspect is the human part of it. The feedback sessions are therefore

a very important part of the GQM method. Without them it wouldn’t work. In these

sessions the results are presented to all the developers. New actions may also come up
during the feedback sessions, but most of all the feedback sessions are needed to

motivate the developers to fill in the error reports with correct and complete data.

Using the Baseline Hypothesis in the GQM abstraction sheet was very useful. As you
can see from the abstraction sheet, we did this on one question, in which phase are

the errors introduced? There were very interesting discussions among the developers,

and we didn’t stop the discussion until everybody agreed about the answer. Because
of all the discussion, the developers were very curious about what the correct

(measured) answers were. This was a motivation factor for the developers when

writing error reports.

Conclusion

One of our goals was to define a baseline for further improvements. We have

registered the results over time, and it seems stable enough to be used as a baseline. If
we want to compare the results of this project with another project, we have to take

into account the surroundings i.e. the complexity of the product and the skills of the

software developers. It requires that the development process (for instance the review
process) is the same.

GQM is a good method as a basis for improvements. To decide the priority of actions,

Pareto analysis is being used.

We had to adjust the goal and some metrics (specially the error categories and the

error causes) during the collection of data.

We have already achieved positive results. One action early in the project was to

improve the module test and enforce code reading (many errors were introduced

because of carelessness). After three months we could see that the number of errors
with this cause was reduced.

One Improvement Process as a Basis for General

Process Improvement

So far we have only registered and analysed errors detected in the test phase

(integration test and system test) for one project. The result is the first baseline for

measuring improvements of the software process. We are now working with
improvements of the software process in general, based on the results so far. At the

Session 1: SPI and Strategies

Page 1.14

same time we consider improvements of the metrics. Furthermore, the other software

group is adopting the established system. This department has already got the results

from its first analysis meeting.

We are also working with expanding the system to all phases of the development

process: specification, function design, realisation, integration test and system test. In

earlier phases the ‘errors’ are comments from formal reviews of documents. We have
established a checklist to be used during preparation and review of documents. The

reviewers’ comments have to refer to the corresponding checkpoint in order to be

accepted. The data from the reviews are collected in a database to be used for analysis
and decision of actions to improve the development process or the review process.

The system includes the identification of the development phase in which the errors

are introduced. Needs for improvement will therefore be detected for all development

steps. We do not yet have any results from this expansion. However, training courses
with special focus on the checklist have already been completed. The first results are

expected before the end of this year.

References

 [1] Basili, Victor R., Software Modelling and Measurement: The
Goal/Question/Metric Paradigm. University of Maryland Technical Report

UNIACS-TR-92-96, 1992

[1] EFQM, Self-assessment Guidelines, 1995

Session 1: SPI and Strategies

Page 1.15

Kongsberg Ericsson Communications ANS

Staff: 150

Turnover: 300 mill NOK

Kongsberg Ericsson ranks among the world leaders in the area of mobile

communication systems for military use. The company’s tactical communication
system, EriTac, provides communication for data and voice in tactical environment,

and is supplied to both army and air defence programmes across the world. The

company is co-operating closely with Ericsson companies on product development

and export marketing.

Tactical Communication System

The area trunk communication system is designed according to user requirement set
by the Norwegian Army and the specifications recommended by EUROCOM.

Operational requirements specified therein call for demanding network functions to

ensure interoperability between the tactical networks of allied nations as well as a

high degree of mobility and survivability.

The system’s modular design allows the user to put together any battlefield

communications system, from a small point-to-point system up to a large mesh
network.

Rolf H. Westgaard was born in 1938 and became M Sc. at the Norwegian Institute
of Technology, University of Trondheim (NTNU) in 1964. From 1965 to 1979 he

worked at Tandbergs Radiofabrikk in Oslo as radio designer, the company’s

education and training manager, ending up with 2 years as technical manager at their
British subsidiary in Leeds.

He joined Elektrisk Bureau as a manager in the Quality section in 1979 and has since

1985 worked as a Quality Manager of the part, which ended up as Kongsberg
Ericsson Communications ANS after several changes of name and ownership.

He was part of the team who started the software group of the Norwegian Society for

Quality in 1983. He chaired the second European Conference of Software Quality in

Oslo 1990. Rolf is responsible for the SPIQ activities in the company.

Solveig Gustad was born in the summer of 69 and became M.Sc. at the Norwegian

Institute of Technology, University of Trondheim (NTNU) in 1994. Her experience is
from Kongsberg Ericsson Communications ANS. The first two years she worked as a

software developer and then as a software manager. As a software manager, one of

her main responsibilities is to keep the development process for software as good as

possible all the time. An important part of this is continuous improvements. Solveig
has been involved in the SPIQ project from the start.

Page 1.16

Key Success

Factors for

Business Based

Improvement

Miklos Biro

Sztaki, Budapest, Hungary

Richard Messnarz

ISCN, Dublin, Ireland & ISCN Regionalstelle, Graz, Austria

Introduction

This paper is based on the results from the EU Leonardo da Vinci project PICO
and discusses software process improvement from the business manager's
viewpoint. Thirty experts across Europe with different backgrounds (process
analysis, goal analysis, measurement, experimental approaches, business
analysts) from ESPRIT projects running in the 90's have contributed to the work
of PICO [3]. The result is a framework into which all methodologies fit describing
how they can be combined to achieve the business manager's goals and
perceptions. Experiences and case studies have been contributed from Alcatel,
Siemens, Festo, and many smaller and medium sized firms from 11 different EU
countries. Specifically the paper discusses key topics to be taken into
consideration : business strategies, process and business indicators and their
relationship, goal analysis and measurement, people factors, and infrastructure
issues. The establishment of a quantitative feedback and learning cycle is
emphasized.
The PICO Book:
R. Messnarz, C. Tully, (eds.), Better Software Practice for Business Benefit, IEEE
Computer Society Press, Tokyo, Brussels, Washington, June 1999, ISBN : 0-
7695-0049-8. It has been written by 30 authors from 11 EU countries.

Session 1: SPI and Strategies

Page 1.17

A Business Driven Quality Definition

There are many definitions of quality which are extensively discussed in
textbooks. Here we only mention two of them to show the slight difference
between them in technical vs. business orientation.
Quality. totality of characteristics of an entity that bear on its ability to satisfy
stated or implied needs. [ISO 8402:1994, adopted in ISO/IEC 9126]

Quality. The degree to which a system, component, process, or service
meets customer or user needs or expectations. [IEEE-Software Engineering
Standards]

It was also recognised that in the software development process, there are
several stakeholders who have naturally different views of quality. Three
views are identified in the ISO/IEC 9126:1991 standard. Even though these
views are incorporated in a more comprehensive quality model in the
currently draft version of the new ISO/IEC 9126 standard, we prefer to
present the original definitions below.

"User's view... Users are mainly interested in using the software, its

performance and the effects of using the software. Users evaluate the
software without knowing the internal aspects of the software, or how the
software is developed...."

"Developer’s view. The process of development requires the user and the

developer to use the same software quality characteristics, since they apply
to requirements and acceptance. When developing off-the-shelf software, the
implied needs must be reflected in the quality requirement...."

"Manager's view. A manager may be more interested in the overall quality

rather than in a specific quality characteristic, and for this reason will need to
assign weights, reflecting business requirements, to the individual
characteristics.
The manager may also need to balance the quality improvement with
management criteria such as schedule delay or cost overrun, because he
wishes to optimise quality within limited cost, human resources and time-
frame."

[Excerpts from the text of the ISO/IEC 9126:1991 standard on Information
technology - Software product evaluation - Quality characteristics and
guidelines for their use.]

Our objective in this paper is to elaborate on the last one of the above views.

A business manager sees process improvement or the achievement of quality
under a different perspective. He wants to generate business, secure
markets, increase shares, and get new contracts. Thus his interest is to
create economic feedback loops that allow an increase of business potentials
by investment into process improvement.

Session 1: SPI and Strategies

Page 1.18

ACTUAL PROCESS producing SOFTWARE PRODUCTS

Process factors (causes)

Business Performance measures (effects)

External

Factors

Organi-

sational

Factors

Estab-

lished

Process

People
Infor-

mation

Resources

Financial

Resources
Methods

Tools

Platforms

etc.

Product

Quality

Customer

Satis-

faction

Profita-

bility

Stock

Market

Price

Staff

Moti-

vation

Return

on Invest-

ment

Corporate

Image

Figure 1 : A Process – Business Feedback Loop

As it is illustrated in Figure 1 investment is possible on single process factors
or a combination of them, and the change in the actual
design/production/delivery process will impact a set of business factors.
The business manager’s greatest burden to solve is to find a traceable
feedback relationship between process factors and business performance
factors which will pay back.

Another important aspect is that the market (in a business environment)
sometimes does not decide by actually measured quality, sometimes the
perceived quality of the customer counts.

An example is the strategy of some Japanese firms to enter the European
market, as it is perceived by the European competitors. A European firm (a
radio manufacturer, also developing the software for radios) always was
confirmed to produce radios which are running through extensive tests and
thus have to be sold at a certain minimum price. The Japanese competitor
realized that there is a market demand for different radios (at different price
and quality levels) and started to develop and distribute radios also at low
cost (with lower quality and functionality). However, not the quality of the
system but the perceived quality from the different levels of the customers
was deciding the market success, so that many customers bought the low
price radios and the European radio sales became smaller. This does not
mean that the Japanese firm was not offering quality, it rather means that
they offered different systems with different quality levels (of course, also
including systems of the same high standard than the one offered by the
European firm).

This then comes to new success factors like flexibility, and configurability
which have to be combined with the standardisation approaches underlying
the process improvement models.

And in a typical business scenario thus a division could produce 100% quality
and achieve high organisational maturity grades, but it still could fail in
business due, for instance, missing flexibility and system configurability.

Another example is the Microsoft and Apple story. A major reason why the
quality of a MaIntosh is perceived (by the customers) as higher than that of a

Session 1: SPI and Strategies

Page 1.19

PC is the fact that a Mac (once bought) kept stable over years, whereas due
to a upgrade philosophy of rapidly changing versions with exponentially
increasing resource demands the PCs are just stable for about 1.5 years and
then have either to be largely upgraded or exchanged.

Now imagine a situation in which the same game starts with the Mac, where
due to largely increasing resource demands also the Mac has to be upgraded
every 1.5 years. This would lead to a loose of the stability argument and the
customers would perceive the quality of PC and Mac as the same, thus
buying the low cost PCs in the future.

Of course, this is just a story, but it shows some ideas of typical business
strategies, which at the end calculates not only with defect rates but with
perceived quality from customers.

Business Manager’s Quality Perception. A business manager invests into
processes, people, and infrastructure with the aim to satisfy market demands and

perceived quality from customers, with a view of creating a traceable process –

business feedback loop.

Below, we present an original Structured View of Business Motivations for SPI first

published in the PICO book.

A Structured View of Business Motivations for SPI

One of the most pertinent questions a business manager can ask is the
following “How can I make my firm succeed where another fails?” Managers
with financial, operating, production, marketing, human behavioural, or other
orientations will give a variety of answers to this question and will arduously
argue for their valuable ideas. Here, we will outline a framework integrating
and structuring several orientations [4], [5], [6], [19].

The key concept of the approach is the notion of lever. Levers are means
used by a firm to increase its resource generating ability, just as a mechanical
lever is used for increasing the force applied to an object. The analogy goes
even further. Just as a force can be applied in many different ways to the
object resulting in a similar displacement, the use of the different levers can
increase the resource generating ability of the firm resulting in similar
business benefits. Finally, the resources are used to increase the assets of
the firm and to reward employees and stockholders.

Let us analyze the ways software process improvement can provide leverage
to a firm from the financial, operating, production, marketing, and human
behavioural perspectives.

Session 1: SPI and Strategies

Page 1.20

Financial leverage

Financial leverage means borrowing funds and investing them with a return
higher than the cost of the debt. If a company is able to exploit financial
leverage, it can make money on funds it does not own. Can software process
improvement provide financial leverage to a firm? The answer is clearly yes if
the return is high enough to make it worth borrowing money for achieving it. In
other words, is the ROI (return on investment) for software process
improvement high enough?

This issue is discussed in more detail in the PICO book. Here, we only
mention a few determining numbers which allow the reader to form an idea
about the magnitude of the leverage that can be achieved. ROI is considered
as “the bottom-line figure of most interest to many practitioners and
managers” in a pioneering report [14,15] of the Software Engineering Institute
of Carnegie Mellon University. The value of this report lies in the fact that it
contributes to the satisfaction of the major need of companies for quantitative
information regarding the benefits of SPI before committing resources and
investing into it. There were 13 organisations, where CMM® 1-based SPI [17]
occurred prior to 1990, which agreed to provide their highly sensitive and
confidential data to the SEI for anonymous or identified reporting according to
their own decision. The companies were the following:

 Bull HN

 GTE Government Systems

 Hewlett Packard

 Hughes Aircraft Co.

 Loral Federal Systems (formerly IBM Federal Systems Company)

 Lockheed Sanders

 Motorola

 Northrop

 Schlumberger

 Siemens Stromberg-Carlson

 Texas Instruments

 United States Air Force Oklahoma City Air Logistics Centre

 United States Navy Fleet Combat Direction Systems Support Activity

The report does not claim that its results are typical. It only shows the
potential benefits of SPI in a favourable environment. And these benefits in
terms of ROI are more than impressive. The range of the ratio of measured
benefits to measured costs is between 4x and 8.8x over periods of software
process improvement ranging from 3.5 to 6 years. Benefits include savings
from productivity gains and fewer defects, but do not include the value of
enhanced competitive position which will be examined below under the title

1 ® CMM is registered at the U.S. Patents and Trademarks Office. CMMsm is a serviced

mark of the Carnegie Mellon University.

Session 1: SPI and Strategies

Page 1.21

marketing leverage. Costs include the cost of a Software Engineering
Process Group (SEPG), assessments, and training, but do not include
indirect costs such as incidental staff time to put new procedures into place.

Capers Jones [9] reports an ROI of 3x to 30x with the returns measured over
a 48 months period using the Software Productivity Research (SPR)
assessment method and baseline studies. Exceptionally in the literature,
Capers Jones, [9] also reports a negative and alarming record: “Several
companies and government agencies have managed to spend in excess of
$10,000 per capita with no tangible benefits accruing.”

The conclusion of this section is that yes, software process improvement can
provide significant financial leverage to the firm making it worth borrowing
money for investing into it. Nevertheless, the effect can be adverse if the
company does not pay appropriate attention to accrued costs and to
immediate exploitation.

Operating Leverage

The profitability of a firm highly depends on its cost structure, that is the
repartition between its fixed costs and variable costs. Operating leverage
means the relative change in profit induced by a relative change in volume,
which is clearly higher for a firm with lower variable costs. Nevertheless, the
achievement of a low variable cost production usually presumes high fixed
costs, that is a capital intensive process.

$

VC

FC

TC

Revenue

Profit

Delivered quantity
Figure 2 : Firm with high fixed costs (FC) and low variable costs (VC). The

total cost is TC = FC + VC.

$

Delivered quantity

VC

FC

TC

Revenue

Profit

Session 1: SPI and Strategies

Page 1.22

Figure 3: Firm with low fixed costs (FC) and high variable costs (VC). The
total cost is TC = FC + VC.

Software process improvement clearly means an increase in fixed costs,
which include training, consulting fees, equipment, software licenses and
improvements in office conditions. However, the question is whether the
company is really able to use it for decreasing its variable costs. Measuring
the variable costs of software production is not a straightforward issue. The
notion of function point had to be invented to resolve this problem among
others. Function point analysis is discussed in more detail in chapter 6 of the
PICO book.

Function points are results of well defined calculations based on different
characteristics of a software product that are of interest to users: inputs,
outputs, data groups, inquiries, interfaces. The cost of the average number of
person months necessary for delivering a fixed quantity of function points is a
sample measurement for the variable costs of software production (person
months/function point). However, the measurement mostly used in reports on
software process improvement is development productivity (function
points/person month) which is in fact the reciprocal of the above number. In
the following, reported results are presented in terms of development
productivity whose increase is consequently equivalent to the decrease of the
variable cost of software production.

If, due to software process improvement, a software firm is able to deliver

the same quantity of function points using less person months than its
competitors, then it will have the potential to take advantage of operating
leverage. Nevertheless, real profit will only be generated if the revenue
resulting from actually delivered function points exceeds the total of the cost
(TC) of software process improvement (FC) and the cost of person months
used for generating them (VC). This means that bigger firms with a larger
number of delivered function points will have a better chance to enjoy the
operating leverage resulting from software process improvement.

Productivity gains per year measured in lines of code (LOC) per unit of time
are reported in [14,15] to be between 9% and 67% at the examined
organisations. Another form of productivity gain particularly relevant to
software is due to the earlier detection of defects also presented in [14,15].
The figures show a 6-25% increase in the number of early detected defects.
This represents enormous savings if we consider that “the cost of fixing a
defect pre-release is approximately $50 per line of code, while the cost of
fixing a defect discovered post-release is about $4000 per line of code”.

It is important to highlight at this point that the major European company
SIEMENS is a world-wide pioneer in measuring and publishing information
related to productivity gains resulting from software process improvement.
They report the following experimental reductions in error costs based on
maturity levels [25]:

Session 1: SPI and Strategies

Page 1.23

 17% from Level 1 to Level 2,

 22% from Level 2 to Level 3,

 19% from Level 3 to Level 4,

 44% from Level 4 to Level 5.

SIEMENS also reports productivity increases in terms of lines of code, but at
this point it is more appropriate referring to chapter 8 of the PICO book giving
direct account of SIEMENS experiences.
Another report accounting for productivity gains due to process improvement
in European software development organisations originates from the results
of a questionnaire developed by IBM Europe [13]. This report compares,
among others, the performance of leaders with that of laggards from among
360 responding organisations from 15 countries. While leaders “achieve a
development productivity of 25 function points per person month; remove
over 95% of defects before delivery; estimate consistently to within 10% of
the actual cost and duration of a project; and spend less than 1% of the
development effort on defect correction in the first 12 months after delivery”,
laggards “have a development productivity below 5 function points per person
months; remove less than 50% of defects before delivery; have projects
which often exceed estimates by more than 40%; and spend more than 10%
of the development effort on defect correction in the first 12 months after
delivery”.

 leaders laggards

Development productivity (function points/person
month)

25 <5

defects removed before delivery 95% <50%

inaccuracy of cost and duration estimates 10% >40%

% of development effort spent on defect correction in
the first 12 months after delivery

<1% >10%

Table 1 : Data from Leaders and Laggards

Production Leverage

Production leverage is the rate of growth of profits resulting from cost declines
due to the accumulation of production. It is an empirical fact that unit
production costs decline exponentially when experiences are accumulated
and the steady reuse of these experiences is well managed by the firm.

Session 1: SPI and Strategies

Page 1.24

Unit cost ($)

Cumulative quantity produced

10

100

1000

10

100

Figure 4 : The Experience Curve in a logarithmically scaled system of

coordinates

The graph of the unit costs in function of the cumulative quantity produced is
called the experience curve which is usually represented as a straight line in a
logarithmically scaled system of coordinates. The existence of the experience
curve is essentially due to economies of scale, learning, improvements, and
reuse.
The accumulation of experiences and the management of their steady reuse
is clearly one of the primary objectives of software process improvement.
Interestingly, this aspect of software process improvement has not been
analysed directly. Nevertheless, the paper [14,15] acknowledges that the
techniques useful for tracking the cost changes over time do not specify what
is causing the changes. The cause may be the process improvement, but it
may also be increased experience, new analysis and design methods, new
tools, and so on.

Marketing Leverage

Marketing leverage means the effect of higher prices and innovative
distribution on profits. Software process improvement, maturity achievement,
ISO 9000, or TickIT certification have an important impact on the perceived
capability of the company and on the perceived value of its products, which
contributes to improved customer satisfaction and makes it possible to
achieve higher prices.
Quality and process improvement are part of a differentiation strategy in
which the business delivers and is perceived to deliver a product or service
superior to that of competitors. In a study of 248 distinct businesses in the
service and high-tech industries referred to in [1], “a reputation for quality was
the most frequently mentioned sustainable competitive advantage”.

In line with the above US study, a major European company, Lloyds Bank
Plc. lists the demonstration of competitiveness through CMM/SPICE/TICKIT
certification as one of the key drivers for software process improvement [18].

The experiences of SIEMENS, another major European company, were
already mentioned and are described in more detail in chapter 8 of the PICO
book. The “promotion of the external visibility of Siemens’ software
competence” is listed as an important area to focus [25]. They also report that

Session 1: SPI and Strategies

Page 1.25

“highly-predictable quality regarding system releases and costs led to greater
market acceptance”.

[14,15] acknowledge the importance of “improved reputation, good will, and
brand name recognition” as intangible benefits of process improvement
arising from the “impact of SPI on customers”, but they present no actual
results relating to these.

A survey reported in [10] provides the feedback of more than 50 companies
on the benefits gained from the TickIT certification scheme. One of the major
benefits is formulated in the following way: “Customers have increased
confidence in the quality of our products. With the advent of TickIT the UK
Ministry of Defence (and many other influential purchasers) have ceased their
second party assessment activity, while many other large organisations now
insist that their suppliers and product resale partners achieve ISO 9001
certification by a TickIT accredited certification body.”

One of the rare reports which provide a measurement of the direct effect of
software process improvement on the marketing leverage of a company was
presented by Peterson [24]. The report is based on 560 SEI software process
assessments through December 1995 whose results were provided to the
SEI by March 1996. The statistics give the percent of respondents reporting
“excellent” or “good” customer satisfaction when improving software
processes from the initial level (around 80%) through the repeatable level (a
surprising decrease to 70%) upto the defined level (around 100%).

Human Leverage

Human leverage means the effect of employee motivation on profits. It is
widely known that employee motivation (empowerment) can be significantly
influenced by immaterial means like management styles and organisational
structures. Huge individual energies can be released for example in an
appropriate teamwork environment where team members are simply given
the responsibility to do their jobs as well as they can, instead of exerting close
surveillance over them. Nevertheless, attention must be paid at the
differences in the collective mental programming of people in different
national cultures [12].

The exploitation of human leverage is particularly important in software
process improvement since software development is a fundamentally human
mental process.
Herbsleb & al. [14,15] classify the “impact of the SPI effort on the
organisation’s employees”, including “better morale, improved understanding
of the corporate mission and vision, fewer crises, less stress, less turnover,
and better communication within the organisation”, among the intangible
benefits of SPI. Actually, no measurements are presented relating to these
benefits in this report.

The already mentioned report presented by Peterson [24] also shows
statistics giving the percent of respondents reporting “excellent” or “good”
staff morale when improving software processes from the initial level (around

Session 1: SPI and Strategies

Page 1.26

20%) through the repeatable level (around 50%) up to the defined level
(around 60%).

There is an already mentioned important study, [13] initiated by IBM Europe,
which gives a measurement of the impact of employee morale on the level of
performance of a company. The statistics based on 360 responding
organisations from 15 European countries show that employee morale
correlates strongly with both delivery performance and quality performance
levels.

An ultimate recognition of the importance of human leverage is the
development of models directly addressing this issue: the People Capability
Maturity Model (P-CMM) [11], and the Personal Software Process (PSP).

Application of Principles

When PICO started in 1995 each of the different methodologies argued to be
the best, to insert the most important rules and principles. But over the project
time and comparing different industrial case studies it turned out that you are
most efficient if you take into account all principles from all methodologies.

It is equally important (as stated in [19])

 To establish a business context

 To translate the business goals into technical goals, and establish
quantitative relationships which allow to track if the technical goals of
process improvement are met and how they contribute to the
achievement of business goals (see GQM, and ami [2])

 To analyse the strengths and weaknesses and identify which
improvements would show the highest impact on the increased potential
of achievement of business goals (see PICO book chapter 1)

 To follow technical guidelines to achieve higher levels of organisational
efficiency (see the maturity models as offered by the different assessment
providers, with the most well known one being SEI/CMM [17])

 To establish frameworks which allow people to increase their skills and
potentials in alignment with the organisational improvement changes in
the company.

 To work towards an electronic solution in which process improvement and
quality is an integrated part of each work place within the organisation,
supporting team-work across offices and partnerships.

Goals and Measurement

A big electronics company in Europe [19], for instance, made an
assessment resulting in maturity levels for different areas of the organization
and the identification of weaknesses such as unrealistic planning, no process
for design reviews, and weak configuration management. The organization
was already ISO 9001 certified but only 30% actually accepted the guidelines
due to missing practicability (formally good documented but not realistic for
projects in the field). A formal pragmatic assessment and improvement
approach would then, for example, decide about introduction of configuration

Session 1: SPI and Strategies

Page 1.27

management and so forth, BUT does this really now meet the organization's
business goals?

So this electronics company decided to run a goal analysis (based on the
GQM approach) in parallel interviewing business managers, department
heads, IT managers and project managers and designing a consistent goal
tree from top to bottom.

Business Policy

Company Wide Business Goals

Project Goals

Metrics

Process Improvement Goals

Management’s Viewpoint

Strengths and Weaknesses Profile

Project and Middle

Management’s Viewpoint

Goals Assessment Results

Figure 5 : Aligning Business Goals [21] with Improvement of Weaknesses

Found in Assessments [20]

One of the specific business policies was to create a financial framework for
the next years which allows to get a reserve budget to fight for a brand new
product on the market. To get to this marketing budget the business
managers decided to stabilize the development effort from divisions at x% so
that with all other overheads and cost a certain percentage is saved every
year to have the budget together right at the time when the product is
announced. At this moment the divisions were certainly higher than x% and
the improvement actions (based on the previously identified weaknesses from
the assessment) had to demonstrate after 3 years the success of achieving
this business goal.
The technical staff were frightened and thought that people will be dismissed
but the truth was that a proper interpretation of the business goals led to a
completely different view. The business managers expected that process
improvement provides a better work process and environment so that with the
same staff more projects and tasks can be done and over time the
development effort is stabilized at x%.
Under this perspective the 3 process weaknesses were again analyzed and
further interviews showed a potential of re-use because in all systems in the
sector nearly 80% of the functionality was always the same. So the
improvement plan focused on an integration of design, configuration
management and review of a re-use pool of these 80% functions and to
reduce the development for each project to the only 20% additions, thus
enhancing productivity and achieving the effort stabilization.

Now, let us assume that only a pragmatic assessment would have been

Session 1: SPI and Strategies

Page 1.28

performed. Three weaknesses would have been identified and without re-
use orientation would have led to a pragmatic proposal to first run a pilot
project to identify a configuration management system and field test it, to
disseminate it to other projects, and to help making it a division wide
standard. Sounds simple, BUT unfortunately the business context is lost.
What then happens is that management sees additional effort, the
development effort further increases, and with no vision of decrease of the
development effort the business manager after 1 year (before benefits can be
made visible) would really decide about things like dismissals.

This example refers back to the principles of operating and production
leverage.

Processes and People

Business managers, project managers, and practitioners speak different

languages and might have different viewpoints on the same situation [22,23.
Business managers speak about fixed cost, variable cost, return on
investment, leveraging, market trends, product sales, and customer
satisfaction. Middle and project managers speak about budget, work plans,
quality plans, configuration management, requirements analysis and
structured analysis, and always fear to be delayed or to overrun the budget
provided by the business managers. Practitioners deal with modules, design
them, implement and test and deliver them so that they can be integrated into
the system architecture planned by the project manager.

It is the nature of process improvement methodologies that measurement and
control functions are installed which again will be seen differently from the
different target groups. Business managers not understanding that SPI needs
investment with a ROI in about 3 years sometimes demand that process
improvement is performed without any assignment of budget to it: lets do
quality but it should not cost any dollar. This certainly leads to a disaster and
top management commitment is the number one success criteria for starting
an improvement program. Middle managers will like the process improvement
most because it provides them with methodologies and facilities to better
define the processes, to better visualize the productivity and quality, and to
improve the predictability which leads to the fact that schedules and budget
are kept satisfying therefore the business managers. At the beginning the
practitioners usually see the implementation of a process improvement
program as a dirty trick of middle and project management to better control
their performance.
However, after some time they start to realize that more reliable plans give
them enough time for design, better design reduces the re-work and
maintenance stress. Formalized reports help them to identify the root cause
of problems and to track the correction, and they can learn and improve

themselves based on measures 22,23.

It is a key to success to have all groups behind the initiative and to act as a
translator of the different viewpoints.

For instance, in a European project Bestregit (which applied PICO principles
in general management and technology transfer institutions) role based team-

Session 1: SPI and Strategies

Page 1.29

work models were established for best practices, and an experiment at a
Spanish site showed that using these role based models leads to

 People identifying themselves with roles in a team

 A 2/3 effort reduction in the introduction of new staff

For instance, PICO principles were applied for ISO 9001 certification based
on computer supported team-work scenarios (tried out with certifications at
TÜV, ÖQS, and Norske Veritas). Measurements at Austrian sites showed
that the actual motivation of engineers to use the standards grew from 17%
to 57% of the staff.

These effects relate back to the principle of human leverage.

Integrated Team-work and Infrastructure

On an Intranet Scale –

A major fear of engineers when new standards are introduced is the
additional expected amount of documentation.
In old traditional situations of standard introduction a process group is
established which creates and maintains the standard, produces a manual,
and looks that all projects keep the guidelines described in the manual.
However, engineers do not like to see quality or improvement as a separate
part in parallel to their normal engineering work. Quality and improvement
related processes should be an integrated part of their work place, just like a
compiler is.

This leads to Intranet based systems [22] that support

 Teamwork and information flows

 Information structuring and archiving

 Joint use of resources for design and implementation

 Configuration management and version control

 Etc.

European projects have tested such environments in companies and found,
for instance [5], a number of key factors:

a. If (as said under People and Processes) role centred work models better

support human leveraging, it is important to create infrastructures that
allow to establish role based team-work over the net

b. If a system should be able to work for different departments and
processes with the same software, the system must be generic and highly
configurable.

c. Especially guidance in documentation through the system should be
supported to such an extent that the additional expected documentation
(the engineers’ fear) gets minimised, although a full implementation of the
standards is achieved.

On a Global Scale -

To stay competitive on the global market it is necessary to set up win-win

Session 1: SPI and Strategies

Page 1.30

based agreements in cost sharing projects in which partners from different
countries share the risk and the effort and jointly exploit ideas, products, and
services. Through effective and distributed collaborations organisations can
cut down their risk significantly (e.g. sharing the development cost with other
partners) and can reach a much larger market [22].

However, the key problem is that distributed collaboration needs effective co-
ordination of the work of the different partners. And old conservative means
such as direct supervision, local meetings, large local and not distributed
teams, do not work any more. The decomposition into smaller competence
teams with clear cooperation interfaces supported by new and effective
communication systems is needed. This includes a virtual office on the net
with project archives and document management, configuration management,
guide-lines and computer support for project documentation, network and
computer supported information flows, and appropriate security mechanisms
assuring privacy of the materials exchanged and produced.

A field test implementation of such a system at different companies is
described in [22]. Companies using the system described in [22] have
successfully achieved ISO 9001 certification based on fully computer
supported team-work processes.

This new approach of collaborative development leads to a big chance for
creating financial leverage (by joint risk and effort funding) and an increased
marketing leverage (by joint representation on the market, and larger
distribution through a net of partnerships).

A Comprehensive Definition of SPI

SPI [19] is a strategy for business managers to align their business goals
with technical improvement objectives, to apply a set of different
methodologies

 Assessment methods

 Goal Analysis Strategies

 Measurement Tools

 Paradigms and Strategies to Establish People Motivation and Team-work
Processes

 Improvement Planning Techniques

to create a process – business feedback loop, with the aim to make the
organization more competitive (Marketing Leverage). Business orientation is
a must to create the budget for SPI (Financial Leverage). People
management and motivation is a must to get a critical mass of people
following the SPI vision (Human Leverage). Goal trees are a must to translate

the business manager's viewpoints into practical objectives for the SPI teams
(aiming at Production and Operating Leverage). And pragmatic assessment

methods (CMM, Bootstrap, TickIT, Trillium, etc.) are just one tool to evaluate
the strengths and weaknesses before applying the combination of the other
approaches (from business orientation to goal analysis).

Session 1: SPI and Strategies

Page 1.31

PICO’s Outlook

PICO produced a book [19], and a set of training courses for

 Business strategies

 Goal analysis

 Process analysis

 Measurement

 Experiences

 Self Assessment

PICO also developed a tool set which can work (by configuration) with almost
all different assessment methodologies. This was required because PICO
contributors came from many different methodology backgrounds.

PICO did not develop a new methodology, it is rather a collection of
experiences of how to combine existing approaches to achieve a business
based strategy.

PICO’s book (although announced earlier already) is still at IEEE in the
production, and when the book comes out PICO will distribute at moderate
prices a CD with all courses, the tool, and further SPI materials as a
complementary set to the book.

References

[1] Aaker,D.A. Strategic Market Management. John Wiley & Sons, Inc., 1995.

[2] The ami Handbook, 1995, ISBN 0-201-87746-5

[3] Biró,M.; Feuer,É.; Haase,V.; Koch,G.R.; Kugler,H.J.; Messnarz,R.; Remzsö,T.

BOOTSTRAP and ISCN a current look at the European Software Quality Network. In:

The Challenge of Networking: Connecting Equipment, Humans, Institutions (ed. by D.
Sima, G. Haring). (R.Oldenbourg, Wien, München, 1993) pp.97-106.

[4] Biró,M.; Sz.Turchányi,P. Systems of Decision Criteria Supporting Software Process

Improvement. In: DSS - Galore, Proceedings of the fifth Meeting of the EURO Working

Group on Decision Support Systems (ed. by M. Brännback, T. Leino). (Institute for

Advanced Management Systems Research, Turku, Finland, 1995) pp.133-147.

[5] Biró,M.; Feuer,É.; Remzsö,T.; Sz.Turchányi,P. Business Decision Problems Supported

by Software Product and Process Assessment. In: Proceedings of the ESI-ISCN '95

Conference on Practical Improvement of Software Processes and Products (ed. by T.

Katsoulakos, R. Messnarz). (European Software Institute-International Software

Consulting Network, Vienna, Austria, 1995).

[6] Biró,M.; Sz.Turchányi,P. Software Process Assessment and Improvement from a

Decision Making Perspective. ERCIM News (European Research Consortium for
Informatics and Mathematics) No.23 (1995) pp.11-12.

(http://www-ercim.inria.fr/www-ercim.inria.fr/publication/Ercim_News/enw23/sq-

sztaki.html)

[7] Biró,M.; Feuer,É; Ivanyos,J. Process Improvement Expriment at MemoLuX. In:

Proceedings of the ESI&ISCN 1997 Conference on Practical Improvement of Software

Processes and Products (ed. by R.Messnarz). (International Software Collaborative

Network, Budapest, 1997) pp.6.18-6.29.

[8] Biró,M.; Remzső,T. Business Motivations for Software Process Improvement. ERCIM

News (European Research Consortium for Informatics and Mathematics) No.32 (1998)

Session 1: SPI and Strategies

Page 1.32

pp.40-41.

(http://www-ercim.inria.fr/www-ercim.inria.fr/publication/Ercim_News/enw32/biro.html

)

[9] Capers Jones, The Pragmatics of Software Process Improvement. Software Process

Newsletter. No.5, Winter 1996, pp.1-4.

[10] CSA, TickIT provides proven quality benefits to both customers and suppliers of

software systems. CSA (Computer Services Association) Position Paper. Pub. No. 32,

1994.

[11] Curtis,B; Hefley,W.E.; Miller,S. Overview of the People Capability Maturity Model.

Software Engineering Institute, Carnegie Mellon University, Maturity Model CMU/SEI-

95-MM-01.

[12] Geert Hofstede, Motivation, Leadership, and Organisation: Do American Theories Apply

Abroad? Organisational Dynamics. Summer 1980, pp.42-63.

[13] Goodhew,P. Achieving real improvements in performance from software process

improvement initiatives. European Software Engineering Process Group Conference

1996 (C306).

[14] Herbsleb,Jim; Hayes,Will. Performance Profile: Measuring the Business Value of

Software Process and Technology Improvements. European Software Engineering

Process Group Conference 1996 (C317).

[15] Herbsleb,J; Carleton,A; Rozum,J; Siegel,J; Zubrow,D. Benefits of CMM-Based

Software Process Improvement: Initial Results. Software Engineering Institute, Carnegie

Mellon University, Technical Report CMU/SEI-94-TR-13.

[16] Ivanyos,J.; Biró,M.; Messnarz,R. The PASS Process Improvement Experiment in

Hungary (PASS EP 21223). In: Proceedings of the EuroSPI'1998 Conference on How to

reap the business benefit from Software Process Improvement (ed. by R.Messnarz).

(International Software Collaborative Network, Gothenburg, 1998) pp.8.24-8.45.

[17] Key Practices of the Capability Maturity Model V 1.1, CMU/SEI-93-TR-25, Feb. 93

[18] Larner,C. More practical experiences and lessons gained by the software engineering

process group of a major European bank: a question of ownership. European Software

Engineering Process Group Conference 1996 (C304).

[19] R. Messnarz, C. Tully, (eds.), Better Software Practice for Business Benefit, IEEE
Computer Society Press, Tokyo, Brussels, Washington, ISBN : 0-7695-0049-8, to be

published.

[20] Messnarz R., et. al. , BOOTSTRAP: Fine Tuning Process Assessment, IEEE Software,

pp. 25-35, July 1994

[21] Messnarz R., Kuvaja P., Practical Experience with the Establishment of Improvement

Plans, in: Proceedings of the ISCN'96/SP'96 Congress on December 1996 in Brighton,

pp. 155-169, ISCN Ltd. Dublin, Ireland

[22] Messnarz R., et.al., NQA – Network based Quality Assurance, in: Proceedings of the 6th
European Conference on Quality Assurance, 10-12 April 1999, Vienna, Austria

Session 1: SPI and Strategies

Page 1.33

[23] Thamhain H.J., Wilemon D.L., Criteria for Controlling Projects According to Plan, in

(eds.) Nahouraii E., Butler J.T., Petry F.E., Richter C., Tham K., Software Engineering

Project Management, pp. 15-54, IEEE Computer Society Press, USA 1990

[24] Peterson, B. Software Process Improvement Trends. European Software Engineering

Process Group Conference 1996 (C306).

[25] Völker, A; Gonauser,M. Why Maturity Matters. European Software Engineering Process

Group Conference 1996 (C305).

Page 1.34

SPI – Why isn’t it

more used?

Tor Stålhane, Ph.D.,

Kari Juul Wedde, M.Sc.,

SINTEF, Trondheim, Norway

Introduction

SINTEF has for some years offered assistance to industry in Norway and
Sweden in the area of SPI – Software Process Improvement. This assistance
is based on two projects, namely:

The QIS project – Quality Improvement in Scandinavia. This is an EU

sponsored project that shall give help and assistance to PIEs in

Norway and Sweden and market the concept of SPI to the software

industry in these two countries.

The SPIQ program – Software Process Improvement for better Quality.

This is a national Norwegian program that is partly a national ESSI

type project and partly a co-operation between academia and

Norwegian industry to increase the use of process improvement

methods in Norwegian software industry.

From the start we thought that it would be an easy job to sell SPI to the
industry. However, this turned out to be a rather optimistic assumption. Quite
a lot of companies did not believe that SPI would solve their problems. This
was a general attitude and not limited to management or developers only.
The rest of this paper describes our findings related to why a large part of the
industry rejected the very concept of SPI. We start by describing the situation
as we see it and the reasons that we have found, both among management
and among developers. Then we sketch some suggestions for solutions in
order to improve the situation before we end the paper with some
conclusions.

Session 1: SPI and Strategies

Page 1.35

The current situation – and how we got there

Where we got our data

We base our conclusions on several data sets. The data are mostly
qualitative and not collected in order to throw light over the problem at hand.
This is a consequence of the fact that we got a clear picture of the sordid
situation quite late in the process. The data sources are as follows:

A survey of Norwegian companies - used to discover which factors the

companies considered important for improvement 0.

A survey of European companies - used to discover why companies do

not do SPI and what they do instead in order to improve 0.

A set of interviews with quality assurance (QA) personnel and developers

in five Norwegian companies on the role of written procedures as a

vehicle for organizational learning 0.

Data collected in two Norwegian companies pertaining to where they are

and where they want to be in the near future – also called a gap

analyses. This includes, among other things, also a set of arguments

for and against SPI.

Discussions with developers in Norwegian and Swedish industry on SPI.

All this information gives clues to the problem, even though none of them
present the full picture. Thus, instead of a data analyses – statistical or
otherwise – we present a solution to a jigsaw puzzle consisting of all the small
pieces of information that have been given to us.

The way we are – and why

Everything has a history, so also the current status of QA, SPI and software
development. In the seventies, software development was a rather chaotic
affaire. The programmers considered themselves artisans – or even artist –
that did not produce, but instead create. Project control, quality control and
any other control was mostly absent: The project was finished when it was
finished and the customers stood in awe and watched the blinking lights on
the computer.
The managers did not think this was a good state for the business and project
control seemed to be a solution that appeared just in time. When it was
sanctified by ISO and given an official number, the managers were all too
ready to jump on the bandwagon. ISO 9000 was not a bad idea; it was just
that its introduction was badly timed. Since the management layer of the
companies were screaming for control over hundreds of cowboy
programmers, ISO 9000 lead to an intense focus on control. As a result of this
rather myopic interpretation of the standard, two things happened:

Session 1: SPI and Strategies

Page 1.36

The management focused on control, since ISO 9000 promised to give

them just that, and the QA department followed suite.

The most important part of ISO 9001 – section 4.14 that focused on

process improvement - was lost in the introduction. The fact that it in

many cases was sold as statistical process control (SPC) did not help

much either.

Thus, the big chance to introduce real quality improvement and SPI into
software development was lost. Instead we could hear ghastly statements
from QA managers like “The QA department’s most important job is to give
the managers full control over the projects”.

Some data – and our interpretation

In order to see if there is a way of adding more details to the picture, we have
looked at two contrasts that we hope will shed light on the status concerning
SPI. These contrasts are small versus large companies and the way the QA
department looks at SPI versus SPI as seen from the developers.

Small versus large companies

There seems to be a larger share of the big companies that do SPI than there
is of the small companies. There are at last two explanations for that:

Either: SPI will lead to changes. It is thus a risk and larger companies can

better afford to take such a risk. The main reason for this is that they have
more resources. In addition, SPI will take time and larger companies usually
have a longer planning horizon.

Or: Larger companies need SPI, small companies don’t. The reason for this is

that small companies are more flexible, is less dependent on written
procedures and has more efficient internal communication.

When considering SPI and small companies, there are also two other areas
that should be taken into considerations. These are:

Small companies live in an ever-changing world and they have little or no

influence over the way their environment changes. Thus, anything that

depends on a stable environment has little or no value for a small

company. Since SPI to a large extent is a synthesis of previous

experience, SPI becomes at least partly irrelevant.

SPI will require a certain minimum of documented routines. However,

written procedures and routines have a tendency to petrify the

organization and thus remove some of the flexibility that a small

company needs in order to compete efficiently.

Session 1: SPI and Strategies

Page 1.37

Thus, small companies focus on being innovative and flexible, instead of
using what they see as a large documentation overhead that they fear will
take away all of their competitive advantages. This stance is, however, not
limited to small companies. A manager from a large company that produces
mobile telephones have stated that they are a CMM level 1 0 company and
intend to stay there for the foreseeable future. This does not mean that they
do not do SPI – on the contrary, they do quite a lot of it. The point is that they
look for ways to improve themselves that do not destroy creativity and
innovation.

QA department versus the developers

One of the observations that is rather consistent in all our material relates to
the on-going discussion of what kind of information and knowledge that is
important for a company. The programmers focus on how to write code, while
the QA department focuses on rules and regulations. This was brought clearly
forward when developers and QA personnel were asked about the value of
procedures as a vehicle for knowledge dissemination in the company. The
results are presented in Table 1.

 Procedures is an important vehicle for knowledge transfer

Personnel Agree Undecided Disagree

QA managers 64% 18% 18%

Developers 0% 50% 50%

Table 1 Procedures as a vehicle for knowledge transfer

The message is loud and clear – QA managers think that procedures,
document forms etc is important knowledge, while the developers think it is
not. This attitude also surfaces in another question, related to the use or no
use of the company’s written procedures. The developers were asked about
the amount of control and the amount of use of the company’s procedures.
The results are summarized in Table 2.

 Use of company procedures

Degree of control Low Medium High

Low 36% 55% 9%

Medium 33% 34% 33%

High 0% 56% 44%

Table 2 Use of company procedures

It is straightforward to see that the degree of control has a strong influence on
the degree of use of the company’s procedures. A rather sad conclusion is
that the developers do not use the procedures because they find them useful
but because they get in trouble if they do not use them. A collateral to this
conclusion is that the developers do not see the procedures as particularly
useful. This result is consistent with the conclusions from the previous
question.
If written procedures is not the answer, what is? We asked both the
developers and the QA managers which alternative vehicles they would
consider. As shown in Table 3, the degree of agreement between the two

Session 1: SPI and Strategies

Page 1.38

groups is good. We see that they agree on the most important items, which
are – in order of importance:

Experience bases – saving experience for later reuse in new projects. The

experience base can be at any level of formalization – from a paper

archive of experience reports to a complete Experience Factory (EF).

Socializing – meeting at the coffee machine, in the cantina or somewhere

else in order to exchange experiences, ideas, insights and complaints.

Study groups – a more formalized version of “Socializing”.

Reports and documentation – a less formalised version of an experience

base.

These four areas include 70% and 71% respectively of all answers and show an important

conclusion:

People want to learn from others’ experiences by reading their reports and by

interacting with them – either formally in a study group or informally through

socializing. Written procedures are not the answer.

 Developers QA managers

Vehicle Number Rank Number Rank

Study groups 5 3 4 2

Experience bases 10 1 5 1

Courses 3 5 1 7.5

Socializing 6 2 3 3.5

Discussions 1 9.5 1 7.5

Teambuilding 1 9.5 1 7.5

Individual studies 1 9.5 0 11

Reports, documentation 4 4 3 3.5

Job rotation 1 9.5 1 7.5

Multidisciplinary group 1 9.5 0 11

Working meetings 1 9.5 2 5

Include consultants 2 6 0 11

Table 3 Vehicles for knowledge transfer

Why they don’t think SPI is a good idea

Those that don’t do SPI

The companies that participated in the ESPINODE industrial survey and
answered that they didn’t do SPI were asked three important questions: Why
don’t you do SPI, what do you do to improve and what kind of help would you
need to improve yourself? Since the questions were open-ended, we received
quite a lot of different answers. We have selected categories, starting with the
most popular one and then kept on including categories of decreasing
popularity until we have reached at least 70% of all respondents. The majority

Session 1: SPI and Strategies

Page 1.39

of the answers ended up in one of a small number of categories, as shown in
Table 4.

When we look at the results, there are two things that catch the eye: There is a strong

agreement among the companies on why they do not need to do SPI and on what they do

instead. Only two categories are needed in order to include 70% of all responders. The

agreement is less when we come to the help needed. This is as expected – it is always

more easy to diagnose a problem than to agree on a cure.

The fact that many companies claim that they do not have the necessary
resources available indicates that they do not believe that SPI is a sound
business proposition. When they say that they do not have enough resources
to do SPI, they are really saying that they do not believe that they will make
money out of it. They lack a cost / benefit analyses that will show how SPI will
help their business. The problem may partly be connected to the way QA has
been introduced. QA was supposed to increase efficiency and when the
results did not materialize, this also contaminated the idea of SPI which at
least partly has been sold as a QA technique.

Question Category %

Why don’t you do SPI? Do not have the resources available 40%.

SPI costs too much 30%

What do you do to
improve (instead of SPI)?

Improve and increase our know-how 52%

Introduce new tools and methods 29%

What kind of help do you
need?

Consultancy 24%

Networking 24%

Formative help on the concept of SPI 18%

Financial help 14%

Table 4 Those that don't do SPI

What do they need?

In order to get an understanding of the companies’ needs, we asked them
what they considered their most important challenge for the next two to three
years. The responses are summed up in Table 5. By and large, all companies
– whether they do SPI or not - agree on their most important challenges for
the future. Note, however, that while the SPI companies talk about improving
efficiency, the others talk about improving innovation. Thus, it seems that the
companies that do SPI focus on process efficiency while the rest focus on
being innovative. Many companies seem to believe that SPI is a barrier for
innovation – or at least that it doesn’t help. Being innovative is much more
critical for small companies, which depends on innovation in order to keep
their competitive edge.

In our opinion, the fear that SPI will destroy or hinder creativity stems mainly from

bad experiences with QA that has degenerated to a rigid control regime plus an enormous

amount of documents that nobody outside the QA department really needs.

To get out of this sordid state, we need to disconnect SPI from QA, at least
until QA move from being a controlling bureaucracy to being a service to the
development projects. In addition, we need to develop a way of basing SPI on
a sound business cost / benefit analysis so that the companies see that SPI
really help them make money.

 Most important challenge for the next years %

Companies that do SPI Improve development efficiency 30%.

Session 1: SPI and Strategies

Page 1.40

Increase customer satisfaction 24%

Promote company growth 23%

Companies that do not do
SPI

Increase customer satisfaction 29%

Be more innovative 28%

Promote company growth 19%

Table 5 Company needs

The SPC inheritance

The concept of SPI stems from production industry. Their concept is simple
and straightforward to apply:

1. Get the process under control by identifying and removing sources of variation.
2. Run controlled experiments where one or a few process parameters are varied in

a controlled manner and collect data.

3. Analyze the collected data in order to identify the best candidate for improvement
and implement the necessary changes.

4. Collect data to verify that the changes have had the expected impact.

5. Repeat the process from step 1.

Several persons – at some point in time event including one of the authors of this paper –

thought that this improvement paradigm could also be used for software. Some still

believe so. Level 4 and 5 of CMM are almost pure SPC both in concept and attempts.

Software developers by and large consider SPC to be close to irrelevant for software

development and they are probably right. The most important reasons for this are that

SPC assumes:

A technologically stable process that is repeated a large number of times -

typically several hundred times. This will probably never be the case

for a software development process.

That the variation factors can be brought under statistical control. Given

that a large part of the variation in a software development process

stems from the developers, this is a rather unrealistic assumption.

Thus, SPC is out. To the degree that SPI pushes the use of SPC or is in any
way connected with SPC, it will score low with software developers, and
probably also with software managers. QA managers, however, too often
think that SPC is a great idea – also for software.

The problems - as seen from the manager

The main problem with SPI as seen from the manager’s side is that it
consumes resources. This was given as the main reason by 40% of all
managers asked. SPI is seen as an activity that takes resources – people and
money - away from development which often is too late already due to lack of
people. Even if managers believe that SPI will enable them to run the project
within time and budget in the end, the end is too far away to interest them. A
possible solution would be to hire more people but there are at least two
obstacles to this solution:

Session 1: SPI and Strategies

Page 1.41

Good developers is a scarce commodity.

Hiring more people will cost money and the improvement promised by SPI

will only materialize somewhere in the future. It is a general

experience that a sure expenditure today will usually outweigh an

unsure income somewhere in the future.

Session 1: SPI and Strategies

Page 1.42

An extra problem – especially as seen from middle management - is that SPI
can only succeed by involving the developers. This is seen as a threat to
middle management since involving the developers mean to give them more
power – power that usually is taken away from middle managers.

The problems - as seen form the developers

Since SPI is marketed as a part of QA, developers automatically associates it
all the misguided attempts to implement QA as a document driven control
regime. Both “control” and “document” are terms that score low on the
developers’ scale of enthusiasm. They feel that they are hindered in being
creative and innovative – which is what development is really all about.
In addition to all this, QA – and thus SPI – is seen as a source of a never-
ending steam of procedures for this and routines for that in addition to an
insatiable lust for more documents. The problem is not the documents, but
the justified suspicion that these documents do not add to the product’s value
– they are just there to satisfy somebody’s need for control and control
translates into “I don’t trust you”.
A survey of working relation in the North Sea 0 illustrates this: “The
Norwegians coursed the way they were forced to work. They were forced into
what they felt were idiotic QA procedures. They were proud industrial workers
who had to follow routines and a documentation regime that the on-shore
industry had outgrown a long time ago. They had to wait for a working permit
even for small jobs and the whole place was crowded with managers on all
levels, with certificates and detailed working procedures”. In the offshore area
this lead to eight years of continuos strikes and worker unrest. Software
developers have not come that far – yet.

QA managers versus developers

One of the points that are driven home to us quite often is that the world looks
quite different depending on whether you see SPI from the QA manager or
from the developers’ side. Some times one wonders: Do they really work for
the same company or do they just share a mail address?
Some times the differences are important – for instance that developers and
QA managers agreed that developer involvement was important for the
success of SPI, while they did not agree on what developer involvement really
meant. For developers and development managers, developer participation
consisted of the following factors:

A strong influence on how their work is done.

Participation in the improvement work by making improvement proposals.

Participation in the development of procedures for development work

Participation when the company sets improvement goals.

Responsibility for part of the improvement work.

Being regularly informed of the status on the company’s improvement

work

Discuss the principles for SPI regularly discussed with the management.

Session 1: SPI and Strategies

Page 1.43

However, when we asked the QA managers, they produced the following,
rather short list of participation factors:

Participation in the development of procedures for development work

Responsibility for part of the improvement work.

What is most revealing in the factors identified by the QA mangers is what is
not included. These are factors such as participation by making improvement
proposals, by setting improvement goals, and by being informed of the status
in the improvement work. It is as if the QA managers say that SPI is the
responsibility of the QA department. The developers should stand by and
watch.
This problem was highlighted when we checked the two groups’ position
regarding feedback sessions. It turned out that the QA managers considered
feedback sessions to be sessions where the developers were allowed to see
the data. The development managers, on the other hand, considered
feedback session to be a part of data collection and analyses – which make
sense. Our experience is that the developers’ participation in feedback
session is absolutely essential for data analyses and interpretation.

Where do we go from here – out of the quagmire

Even though the situation in many ways is rather bad, there are hopes for the
future. Firstly, there are companies that have succeeded in their SPI work.
These companies have been able to make the QA department and the
software development department co-operate in a way that contributes to
increased quality for the customer and increased efficiency for the company.
In these companies the developers are involved in the improvement work and
the management supports it. Secondly, the SPI field has matured over the
years, and we have today a better understanding of how to implement SPI so
that it caters to the needs of software development and the needs of each
specific company.
The problems discussed in the first part of this paper are diverse. This
diversity could have resulted in a large set of solutions. We think, however,
that there are a few areas that dominate, and we will therefore focus on
solutions to these most important obstacles to SPI.

SPI and QA

W.S. Humprey introduced in 0 what he called Software Engineering Process
Groups (SEPG's) and these groups should among other things, take care of
process improvement activities. In the discussions of why these groups were
needed; why not let the QA department take this job, he stated ”At least from
a parochial development viewpoint, they (QA) are thus often viewed as the
enemy, or at least as an unnecessary annoyance". When we first read the
book, we thought this was an American problem and not valid for the
European way of working. Unfortunately, we were wrong. Our data and later
experience has shown that this is a relevant statement, at least for part of the
European software industry. The SPI community therefore has two
alternatives:

Either: Keep away from the QA department as best they can.
Or: Be an integrated part of the QA activities.

Session 1: SPI and Strategies

Page 1.44

The first alternative may work for some time, but is not a solution for the
future. The second alternative is therefore our choice. The main reason for
this is that SPI and QA overlap. QA shall verify that the employees have
applied their expertise properly, ISO 9000 requires continuous improvement,
etc. SPI is about learning to work smarter - changing the process to get an
environment in which people can do a better job. The obstacles to SPI are
thus not the tasks to be done or a lack of common interests. The problems
stem from the implementation. There are two main areas where today's
implementation has led to conflicts of interest between QA and SPI.

Organisation

QA has traditionally been organised as a separate department - at

least in large companies. This organisation has often resulted in little

contact and co-operation between QA and the developers. SPI, on the

other side, depends on close co-operation with the development

department and the developers – preferably on a daily basis. SPI can

not succeed without active participation from the employees.

Control versus help

The separation of QA from the developers can lead to a situation

where QA become a part of the management - controlling the

developers instead of helping them. SPI is about helping people to do

a better job.

The solution to these problems is simple - at least in principle. Establish a
common platform for SPI and QA where they can work together toward a
common goal - looking for new improvement opportunities. In this setting, QA
activities must be in-project activities and QA people should take part in the
daily work of the development projects. This is the only way that QA people
can get hands-on experience and thus learn about the developers’ needs -
problems to be solved and opportunities to grab.

Make SPI and QA unify their effort, looking for improvement
opportunities.

SPI and software development

In order to succeed in SPI, we have to understand and accept the nature of
software development. We have to understand that software development is
a creative and innovative process. In spite of all the methods and tools
appearing on the marked at a high frequency, software development is in the
end a people process.
Another aspect of software development is the technology focus and rapid
technology changes. These changes may be in conflict with one of the main
fundaments of SPI - that it should be fact based. Facts come from
measurements, and the question is how we can collect enough data to draw
conclusions based on statistical data analysis in an ever-changing
environment. The answer is simple - we can not. That does not mean that we

Session 1: SPI and Strategies

Page 1.45

have to give up. The solution is to use the data as indicators and include the
experts - the people related to the measured process - and their interpretation
of the data. This implies that you have to take risks. You can not be sure that
the interpretations are correct. A few data combined with expert knowledge
are, however, far better than expert knowledge alone. The measured facts
are there to aid the experts in reaching their conclusions and keeping this
process on the right track. The risks that rise from this way of reaching
conclusions have to be controlled. Thus, risk analyses has to be an integrated
part of any SPI program.

SPI should be based on a combination of measurement data and expert

knowledge - controlled by a risk analyses.

SPI and the developers

Software development is one thing, software developers is quite another.
How can we motivate them to get involved with SPI? Rigid procedures and
control are definitely not the answer. This does not mean that developers do
not want procedures at all or that all project tracking is considered to be
control. Firstly, lack of procedures is often considered a problem by the
developers, and definition of new procedures can be the result of SPI
activities. Procedures will reduce the time spent thinking about small
problems - giving more time to be used on creative tasks 0. On the other
hand, procedures are not considered to be an aid for knowledge transfer (see
Table 1). The problem with existing procedures is, however, that they not
always reflect the needs of the developers. Secondly, project tracking means
measurements, and measurement data can be collected as long as they are
considered useful by the developers and not used as a vehicle for control.
The solution to both these problems is developer participation. Our
experience is clear; if the developers are involved, they will be motivated. In
SPI, involvement means to participate in:

Defining the improvement strategy - problems to be solved and

opportunities to take advantage of

Define the metrics and the data collection procedures

Interpretation of the measurement data

Identifying and implementing improvement activities, i.e. defining

procedures.

SPI can not solve the developers’ problems without their participation

SPI and the business

To make it easier to sell SPI to the management, we should be able to
document the cost and benefit of SPI. SPI methods have been used to
document the benefit of inspections, the effect of new tools or methods etc. 0,
0. Little have, however, been done up till now in order to document the effect
of the SPI itself. Some data has been published 0 - all of them positive, but
not all of them widely accepted.
The SPI community is fact based and they thus require evidence in order to
institutionalize the results of improvement activities. Why do they do not put

Session 1: SPI and Strategies

Page 1.46

the same requirement on themselves - perform cost benefit analyses of the
total company SPI activity and document the results. This is a challenge that
the whole SPI community has to meet in the near future if they want a wider
acceptance and use.

Cost benefit analysis of SPI have to be put forward in order to sell SPI to

managers

Session 1: SPI and Strategies

Page 1.47

Conclusions

SPI is about learning to work smarter, and thus everybody in the software
community should be interested. So, why do they not believe that SPI can
help them? First, the discipline of software engineering has matured over the
years, but is still to some degree based on hero programmers that believe
that SPI will be like QA - more paper work and control. Second, SPI means
investments and managers do not like to invest without at least some kind of
documentation of the benefits.

Tomorrow's organizations on the other hand, will be organizations that are
continuously looking for improvement opportunities. The improvements
should be based on a few vital elements:

Facts - measurements combined with knowledge - in order to solve the

right problems. Uncertainty should be handles through risk

management.

Participation - in order to motivate the developers and keep the

improvement program alive.

Learning - both on the individual and organizational level.

Minimal paper work and overhead - keeping creativity and innovation

alive.

Cost/benefit analyses in order to defend the investments.

References

Dybå, T., Important Success Factors in SPI, Ph.D. theses (to appear in year 2000)

Carlsen, J.E., Fosnæss, M., Process Improvement Survey, NTNU 1999 (in
Norwegian)

Gilb, T., Graham, D., Software Inspection, Addison Wesley, 1993, ISBN 0-201-
63181-4

Herbsleb, J et al, Benefits of CMM-Based Software Process Improvement: Initial
Results, in: CMU/SEI-94-TR-13

Humprey, W. S., Managing the Software Process, The SEI Series in Software
Engineering, 1989, ISBN 0-201-18095-2

McGibbon, T., A Business Case for Software Process Improvement, in: A DACS
State-of-the-Art Report, Rome Laboratory, 30 September 1996

Paulk, M.C., Weber, C.V., Curtis, B. and Chrissis, M.B. The Capability Maturity
Model, Addison-Wesley, 1995

Røyrvik, E.: Cowboys and rebels in the North Sea, in: Gemini - Research news from
SINTEF and NTNU, No. 3 - June 1999 (in Norwegian)

Stålhane, T., ESPINODE Industrial Surway, in: QIS Newsletter, No. 4, May 1999.

Session 1: SPI and Strategies

Page 1.48

Uchimaru, K., Okamoto, S., Kurahara, B., TQM for Technical Groups, Productivity
Press, Portland, Oregon, ISBN 1-56327-005-6

SINTEF is an independent, not-for-profit research foundation based in
Trondheim and Oslo, Norway. Our role is to encourage innovation and
improve competitiveness in Norwegian industry and public administration. In
doing so, we maintain close links with the technical Universities in Trondheim
and Oslo, collaborating on projects, and sharing equipment and other
resources.
SINTEF is not a publicly funded organization. A very small part (less than 4%)
of our income is from a public grant; most of our operating revenues arise
from contract research and development work carried out for industry and the
public sector in Norway and elsewhere.
With over 1800 employees and a turnover of NOK 1.4 billion, SINTEF is
Scandinavia's largest independent research organization. It is organized into
eight separate research institutes, covering all major scientific areas and
industrial sectors. Refer to our web site www.sintef.no for further information.

SINTEF has over the years been a leading company in the area of software
engineering and have broad and deep experience in this area. This
experience serves as a sound basis for our Software Process Improvement
(SPI) work. Our major SPI activities are:

The SPIQ program – Software Process Improvement for better Quality.

This is a national Norwegian program that is partly a national ESSI

type project and partly a co-operation with Norwegian industry to

increase the use of process improvement methods in Norwegian

software industry.

The QIS project – Quality Improvement in Scandinavia. This is an EU

sponsored project that shall give help and assistance to PIEs in

Norway and Sweden and market the concept of SPI to software

industry in these two countries.

Tor Stålhane was born in 1944 and became a M.Sc. at the Norwegian

Institute of Technology, University of Trondheim (NTNU) in 1969. During 1969
to 1985 he worked at SINTEF - RUNIT, department for languages and
compilers. From 1985 he worked on his Ph.D. studies and finished his thesis
on software reliability in 1988. From 1988 he was back at SINTEF where he
mainly worked with quality assurance and software safety and reliability. In
1997 he became professor in Computer Science at the Stavanger
Polytechnic. During the latest decade he has been mainly been working with
safety analyses of software intensive systems and measurement based
process improvement.

Kari Juul Wedde was born in 1951 and became a B.Sc. at the Technical

College of Trondheim in 1972. After that she has continuously updated
herself by following graduate and postgraduate courses at NTNU. In 1973

http://www.sintef.no/

Session 1: SPI and Strategies

Page 1.49

she started to work for SINTEF. The work at SINTEF has given her a long
and broad experience in software engineering, ranging from compiler
construction to telecom applications. Her main areas of expertise during the
last years has been software testing, quality assurance, measurement based
software process improvement and safety analyses of software intensive
systems, and she has several international publications in these areas.

Page 1.50

Software Measurement

Frameworks to Assess the Value

of Process Improvement

Dr. Nancy Eickelmann

NASA IV&V Facility

Software Research Laboratory

100 University Drive

Fairmont, West Virginia 26554

+1 304 367 8444

http://research.ivv.nasa.gov/~ike

Nancy.Eickelmann@ivv.nasa.gov

Introduction

Business process improvement (BPI) has been used in organizations for several

decades promising great financial rewards and often delivering on those promises.

Process improvement approaches have included Total Quality Management TQM,

the Software Engineering Institute’s Capability Maturity Model CMM, and more
recently ISO-9000. All of these efforts share a customer focus towards measurable

business process improvements that promise cost reductions and cycle time

improvements. Unfortunately, the measurement frameworks used to deploy and
manage business process improvement initiatives are frequently not linked to the

organization’s high-level strategic goals. Thus, organizations might achieve

international recognition for the quality improvements in their products while
simultaneously failing to meet their strategic goals and objectives.

The Balanced Score Card (BSC) Framework provides the necessary structure to

evaluate quantitative and qualitative information with respect to the organization’s
strategic vision and goals. NASA is organized into 12 regional centers each with its

own strategic plan that documents their respective vision, mission, and goals. The

BSC is applied to the IV&V center in this study. The goals and objectives of the other
11 centers will be discussed in future work and integrated into an overall NASA BSC.

The Enterprise goals are common to all NASA technology enterprises of Space and

Earth Science, Human Exploration and Development of Space Enterprise, and Aero-

Space Technology Enterprise. The goals are mission success, safety of people and
property, and cost containment.

There are two categories of measures used in the BSC the leading indicators or
performance drivers and the lagging indicators or outcome measures. The

performance drivers enable the organization to achieve short-term operational

improvements while the outcome measures provide objective evidence of whether
strategic objectives are achieved. The two measures must be used in conjunction with

one another to link measurement throughout the organization thus giving visibility

Session 1: SPI and Strategies

Page 1.51

into the organizations progress in achieving strategic goals through process

improvement. The development of a core set of metrics for implementing the

Balanced Score Card is the most difficult aspect of the approach. Developing metrics

that create the necessary linkages of the operational directives with the strategic
mission prove to be fundamentally difficult as it is typical to view organizational

performance in terms of outcomes or results rather than focus on metrics that address

performance drivers that provide feedback concerning day-to-day organizational
progress.

NASA IV&V applies a sophisticated level of understanding concerning the
application and measurement of process improvement in an organization and its

strategic role in success or failure of the overall mission. Specific measures are used

to track and evaluate the progress towards technological support for consolidation,

modernization, interoperability, standardization, and increased use of commercial off
the shelf COTS products, high customer satisfaction, training goals and high return

on investment ROI for the agency. These measures represent linkages from key

processes that are required to achieve organizational goals and objectives. An
analysis of NASA IV&V key processes is facilitated by the introduction of the Test

Technology Evaluation Framework (TTEF). The TTEF is applied to measure and

evaluate software and system test technologies. Thus, providing the necessary
structure to measure key processes central to IV&V practice. Specific contributions

of this work include:

 a characterization of a core metrics set required for a BSC approach in a software

development environment applying IV&V technologies

 a characterization of key process improvement measurement requirements

focusing on the IV&V process

 an identification of open measurement issues and further research
This paper identifies the critical linkages between financial measures of past performance

and key indicators (measures) of future performance based on process measurement and

improvement. The paper is organized by named sections starting with an introduction of

the paper, a description of the Balanced Score Card as developed for IV&V, a description

of the Test Technology Evaluation Framework TTEF and a summary of measured results

from applying the TTEF and lessons learned.

Overview of the BSC

The BSC architecture was intended to provide a framework for industry and for-profit
organizations. The framework facilitates translating the strategic plan into concrete

operational terms that can be communicated throughout the organization and

measured to evaluate its day-to-day viability. The three principles of building a
balanced scorecard that is linked through a measurement framework to the

organizational strategy include:

(1) defining the cause and effect relationships,
(2) defining the outcomes and performance drivers,

(3) linking the scorecard to the financial outcome measures

Table 1.1 Balanced Score Card Government Vision and Strategy Mapping to Operational

Focus – Source [2]

Session 1: SPI and Strategies

Page 1.52

 Government

Financial

“How can we reduce costs and not compromise our

mission?”

Customer

“To achieve our vision how do we want our customers to

perceive us?”

Internal

Business Process

“To satisfy our customers what business processes do we

need to excel at to differentiate us and create a COE?”

Learning &

Growth

“What infrastructure do we need to sustain our ability to

change and improve?”

The initial steps of BSC engage in the construction of a set of hypotheses concerning

cause and effect relationships among objectives for all four perspectives of the

balanced score card. The measurement system makes these relationships explicit.
Therefore, they can be used to assess and evaluate the validity of the BSC

hypotheses. The questions asked in each category of the four perspectives provide a

segue into the cause effect diagramming activity see table 1.1.

This paper incorporates findings from prior case studies in [2] that have been used to

identify key factors that differentiate the use of the BSC for government or non-profit

organizations versus industry or for profit organizations. The strategic goals for the

NASA IV&V Facility are discussed in the context of core processes related to software

verification and validation technologies. The core metrics set that was developed for the

BSC is discussed in each section respective to its area of focus as linked through the

cause-effect graphing topology. The next section provides the NASA IV&V Facility

strategic vision and goals that are used to direct the BSC effort.

NASA IV&V Strategic Vision and Goals

The strategic plan contains the vision, goals, mission and values for the

organization. The Government Performance and Results Act, GPRA requires all
federal agencies to establish strategic plans and measure their performance in

achieving their missions. The vision and goals are stated below. NASA IV&V

strategic vision and goals statements as presented in the 1999 Strategic Plan.

Vision: To be world-class creators and facilitators of innovative,

intelligent, high performance, reliable informational technologies that enable

NASA missions.

Goals: To become an international leading force in the field of software

engineering for improving safety, quality, reliability, and cost performance of

software systems; and to become a national Center of Excellence (COE) in
systems and software independent verification and validation.

Session 1: SPI and Strategies

Page 1.53

Customer

Focus

Financial

Focus

Internal

Business

Processes

Learning

and Growth

Improve Program Safety &

Reliability

Maximize IV&V ROI

Improve Software

Quality

Software

engineering

approach

Continuous

Process

Improvement CPI

for IV&V

Best practices for

IV&V

Partner with

academics and

industry

Provide

technological

infrastructure

(IT technologies)

Create an ISO-

9000

environment

Skills

training

program

Fig. IKE. 1.1 : BSC objectives hierarchy.

The objectives for each tier of the BSC are shown in Fig. IKE.1.1. The figure also
depicts the mutation of the BSC geography as proposed by Kaplan to place the

customer focus at the top level for government and not-for-profit organizations. The

BSC objectives hierarchy is used to generate the necessary metrics to measure

strategic as well as tactical progress for all four tiers. The metrics developed to track
mission success relative to the customer focus of improved safety, reliability and

quality and the financial focus of reduced costs at maximum benefit of technology

are under review. The initial core set of metrics for leading and lagging indicators is
shown in Fig IKE.1.2.

Session 1: SPI and Strategies

Page 1.54

BSC

Core Process Measures
Leading
Indicators

Activity based costing
Issue resolution cost
Technology utility
IT cost-benefit profiles

Lagging
Indicators

TTEF–NPV+ IRR

BSC

Customer Measures
Leading

Indicators

Quality of service

IV&V Responsiveness Surveys

Benefit expectations

Lagging

Indicators

of Internal and External IV&V

contracts (cross service)

BSC

Financial Measures
Leading
Indicators

IT - NPV & IRR

Lagging
Indicators

ROI, ROM, ROA
Cost reductions
Value added

BSC

Infrastructure Measures
Leading

Indicators

Information dissemination lag time

Communications effectiveness

R&D project penetration %

R&D technology transfer ratio

Lagging

Indicators

Survey of customer satisfaction

Appropriate staffing levels

Strategic job coverage

Strategic information availability

Staff climate survey

NASA IV&V
Strategic Goal Measures

Safety In-Flight Anomalies
Post release defects

Quality Severity 1 Defects

Reliability MTTF,MTTR, MTBF

PerformanceIT - Lag time

Cost ROI, ROM, ROA
Cost reductions
Value added-NPV

Fig. IKE.1.2 : Balance Score Card core metrics set

Customer Measures of Mission Success

The customer focused objectives of improved mission safety, improved mission
systems and software reliability, improved systems and software quality, and reduced

costs each have specific measures and targets that are used to evaluate whether or not

strategic goals are achieved and to what degree. This requires identifying viable
measurement strategies for software IV&V in the NASA context. A difficulty in

measuring thematic aspects of the customer focus arises from the co-variation that

exists among the themes. To illustrate this point we must first define what we mean

by safety, reliability and quality in customer themes and then define the relationships
among these objectives.

 Safety is defined as freedom from accidents or losses. This is an absolute

Session 1: SPI and Strategies

Page 1.55

statement, safety is more practically viewed as a continuum from no accidents or

losses to acceptable levels of risk of loss.

 Reliability is defined in terms of the probabilistic or statistical behavior, that is

the probability that the software will operate as expected over a specified period
of time.

 Quality is defined in terms of correctness and number of defects. Correctness is

an absolute quality, it is also a mathematical property that establishes the
equivalence between the software and its specification.

 Cost is more complex than it appears, direct or absorption costing may be applied

and alters what costs are included and therefore what costs may be reduced. The
focus of the paper does not rely on the differences inherent to these two

approaches and therefore defers discussion of this topic.

The relationships among these customer themes are significant as they are not
independent of one another and therefore must be analyzed based on their degree of

covariance and interaction. The relationships are diagrammed in Fig. IKE 1.3 and

depict the current accepted understanding. Safety requires that unsafe states cannot be
entered from any point of function of the system. It is possible for the systems to

function reliably that is without failure and still enter unsafe states of operation. A

system can be completely correct and defect free and still enter unsafe states. There
are many documented examples of these properties in the literature and many devoted

specifically to documenting the complexity of software safety issues. The safety of a

system is a result of its safe operation in a specific context or environment.

The NASA IV&V facility must document the increase in software and systems

safety, reliability and quality that are attributable to IV&V technologies. This requires

that the contribution that is made towards meeting required targets through the
application of IV&V activities must be quantified. This requires that each aspect be

evaluated relative to some objective target. The value add of IV&V is measured as

the sum of overall reduction of distance from the target values (see Fig. IKE 1.4).

This provides a measure of overall impact to mission success. The relative reduction
of “Euclidean Distance” from the shuttle safety target of no losses, attributable to

IV&V efforts specifically, is documented and integrated into the overall model that

sums the total reduction of distance from the three targets of safety, reliability and
quality, relative to a fixed cost. There are many measures that can be collected to

evaluate the added value of IV&V for software and system safety; this is only one

approach.

Safety
Reliability

Correctness

Fig. IKE 1.3 relationships among customer themes of mission success through safety,

reliability, and quality at reduced costs.

Session 1: SPI and Strategies

Page 1.56

0

50

100
Safety

Reliability

Quality

Cost

Quality

Reliability

Safety

Cost

Fig. IKE 1.4 The customer theme of mission success through safety, reliability,

quality, at minimum cost is shown in the graph depicting the interdependence of the

themes.

The measurement of the contribution of IV&V in improving safety, reliability and

quality while reducing cost is discussed in the following sections. The contribution of
IV&V to shuttle safety is difficult to measure directly. It is therefore necessary to

make assumptions concerning those factors that would impact safety and to what

degree. It is assumed that a reduction in the probability of failure is a contribution to

increased safety. A reduction of the number of In Flight Anomalies IFAs of a severe
nature due to IV&V identification and removal is a contribution. An independent

evaluation of potential failure modes that results in identifying previously

unidentified hazards is a contribution. The elimination or mitigation of hazardous
states or their potential is quantified relative to probabilistic measures of hazard

occurrence and the likely severity.

The contribution of IV&V to shuttle reliability is more directly attributable to the

specific verification activities that are applied during the Shuttle software

development process towards defect management. Research investigating the

ramifications of testing strategies for reliability provides quantification of benefits
relative to specific IV&V activities. A minimization of estimated residual faults is

provided according to the sequence of testing strategies and the duration of those test

executions. For example the number of defects detected by applying functional,
decision, data flow and mutation test methods in sequence. The CPU execution time

or the number of test cases can measure test effort. As the test effort increases defects

detected can be optimized through applying more optimistic or pessimistic test
strategies. The resulting increase in reliability is measured by increased MTTF or

improved failure intensity profiles and is quantified as a reduction in the distance

from the reliability targets of subsystems undergoing IV&V.

The contribution of IV&V to shuttle quality is measured as a reduction of defect

density trends through process improvement paradigms such as traversing the CMM

stages from levels 2, 3, 4 to level 5. The intuition behind this model is that the
measurable impact of process improvement is in the reduction of the cost of rework.

In addition, the rework cost avoidance of detecting defects of severity 1; severity 2

and severity 3 can be quantified relative to phase of detection and level of severity.

The reduction of defect density is measured as a reduction of distance from the
overall quality objective measured in defect density according to severity.

The shuttle software safety, reliability and quality are measured according to the BSC

core metrics of In Flight Anomalies IFAs, post release defects, severity 1 & 2 defects,
mean time to failure MTTF, mean time to recovery MTTR, and mean time between

Session 1: SPI and Strategies

Page 1.57

failures MTBF. A key software engineering practice that is in part responsible for the

software’s high degree of assurance is that of reuse. The shuttle program has a

sophisticated approach to the sustaining of the core functionality of the systems and

software while providing controlled evolution to support new missions. The
measurement of reusability of key architectural, design, code and test artifacts is

currently under study as part of the BSC research.

Financial Measures

The fundamental ROI model is the ratio of net income to total investment. This is a

financial measure and has been used predominantly to measure a manufacturing firm’s

efficiency in allocating resources. In the financial ROI model the numerator is net income

for a project or time period and the denominator is some measure of total investment

respective to the project cost or capital expenditures for the time period. The

measurement of IV&V benefits must measure improved safety, reliability, as well as

improved quality.

Improved quality is typically measured as a benefit of process improvement and

indirectly attributed to an overall reduction in rework. Specific examples of applying the

rework avoidance concept to ROI are documented in the literature and state

substantial savings associated with rework avoidance. Raytheon Systems Corporation

reported cost savings of $15.8 million for 15 projects over a four-year period.
Raytheon documents an ROI of 7:1 based on $4.48 million return for $580,000

invested. Hughes Aircraft reported cost savings of $9.2 million over a three-year

period. Hughes documents an ROI of 4.5:1 based on $2 million return on $400,000
invested. The Aircraft Software Division at Tinker Air Force Base reported an ROI

of 6.35:1 based on a return of $2.9 million for $462,100 invested.

Improvements to safety are typically quantified by obviating some hazardous state

and measuring the resulting reduction of risk. Improved reliability is measured as a

reduction in the intensity failure or improvement in mean time to failure measure. All

of these benefits are harvested in a specific context of development. In the case of the
shuttle a product line reuse process is applied to allow the core shuttle software to be

systematically evolved over time and adapted for new mission requirements in a

timely manner. The reuse paradigm also provides a unique context to facilitate the
V&V of the software with each new version.

Process Measures

A primary business process of IV&V is applying test technologies. Test technologies

may be applied to improve safety, reliability or quality at a minimum cost. The
“Euclidean Distancing” method used for the customer perspective is supplied with

metrics from the TTEF evaluation of test technologies. The evaluative framework is

Session 1: SPI and Strategies

Page 1.58

Branch

Testing

Node

Testing

DataFlow

Anomaly

Detection
Structural

Checks

Optimistic Inaccuracy Pessimistic Inaccuracy

Sampling Folding

Test Effectiveness

Exhaustive Testing

Path Coverage

Infallible

 Proof Finder

 Threshold of Tractability

 Threshold of Decidability

Mutation

Testing

Reachability

Analysis

““TTeessttiinngg”” ““PPrroovviinngg””

Adapted Young & Taylor, ACM 1989

Fig. IKE.1.5 : Software test hierarchy

constructed to support an accurate cost and benefit analysis of the application of emerging

test technologies. The efficacy of the framework’s value is demonstrated by applying it to

evaluate the adoption of specification-based test technologies. Specific examples are

chosen that use commercially available test tools and object-oriented modeling and

specification documentation tools. A comparison is conducted between current practice

for evaluating technologies and our Test Technology Evaluation Framework (TTEF). The

framework provides a rigorous and repeatable methodology that guides the test manager

in the correct usage of measurement and evaluation models. The Test Technology

Evaluation Framework takes a comprehensive view of the critical factors of:

 test effectiveness based on a comparison of test detection rates and test failure

rates

 test productivity based on increased production of verifiable test sets

 test schedule compression based on full life cycle analysis.
The TTEF evaluates the degree of achievement of the primary goals including test

productivity, test effectiveness, and test schedule compression. The TTEF uses a

comparative analysis and is designed to capture the principle benefits associated with

a technology as well as the complete cost structure associated with a technology.

Test productivity must reflect the success of the tests as well as the quantity of test

cases executed per period of time. Time may be execution time or calendar time, as
measured in mean time to test completion (MTTC). Test Pass/Fail rates is used to

Session 1: SPI and Strategies

Page 1.59

evaluate test oracle effectiveness. A significant contributor to determining test

Pass/Fail rates is the test selection criteria that are used. For instance, test selection

from the input domain may result in different points of the input domain to be labeled

as “”, “” for (failure and success). The probability distribution Q over the input
domain D allocates a probability of selection of tests t, the sum of which is equal to 1.

In random test selection “”, “” will appear in even proportions (for large test sets).

When using selective test criteria testers seek all t labeled “”, and seek to select no t

labeled “”. An indicator variable is used to represent all points in the input domain

that are labeled either “”, “”. To evaluate test effectiveness test strategies may be
compared with respect to their detection rates for debug testing or compared to their

failure rates for operational testing.

To evaluate potential test effectiveness of test technologies they may be categorized

according to their effectiveness by mapping them to a hierarchical taxonomy such as
proposed by Taylor and Young (this is only one such taxonomy there are several that

might be applied). The Taylor and Young taxonomy categorizes test strategies

according to the test methods sensitivity to revealing faults for a given level of effort.

The primary classification boundary is whether the test method is known to provide
optimistic or pessimistic inaccuracy in the test results. Optimistic inaccuracy is

typically test methods that apply sampling techniques such as node testing, branch or

statement testing, and mutation testing. Pessimistic inaccuracy is typically a result of
applying folding techniques such as data flow analysis, reachability analysis, and

theorem proving techniques. The figure of Test Effectiveness (see Fig. IKE. 1.5) is

adapted from Taylor and Young’s taxonomic diagram and is altered in a single

aspect. The upward vector is labeled as effort in the their taxonomy and was relabeled
as test effectiveness based on our findings. Test effort is typically measured either in

number of hours spent by the tester or clock hours of the test execution. Neither

measure captures significant components of test effort such as oracle verification time
(manual versus automated) or test case selection for non-random test case generation

methods. Degrees of inaccuracy however are directly related to the degree of test

effectiveness in revealing faults. This differentiation allows us to measure
effectiveness relative to the test strategy and productivity relative to the overall test

process.

The benefits of schedule compression must be viewed from a lifecycle perspective as test

strategies and technologies may provide a compression of test time for one aspect of the

test process and simultaneously extend overall test time by increasing some other aspect

of the process. For example, automating test case generation can compress test selection

time while extending the time to conduct test pass/fail evaluation with a manual test

oracle verification procedure.

The software reliability research community has developed models to estimate the

MTTC based on the number of test cases that are executed. These reliability models

can be used to provide an estimate of test time required for a given level of
confidence. The completion of test execution is based on achieving a desired level of

accuracy or confidence in the state of the product. Thus the TTEF facilitates the

efficient allocation of testing resources with measurable reliability impact analysis.

The Comparative Analysis

The efficacy of the framework’s value is demonstrated by applying it to evaluate the

Session 1: SPI and Strategies

Page 1.60

adoption of specification-based test technologies. Specific examples are chosen that

use commercially available test tools and object-oriented modeling and specification

documentation tools. A comparison is conducted between current practice for

evaluating technologies and our Test Technology Evaluation Framework (TTEF).
The framework provides a rigorous and repeatable methodology that guides the test

manager in the correct usage of measurement and evaluation models. The evaluation

of the formulation of ROI of automated object-oriented test technology is conducted
using traditional methods (such as applying industry benchmark’s as published by

Capers Jones). The shortcomings of improperly accounting for the fundamental

process in when quantifying benefits of technology are demonstrated by comparison
of methods. The Test Technology Evaluation Framework is also applied to the

automated object-oriented test technology. The results of the comparison identify the

common pitfalls of incorrect usage of ROI models and methods. It is shown that the

underlying test process imposes restrictions of how the model of technological
benefits is formulated and how it can be interpreted. The results demonstrate the

improved reliability of ROI measures when applied correctly.

Naïve Analysis

The study begins with an evaluation of applying OMT technologies that
enable automated specification-based testing technologies. The object
modeling tool applied was StP/OMT (Integrated Development Environments,
IDE). This is a development tool based on James Rumbaugh’s object
modeling technology and was used to develop the specification. The test
planning and test case generation tool applied was StP/T (Integrated
Development Environments, IDE). This is a test case generation tool based
that generates test cases form the OMT specifications. The test execution
was performed using XRUNNER. This is an automated software test tool. The
cost savings are based on a cost avoidance of allocating a test engineer to
develop test cases, an effort estimated to be one-person month. This cost
savings amount was based on a published industry average of test case
productivity (Capers Jones) of 20 to 300 test cases per month. The cost of
adopting and using the technology was restricted to the 24-minute
development time for the design specification of the OMT models that are
subsequently used to generate the test cases. A COCOMO Man Month is
equal to 152 hours. If only the model development time of 24 minutes is
applied to test cost, the test benefit with automated OMT would be 151.5
hours of labor effort saved. The study reported that using OMT strategies and
tools resulted in an ROI of 304:1.

TTEF Analysis

The TTEF analysis incorporates a lifecycle software test process perspective. The TTEF

is designed to properly scope costs and benefits relative to the underlying processes that

are the context for use of any development or test tool. Thus the TTEF provides a realistic

analysis of expected outcomes of applying test technologies. The focus of the framework

is to measure test productivity and test effectiveness relative to schedule compression or

time savings. This requires that a full life cycle view of the process be applied to

determine that gains made with respect to one aspect of the process have not negatively

impacted another aspect of the process. This section will apply the TTEF to evaluate ROI

and NPV for the OMT specification based test technologies.

Session 1: SPI and Strategies

Page 1.61

The costs associated with adopting automated test technology based on OMT models

are listed below. The costs would be similar for most automated testing tools that are

associated with the paradigm shift to OO technology and rely on anticipated reuse
benefits with respect to the technology window:

 Equipment purchase StP/OMT, StP/T, Xrunner*

 Reuse libraries*

 Training of personnel*

 OMT Specification development and analysis

 Verification of OMT model fidelity

 Maintenance and archiving of reusable assets

 Software updates

The asterisk marks those costs that would be considered initial costs in adopting test

automation technologies. The benefits associated with adopting automated test
technology based on OMT models are listed below. The benefits would be similar for

most automated testing tools that are associated with the paradigm shift to OO

technology and rely on anticipated reuse benefits with respect to the technology
window:

 Test personnel time savings

 Automated test case generation and execution

 Test schedule savings

 Design model reuse*

 Test specification reuse*
The asterisk marks those benefits that may accrue to future projects based on reuse

savings. The ROI = 0.1517: 1 as calculated by applying the above costs and benefits for

the technology. This is significantly less than an ROI 304:1 as calculated under the naïve

analysis.

NPV versus Rate of Return

A more discriminating approach is to apply net present value NPV and internal rate

of return IRR. NPV evaluates the additional value provided the organization, IRR
evaluates the rate of return for the project. NPV is typically of greater significance in

the project decision. For example if one project earns 50% on a $1 million investment

(IRR=50%, NPV=$500,000) and another earns 200% on $.10 investment
(IRR=200%, NPV=20 cents), the dollar value in absolute terms is much more

significant. The threshold for acceptance of a project is any NPV greater than zero.

NPV and IRR with multiple independent projects will always lead to the same accept
or reject decisions if NPV is positive IRR is less than the cost of capital. If the full

costs and benefits of automated OMT technologies are applied an NPV value
calculated using TTEF is NPV = $1819.00 (in year one with reuse over 10
projects). Assumptions in this calculation include: automated specification
based testing initial cost estimate of $20,036.00 per seat, annual
maintenance costs of $ 3,680.00, additional savings through reuse strategies
of $2772.00 per additional program (this example uses 10 programs to
calculate the extent of reuse), and uses a discount rate of 10%. The NPV
calculation is well-suited to incorporating product line reuse benefits into the
financial model.

Summary

Session 1: SPI and Strategies

Page 1.62

Results of our case studies demonstrate that the rapid changes in software
development, such as object-oriented methodologies, will require new
approaches for measuring and evaluating software test technologies. The
value of OMT technologies was significantly overstated when the scope of the
cost-benefit analysis was underspecified, ROI 304:1. Conversely, the value of
OMT technologies was understated when the scope was applied correctly
and the underlying process characteristics, in this instance a specification
based reuse process, was not taken into account, ROI 0.1517:1. Finally when
both the scope of the cost-benefit analysis and the underlying process and
reuse paradigm are incorporated into the analysis meaningful quantification of
the value of the technology results.

Our traditional means of evaluating costs and benefits do not capture the
essential characteristics of emerging test technologies based on reuse,
specification-based test oracles, automated test case generation, and
automated impact analysis to name a few. There were significant costs not
accounted for in the naïve analysis including the cost of shifting to an object-
oriented development process that combines design specification and test
case design. The OMT model development and the subsequent evaluation of
model fidelity are not considered. The result is cost shifting to tools, training,
updates and required reuse of models. The degree of test effectiveness was
not evaluated but was tacitly assumed as superior due to the virtues of
automation. This is not a prudent assumption as research has shown that
automating is not always superior. The exclusive use of ROI as a calculation
of the technology investment value typically results in a naïve estimation. A
set of guidelines is provided to enable the test manager to avoid the pitfalls of
incorrect application of ROI models. In addition, the study applies the
framework to develop the sometimes more meaningful measures of Net
Present Value, NPV and Internal Rate of Return, IRR for advanced test
technologies as applied for a specific project. The Test Technology
Evaluation Framework TTEF is integrated into the NASA IV&V Balanced
Score Card. This provides a means of measuring the efficiency of resource
allocations for the operational processes of software and systems verification
and validation activities that must then be linked to the high level goals of
mission success at reduced cost. A measurement framework is necessary to
bridge the gap between strategic measures of improved reliability, safety, and
quality at reduced cost and operational or tactical measures of optimization of
resource allocations applicable to daily activities to achieve these goals.

Future Work

The ISO-9126 Standard documents 6 high-level software qualities including
functionality, reliability, usability, efficiency, maintainability and portability.
These high-level qualities are mapped to 24 sub-characteristics. Metrics are
proposed to measure the high-level software qualities relative to the sub-
characteristics. This ISO standard could provide the necessary metrics to
measure operational processes under the process aspect of the BSC, relative
to the application of product line reuse, and map them to the high-level goals.
Of particular interest in this standard is the definition of reusability as the
combination of maintainability and portability. It will be of interest to analyze
the appropriateness of the standard in measuring reuse for the shuttle.

Session 1: SPI and Strategies

Page 1.63

Specifically, reuse across a vertical product line that incorporates domain
engineering, architecture-based reuse, and reusable test technologies.

References

[1] Attewell, Paul, Information Technology and Productivity Paradox, Department of

Sociology, Graduate Center of the City University of New York, Report IST 8644358,

version 3.1, 1992.

[2] Eickelmann, Nancy S., "A Comparative Analysis of BSC as Applied in Government and

Industry Organizations." Information Technology Balanced Scorecard Symposium,

Antwerpen, Belgium, March 15-16, 1999.

[3] Eickelmann, Nancy S., Evaluating Investments in Emerging Test Technologies. The

Proceedings of the Sixteenth International Conference on Testing Computer Software:

Future Trends in Testing. Bethesda, MD, June 16-18, 1999.

[4] Humphrey, Watts, S., Managing the Software Process. Addison-Wesley Publishing
Company, SEI Series in Software Engineering, Pittsburgh, PA. 1990.

[5] Kaplan, Robert, and Norton, David, The Balanced Scorecard: Translating Strategy Into

Action. Harvard Business School Press, Boston, MA. 1996.

[6] Keiso, Donald and Weygandt, Jerry, Intermediate Accounting. John Wiley and Sons,

USA, 1986.

[7] Strassman, Paul, The Business Value of Computers: An Executive’s Guide. The

Information Economics Press, New Canaan, Connecticut, 1990.

[8] The Balanced Scorecard Institute, http://www.balancedscorecard.org/default.html,
1999.

[9] Boehm, B., Software Engineering Economics, Englewood Cliffs, Prentice Hall, 1981.

[10] Crosby, P. B., Quality is Free. McGraw Hill, 1979.

[11] Crosby, P. B., Quality without Tears. McGraw Hill, 1985.

[12] Hetzel, B., Making Software Measurement Work. John Wiley and Sons, 1993.

[13] Humphrey, W., Managing the Software Process. Addison-Wesley 1989.

[14] Humphrey, W., Snyder, T., and Willis, R., “Software Process Improvement at Hughes

Aircraft,” IEEE Software, July 1991.

[15] Jenner, M., Software Quality Management and ISO 9000. John Wiley and Sons, 1995.

[16] Jones, C., Applied Software Measurement. McGraw Hill, 1991.

[17] McGrath, R. and MacMillan, I., “Discovery-Driven Planning” Harvard Business

Review, July-August 1995.

[18] Radatz, J. W., “Analysis of IV&V Data” Rome Air Development Center ROME C#
F30602-80-C-0115, 1981.

[19] Saiedian, H. and Kuzara, R., “SEI Capability Maturity Model’s Impact on Contractors”

IEEE Computer, January 1995.

http://www.balancedscorecard.org/default.html

Session 2 : SPI and Testing I

Page 2.1

Session 2

SPI and Testing 1

Chairman

Prof. H. Jaakkola
Pori School of Technology, Pori, Finland

Session 2 : SPI and Testing I

Page 2.2

THE QUEST FOR

QUALITY TEST

RESOURCES

 Quality and Efficiency in Software Testing by moving the technological boarder

Per Jørgensen

Kapital IT, Denmark

About Kapital IT

Kapital IT is situated in a suburb of Copenhagen and has approximately 400 IT-

professionals employed.

Kapital IT is a company under Kapital Holding A/S that is the third largest financial

institution in Denmark and includes BG Bank A/S and Realkredit Danmark. Kapital IT

develops software for these institutions and supports their business domain strategies

with IT-solutions.

Kapital IT develops a variety of financial software that is implemented on various

mainframe, midrange, and Client/Server platforms. Kapital IT works on a project basis

with the emphasis on an efficient development process supported by a development

concept that secure consistency in the project. Projects are measured on weather they

are carried out as agreed with regard to customer contentment, requirements, quality,

economy, stipulated time etc. etc.

The starting scenario

Defect infested software is a serious quality problem. In addition, it is especially a big

problem if you still have defects after spending 40% of total development time on test.

It is an even bigger problem if your Compass investigation shows that the competitors

spend less time on test and at the same time is having fewer defects in production than

you.

When your software supports your no. 1 strategic area of growth where the

competition is most vigorous and your company continued success on the market rely

Session 2 : SPI and Testing I

Page 2.3

strongly on the quality of your software - you do have major teeth grinding problems.

The Challenge

We faced a challenge similarly to the once mentioned above. Up through the nineties

our Web Banking products grew from small applications into large business and

computer complex applications. At the end of the nineties once rather simple

applications now involved several platforms of different technical system architecture

and furthermore the Web Banking products had increased into a wide variety of

products each targeting special customers profile.

At the same time the importance of the products from the business point of view grew

and the products eventually became a strategic area of growth for BG Bank A/S and

the Danish financial sector as a whole. In the fight for market shares, Web Banking

application was now suddenly one of the key factor and of the outmost importance for

continued success on the market. It is not an understatement to say that competition

was and still is most vigorous.

In order to have a precise picture of our product quality we carried out in co-operation

with the international benchmarking firm ‘Compass Development’ a systematic

investigation of productivity, quality, economy etc. in co-operation with systems

development and systems administration.

The investigation showed among other things that 30 to 40% of the total time assigned

to development was spend on test. This was approximately 5-10% more than

companies we compare us self with spend on test.

The investigation also showed that the quality of our products measured in faults per

function point was lower than comparable products on the market [1].

To summon up the investigation in one challenging sentence >> we should not use

more resources on test, but use fewer resources more effectively <<

The Plans and the expected outcome

To use less resources on test more effectively is easy to say but hard to do. At least

our investigation gave us a clue in what to do. Obviously our development and test

process had to be in a degree somewhat ‘out of order’ and to many defects was

implemented into our products, test and production environment. If we could ‘fix’ our

development and test process and find defects early in the requirement phase then

maybe we could reduce time spend in the software test phases? To find defects early in

the requirement phase we could maybe involve end-users and customers in a different

way? Maybe we could automate our GUI tests using modern test tools, maybe that

could reduce the defects, and the times spend on test? If we automated the GUI test

then why not involve the end-users in that phase too?

Finally, our QUEST began. A QUEST that gave us new knowledge and that lead us to

new frontiers. In fact, the QUEST continues to this day and beyond.

Session 2 : SPI and Testing I

Page 2.4

The QUEST

Our QUEST began by asking our self the following question >>What if our products

suddenly had no (Zero) defects at all and was loved and handled correct by every single

customer? <<

If that once became true, several things would happen, for example:

Our products would conquer the entire market

We could close down the ‘Hot-Line’ situated in BG Bank. No customers would need it.

We could close down our production maintenance crew situated in Kapital IT. No

defects equals (almost) no maintenance

We could spare the BG Bank account managers too because the products would need

no active sale

Of cause, it was only a very nice dream. Nevertheless, the fact is that better product

quality actually does not only create happy customers but also release human

resources. Some of which are IT-professionals and others who have in depth business

knowledge of various kinds but all with skills that can be used well in the development

and test process. You could almost call them The Hidden Resources that just waited to

be involved.

We thought a lot about that dream while we investigated and analysed our development

and test process [2]. This investigation disclosed the following major opportunities for

improvement. We found that:

Our requirement phase was out of focus. We did put great effort into the phase but the

real end-user was not present in the phase. Some requirements was not detailed enough

or recognised and accepted throughout the company. Still some requirements was not

owned and cared for by individual participants.

The end-users was strongly represented in the business domain test but their

involvement prior to that was more or less lacking

The customers in the beta test phase would like to participate in the early test phases.

There where plenty of good tools for test automation on the marked. Automated test

could reduce test, but we found that the road was paved with automated test that failed.

Test automation was possible but required a strong development and test regime before

the tools could be used effectively.

To our great pleasure, we discovered the ESSI project, which was willing to support

our QUEST experiment.

With these results in mind and still with our dream in fresh recollection we founded our

project on 3 major building stones

1. The User and Customer Involvement in Test (UCIT)

2. The Requirement Driven Test (RDT)

3. The Automated GUI Test (AGT)

We baptised the project QUEST for ‘Quality and Efficiency in Software Testing’ and

later we added ‘by moving the technological boarder’.

The User and Customer Involvement in Test (UCIT)

Session 2 : SPI and Testing I

Page 2.5

The objective of the UCIT phase was to look at The Requirement Driven Test (RDT)

and the Automated GUI Test (AGT) to find the optimal way to involve end- users and

customers on equal terms with the ‘IT-professionals’ and thus enhancing the process in

general. If possible, it would not be such a bad idea to move the technological boarder

between IT professionals and end-users and transfer traditional development activities

to the business unit. We could sure use all the IT-professionals we could get. With the

national and international shortage of IT-professionals, we just had to use our

resources as optimal as possible and that demanded us to rethink the end-users and

customers involvement in our development and test process.

From the beginning of the project we choose to look at our end-users and customers

NOT as resources in the project but rather to look at what resources that they could

bring into the project to strengthen this and the end product.

We invented in our minds a phantom: ‘The All European User and Customer’.

Our phantom co-worker ‘The All European User and Customer’ had no IT education

but had lived successfully through the PC revolution. Their IT interest and knowledge

was no longer restrained to ‘their’ application at work. They had a private PC at home.

Their IT awareness was high. Some made their own Homepage. Some programmed for

fun. They all used the Internet to ‘chat’, ‘surf’, use e-mail etc. and it was a long time

ago since the phantom ‘The All European User and Customer’ had second thoughts

about IT.

We would love to work together with this phantom and we believed we could find ‘it’.

And we did!

We found her and him everywhere. In BG Bank they where to be found among product

Hot-line staff, among account managers and among banking consultants. Among the

customers they where easy to spot. Customers who had been beta-sites several times

where almost for sure one of our phantoms. You could almost say that those who

would benefit first from better quality where a possible phantom.

They could all contribute to the project with their different in-depth business

knowledge. With that and their interest and use of IT we thought that their contribution

to the end-product could be more than what end-users and customers ordinarily

contributes to in a development and test process. We should soon find out if this was

true.

When approached and asked about if they would like to be involve in our project in a

different way than usual the vast majority of the ‘All European User and Customer’

was exited about our ideas. They where excited for different reasons. Some saw the

involvement as job enrichment. Some saw new frontiers and job opportunities open up.

Others just liked the idea about having influence on the new products design and

functionality.

The Requirement Driven Test (RDT)

Our investigation showed us that the requirement phase was out of focus. We would

like to get it back on track. We would like to implement into our development concept

a RDT phase that made sure that the requirements for new products was detailed to a

Session 2 : SPI and Testing I

Page 2.6

level that made test automation possible.

Furthermore, the RDT phase should make sure that all requirements was recognised

and accepted throughout Kapital IT and BG Bank.

We would also like if the RDT phase could pin a name on each requirement so each

and every requirement had a ‘sponsors’ with the responsibility to make sure that the

requirement was tested and found as described and requested [3].

At last this new RDT phase should of cause involve the ‘The All European User and

Customer’ in reviewing the requirements.

The Automated GUI Test (AGT)

Before our QUEST project, we had some experience with test automation tool [4] [6].

We had even back in the early nineties used these tools in a long period where we

converted numerous systems between two platforms. However at that time we found

the maintenance task overwhelming and not justifiable from an economical point of

view. We had a few GUI test suites left though and occasional we used tools, but only

on and on, and off basis. When we used tools, the end-users were never involved

because we found the tools to difficult to learn and to use for non IT-staff.

However, we knew that the tools and the tool market had evolved tremendously since

we last seriously has ‘shopped’ for a test tool.

We knew that many companies had automated tests up and running but we also knew

that many companies had failed in the automation process.

In spite of this we looked at the market and found that there were many tools to choose

from and a lot of them looked surprisingly good and user-friendly too!

 This gave us an idea. If we could find a tool that not only supported the developer

requirements but also was highly user-friendly then why not involve our ‘All European

User and Customer’? If we together could implement the tool and make our own user-

friendly handbook in our AGT process, then why not transfer most of the business

domain test from Kapital IT to BG Bank and let the ‘All European User and

Customer’ take control of the AGT process?

If we could move that technological boarder between IT professional and end-users, we

could release IT resources for further traditional development. With a better quality,

the end-users would be released somewhat from defect handling and this ‘spare’ time

could then be used on the AGT process!

Well it all seemed to fit perfectly. We had the ideas, we had the 3 building stones

(UCIT, RDT and AGT) so all we now had to do was to describe the Quest project and

then of cause as a minor detail ‘sell’ the experiment intern in the company and to the

ESSI project.

The description part was easy. The ‘selling’ part took some hard work to accomplish.

The QUEST project objectives

We described the Quest project objectives as follows:

The Quest objective is to improve the test and development process of our multiple

platforms that support our Web Banking systems and thus make it more efficient.

Session 2 : SPI and Testing I

Page 2.7

The improvements of quality and efficiency is to be carried out through:

Involving the BG Bank end-users in the requirement phase (UCIT, RDT)

Involving the customers in real test and development (UCIT, RDT)

Training of the BG Bank end-users in modern test methods and techniques (UCIT,

AGT).

Choosing and implementing a modern test tool that supports business domain test

(UCIT, AGT)

Implementing a BG Bank end-user controlled business domain testing process (UCIT,

AGT)

Transferring traditional technological test development activities to the business unit

(UCIT, AGT)

In re-use the results from the AGT process in subsequent business domain tests of new

releases of our Web Banking systems. (UCIT, AGT)

Notice: Our 3 building stones (UCIT, RDT and AGT) mentioned above are tied to

the each objective. The Quest objectives were not all that measurable however the

objectives were made more measurable in the following Business and Technical

objectives.

The QUEST business objectives

The Quest business objectives were as follows:

To reduce the number of production errors by 33% during the first 6 months of a

release as a result of a more thorough test and thus strengthen the quality of BG Bank's

strategic area of growth

To reduce the production and the maintenance costs by at least 20% do to fewer errors.

To increase the percentage of Hot-Line replies to customer enquiry’s to 98%. This to

take place through the staffs strong involvement in the business domain test and

because fewer errors means fewer enquiry’s.

Release 10% of the BG Bank end-users in order for them to test future releases of the

Web Banking system. This is to take place through fewer errors and thereby fewer

customer enquiry’s

The Quest supports the business needs for competitive Web Banking products and

gives the customers of BG Bank a quality product at a high technological level.

Through this, existing customers are maintained and new customers attracted.

By qualifying the BG Bank end-users to "test super- users" and through their the

involvement in the test, we shall obtain a "hands-on" evaluation of new releases before

the implementation which will ease the pressure on the business unit in connection with

the implementation of a new functionality.

By combining the business domain knowledge of the BG Bank end-users with the

system and technical knowledge of the developers, we will achieve a considerable

synergetic effect at a critical time in the course of testing. This will have a clear effect

on the quality of the final product and will ease the implementation of the new

functionality in the area of business.

Session 2 : SPI and Testing I

Page 2.8

The Quest Technical objectives:

The Quest technical objectives were as follows:

To form a business domain test of the Web Banking system complex which is end-

user-oriented as far as domain-test is concerned and thus releasing at least 10%

development test resources for development of new releases of the Web Banking

system.

To gain experience and concrete results to be used for subsequent tests of the system

complex. This includes test of the readjustment to Economic Monetary Union.

To describe and document a QUEST Best Practice for future and other end-user-

oriented tests of the same character in a complex software environment.

To secure that future externally developed operational systems can be implemented in

the existing end-user oriented system complex and be tested by means of the "Best

Practice" described.

To secure that an automated GUI test process mainly is end-user controlled with

quality support from IT professionals.

Notice: The hard numbers or should I say ‘the measurable percentages’ was founded

on the investigation and analysis mentioned in the beginning of the article, the

Compass experience and a handful of expectation and ‘hope’.

The implementation of Quest

Before we could implement the project, we had some selling to do meaning the project

had to be approved by the management in Kapital IT and BG Bank. Finally our quality

challenge concerning total time spend on test, faults per. function point etc. mentioned

earlier and our thorough investigation and analysis of our current situation did the

selling [1] [5]. OK I must admit that it did help that we could say that ESSI and thus

the European Commission would finance some part of the project.

Anyway we got the Go Ahead sign and off we went

Implementing ‘The User and Customer Involvement in Test (UCIT)’

The UCIT phase was implemented as an integrated part of the RDT and AGT phase.

You can actually say that we tried to implement a state of mind where we constantly

worked to improve and increase the end-users and customers involvement.

Therefore, it is not correct to look at the phase out of context and not include the other

two phases.

Anyway I will give it a try and describe the implementation plan for the UCIT phase in

the below 5-step plan:

Find the appropriate activities where the User and Customer can strengthen the

project and product the most.

We had already targeted those areas in our project objectives to be a) the requirement

phase b) the domain test phase and c) the beta test phase

Session 2 : SPI and Testing I

Page 2.9

Find the ‘All European User and Customer’

We had already found them in our preliminary investigation. Among those who would

benefit the most from better quality and among our beta site customers.

Get them assigned to the project.

When top management approved Quest, we thought that this part would be just a

formality. However, we soon discovered that it was not always the case and sometime

we had to fight a battle to get the end-users assigned on a serious basis to our project.

Of cause when we talk about real customers we had to approach these through official

channels and we often found that the customers sales manager where a perfect contact

person. He or she had also a clear picture of whether our request would be turned

down or not. However, as a golden rule I can say that ‘old’ beta site customers usually

was a sure catch.

Train them well in the activities

Well when you get new staff you train them, right? We did that and kept in mind that

our new co-workers had a different approach to IT.

Support them before, during and after

Our new co-workers had ventured into new territories and we found it important to

support them in their new role. Before they began to work with us, during the project

phases and after when they had returned to their normal work situation.

Implementing ‘The Free Test’ (UCIT)’

We implemented one activity thou that did not fit under the RDT or AGT ‘cap’. It was

The Free Test or I could call it the very early beta test. What we did was to release the

product for beta test very early in the development phase knowing that it was full of

defects. What we actually did was that we more or less finished one part of the product

and then released it to our beta sites customers. We told them something like this

>>Hey, here is our coming new product! It is far from finish. It is full of defects! Can

you find them? These features are almost done; do you like them? What defects do you

thing they have? By the way, what you ‘put in’ you might loose and you can not be

sure to upgrade with the next pre release. Please comment on the features and tell us

about the defects<<

The readers of this article might thing >>Hey, the morons released a prototype! <<.

However, this is not the case. Our pre releases had features that were more or less

usable and almost finished. Let us say for example that the customer could do all types

of payments but not look at statements. The customer could then get some of the daily

work done and at the same time try out the product. Maybe find some defects? Maybe

get a good idea for a new or better feature?

We on the other hand had suddenly many customers (read: testers) that did

functionality test and usability test at same time and for all for FREE.

You might say >>There is no such thing as a free lunch<< and of cause you are right.

We had to establish a procedure to support the customers but the cost to run this was

nothing compared to the expense if we had had to hire real testers to do the job.

The procedure to run this pre beta test is pictured below.

Session 2 : SPI and Testing I

Page 2.10

Sales Dep.

Sales

Manager

Customer

News

group

HOT

Line

Defect DB

Evaluation
PREBETA.DOC

Fig. PEJO.1 : The Pre Beta Test Procedure

The sales manager is the link to the customer. The sales manager communicates with

an established Hot Line or via a news group. Defects and comments are stored in a

defect database. At intervals, newly recorded defects and comments are evaluated. The

outcome of the evaluation is given to the customer via the sales department and the

result is logged in the database.

Implementing ‘The Requirement Driven Test’ (RDT)’

The Requirement Driven Test (RDT) was implemented as a 3-Level requirement

process. Before these RDT levels was established customers was interviewed about

their view on existing products, which features they would like in the new product,

what they found vital for such a product etc. etc.

This round of interviews spawned or fed some of the requirements for the RDT phase.

From the beginning of the phase, we kept a high standard in the documentation of the

requirements. We established a database accessible to all participants in the project

and kept a strict control to make sure all documentation was linked to the database.

The 3-Level RDT is pictured on the following page:

Session 2 : SPI and Testing I

Page 2.11

A. Management

Level

B. End-user

 Level

C. Script

 Level

Customer

Interview

AGT phase

Code phase

etc.
REQUIRE.DOC

Fig. PEJO.2 : The Requirement Driven Test Phase

We implemented The RDT phase ad a three level process; A) Management level B)

End-user level and C) Script level.

At level A. the requirements were identified accepted documented and reviewed. As

mentioned earlier some requirements were identified in the interview round with the

customer. Other requirements was ‘born’ as legal requirement, future business

requirement etc. at level A. The level contributed at the same time to the framework for

the future application cost wise and other wise.

At level B the requirements were analysed described documented and reviewed to a

functional level using brainstorms, desk test and usability test. Not only did the end-

users and IT professionals participate in this stage also customers were involved

through contact with the sales managers. Responsibilities for the individual

requirement were anchored in the end-users organisation as well as within Quest

project. When the work at level B was finished a formal review was held with

participation of management, IT-professionals, and end-users. When the review was

completed, the change in the requirements was not possible.

In Level C the end-users broke down the requirements so, it was possible to begin the

detailed planning of the automated test. You could say that level C hooked the

individual requirement to the automated GUI test. In that way we had control of each

requirement, what ‘state’ it was in etc.

Even thou it was implemented as three separate level the communications between the

levels were high and necessary. What went on at one level had to be reviewed

commented or otherwise at the other levels.

Prior to the implementation we talked a lot about switching level B to level A and thus

having the end-users ‘on stage’ before the management. Anyway we did not and

discovered afterwards that because of the intense communications back and forth

between the two levels the discussion prior to the implementation was like talking

about what came first: The hen or the egg. Actually we started out with the

Session 2 : SPI and Testing I

Page 2.12

management but when process got going back and forth, it did not matter much which

of the two levels that began the process.

Implementing ‘The Automated GUI Test’ (AGT)’

Our implementation of the AGT phase were divided into 4 major activities:

Training in test

Selection of test tool

Try-out of test tool and AGT process

The actual AGT process

Training in test

The entire project – IT-professionals as well as end-users - went back to school and

were trained in test techniques and test methods. We found it important that all

participants had the same basis knowledge of test. Every one went through a tutorial

that focused on the test side of the V-model, white- and black box test, preparation of

test cases, suites, documentation, end conditions for business domain test etc. etc. The

tutorial helped to build some sort of a test foundation in the project from where we

could continue down the AGT road.

Selection of test tool

We put a great deal of effort into the selection of the test tool. The tool used for AGT

were selected in strong co-operation between the end-users and the developers where

the main requirement for the tool was that it should be as user-friendly as possible but

also of a high technical development standard [4].

The selection process is described below

Tool

Requirements
Tool

Demos

3 Tools

Written req.

2 Tools

Workshops

2 Tools

App. Try-out

QA Centre

Selected
CONTRACT

TOOLPRO.DOC

Fig. PEJO.3 : The Tool Selection Process

The project documented the requirements for the tool before a broad selection of tools

was reviewed in typical 2 to 4 hours demo sessions. Among these the three most suited

tools was selected and the tool vendor was asked to give a written answer to our tool

requirement list. The two tools that meet our requirements the best were selected and a

Session 2 : SPI and Testing I

Page 2.13

1-day workshop for each tool was arranged. IT-professionals and end-users

participated in these workshops and each participant filled out a questionnaire

concerning the tool.

Before making the final decision both tool vendors was asked to try-out their tool on

one of our web applications. At last we was able to make our choice that eventually

was QA Centre from Compuware. This tool was an over all winner and voted the most

user-friendly by the end-users and best language by the IT-professionals. Furthermore,

we put also a great emphasis on tool support this we also found was best at

Compuware.

Try-out of test tool and AGT process

The end-user and IT-professionals was trained in the tools and thereafter was the AGT

process including the tools tried out by automating a part of an existing web

application. In the try-out, a best practice handbook was established. The handbook

describes both the AGT process and how the tool is used in the process. The try-out

was a great learning experience and founded the basis to implement Quest in reality as

well as in our development concept.

The actually AGT process

A lot has been said and written a lot about automated GUI test [4] [6] [7]. So I will try

to outline the differences in the AGT process we implemented. First of all the end-users

in our process had been involved in Quest on equal footing with the IT-professionals

from the very beginning of the project. They knew the requirements down to every

detail and they had prepared the test-cases/script in the RDT phase. They had also

extensive tool knowledge and they had tried-out GUI automation in the AGT try-out.

Therefore, we implemented an automated GUI test not very different from others like it

elsewhere. However, our AGT was to a wide extend end-user controlled. The business

domain test was planned and carried out by the BG Bank end-users. Scripts were

written not recorded by the end-users. Test-suites were build and executed by the end-

users. Scripts and the entire test-suite complex were maintained by the end-users.

Defects were registered and pre investigated by the end-users. Of cause the IT

professionals were also a part of the process but their role was – you could say –

reduced to the role as consultant and thus to yield computer, tool and process

assistance.

After the implementation of QUEST

After we implemented a great product the end-users returned full-time to their daily

work in BG Bank. They took with them the task and responsibility to maintain the test

cases, test-scripts and test-suites. At the same time learning-groups were established

that meets on intervals where end-users and IT-professionals exchange experience,

knowledge, scripts etc. etc.

The Quest Impact, Results and Lesson learned

In our QUEST for Quality we fought numerous battles, some we lost and most we won

Session 2 : SPI and Testing I

Page 2.14

but most important we won the war for better software quality and we now know that:

The Impact and lessons learned in UCIT phase

The All European User and Customer are great ballplayers in the entire project phase

and for sure, it is the undiscovered human resource. The end-user’s business domain

knowledge strengthens the whole process and ensures a great product. In addition, the

Customer involvement makes your product ‘stand out’.

Yes! You can move that technological boarder and train non-IT people traditional IT

skills and get a better product out of the effort.

When that is stated I can say that we learned that the end-user involvement in the

beginning will cost development resources it is not a free ride and you must plan to do

a lot of practical work. It is important precisely to describe the objectives and activities

of the involvement. Especially when approaching customers it is important to do it in a

formal manner. All-ways remember to give responses to customers about what you did

with the comments they gave or the defects they found. It is vital to seek and get

management consent before all activities and it is maybe necessary to ensure the

management consents through the entire project. In involving end-user and customers,

it is a good idea to execute each activity in short intensive periods. It is important that

end-users return on a regular basis to their base organisation so they can refresh their

business domain knowledge. It is important to keep an open dialog about the

involvement particularly with end-users not assigned to the project. Treat end-users

and IT-professionals a like but be conscious about the end-users non-IT profile.

The Impact and lessons learned in RDT phase

The requirement phase is alpha and omega. You have to manage and test your

requirements. You have to have the right people to work with the right requirements at

the right time. You have to constantly look critical at your requirement phase and ask

your self the question ‘Were is there room for improvement? In order to automate you

GUI your requirements have to be very detailed – meaning that you have to keep a high

degree of documentation. Beware that a high degree of documentation is hard work, it

takes and cost time and resources to make and maintain. To document is a boring job

to a lot of people. Make sure each requirement is review, documented and that

responsibility for each requirement is placed on management level as well as end-user

level. Make sure each requirement is pinned (tracked) to you automated GUI test

(AGT).

The Impact and lessons learned in AGT phase

Test automation tools are much better than rumoured, some are even easy to learn, and

end-users can be transformed into ‘tool super test users’. The very difficult part is to

build an automated test process that works. You have to implement an ongoing process

that exist in every day production supported by well-trained staff and well documented

procedures. So yes, you can do regression test, but you will regret and never regress

your test suites if you do not have total control of your process.

Initially we planned or expected that the end-user could take control of the entire AGT

Session 2 : SPI and Testing I

Page 2.15

phase. Nevertheless, we must admit that we are still is in a 70/30percentage situation

where the end-user controls the 70% and the IT-professionals 30% of the business

domain test. Not entirely as expected but we game on that most of the 30% can be

conquered by the end-users in the years to come. Anyway, we have moved that

technological boarder.

The measure of the Quest objectives

By the way: lets have a look at the Quest objectives one more time to see how it turned

out in the end:

The QUEST project objectives – Final Score:

The Quest objective is to improve the test and development process of our multiple

platforms that support our Web Banking systems and thus make it more efficient.

Involving the BG Bank end-users in the requirement phase (UCIT, RDT)

Involving the customers in real test and development (UCIT, RDT)

Training of the BG Bank end-users in modern test methods and techniques (UCIT,

AGT).

Choosing and implementing a modern test tool that supports business domain test

(UCIT, AGT)

Implementing a BG Bank end-user controlled business domain testing process (UCIT,

AGT)

Transferring traditional technological test development activities to the business unit

(UCIT, AGT)

In re-use the results from the AGT process in subsequent business domain tests of new

releases of our Web Banking systems. (UCIT, AGT)

Notice: We reached our objectives. Nevertheless, we could have done better in

involving the customer. We did a form of usability test in our pre beta test bur I am

afraid to say that we started out with greater plans for usability test. However the

requirement phase ate more of our time and resources that planned and therefore we

had to scale down the extent of the usability test.

The QUEST business objectives – Final Score:

To reduce the number of production errors by 33% during the first 6 months of a

release as a result of a more thorough test and thus strengthen the quality of BG Bank's

strategic area of growth

To reduce the production and the maintenance costs by at least 20% do to fewer errors.

To increase the percentage of Hot-Line replies to customer enquiry’s to 98%. This to

take place through the staffs strong involvement in the business domain test and

because fewer errors means fewer enquiry’s.

Release 10% of the BG Bank end-users in order for them to test future releases of the

Web Banking system. This is to take place through fewer errors and thereby fewer

customer enquiry’s

Session 2 : SPI and Testing I

Page 2.16

The QUEST Technical objectives – Final Score:

To form a business domain test of the Web Banking system complex which is end-

user-oriented as far as domain-test is concerned and thus releasing at least 10%

development test resources for development of new releases of the Web Banking

system.

To gain experience and concrete results to be used for subsequent tests of the system

complex. This includes test of the readjustment to Economic Monetary Union.

To describe and document a QUEST Best Practice for future and other end-user-

oriented tests of the same character in a complex software environment.

To secure that future externally developed operational systems can be implemented in

the existing end-user oriented system complex and be tested by means of the "Best

Practice" described.

To secure that an automated GUI test process mainly is end-user controlled with

quality support from IT professionals.

Notice: To be total honest I must admit that we are still in our measuring phase. So

far it seems that we will reach the objectives and for some objectives beyond them.

The QUEST continues

So we can proudly say that we have a test process that involves and rely on The All

European User and Customer - and it works! We did not use more resources on test

than expected or as used on previously projects. We did implement a great quality

product almost defect free. We did implement the product on time and our cost on

maintaining the product equals our competitors.

Our QUEST has begun and it will continue always. We can and we will do it better,

faster and cheaper. We still carry out four annual investigations of our system

development process to constantly keep the focus on activities to improve. For the

moment we work on a true ‘Release when you please’ process. This combine the

strength of our automated Client/Server test with the ‘On the fly’ customer requests

and demands that ties the Client/Server, midrange and mainframe together in a test

process that enables new releases to be build ‘over night’.

Session 2 : SPI and Testing I

Page 2.17

References

[1] Jones Capers, Applied Software Measurement: Assuring Productivity and

Quality. On the history and evolution of functional metrics pp. 43-122, McGraw-Hill,

Inc. (New York, N.Y.) 1991.

[2] Ould Martin A., Strategies For Software Engineering: The Management of

Risk and Quality. On the 14 dilemmas of software engineering, pp 186-223, John

Wiley & Sons, Inc., (New York, N.Y.) 1987.

[3] Hertzel Bill, The Complete Guide to Software Testing. On testing methods and

tools, pp 43-72, John Wiley & Sons, Inc., (New York, N.Y.) 1988.

[4] Vinje Poul Staal, Test af Software. Planlaegning og styring, pp. 253-320 and

Vaetoejer pp. 359-381, Teknisk Forlag, 1993.

[5] Zahran Sami, Software Process Improvement. On launching implementing and

measuring software process improvement, pp 183-232, Addison Wesley Longmann,

1998.

[6] Fewster Mark, Grove Consultant, The Selection, and Use of Test Execution

Automation Tool, 2 day Seminar at Delta, 1997

[7] Kolish Tony, Segue Software Inc., Ensuring Reliability of Web Applications:

A white paper for IT managers, QA professionals and software engineers. The paper

was presented at the EuroStar 1997 conference in Edinburg.

Session 2 : SPI and Testing I

Page 2.18

Software

Inspection

Techniques in

SMEs

Francisco J. Rodríguez

ELIOP,Madrid, SPAIN

Manuel Villalba

ELIOP,Madrid, SPAIN

Ignacio González

ELIOP,Madrid, SPAIN

Introduction

The TESIS project is aimed to use software inspection techniques in the context of an

SME.

Software inspection is generally appreciated as a method to improve the software

product quality and, by decreasing the amount of rework, to reduce development time

and costs and to increase productivity. However, the main purpose of an inspection

process should be to supplement testing, not to replace it, having in mind that testing

alone will not determine if code will work on different platforms, if it is written

efficiently and whether it adheres to particular coding guidelines or standards.

Reported inspection results vary considerably, although all the reports claim that the

use of this method, and its variations, improves product quality. Some experiences

have established a capability of software inspections to identify up to 80 percent of all

software defects early during the software development stage [7, 11, 13]. Other teams

Session 2 : SPI and Testing I

Page 2.19

in AT&T mention that the percentage of defects removed through code inspection

varies widely from about 30 to 75. After improving the inspection process, they

achieved defect-removal efficiencies of more than 70 percent [2]. Moreover, when

inspections are combined with normal testing practices, defects in fielded software can

be reduced by a factor of 10. These reasons, together with the productivity increase

and the reduction in costs and delivery time, explain the use of these methods and

techniques by a variety of manufacturers.

Other forms of inspection, based on the Fagan’s one, have been developed. The Jet

Propulsion Laboratory (JPL), California Institute of Technology, tailored Fagan's

original process of software inspections to conform to its software development

environment in 1987. Also, AT&T Bell Laboratories refined the original inspection

process through the setting of a measurement system that defines nine metrics to help

plan, monitor, control and enhance the inspection process. Innovative techniques, like

Collaborative Inspection methods and tools, have been introduced with the aim of

efficiently supporting the inspection process [6], and an interesting variation of

inspection, denominated N-fold inspection, uses traditional inspections of the user

requirements document but replicates the inspection activities using N independent

teams [10]; this parallel technique has been used in the development of mission-critical

software systems.

It seems mandatory to say that inspections are focused on finding defects, neither to

correct them nor to improve the software product. A variation of the Fagan's inspection

process adds an extra step after the meeting for discussing corrections and general

improvements [8]. Also, team size varies among three to five members, being possible

teams formed by only two developers [3].

The SPICE ISO 15504 standard (v. 2.0) covers software inspections in several

sections. Although SPICE doesn't fix specific procedures to carry out inspection

activities, there are processes related to inspections in Support, Management and

Engineering categories.

Regarding CMM (Capability Maturity Model), a key process area more directly

related is undoubtedly Peer Reviews (PR), established in level 3 of the model, being the

only software engineering specific procedure showing such importance. The reason of

this exception is the general agreement about the effectiveness of this method in the

early detection of defects, although this CMM concept is not so formal as Fagan’s

inspections.

Regarding the several stages in a software inspection process, planning, overview,

preparation, examination, re-work and follow-up, the importance of each of them

varies according the authors. Overview is usually considered as optional, specially if

the inspection team is composed by skilled developers familiar with the project and the

software product. However, the point of view of Ackerman et al. [1] is that overview

and preparation are often underused.

Christenson [5] relates an experience in which defect data were collected over several

years enabling estimation of the number of defects in uninspected code, inspection

effectiveness, and the number of defects remaining after inspections. In addition, the

authors were able to derive an optimal level of inspection effort, given a work product

initial defect density. According to that estimation, some decision could be made about

re-inspecting the code after the rework phase or continuing on into the test phase. The

cost of finding defects by inspection was sufficiently low that even products with

Session 2 : SPI and Testing I

Page 2.20

relatively few defects on first inspection were reinspected. Products with many defects

on first inspection were already candidates for reinspection.

Regarding initial training, a comprehensive guide about software inspection [9] has

been taken during this project as a fundamental reference to initiate the navigation

through the software inspection processes world.

Although most of the effort has been obviously put into tuning the existing techniques

according to ELIOP size, projects and culture, the TESIS project aims to extract

interesting results for the wider community, because there is a relatively small amount

of reported experience related to Software Inspection in SMEs.

Session 2 : SPI and Testing I

Page 2.21

Applicability of software inspection techniques at

ELIOP

The company

ELIOP is a manufacturer of hardware and software products in the market of

supervision and control systems for industrial applications. People involved in

Software Engineering within ELIOP are grouped in several areas, and, within each

area, a team is created for each project. The current engineering practice at ELIOP is

oriented to the classic life cycle steps: requirement analysis, design, coding, testing and

maintenance.

The projects developed within the company range a wide variety of different types and

sizes: software with hard real-time constraints for embedded systems, software for

man-machine interfaces (MMIs), SCADA (Supervisory and Data Acquisition)

systems to supervise and control distributed networks, etc. Most of these systems must

work continuously at remote unattended locations, where modifying or updating the

software is costly and difficult.

Among the new projects, many of them can be considered upgrades of already existing

products. These projects consists on adding new software to these products or

modifying them to cover a wider range of cases. A mixture of high skilled software

engineers and less experienced people composes the baseline projects teams.

Starting scenario

In the last years, ELIOP has assessed its practices because of several facts:

ISO-9001 certification for all its processes, including software design. Procedures

according to ISO-9001 are being applied to the software activities from the beginning

of 1995.

Participation in two process improvement experiments supported by the ESSI (10396

ISORUS and 21222 AMIGO).

These circumstances, as well as the metrics data obtained as a consequence of the

above mentioned PIEs, have strongly influenced the practice of software production at

ELIOP, being as follows at the starting time of the project:

Documents associated to each phase must be formally approved by the project

management before starting the next stage. As a consequence of previous ESSI

projects, a "Domain Analysis" step has been established previous to the requirement

analysis. Also, software reuse practices are systematically considered in the remaining

steps.

Special attention is paid to the requirements specifications. They are normally written

in natural language, with some graphical support. No formal languages are used, nor

tool-assisted tracing of requirements through the life cycle. However, according to the

results of the ESSI project AMIGO, inaccurate or incomplete specifications can cause

up to 20% of maintenance problems.

Session 2 : SPI and Testing I

Page 2.22

Structured analysis and design and object-oriented design techniques are used in some

projects to support the design phase. In most projects, design is documented without

formal notations, by means of code decompositions, and processes, data and interface

descriptions. Two different languages, C and C++, are normally used for

programming, although legacy code exists written in a variety of other languages.

Configuration management policies are applied to source code and some other software

assets in a systematic, tool supported way.

No software inspection practice was running before the beginning of this project.

Metrics data are collected, most of them related to the efforts devoted to each project,

and to the number of software problems reported. These data show that the projects

with higher deviations from schedule have frequently only small deviations up to the

end of the coding phase, and most of their deviation comes from repeated testing-

rework cycles performed after code is finished. When a project is affected by such a

problem, hidden lack of quality appears very late in the life cycle, when efficient

corrective actions are difficult to undertake.

The analysis of the causes of the software problems appearing after delivery to the

customers reveals that inadequate specifications, design, coding and testing contribute

with similar weights to the appearance of defects. Accordingly, all these phases should

be subjected to inspection in order to decrease the number of defects transmitted from

one life cycle phase to the next one.

The baseline projects of the experiment

Two well different projects have served as baseline projects to carry out the TESIS

experiment:

A medium sized project (about 100 KLOC of code plus 150 KLOC of testing code)

consisting on a new Embedded Control System with demanding requirements in

reliability and safety. This project involves both hardware and software development

and is performed by a team of six software engineers. The software is mainly written in

C, pursuing real-time performance. This project has just been started at the beginning

of the PIE and is planned to finish within 1999.

The other baseline project consists of a small project whose objective is to add a new

relevant function to an existing Remote Terminal Unit (RTU). ELIOP usually needs to

undertake these type of projects, modifying existing systems, as part of its normal

operation. The software product embedded is a real-time one, written in C and mainly

composed of a reused and modified code. The project team is normally composed by

two or three engineers.

There exist several reports about inspection experiences over safety critical systems.

Martin's paper [10] is mainly centred on a kind of parallel inspection, accomplished

by some independent teams, of the user requirements documents. Tripp’s paper [12]

discusses also the application of multiple team inspections to improve the technical

review and quality of a safety-critical software standard.

Curiously, it seems more usual to inspect documents than code when talking about

safety critical software, although Buck’s [4] report discusses the result of the

application of the inspection process to software developed at IBM for the United

States Navy. In data analysis they have found certain very consistent values in their

Session 2 : SPI and Testing I

Page 2.23

environment. For example, their new code has about 8 to 12 defects per KLOC and

they require about 3 to 5 man-hours per major defect detected in inspections. A major

defect is defined in terms of interfering with program performance.

Regarding real-time characteristic, the AT&T experience mentioned above [2] is

primarily devoted to real-time embedded systems written in C by teams of 3 to 80

developers. The projects inspected new, modified, and reused code.

The amount of information encountered about similar projects has been considered

enough to take references during the initial phase of the TESIS project.

The skills of the staff are not exactly the same. Some of them are highly skilled

personnel, while others, although not novices, have a shorter professional experience.

The role of moderator is expected to be assumed by the most experienced engineers

belonging to the team. Changing the role among the team members is foreseen as a

method to dynamically extend the software inspection culture. Anyway, all of the co-

workers are novices on Software Inspection techniques.

Due to the fact that one of the baseline projects is a small one, its inspection team size

will be composed, as maximum, of three members. One of them will assume the roles

of moderator and recorder at the same time. The possibility of accomplishing two

members inspection is being studied. An interesting fact is that, according Bisant paper

[3], this method appears more effective at improving the performance of the slower or

novice programmers.

On the other hand, the inspection teams corresponding to the big project will be

composed of three or four members, in order to extract conclusions about inspection

efficiency and associated costs.

Expected outcomes

The expected results of the TESIS project are the following:

Reduction of the defects reported by the customers. The established target is 30%

reduction in two years. Identification and removal of systematic defects.

Increased development productivity, due to lower development costs and less time

dedicated to remove defects reported in delivered software.

Better achievement of project schedules by achieving repeatable and normalised

software production processes. The goal is 50% reduction of the current average

deviation in two years.

Rapid cross-training of software engineers participating in a project.

Indirect benefits on team building.

Additionally, the reduction of the number of defects existing in delivered products

necessarily implies the increasement of the satisfaction of the customers and the

enhancement of the image of the company.

The quantitative objectives can only be measured when the software inspection

processes will be widely used in the company. The accomplishment of objectives

mentioned above for the baseline projects will be shown within the PIE based on the

measure of inspection efficiency. According to our preliminary estimations, an

efficiency better than 66% should allow to achieve the defined objectives.

Session 2 : SPI and Testing I

Page 2.24

Implementation of the improvement actions

To accomplish the improvement actions, apart from the project management, training

and dissemination actions, the TESIS project has been divided into several tasks or

workpackages.

A General Approach Study established the basic approaches to carry out the

experiment, analysing the applicability of software inspection techniques to the selected

baseline projects. Also, adequate directions for subsequent project activities were

identified after studying the available documentation.

After completing the first stage, the existing scenario at ELIOP was revised as well as

the required process changes. This was the origin of the Internal Procedures document,

written in order to support all the software inspection activities to be accomplished

within the context of the company software development process. These Procedures

include a description of the process, a detailed description of the inspection activities, a

definition of the metrics to be applied and all the necessary checklists and guidelines to

be used along the inspection process. Also, inspection forms are included, for making

easier the collection of all metrics data to be stored in the inspection database.

Metrics identification and set-up was the next step of the project. The different metrics

included in the technical Procedures were identified and selected during this

workpackage. The intended goals pursued by the metrics were established and

translated into measurable magnitudes, and a metrics plan was designed to collect all

the needed data.

Following the Internal Procedures set-up and metrics definition, the experimentation

activities started for the baseline projects, even earlier than the foreseen date due to the

project needs and scheduling. The first baseline project, devoted to the production of

safety critical software, includes software inspection as a regular practice to assure the

software quality. At the time of writing this paper, the baseline project is already

running and the results obtained have been quite good, as well as the acceptance of the

inspection techniques among the engineers participating in the project. Regarding the

second baseline project, source code inspections have been done although, being this

project a small one, the results are not so significant than those corresponding to the

first project.

For supporting the experimentation activities, a number of tools

were evaluated and thoroughly tested. Finally, no specific tools

were purchased, being preferred general tools for helping in the

navigation and annotation of source code.

Internal procedures are dynamically revised, using the data taken and the experience

gained from the experimentation. An external subcontractor and ELIOP management

participates in this review, with the objective of obtaining a revised set of procedures

ready for its introduction in the regular practice.

At the time of writing this paper, the evaluation of the experiment has not completely

finished, although most of these task results can be considered as final ones.

Specifically, this workpackage deals with the comparison of the global results of the

project with its original objectives, the analysis of all aspects of the project and the

identification of the lessons learnt.

Session 2 : SPI and Testing I

Page 2.25

Finally, an introductory plan will be written, to introduce the identified changes in the

normal software development process at ELIOP.

Results and lessons learnt

Metrics applied

Previously to the experimentation phase, an Internal Procedures document for carrying

out inspection activities was approved. Even before writing the document, the

inspections team gained some experience through trials and a training activity.

To choose the adequate metrics is essential for the success of the inspection process. In

this sense, we have followed the Barnard approach [2] applied in ATT and derived

from GQM. The first step was to clearly establish the intended goals pursued by the

metrics plan. After being established, these concepts have to be translated into

measurable magnitudes and a metrics plan designed to collect all the data needed.

The identified measurement goals were the following:

Plan software inspections as part of the whole software development process.

Monitor and control the inspection process.

Monitor and control the quality of the inspected software product.

Monitor and control previous stages of the software development cycle.

Improve the inspection process.

As we can notice, only the third and fourth points are dedicated to directly highlight the

benefits of software inspection activities. The other points are focused more on the

control and continuous improvement of the inspection process. Due to that reason, care

has been taken in the adoption of these metrics to evidence the benefits provided by

software inspection versus the associated costs.

Defects have been classified, at least, as major or minor defects. Major defects are

those which affect the functionality of the software product under inspection. Minor

defects are those which, not affecting the product functionality, affect in a way or

another to the product quality or indicates a lack of conformance with the software

development rules established by the company.

It is worth to clarify that defining how to exploit metrics data is as important as

defining the data. A simple step by step procedure was established for this purpose:

Inspection data have been stored and collected in an inspection database. Microsoft

Access has been selected for storing software inspection data and for elaborating

inspection reports, due to its wide availability. The relational database used has been a

very simple one, in order to avoid wasting of time in its implementation.

Inspections trends were analysed over time, and control applied to maintain metrics

results consistent with project guidelines. Each analysis should compare the current

results with valid references or an average of past results, depending on the specific

metric.

Inspection or development processes have been adjusted according to metrics results

when indicating a systematic problem.

Session 2 : SPI and Testing I

Page 2.26

Finally, plots of metrics data have been used to graphically highlight hidden trends.

During the experimentation phase, the following metrics have been applied to the data

collected from inspections:

Metrics Formula

Average effort per inspection

unit (time in hours / LOCs,

pages, test cases)

)

Inspected units

Inspection effort i (
i

N

 1

N = Number of inspections

Inspection effort i = Planning time + Preparation time

+ (Inspection duration x Number of participants) +

Rework time + Revision time.

Percentage of reinspections.
(

Number of reinspections

Total number of inspections
100)

Average inspection rate

(LOCs, pages or cases / time)

Inspected units

)Duration of inspection i (
i

N

 1

N = Number of inspections

Cost per removed defect.

)

)

Inspection effort i

Number of defects detected during inspection i

(

(

i

N

i

N

1

1

N = Number of inspections

Inspection effort i = Planning time + Preparation time

+ (Inspection duration x Number of participants) +

Rework time + Revision time.

Average preparation rate

(LOCs, pages or cases / time)
Prepared units

)
Preparation time i

Number of participants in preparation i
 (()

i

N

 1

N = Number of inspections

Number of detected defects per

inspection unit.
)

Inspected units

Number of defects detected during inspection i (
i

N

 1

N = Number of inspections

Other metrics are foreseen to be applied but, at the time of writing this paper, there

have not been collected enough data to permit their direct application.

Software requirements and design documents results

As commented above, both specification of requirements and design documents have

been inspected, although the majority of the inspections have been focused in

encountering defects in source code.

Three documents of specification of requirements have been inspected. Among them,

the Functional Specification of Requirements of the biggest baseline project, regarding

safety critical software.

Session 2 : SPI and Testing I

Page 2.27

Within the documents for specification of software requirements, no reinspections have

been produced. Due to the importance of the inspected documents, it seems that,

perhaps, it is worth to inspect again the documents if an enough number of defects has

been encountered during the first inspection. But, in the case of the Functional

Specification of Requirements document, the only document with an important number

of detected errors, a major revision of the document occurred after the first inspection

and due to the external reasons. So, a completely new version and the document was

generated and inspected. We have considered this process more a first inspection than a

reinspection.

The average number of defects per page is 1.71, although the relation among major

and minor defects varies from one inspection to the others. The figure below shows the

number of major and minor defects and the number of pages corresponding to each

inspection.

Regarding inspections of design descriptions, seven documents have

been revised, one of them along two inspection meetings, due to its

size.

0

10

20

30

40

50

1 2 3

Inspections

Specification Documents

Pages

Major def.

Minor def.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Inspections

Design documents

Pages

Major defs

Minor defs

Session 2 : SPI and Testing I

Page 2.28

Similar conclusions can be extracted for design documents than for specification of

requirements. The average number of defects per page is 1.75 (approximately 1 defect

per page for major defects and 0.75 for minor defects).

Both for specifications and design documents, typewriting errors have been removed

from the documents prior to be subjected to the inspection process.

Code inspection results

Up to the moment of writing this report, 49 inspections of code have been carried out.

Among them, only 4 have been re-inspections: that is to say, the percentage of re-

inspections is approximately 8%.

Regarding code inspections the average effort per inspection unit is 0,014 per LOC or,

in an equivalent way 14 hours are devoted to complete the whole inspection process of

one KLOC (including the planning, overview, preparation, rework and review phases).

See below a table detailing the effort spent along the different inspection phases per

inspection unit.

 Average effort (hours) Average effort per

inspection unit

(hours/KLOC)

Planning
1.5 0.3

Preparation 15 3

Meeting 29.5 6

Rework 10.5 2.5

Review 3 0.6

while 409 LOCs are inspected each hour during the inspection meeting by the

development team. These figures are of relevance for planning the effort to be

dedicated to code inspection along the lifecycle of a specific project. However, it has

been observed that the last figure, Average inspection rate, can widely vary, mainly

due to the inspectors experience, not only in coding, but also in the inspection process

itself.

Sometimes, when the inspection team is composed of only two members and one of

them adopts all the roles with the exception of “author”, the number of inspected units

per hour of inspection meeting significantly increases; that’s to say, an inspection team

of two members seems to inspect considerably faster than a bigger team. Moreover,

this effect doesn’t imply a reduction of the inspection efficiency. However, this team

composition is only possible when the “super-inspector” is a very experienced

developer and very familiar with the development of the revised modules.

The cost for removing a defect is 0,28 hours, although this figure is due more to minor

or non-functional defects than to major ones. If we consider only major defects, the

cost increases up to 1,48 hours.

The average preparation rate is 265 LOCs per hour, being this figure approximately

constant.

Session 2 : SPI and Testing I

Page 2.29

Finally, the number of defects encountered per KLOC is 36, including both major and

minor defects. If we only want to consider major or functional defects, the value

decreases up to 6.

Test cases results

With regards of test case inspections, the total number of inspections ranges 7, and no

module has been reinspected.

In average, 0,006 hours are devoted to revise one inspection unit (in this case, the

inspection unit is an element of the test case tables), and the average inspection rate is

841 units per meeting hour.

The cost figures are similar to the ones corresponding to code inspections and the

above commented trends also remain. The costs for eliminating a defect is 0,87 hours,

being this figure influenced more by minor defects than by major ones. Considering

only major defects, the costs increases up to 3,65 hours.

The average preparation rate is 824 test case elements per hour, and the number of

defects encountered per element is 0,006, including both major and minor defects. For

major defects only, this figure decreases up to 0,0015.

Lessons learnt

Regarding a technical point of view, it is worth to remark the following lessons learnt

during the project life:

Software inspection is a very effective way of finding defects in an early phase of the

product life, but it is also a costly method. Due to the last reason, care must be taken in

applying these techniques in a controlled way and demonstrating the inspection benefits

to the company management.

Source code inspections usually serve also to detect, in an early phase, design defects,

so it is essential to start source code inspections as soon as possible.

 During the first inspections, the adoption of the role of the moderator by the technical

team head facilitates, due to his high degree of expertise, the cross-training of the

inspectors, even more regarding key aspects of complex projects.

 Inspections are much more efficient when the preparation phase and inspection

meetings are held immediately after finishing the implementation of the software

product.

 The "third hour" meeting is really important to achieve a better knowledge of the entire

project for the software engineers participating in it. Also, it is an excellent training

tool for the novices in the project.

Moreover, due to its intended formalism, it is important to clearly define the minor

aspects of software inspection technique in order to avoid any waste of time, and to

decrease the effort dedicated to inspections. The internal procedure document must be

comprehensive and quite detailed.

Also, organisational aspects, like cross-training and team building, constitute an

indirect but clear benefit of software inspections.

Session 2 : SPI and Testing I

Page 2.30

References

[1] Ackerman, A.F., Buchwald L. and Lewski F.H., Software Inspections: An

Effective Verification Process in: IEEE Software, Vol. 6, No. 3, pp. 31-36, 1989.

[2] Barnard, Jack, Art Price, Managing Code Inspection Information in: IEEE

Software, Vol. 11, No. 2, pp. 59-69, 1994.

[3] Bisant, David B. and James R. Lyle, A Two-Person Inspection Method to

Improve Programming Productivity in: IEEE Trans. Software Eng., Vol. 15, No. 10,

pp. 1,294-1,304, 1989.

[4] Buck, Robert D. and James H. Dobbins, Application of Software Inspection

Methodology in Design and Code in: Software Validation, H.L. Hausen, ed.,Elsevier ,

pp. 41-56, Amsterdam 1984.

[5] Christenson, Dennis A. and Steel T. Huang, A Code Inspection Model for

Software Quality Management and Prediction in: Proc. GLOBECOM '88. IEEE

Global Telecomm. Conf. and Exhibition, pp. 468-472, 1988.

[6] Drake, Janet et al., Support for Collaborative Software Inspection in a

Distributed Environment: Design, Implementation, and Pilot Study in: Tech. Report,

TR 92-33, Univ. of Minnesota, June 1992.

[7] Fagan, Michael E., Design and Code Inspections to Reduce Errors in Program

Development in: IBM Systems J., Vol. 15, No. 3, pp. 182-211, 1976.

[8] Gilb, Tom, Principles of Software Engineering Management, Addison-Wesley,

Mass., pp. 205-226, and pp. 403-422, 1988.

[9] Gilb, Tom and Graham, Dorothy, Software Inspection, Addison - Wesley,

1993.

[10] Martin, Johnny and Wei-Tek Tsai, N-fold Inspection: A Requirements

Analysis Technique in: Comm. ACM, Vol. 33, No. 2, pp. 225-232, 1990.

[11] Myers, Ware, Shuttle Code Achieves Very Low Error Rate in: IEEE Software,

Vol. 5, No. 5, pp. 93-95, 1988.

[12] Tripp, Leonard L., William F. Struck, and Bryan K. Pflug, The Application of

Multiple Team Inspections on a Safety-Critical Software Standard in: Proc. 4th

Software Eng. Standards Application Workshop, IEEE CS Press, pp. 106-111, Los

Alamitos, Calif, 1991.

[13] Weller, Edward F., Lessons from Three Years of Inspection Data in: IEEE

Software, Vol. 10, No. 5, pp. 38-45, 1993.

Session 2 : SPI and Testing I

Page 2.31

Company profile

Founded in 1979, ELIOP is a Spanish medium size industrial enterprise with a subsidiary

company in Turkey. With 140 employees, 80 of them having a University degree, and a

turnover of 12 million ECUs, ELIOP is very active in the domain of Information

Technologies.

ELIOP is a Hardware and Software Factory. Its products, entirely developed within the

company, include Remote Terminal Units, for Telemeasurement and Telecontrol

applications, large distributed Supervisory Control and Data Acquisition systems (SCADA)

and also Computer Vision systems. These products are integrated in turn-key systems that

the company sells in national and international Electricity, Transport, Gas, Petrol, Water,

and Environment markets.

ELIOP is offering innovative solutions for these markets not only in Spain, but also in

Europe and Mediterranean countries. Competing with the most important international

companies in the transportation and energy sectors (mainly from the USA), ELIOP is

developing relevant projects in many Latin America countries: Brazil, Colombia,

Ecuador, Peru, Argentina, Paraguay, etc.

A significant part of the ELIOP yearly budget is devoted to Research and Development

activities. The company participates in several national and international RTD

projects. It has taken advantage for improving its software processes through the

following ESSI projects: ESSI Project 10936 ISORUS, ESSI Project 21222 AMIGO

and ESSI Project 27506 TESIS.

Session 2 : SPI and Testing I

Page 2.32

Curricula

Francisco J. Rodríguez

Born in Madrid (Spain), 28th June 1963. Physicist, specialised in Computers and

Automatic Control, Complutense University of Madrid.

From 1988 to 1991, he worked in the CSIC (Consejo Superior de Investigaciones

Científicas) in the field of ultrasonics, signal processing and automatic data acquisition

systems. After five years working in the field of automatic systems for NDT (Non

Destructive Testing) (TECAL, 1992 to 1997), he joined ELIOP, first as ELIOP

project manager of ESPRIT projects 8819 VICTORIA and ESPRIT INNOVA 21017

and, from March 1999, as responsible for the Software Area within the R&D

Department.

He is the author of several international publications in the field of ultrasonics and

automatic systems for NDT.

Manuel Villalba Quesada

Telecommunications Engineer (Universidad Politécnica de Madrid) 1978. During his

professional career, he has worked in Telefonía y Electrónica, SA. (1979-1980) in the

hardware design of telephone subscriber equipment, and TELETTRA España, SA. (1980-

1983), R&D division, as team head for hardware and software design of special telephone

equipment.

Since 1983, he is working at ELIOP, SA., participating as technical manager in many

projects in the industrial electronic equipment and systems field.

Also, he has participated in several projects funded by the European Commission, among

them the ESPRIT projects 5184 LOCOMOTIVE and 8819 VICTORIA, and the ESSI

projects 10936 ISORUS and 21222 AMIGO as Project Manager. He is currently in charge

of the management of the ESSI project TESIS.

He has been until recently Manager of the Software Area in the R&D department. He is

now Marketing Manager for ELIOP product lines.

Ignacio González Torquemada

Born in Madrid (Spain), 4th August 1963. Industrial Engineer, specialised in

Electricity, Electronics and Control. E. T. S. Ingenieros Industriales de Madrid,

Universidad Politécnica de Madrid, 1987.

He has worked in DISAM (U.P.M. University, 1987), programming vision-based

industrial systems. From 1987 to 1989, he worked in ELIOP S.A. (1987-1988)

developing real-time PC programs, and TID S.A. (1988-1989) as an applications

engineer and hardware designer.

Since 1989, Ignacio González is working at ELIOP S.A., first as responsible for SW

Development of Automation, Tariff and Electric Load Control products and, after that,

as SW Group Manager for Automation and Interlockings.

Session 2 : SPI and Testing I

Page 2.33

He has worked in several ESSI projects: ISORUS (Software Reuse), AMIGO

(Software Maintenance) and TESIS (Software Inspection Techniques).

He is the co-author of the paper “A sequential edge detector using edge and grey level

histogram information (1988), International Workshop on Sensorial Integration for

Industrial Robots (SIFIR’89). Zaragoza, Spain.

Session 2 : SPI and Testing I

Page 2.34

Productivity

Improvement via

Software Testing

Martin Prieler

EDV Ges.m.b.H, Vienna, Austria

Introduction

Back in 1997 EDVg was participating in a European System and Software Initiative

(ESSI) task called PIE (Process Improvement Experiment). This task is mainly dealing

with best practice in the field of software engineering and is founded by the European

Commission (EC).

Our proposal was accepted and we were starting our PIE on June 1st last year with an

overall project duration from 15 month our estimated project end is 1st of September

1999. One of our obligation within this experiment is to disseminate our results on at

least two international conferences dealing with a similar background. We already

made our first presentation on the 6th European Conference on Software Quality [1] in

Vienna earlier this year. Now we are going to present our final results and findings on

our 2nd and last international presentation.

The goal of the PIE was the introduction of an already proven testing concept, its

evaluation in practice (putting it into action on a real software development project), its

support by suitable tools, and the adaptation (optimisation) of this concept based on

the lessons learnt. This concept is part of our process-model which is called the

”Vorgehensmodell der EDVg” [2].

What we were expecting from this PIE was to gather experience by using all developed

methods and techniques together under special attention of efficiency and effectiveness.

A subgoal was to add tool support where applicable.

EDVg would be pleased to spread any results and lessons learned to the European

Community as long as no confidential information concerning our baseline project has

to be presented, we have no problems in publishing any of our results achieved through

the experiment.

Session 2 : SPI and Testing I

Page 2.35

Company Background

Founded in 1963, our company (EDVg) has meanwhile branched out into a diversified

conglomerate of different business units that provide information technology (IT)

services, hardware and software products for a variety of customers. The 300

employees in the group gross some 60 mio ECU, which makes it one of the leading IT-

companies in Austria. Apart from several specialized companies that have been formed

with partners to service specific markets with their skills and products and in which

EDVg holds different percentages of ownership, the IT-specialized business units are

the following:

Software Development

Library Systems

Hospital- and Health-Care Systems

Membership-Organizations, solutions & services

Information Retrieval and Database-Services

EDVg-debis Systemhaus

Software Development

Originally almost exclusively focused on the development of applications software

considerable emphasis has shifted to the planning, designing and implementing of

integration projects involving a variety of standard software products on different

systems platforms (e.g. workflow, groupware, internet or multimedia). Decades of

experience and state-of-the-art-technology have contributed to the high level of quality

that has come to be a trademark of EDVg’s roughly one hundred engineers that work

in this division.

Library Systems

As the leading provider of library systems in Austria, EDVg has begun to develop a

new system, BIBOS:IV, that will gradually encompass all features that will have to

support library institutions in the future. For large union-catalogues, as well as for

single libraries, BIBOS:IV is characterized by an open client/server architecture,

graphical user-interface, unix-base.

Hospital- and Health-Care Systems

For more than ten years EDVg has been active in that specialized segment of

informatics. The result of a software development partnership with SAP is IS-

H*MED, an R/3-based information solution for medical and nursing facilities within

hospitals, that have decided to follow a SAP-strategy. Several references in Austria,

Germany and one in Holland support the claim to quality and efficiency provided by

this system.

Membership-Organizations, solutions & services

Session 2 : SPI and Testing I

Page 2.36

Information systems for large membership-organizations demand a high level of insight

into the structures and the goal-setting of mainly non-profit organizations. Complex

solutions for unions, an automobil club, political parties and a number of public and

semi-official bodies have been designed, are being maintained and run by this

specialized division, providing a usually quite heterogeneous group of users with a

variety of highly integrated solution packages tailored to their specific organizational

needs.

Information Retrieval and Database-Services

A large number of online and offline information sources is currently being used by a

steadily growing clientele of EDVg. This business unit caters to the information needs

of customers, private and public, by designing strategies to provide access to existing

databases or by establishing adequate sources and offering data entry services, support

and maintenance services inconnection with such a project. As of recent this business

unit of EDVg also has formed a partnership with Fulcrum to distribute and support the

Fulcrum products in their respective market segment.

EDVg-debis Systemhaus

A company jointly owned by EDVg and debis Systemhaus, a Daimler-Benz-Company,

that is specialized in providing all system services that arise when planning, designing

or operating an IT-infrastructure. Specifically, those services include network- and

computing services, systems integration, facility management, backup and recovery

services. Based on those skills differentiated IT-Consulting is available and offered on

a project basis.

Software development is the core competence of EDVg. Therefore the competitiveness

of our organization depends on the quality and productivity of the implementation of

the software engineering process. One result of this situation is a strong need to

improve the software testing process in terms of cost effectiveness and efficiency.

Starting Scenario

Strengths and weaknesses of our processes were investigated in the past via a

BOOTSTRAP and a self assessment. The software development process is defined in

all of its aspects (project management, process model, software development methods,

change & defect management, configuration & version management, installation

management, service management, human resource management, a.s.o.). Constructive

as well as analytic quality assurance is an integral part of the operative project

management during all phases of the software life cycle and is consequently

implemented in practice.

Strengths:

The Quality Management System (QMS) of the Department for Software Development

(UB04) is certified according to ISO9001 since February 1996. Since May 1993 a

process model for software development and maintenance is mandatory for all

Session 2 : SPI and Testing I

Page 2.37

employees involved in software engineering. The process model is part of the QMS.

There also exists an organizational unit, responsible for the support, controlling and

optimization of the Quality Management System resp. its processes and instruments.

In the current situation the challenge is to optimize the QMS to improve product

quality, efficiency, cost effectiveness and flexibility of the development process in an

environment, which becomes more complex technically as well as economically.

In many areas of the development process metrics are established to track quantitative

information. Effort estimation is a controlled and well defined process based on

Function Point Analysis, which is performed according to the rules of the International

Function Point Users Group (IFPUG), published in their Counting Practices Manual.

EDVg is also one of the first users of CASE technology in Austria. As soon as there

was a sufficient tool support available we integrated it into our process model. Over

the years (we started with CASE in 1989) we developed a stable basis of models,

which brings a lot of the anticipated advantages into our software development

process. During the years we have never stopped supporting our development process

with the appropriate tools especially by shifting from the traditional structural

approach to world of object orientation. Today we are proud to say that we are one of

the leading software developing companies in the client/server and in the inter-/intranet

domain.

Weaknesses:

Testing was one of the identified problem areas. Test cases were documented,

repeatable and therefore fulfilled the ISO9001 requirements, but efficiency, cost

effectiveness, duration and effort of the testing process needed to be improved. The

main facts to be addressed were:

Not enough attention is paid to the fact that testing is an intellectual and organizational

challenging process in need of accurate planning on the one hand but a big potential for

improving cost effectiveness on the other.

Testing types (module, integration and functional testing) are often mixed up.

Clear defined test environments, test cases and test data are often missing.

Tests are performed not systematically due to lack of time and resources.

Regression testing is insufficient because of poor tool support.

Configuration & version management is not well established for applications in the

testing stages.

Metrics important for the testing process are sometimes missing (defects, testing

coverage, a.s.o.).

Required Corrective Actions:

According to consciousness of our weaknesses we had to formalize our testing

procedures in the same way as we already did when improving several other aspects of

our software development process. We knew that this task couldn’t be performed in

one step. Therefore we saw an evolutionary development from current status to the

declared objectives.

The first step was the creation of the necessary awareness of all involved people

Session 2 : SPI and Testing I

Page 2.38

(management and developers) for the importance of the topic. The next step was the

introduction of a well defined method to guide the developers through the single phases

of the testing process. One of the critical success factors in this stage was to provide

support in terms of collaboration and interactively improvement of the given method as

well as adding appropriate tool support for selected domains.

To convince not only the project workers but also the management, we finally have to

prove that our introduced changes really brought an improvement to the whole

software development process. This could only be done by measurement and

comparison with other projects.

Plans and Expected Outcome

The fact that testing is one of the key processes in software development where the gap

between theoretical concepts and practical implementation is wide, is well known in the

software industry and described in the relevant literature [4],[5]. To show how this gap

could be reduced was an implicit goal of our PIE.

An important prerequisite for evaluation the results under this given circumstances was

to determine the current status of the whole process, to get a reference point for

planned and achieved improvements during the experiment.

We hoped that the results of this experiment will give enough inspiration also for other

software developing companies to look a little bit closer on their process and find some

“hard” metrics. Testing in general and the influence on product quality and efficiency

in the delivery could so become a cornerstone of everyone’s software development

process.

Goals

There were two main motivation sources, both of which result in the

need of performing a PIE concerning the testing process.

One came from the definition of the quality goals of EDVg’s ISO9001-certified

Quality Management System, which postulates to increase customer satisfaction. As

customer satisfaction is reached via a manifold of activities and has different reasons,

one main trigger to achieve it is product quality. This quality again consists of many

factors, but one of them is clearly visible and measurable, that is the number of defects

detected after product delivery. This number can be reduced by optimizing the

development especially the testing process, where EDVg has a great improvement

potential according to the results of a BOOTSTRAP assessment, which was performed

two years ago.

The second reason for starting activities to improve the testing process results from a

software engineering point of view. The goal of having a mature organization, which is

competitive due to the capability of producing high-quality software at reasonable

costs, can only be achieved by analyzing, measuring and optimizing the software

engineering process. As mentioned above, the testing process was already analyzed and

Session 2 : SPI and Testing I

Page 2.39

found to be the candidate where an investment in optimization would be most urgent

and where it will pay off quickly.

As competition gets tougher, it is also necessary to shorten development time, which is

possible for instance by streamlining the testing process. Due to the different

organizational responsibilities for requirements analysis and functional testing on the

one hand and design, programming and module and integration testing on the other, the

testing phase at EDVg was sometimes too long and too inefficient. Objectives of the

process are poorly understood and so is tool support. One benefit of the PIE would be

the improvement of all these influencing factors, which would result in a controlled and

efficient process.

The productivity issue would also be positively addressed by the fact, that an

optimized development and testing process requires less people in the maintenance

phase and therefore more capacity can be put into the development of new projects.

We have tried to achieve both of the above mentioned goals within this experiment and

give a detailed review about the results based on predefined metrics.

Subgoals

Based on our primary goals we have also tried to address two subgoals in this

experiment. We have located a demand for an appropriate tool support within our

Change and Defect Management Process (CDM). So what we have planned to do is an

evaluation of the current situation on the test-tool market with a focus on regression

and performance test tools.

A second aspect we have tried to cover is the whole administrative environment within

the test process. Activities like capturing test cases, error tracking, documentation of

tests and finally acceptance of the whole test case have to be documented in a simple

and understandable way. Subsequently subgoal number two is to come up with an

administrative solution for supporting the test process as well.

Session 2 : SPI and Testing I

Page 2.40

Implementation of Improvement Actions

The goal of this experiment was to implement all the intended improvement actions in a

given baseline project. We therefore tried to find an innovative and representative

development project on which we could show how well the improvements were

achieved.

The baseline project was the ” OeKB Fulcrum-Application – Build Level 1”

(OeKB). The customer is the Österreichische Kontrollbank, Abteilung Bank u.

Wirtschaftsinformation. This project was a customised development for the

administration of various OeKB publications. The data are stored in an ORACLE

Database with full text search capability provided by the Fulcrum Search Engine. The

application front-end runs within standard Internet browsers (Netscape, Internet

Explorer) and was developed using JAVA (JDK 1.1.6). The planned development

effort for this project is 1342 PD.

OeKB is one of the first projects in EDVg to be implemented using 100% JAVA. All

subsequent projects of this type should benefit from this experience.

The OeKB project was started on 4.7.1997 and in accordance with the schedule

functional testing was started in March 1999 followed by acceptance testing in April

1999. Subsequently the application will be maintained under guarantee. PIE-ITC

involvement commenced at the beginning of February during the preparation of test

cases and the test environment for the functional testing. The synchronicity of the

baseline project and PIE is therefore optimal.

A total of 4 developers are directly involved in the baseline project (1 project

leader/analyst + 3 software designers/programmers). Temporary involvement of

quality assurance, consultants, etc. has not been taken into consideration here.

Technical Impact

The following methods and tools which had either not been previously used in our

other projects or only been partly used, were evaluated and/or introduced in the

baseline project:

Test planning in early phases of the software life cycle.

Version 1 of the Test Plan is drawn up as an integral part of the project plan during the

project conception. The Test Plan is continuously improved and extended as soon as

the necessary information becomes available. We hope this will lead to a minimisation

in resource bottlenecks during the project and thereby enable us to carry out the

required test activities efficiently. This expectation has been met so far.

Systematic Drawing Up of Test Cases through Creation of Equivalent Classes and

Border Values [6]

The number of possible combinations during the definition of test cases is easier to

control through these methods while the ability to locate errors at the earliest possible

stage is increased. We are aware that these methods are not a panacea for limiting the

number of test cases and test efforts. However, they help in making a better informed

and more transparent decision concerning the relationship between the desired test

Session 2 : SPI and Testing I

Page 2.41

coverage and the amount of effort to be invested, thereby increasing the efficiency of

testing.

In accordance with our PIE Project Plan, we evaluated tools for Functional

Testing/Regression Testing, Module Testing and Performance Testing. Since there are

now a vast number of such tools available, we used the Evaluations Reports from the

Company OVUM [7] in the pre-selection process. We then carried out our own

evaluations of those tools which met our pre-selection criteria.

We evaluated QACenter from Compuware and WinRunner from Mercury Interactive

for Functional Testing/Regression Testing. We selected QACenter.

Through the use of QACenter we expect to achieve a significant increase in software

quality and customer satisfaction as well as a significant reduction in total efforts,

development efforts together with a reduction in the amount of resources tied up in

maintenance activities.

The products QALoad (Compuware) and LoadRunner (Mercury Interactive) were

selected from the OVUM Reports as possible Performance Test tools. Our

expectations were a reduction both in total efforts and in the amount of resources tied

up in maintenance activities as well as an increase in customer satisfaction.

Subsequent in-house evaluations were however stopped, since the licence costs for

these tools (approx. 40.000 ECU) far exceeded the financial budget for the

Experiment. We significantly underestimated these costs in our original PIE plan.

We evaluated Cantata++ from IPL as a Module Test Tool for C++. As a result of the

use of this tool we expect an improvement in software quality and customer

satisfaction. We place utmost importance on explicit Module Testing and in particular

on the testing of programme critical modules.

As a result of the evaluation Cantata++ proved to be unstable in our development

environment. We therefore decided not to use this product in the baseline project.

Organisation impact

Of course one of our main objectives in this experiment was to improve and therefore

change the test processes. We do not really see any new roles or responsibilities that

weren’t already defined in our ‘old’ testing process. What we try to achieve is to give

the defined roles and responsibilities a more practical relevant meaning.

That means there are some organisational impacts caused by our new test process but

basically this are enhancements and no new definitions. We would like to see that our

new test process is easy to adapt in the different development projects on the one hand

and is easy to control on the other and most of all shows the expected results.

Culture impact

Our organisation is certified to ISO9001. Our maturity is very high in comparison to

the situation prior to certification and in comparison to other software development

units. Our staff is accustomed to working in a structured fashion, to complying with

Session 2 : SPI and Testing I

Page 2.42

necessary communications and documentation requirements and to working to

continually improve QMS. The level of motivation is generally very high.

We have tried to involve our staff as widely and actively as possible. Prior to

researching tools, we requested that the project leaders and operative management

specify their requirements on the test tools. The response was high. The requirements

were consolidated and used as the input for the tool research. After the test tools had

been pre-selected, we asked the manufacturers to present their products to us. All

relevant staff were invited to these presentations. On average about 20 employees took

part in each presentation, which represents a percentage of 11,1% (from a total of 180

employees directly involved in software development).

In general the attitude to PIE is very positive. Our top management supports the

project completely, the staff involved in the baseline project are highly motivated to

contribute to the success of this project. There is no actual incentive for working in

PIE. Part of the planned resources for the baseline project have however been explicitly

reserved for PIE, so that no undesired extra workload arises for the employees directly

involved in the project.

With those employees who are not directly involved we have experienced in some cases

fear and even resistance on the one hand and yet on the other hand unrealistically high

expectations.

One fear was that more control will be placed on developers if all tests and their results

are documented. We tried to reduce this fear by pointing out the expected advantages

both for the organisation as a whole as well as for the individual developers. As in the

past, our aim is to increase the maturity of the whole organisation and not to place

control mechanisms on individual employees. This has been emphasised both by PIE

project management as well as by company management.

Some members of the operative management postulated an increase in overheads and

in total costs as a consequence of longer development times for projects using the new

tools and methods. In these cases we pointed out that PIE has an experimental

character and the results of our experiment will show whether or not more effort has to

be spent to succeed in our development projects using our new testing approach.

The unrealistic expectations concerned mainly the degree of support expected from test

tools. We pointed out that there is no tool available which can replace the intellectual

input of the developer during testing and above all in the drawing up of test cases and

then find all errors automatically at the press of a button and then declare the software

to be bug free. We also pointed out that the drawing up and maintenance of test cases

involves a large amount of effort which is not recovered until the test is re-used during

regression testing. The definition of criteria as to when the use of a test tool makes

sense or not is an integral part of the optimisation of the existing test concept.

Measurement of Results

Measurement is an essential part of the whole experiment and the only way to show if

and how the different tasks within the experiment effected the overall performance. We

have raised the necessary data out of the different development projects during the last

years which is part of our Quantitative Quality Management and now we try to

Session 2 : SPI and Testing I

Page 2.43

compare them with the figures we have gathered during our experiment

Basic metrics measured and analyzed are:

Function Points

Function Points are measured according to the rules published by the International

Function Point Users Group (IFPUG), where EDVg is a member of.

Defects

Defects are defined, measured and tracked according to the Change- & Defect

Management process, which is also part of the QMS.

Time and Effort

Time and Effort are recorded via the Internal Administration System, which can be

related to a project management tool. Costs are highly related to effort and therefore

tracked via effort recording.

The approach we have chosen here is called Goal Question Metric see p.60 in [10].

This is a strictly top-down approach where first the goals are defined then you are

looking for the questions which will lead you to this goal and finally based on this

question the appropriate metrics are derived.

In our case based on the basic metrics, the relevant metrics for the baseline project

according to the PIE objectives are defined as follows:

Immediate (i.e. after completion of the baseline project) available metrics:

TESTING EFFORT 1: total testing effort per function point

PROCESS PRODUCTIVITY 1: total development effort per function point

PROCESS PRODUCTIVITY 2: total development time per function point

TESTING EFFICIENCY 1: number of defects per function point found

 during testing

TESTING EFFICIENCY 2: number of defects found during testing in

 relation to total testing effort

PROCESS QUALITY 1: total testing effort in relation to total

 development effort

Long term available metrics:

PRODUCT QUALITY 1: number of defects per function point found up

 to 6 months after delivery

PROCESS QUALITY 2: total development effort in relation to total

 maintenance effort (6 months after delivery)

PROCESS QUALITY 3: number of defects found before delivery in

relation to number of defects found 6 months after delivery

The above metrics should be compared with the current values and values taken from

literature and/or benchmarks, to which EDVg contributed their data already in the

past, e.g. Howard Rubin’s Worldwide Benchmark Project 1995 [8], IFPUG

Benchmarking Data Base 1994 [9], etc.

Session 2 : SPI and Testing I

Page 2.44

Long term metrics become available at least 6 month after finishing the base line

project.We are planning to deliver an extra long term experience report to the

community and to all interested companies with whom we got in touch during the

experiment.

The final results of our experiment comparing the data we derived from our baseline

project compared with our standard figures are shown in the following table:

Measurement attribute Pre-

experiment

numbers

Plan Achieve-

ments

TESTING EFFORT (TE)

total testing effort per function point

0.91Ph/FP

0,83 Ph/FP

0,86 Ph/FP

PROCESS PRODUCTIVITY 1 (PP1):

total development effort per function point

13,9 FP/PM 15,3 FP/PM 15,1 FP/PM

PROCESS PRODUCTIVITY 2 (PP2):

total development time per function point

19,7 FP/M 21,7 FP/M 20,1 FP/M

TESTING EFFICIENCY 1 (TE1):number of defects

per function point found during testing

0,1 Def/FP

0,13 Def/FP

0,22 Def/FP

TESTING EFFICIENCY 2 (TE2):

Number of defects found during testing in relation to

total testing effort

0,19 Def/Ph

0,25 Def/Ph

0,27 Def/Ph

PROCESS QUALITY 1: (PQ1)

total testing effort in relation to total development

effort

9,14 %

7,95 %

8,63 %

PRODUCT QUALITY 1: (PQ2)

number of defects per function point found up to 6

months after delivery

0,037 Def/FP

0,032 Def/FP

N/A

PROCESS QUALITY 2: (PRQ1)

total development effort in relation to total

maintenance effort

31 %

26,5 %

N/A

PROCESS QUALITY 3: (PRQ2)

number of defects found before delivery in relation to

number of defects found 6 months after delivery

N/A

N/A

6.67:1

Presenting these figures you have to consider that this project is just an experiment and

therefore a snapshot regarding the statistical relevance. We would like to point out that

we have achieved a positive trend in all of the above mentioned metrics even if we did

not reach our expectation in all categories.

You can find some metrics which definitely show a significant improvement (TE1)and

other which can be stated as statistically irrelevant (PP2). What we would like to do in

the future to prove these results and emphasize on those metric where we can see the

biggest potential for improvement and see the others as a more or less welcome side-

effect.

Session 2 : SPI and Testing I

Page 2.45

References

[1] ADV, Software Quality the Way to Excellence, Proceedings of the sixth

European Conference on Software Quality, 1999

[2] Elektronische Datenverabeitungs Ges.m.b.H, Online Vorgehensmodel in IPF

and Win-Help Format, 1991-1999

[3] Myers, Glenford J., Methodisches Testen von Programmen, R.Oldenbourg,

München/Wien, 1991

[4] Humphrey, Watts S., Managing the Software Process, Addison Wesley, 1991

[5] Ince, Darrel, Software Quality and Reliability, Tools and Methods, Chapmann

& Hall, 1991

[6] Poston, Robert M., Automating Specification-Based Software Testing, IEEE

Computer Society 1996

[7] Ovum Evaluates: Software Testing Tools, Editor: Graham Titterington,

Manager: Eric Woods, Continuously updated

[8] Rubin, Howard A., Worldwide Benchmark Project, Rubins Systems Inc, 1995

[9] IFPUG, ISBSG Benchmarking Repository Report, periodical report issued

evry 9 month by the IFPUG

[10] Fenton, Ne: Software Metrics – A Rigorous Approach., Chapman & Hall,

London, 1991

Session 2 : SPI and Testing I

Page 2.46

CV: Martin Prieler (Senior Consultant)

Professional experience:

various projects in the IT-domain since 1987

participation in different medium to large development projects (as analyst, quality

agent, consultant and project manager)

methodology support and adviser (processing models + project management,

structured and object oriented methodologies)

tool support (project management-, test- and CASE Tools)

consulting in IT-specific topics with an emphasis in:

 implementation of IT-strategies and solutions

 design of feasibility studies

 project supporting consultation and quality assurance

 answering of several huge invitations to bid

experience in following branches of industry: banking, insurance, public

administration, other service oriented industries)

Education:

Grammar school (1985)

Computer Science on Technical University of Vienna (1991)

further professional education the following domains:

 software development methodologies

 project management

 cost and effort estimation of IT-Projects

 IT-related sales and marketing

additional economical qualification

Project experience (past three years)

Österreichishe Kontrollbank (OeKB)

Intranet JAVA Based development project

Österreichische National Bank (OeNB)

feasibility study for project migration

BIBOS IV Library System

OO methodology

MVZV

methodology and tool support, quality assurance

European Multimedia Schoolnet (EUN)

project management

Bundesländer Versicherung (BARC Group)

consulting and improving of development process

Session 2 : SPI and Testing I

Page 2.47

Company description

Comany: Elektronische Datenverarbeitungs

 Gesellschaft m.b.H.

 Hofmühlgasse 3-5

 1060 VIENNA

 Austria

Contact person: Dipl.-Ing. Martin PRIELER

 tel: +43.1.59907.1438

 fax: +43.1.59907.1363

 email: martin_prieler@edvg.co.at

 web: http://www.edvg.co.at/

Session 2 : SPI and Testing I

Page 2.48

Practical Measurements for

Reengineering the Software Testing

Process

P. Pongas

SINGULAR

29, Alexandras Ave., 114 73, Athens, Greece

tel. +30 1 647 9600, fax +30 1 646 9534,

ppong@singular.gr

S. A. Frangos

ABS Group of Companies

6 Skouze str., 185 36, Piraeus, Greece

tel. +30 1 429-3804, fax +30 1 429-3809,

cymentor@hol.gr

Abstract
This paper focuses on software testing and the measurements which allow for the

quantitative evaluation of this critical software development process. Innovative software

producing units are committed to continuously improving both the software development

process and the software product in order to remain competitive in today’s global

community. Software product quality and software process improvement commence with

addressing the testing process in a quantitative manner. The continuous monitoring of the

testing process allows for establishing an adequate level of confidence for the release of

software products and for the quantification of software risks, elements which traditionally

have plagued the software industry.

The identification and removal of software defects constitutes the basis of the software

testing process a fact which inevitably places increased emphasis on defect related software

measurements. Defect Distribution, Defect Density and Defect Type metrics allow for

quantifying the quality of software modules, while Defect Age, Defect Detection Rates and

Defect Response Time metrics allow for pinpointing software inspection and testing

process shortcomings. Code coverage and testing effort measurements complement the

defect metrics and provide additional software product as well as process quality

indicators. The paper concludes with the presentation of the application of testing metrics in

industry with a focus on SINGULAR’s ESSI STAMP process improvement experiment.

Keywords
Defects, Testing, Metrics

Session 2 : SPI and Testing I

Page 2.49

1 SOFTWARE PROCESS AND PRODUCT

IMPROVEMENT

“Neither have you ever contemplated what kind of people are the Athenians with which

you will have to compete and to what degree they are different from you. They are

innovative and progressive and quick in the implementation of their plans, while you

confine yourselves to what you already have, without coming up with something new, and

when you act, you do not even cover the absolute minimum.” Thoucydides

Athens, during the golden era of Pericles, evolved as a leader in the entire known world and

accomplished achievements which have yet to be surpassed. The life style, the

achievements and most importantly, the principles which governed the conduct of the

ancient Athenians constitute good background material to any professional seeking to find

answers to many of the most complex issues which modern society is confronted with. In

the above quote from Thoucydides, who many consider as the top strategist of all times, the

secret of the Athenian success, versus arch-rival Sparta, was product innovation,

continuous improvement and growth as well as the ability to rapidly implement planned

actions. Thus, the strategy which modern software producing units must adopt is well-

known, however, what remains to be planned in corporate brain-storming sessions is the

tactical plan for achieving the strategy.

Global markets have increased competition dramatically which has resulted in the need for

software development firms to produce at a lower cost, with higher quality and within

shorter time frames. The focus must clearly be on the customer and the objective must not

simply be to satisfy, but to delight. This can only be accomplished by providing the right

system and executing the pertinent project(s) in the right way. Providing the right system

translates into providing a system to the customer which reflects both stated and implied

requirements. Doing things the right way can be achieved by validating and verifying

requirements, for both external and internal customers, during the entire project life-cycle.

Figure 1 depicts the customer satisfaction matrix [Lowell 1992].

Figure 1 - Customer Satisfaction Matrix

Delighted

Customer

Satisfied

Customer

Dissatisfied

Customer
Angry

Customer

Right Way Wrong Way

Right System

Wrong System

The demand for new services and products adds another dimension to the already

challenging strategy. Customers request variations to software products so as to meet

changing technology advances and their specific needs. Therefore, the customization of

software products must be accomplished both rapidly and on a large scale in order to allow

Session 2 : SPI and Testing I

Page 2.50

the products to become, or to remain, competitive.

All quality gurus advocate that the quality of the offered services and products is dependent

on the respective software development process. The journey to achieving a well-defined

software development process, capable of supporting customized products, is not a simple

task, therefore, an incremental approach is required.

The initial phase entails making the software development process visible. This is

accomplished by recording the actual activities that are required to produce software

products. Many software firms use formal methods or process modeling tools to accomplish

this first and crucial step. Once the development process is described and stable, it is

important to institutionalize it across all projects so as to make the software development

process repeatable. This will enable similar projects to be executed in a similar manner.

The second phase requires going one step further, to process control. At the tactical level,

measurements are taken throughout the software development project so as to allow project

managers to base their decisions on actual project data. At the strategic level, collective

data from all completed projects are analyzed so as to review the software development

process. Thus, opportunities for improvement are continuously identified as process

improvement is a never ending evolutionary process (kaizen). Once a well-defined and

effective development process is in place, the orientation can shift to the product.

The basic challenge for today’s software firms is to provide clients with customized

products and to provide them fast. For this to be accomplished, small and flexible

organizational units and reusable software components must be set up in a loosely coupled

network structure. The project manager in such an organization, who can be seen as

network coordinator, makes best use of the available resources (i.e. engineers and software

components) on a project by project basis. The ability to mass customize means that

software development is not only evolutionary, but revolutionary as well.

The final stage is process optimization, whereby the process is adjusted in accordance to

the extracted project measurements “on-line” and customized products are offered. Figure

2 outlines the different levels of process maturity.

Figure 2 - Process Maturity Navigation Matrix

Process Change

Stable

Dynamic

Product

Change

Stable Dynamic

Revolution Optimization

Visible Kaizen

2 SOFTWARE TESTING PROCESS

REENGINEERING

 The continuous improvement of the software development process commences with

handling it’s weakest link, the testing process. If one accepts that the strength of a chain is

equal to the strength of it’s weakest link, the importance of reengineering the testing

process is evident. Prior to reenginnering the software testing process, the testing objectives

Session 2 : SPI and Testing I

Page 2.51

must be established so that the software testing process is in the position to correspond to

clearly defined goals. Hetzel [Hetzel 1988] lists the following list of practitioner objectives

regarding software testing.

Checking programs against specifications

Finding bugs in programs

Determining user acceptability

Insuring that a system is ready for use

Gaining confidence that it works

Showing that a system performs correctly

Demonstrating that errors are not present

Understanding the limits of performance

Learning what a system is not able to do

Evaluating the capabilities of a system

Verifying documentation

Convincing oneself that the job is finished

In order to meet such testing objectives, most software producing units that have

reengineered their testing process have more or less in some STEP-like testing process. The

STEP testing process can be summarized by the following major testing activities [Hetzel

1988] :

PLANNING

PLAN the general approach

DETERMINE testing objectives

REFINE the general plan

ACQUISITION

DESIGN the tests

IMPLEMENT the tests

MEASUREMENT

EXECUTE the tests

CHECK termination

EVALUATE results

The reengineering of the testing process must be accompanied by practical measurements

which will allow for continuously monitoring the process and for assessing the quality of

the software products.

3 PRACTICAL TESTING MEASUREMENTS

The software testing process requires practical measurements for the quantification of all

software testing phases. Starting from the planning and acquisition phases of the software

testing process, one first has to recognise that current software development practices do

not segregate coding effort from unit testing, but rather, coding and unit testing are seen as

one software life-cycle phase. Therefore, the duration of the testing phase basically covers

test planning effort, integration and system testing. The following measurements apply to

software development effort distribution [Rubin 1995] :

Analysis 16%

Design 17%

Code/Unit Test 34%

Session 2 : SPI and Testing I

Page 2.52

System/Integration Test 18%

Documentation 8%

Implementation/Install 7%

Regarding software development distribution effort, Grady [Grady 1992] reports the

following breakdown from the analysis of 125 Hewlett-Packard projects :

Specification/Requirements 18%

Design 19%

Code/Unit Test 34%

System/Integration Test 29%

Project managers are thus encouraged to plan enough time for the testing phase and to

envisage approximately 20% of total software development effort for testing. This is very

crucial as many software development projects run into serious problems being that

software delivery dates are rigidly defined in the pertinent contracts, while the respective

analysis and design delivery dates are consistently overrun. Many project managers in

order to overcome such situations truncate the testing effort in order to meet contractual

requirements for the project delivery dates. Unfortunately, the author does not know of any

project which benefited in the long run from such testing effort truncations.

The project manager must also be in a position to predict the number of test cases required

so as to test adequately the developed software. Capers Jones [Capers 1996] has done

extensive research for such measurements and has concluded that the relationship which

governs test cases and function points is the following :

Number of Test Cases = (Function Points)1.2

Capers Jones [Caper 1994] has also qauntified the size of the test plan in pages per

function point. The average number of pages created per function point for software project

is 0,25 for system software, 0,10 for MIS software, 0,55 for military software and 0,25 of

commercial software.

To conclude, for the quantification of the planning and acquisition phases of the testing

process, the percentage of testing effort with respect to the entire software development

effort is known and the number of test cases which must be generated for the adequate

testing of the software product is more or less predictable. For software producing units

which are not using function points, but Source Lines of Code (SLOC), the relationship

between function points and SLOC is approximately 1 Function Point per 100 SLOC

depending on selected programming language.

The measurement phase of the testing phase is perhaps the most interesting and certainly

the most significant. As software code is the single most important deliverable in any

software development project, incereased emphasis must be placed on ensuring that the

right information system is being provided (validation) and that it is developed correctly

(verification). Two are the basic principles which govern the entire measurement phase of

the software testing process. They are :

Pareto 20% of the code causes 80% of the problems

 80% of the transactions traverse 20% of the code

Code Coverage The reliability of software is dependent on the traversed tested code

In order to apply the pareto principle, project data must include details pertaining to the

Session 2 : SPI and Testing I

Page 2.53

detected defects. Invariably, an analysis of the detected defects allows for a good

understanding of the information system strong and weak links. Defect related

measurements include the following [Grady 1992], [Hetzel 1993] :

Defect Mode : Defect classified as either “missing”, “unclear”, “wrong”, “changed” or

“better way”

Defect Origin : Defects recorded per System Configuration Item (SCI). SCIs include

code units, technical and user documentation, deliverables, etc.

Defect Density : Defects per software size measured in either Source Lines of Code

(SLOC) or Function Points

Defect Age : The time of introduction of defect to time of detection. To compute the

measurement one assigns a number to each software development life-cycle phase and

calculates difference between detection phase with introduction phase (i.e. “analysis” can

be assigned a 1, “design” a 2, “coding” a 3, etc. for computation of defect age).

The analysis of defect related measurements is based on comparisons of retrieved values

with inter-company and international average defect values. Moreover, cross-examinations

of defect measurements allows for both validation of results as well as for drawing

meaningful conclusions about the effectiveness of the testing process. The following table

summarizes the usage of defects and possible testing process shortcomings based on cross-

examination of retrieved defect values with average industry values.

Session 2 : SPI and Testing I

Page 2.54

Metric Analysis of Testing/Development Process

Defect

Mode

“Missing” defects is an indication that either not enough customer research took place or that

“requirements” did not reach implementation phase. “Unclear” and “Wrong” defects usually

means not enough time spent on analysis & design inspections, specification language is vague

or customer was not in a position to specify business requirements. “Better way” defects

usually reflect lack of design inspections or bad coding practices, while “Changed” defects are

an indication of high requirements creep or inappropriate understanding of hardware / system

software platform.

Defect

Density

Excellent means of quantifying software product quality as well as to assess the effectiveness

of the testing process. Many industry averages exist, most of which are in the area of 10-20

defects per one thousand lines of code (KLOC) during system testing, while prior to and

including system testing values are up to 200 defects per KLOC [Humphrey 1996]. Rubin

reports defect rates from a world-wide survey per industry sector with Aerospace at 4.6

defects / KLOC, Financial at 3.1 defects / KLOC and System Software 2.0 / KLOC [Rubin

1995]. Rubin also reports 0.9 defects per function point as a world-wide industry average,

while Capers Jones reports 1.75 coding defects per function point [Capers 1995] [Rubin

1995]. Defect densities should drop ten-fold between testing and maintenance phases [Grady

1992]. If such trends are not realized between prerelease and postrelease of software, then this

is an indication that the testing process is not effective. This metric should also be used in

parallel with the percentage of effort spent on testing. Limited testing time allocated will result

in few defects detected prerelease and many detected postrelease.

Defect

Origin

Probably the most useful metric for evaluating information system product quality. By

depicting with bar charts all defect densities per SCI, the project manager can pinpoint the

weakest links in the software product. Obviously, weakest links must be retested and perhaps,

even redesigned. Defects tend to concentrate on certain portions of the entire information

system (pareto principle). Once the defective modules are identified, they need to be test

drilled to no end.

Defect Age A good “barometer” of effectiveness of in-process inspections. High averages for defect age

are a clear indication that analysis and / or design inspections are not effective.

Software reliability, the most important constituent of software quality, is a function of

code coverage. Therefore, in order to put a handle on software reliability problems, the

coders must be in a position to assess code coverage. Typical testing without measuring

code coverage only exercizes around 55% of the code, while with the use of code coverage

instrumentation, this can be raised to at least 80% without excessive additional effort

[Grady 1992]. The insertion of numbered checkpoints in the code (i.e. “Function X,

Checkpoint N” with fprintf statements) is an alternative to coders, if automated dynamic

analysis is not available through the use of software testing tools.

The analysis of code coverage during system testing will also allow for identifying which

code segments get exercized the most during the execution of business transactions. By

identifying the code segments which get exercized the most, the testers can focus on most

heavily traversed statements while designing and executing tests. Obviously, time

limitations do not allow for complete code coverage and testers must maximize testing

benefits versus the time allocated to them for testing.

Perhaps the most important testing measurement is the one which will provide an indication

concerning the readiness for the software code to be released. Most project managers which

want to release code based on testing measurements generate graphs of cummulative

number of defects detected per some meaningful unit of time (i.e.hours, days or weeks

depending on module size). The slope of the curve will steadily approach zero as the testing

Session 2 : SPI and Testing I

Page 2.55

process concludes and the software code can be released. Such graphs, per each code

module, are an important project management tool for monitoring the maturity of the

respective modules regarding defect detection and correction.

4 STAMP - PRACTICAL TEST MEASUREMENTS

AT SINGULAR

The technical impact of STAMP to Singular’s software development process has already

made an extremely positive impact. Testing related principles and measurements are now

understood for the first time with such detail and it is expected that all software

development projects within the company will benefit from the dissemination of the

acquired knowledge to non-STAMP Singular software developers.

The generation of the STAMP measurement plan was a gigantic step forward for the

organization. Testing was previously seen as an art, where the outcome of the software

testing process was primarily dependent on which software engineer was assigned the task

of product testing. Now, the testing process is well-understood and the collected testing

related measurements allow for establishing reliable entry / exit criteria from each

software testing phase. More specifically, the following measurements were identified and

introduced as part of the experiment :

Defects - Detected defects classified (logic, data handling, computation, etc.) and registered

as either missing, unclear, wrong, changed or better way for each baseline project software

module tested. The defect densities for each software module will be calculated as the ratio

of defects per software size (SLOC).

Test coverage - Percentage of items (requirements, test features, programs, code statements

and branches) covered during testing.

Product Reliability - Failure rate and Mean Time between Failures (MTBF) during the test

period and after release.

Product Perceptions - Direct measures of perceived effectiveness

Test Analysis - Analysis and study of tests to measure testing effectiveness.

A major technical objective set by management in the planning phase of the PIE was to be

in a position to pass judgement on the software product’s reliability prior to release to the

customer. It is believed that the above listed measurements will allow for the quantification

of the testing process to the extent required, and certainly will constitute reliable release

criteria for the baseline project software product outcome. STAMP deliverable D0.3

entitled “STAMP Measuerement Plan” elaborates in detail on the identification and

definition of all testing related measurements to be used in STAMP PIE.

Another major technical objective was to identify an appropriate testing tool, which is

congruent with the overall software development process. During the Selection procedure

of the testing tool, the purpose was defined and the selection criteria were identified and

weighted. Based upon the evaluation results and the application of selection criteria, a

decision was made, about the testing tool. The selection and the evaluation processes of the

testing Tool interacted with one another. On the basis of the evaluation results obtained, the

goals of the selection process and/or the selection criteria and their weights sometimes

required modification and were fed back into the evaluation process. The following

evaluation criteria were used :

Session 2 : SPI and Testing I

Page 2.56

Testing life-cycle phases supported

Test Planning

Test Design and Creation

Recording

Tool Customization

Script Language

Test Execution

Playback

Verification, including Static Analysis

Debugger

Code Coverage (Dynamic Analysis)

Report and Analysis

Report Capabilities

Report Customization

Charting Capabilities

Problem Tracking

Defect Logging

Workflow Tracking

Documentation

Testing tool Repository

RDBMS which stores the repository

Capability to copy test procedures from one repository of the testing tool to another

repository of the same testing tool

Simultaneously multi-user access

Configuration

Development Environment Supported (e.g. Oracle Developer/2000, Delphi, Visual Basic,

PowerBuilder)

Operating System (i.e.Windows 95, NT, UNIX)

Application-under-test type (i.e. The applications-under-test could be Windows

client/server applications or character-based UNIX applications, or Web-base application)

Ease of Installation and Learning

Installation Process

Tutorial

On-line Help

The following testing tools were evaluated, prior to selecting Rational’s SQA:

Rational's SQA Suite TeamTest Edition,

Compuware's QA Run - QADirector - QATrack,

Vermont Creative Software's Vermont High Test Plus

Segue Software's QA Partner

STAMP deliverable D3.1 entitled “Testing Tool Report” elaborates in detail on the testing

tool evaluation process and on the results generated from evaluation of the above listed four

testing tools.

Session 2 : SPI and Testing I

Page 2.57

5 CONCLUSIONS

Successful software development units worldwide have incorporated within their business

strategy the continuous improvement of their development process and of their product line.

Such strategic objectives require the identification of process elements which have a

significant impact on product quality. Software testing is a process area which traditionally

needs improvement and the metrics presented in this paper allow for the quantification of

both the product quality and of the respective software testing process.

Software firms which have used all or even some of the presented metrics achieved

significant improvements. This is achieved due to the fact that line management has

visibility to the development process and decisions are not made based on intuition alone,

but, with the sound interpretation of the available software testing metrics. As with any

other process improvement, management needs to establish a customized action plan and

must be in a position to communicate the plan to all interested parties, including senior

management, so as to achieve the required “buy-in”.

6 REFERENCES

Capers, J. June 1994. Revitalizing Software Project Management, American Programmer.

Capers, J. 1996. Applied software measurement, McGraw-Hill.

Frangos, S.A. 1995. Implementing a quality management system using an incremental

approach, SQM 95 Proceedings.

Grady, R.. 1992. Practical software metrics for project management and process

improvement, Prentice-Hall, Inc.

Hetzel, B. 1988. The complete guide to software testing, QED Information Sciences, Inc.

Hetzel, B. 1993. Making software measurement work : building an effective program,

QED Information Sciences, Inc.

Humphrey, W. 1996. A Discipline for Software Engineering, SEI Series for Software

Engineering.

Lowell, A. 1992. Improving software quality : An insider’s guide to TQM, Wiley.

Rubin, H. 1995. Worldwide benchmark project report, Rubin Systems Inc.

Venizelos, E. 1937. Thoucydides History (translation from Thucydides), Georgiades

Publications.

7 VITAE

Panayiotis Pongas is the project manager for the the PIE experiment for Singular S.A. He

received a Msc degree in Electrical Engineering from National Technical University of

Athens, GREECE. In the recent past, he was employed as the project manager of Singular

S.A, a leading Greek software firm. He was employed in various Projects as well as

management roles worldwide and has acquired an expertise in quality engineering,

methodologies. He is the author of several conference papers and financial journal articles

on software quality.

Stelios Frangos is the business development manager Europe for the USA based ABS

Group of Companies. He received a BS degree in Chemical Engineering from Rutgers

Session 2 : SPI and Testing I

Page 2.58

(1983), USA, and a MS degree in Computer Science from NJIT (1986), USA. In the

recent past, he was employed as the general manager of the Advanced Training Center

Bull, a leading Greek industrial training firm. He is the principle designer of ISO 9001

certified QMSs for leading IT firms in Greece. He was employed in various software

engineering as well as management roles worldwide and has acquired an expertise in

quality engineering, methodologies, CASE tools, metrics and project management. He

has delivered many seminars on software quality as well as on software project

management. He is the author of several conference papers and financial journal

articles on software quality. His latest interests include software QMSs, environmental

management systems and quality certifications.

Page 3.1

Session 3

SPI and Re-Use

Chairman

Yingxu Wang
IVF, Gothenburg, Sweden

Session 3 : SPI and Re-Use

Page 3.2

Finding a Practical

Approach to Organised

Reuse
Roar Tørlen

PROVIDA ASA, Ålesund

Ulf J Krystad

PROVIDA ASA, Oslo

Introduction

For a company like Provida, being a small/ medium sized enterprise operating in a high-

competitive international market, it is important to offer flexible and modularised systems

within short notice in order to stay competitive. We believe that our process improvement

steps focusing on reuse will contribute substantially to this.

Through our participation in a PIE (Process Improvement Experiment) project we have

experienced the need for addressing certain key aspects; roles and procedures regarding

reuse in practice to be defined and properly implemented into the organisation; the

needs for education and training to be focused when making such a paradigm shift; the

definition of the requirements for a repository from a reuse point of view to take place.

When introducing organised reuse one should take special precautions to avoid some

typical traps. Some of them being underestimation of the need for consensus in the

organisation for the change, not having a plan for implementing the new roles and

procedures into the standard development environment, and underestimation of the need

for some constancy in the surrounding environment while performing the change.

Even if this is a long-term investment and the payoff is expected to materialise in coming

projects, we already now see clear evidence that organised reuse gives a shorter time to

market.

PROVIDA ASA, Business and Products

Provida is a software house for the banking industry, in the Esprit terminology classified

as an SME (Small & Medium large Enterprise). The company is divided into 5 divisions,

and the PIE project was run in the Retail & Corporate Division.

Session 3 : SPI and Re-Use

Page 3.3

Provida Retail Division develops large systems for retail and corporate banking, including

Customer Information, Loan, Deposits, Corporate Accounts, and Card Management

Systems, marketed in Europe, South America and Australia, under the umbrella ProRetail.

ProRetail is marketed as an international basic version, a version for each country and a

customer-specific version. A new delivery of the system was always based on a copy of

the best-suited existing version. Changes to this version were done according to national or

customer-specific requirements, creating a complete new version of the system, which was

maintained separately. We realised that this practice would increase maintenance costs

dramatically on a long-term basis. Furthermore, we experienced that the development costs

for each delivery were too high and that we were not able to take full advantage of

previous development in a new delivery. This problem arose since the division was not

properly organised to address the aspects of reuse.

Starting Scenario

Experiment context

For a company like Provida, being a small and medium sized enterprise (SME) operating

in a high-competitive international market, it is important to offer flexible and modularised

systems within short notice in order to stay competitive.

One way of improving our development process was to introduce and test out organised reuse,

using the method set forth by the ESPRIT project REBOOT (project no: 7808). With financial

aid from the EUROPEAN COMMISSION, DGIII-F3, the ESSI program, experiments were

carried out on development projects: organised reuse were introduced as the technology being

used, part of extra costs incurred by the switch in technology being supported and financed by

the Commission. The PIE project was named REPRO (REuse PRocess and Organisation

improvement experiment).

Following REBOOT, it was planned that REPRO would work directly with two baseline

projects, focusing on development for reuse and development with reuse respectively. We

wanted to show that the introduction of new roles, procedures and tools in the first

baseline project would contribute to creation of libraries of reusable components that could

be reused in the second baseline project. Furthermore, we wanted to show that this

strategy was cost-efficient by using metrics and measurements considering all aspects of

the development process. REPRO’s role in the baseline projects would be to direct and

assist in the adaptation of our new procedures, as well as performing quality control on the

results.

The Experiment should introduce organised reuse by focusing on the following key reuse

areas:

1. Organisation and Project management

2. Development for, respectively with reuse

3. Repository management

4. Metrics and measurements

To do this, certain improvement steps were identified:

Session 3 : SPI and Re-Use

Page 3.4

 The introduction of specific organisational roles, responsible for reuse, that can

improve the degree of re-usability in our projects. The roles, taken from the Reuse

Maturity Model, are typically Domain expert, Repository Manager, Component co-

ordinator, Component expert, Development for reuse expert and Reuse co-ordinator.

One person might cover several of these roles.

 The definition and use of required activities for reuse in all relevant phases of our

development processes as well as the incorporation of these activities as amendments to

current procedures for project management.

 The introduction of a new tool for repository, that covers the functionality of both our

old repository and old change management system. We assume that the use of the

appropriate repository, is a major contributor to better reuse practices.

 The introduction of Object Oriented design principles in the building of component

libraries. Take special design considerations to deal with generalisation and

specialisation problems.

 Show that our COBOL 85 implementations could be converted to Object Oriented

COBOL, and show that this improves productivity and reuse.

 Use metrics and measurements, to show the cost-benefit of the above mentioned

improvement steps.

Documentation is also relevant. It is implicitly understood that all information stored in the

repository could be output as system documentation according to standards.

Status before the experiment

We assessed and analysed our practices according to the ESSI questionnaire, the

Capability Maturity Model (CMM) and the Reuse Maturity Model (RMM) – see glossary

for references. With respect to CMM, the company was typically at level 2 and did also

satisfy most of the requirements of level 3. The ESSI questionnaire showed that we had

good practices for standards and procedures, for control of the Development Process and

for Tools and Technology. In fact, we had procedures and checklists for all phases of the

development process.

To be more specific; Requirements were specified, managed, and maintained in Lotus

Notes databases. Projects were defined using standard templates in Process Engineer, and

scheduled in Microsoft Project. All activities were tracked, and earned value calculated

and reported for all deliverables. Quality control was performed in the project for each

deliverable and external formal review was performed for all major phases. All units were

under configuration management control from unit test and onwards. All future changes

were handled according to formal procedures.

For development we used Microfocus COBOL Workbench for programming,

Datamanager from MSP as the repository and CCC from Softool as the change and

configuration control system. Datamanager and CCC were not integrated, and both tools

run on a mainframe with a character-based interface. We clearly saw that the development

process suffered under this.

Reuse practices

Analysing our practices for reuse, using RMM, we found that we were somewhere

between level 1 and 2. We did have reuse for product plans, contracts, specification and

Session 3 : SPI and Re-Use

Page 3.5

documentation, but seemed to have little organised reuse in the development process where

formal procedures were missing and roles not defined.

We had grouped our development department according to business domains of our

products. However, the personnel were owned by a single project, where the project tended

to focus on local goals instead of corporate product strategies. Personnel, solely

responsible for reuse, did not take part in the projects. Hence, reuse-specific activities were

not incorporated in project plans and reuse practices were at an ad-hoc level, dependent on

the individuals in the projects.

Conclusion

According to CMM, we found that we typically had a defined level for our development

process, almost satisfying level 3 requirements. However, our poor reuse practices had made it

difficult to have a common basis with a single source for our standard versions of the products.

According to RMM, we were at level 1 or 2.

Plans and Expected Outcome

Project objectives

The overall goal was to improve our development process through organised reuse, and

reach a higher maturity using RMM. The main objectives were to implement development

procedures and roles focusing on reuse, to build libraries of reusable components and

hence; improve quality, increase productivity and reduce time-to-market.

Planning Evaluate

Development project: Retail with Card and Loan

Project tasks

Process Improvement

Implement in

organisation

PIE Repro
Disseminations

Figure KryTor.1: Improvement interaction with baseline project

The yardsticks for how we wanted to measure any results are listed below. We wanted to

measure an overall process improvement on the basis of a reuse assessment report in the

preparation phase and in the evaluation phase of the project. The assessments were to be

based on RMM and should describe our reuse practices before and after the PIE (Process

Improvement Experiment).

Implement development procedures and roles focusing on reuse

Session 3 : SPI and Re-Use

Page 3.6

The definition of new procedures and the use of specific roles, should be a result from the

work done with regard to reuse strategy and role and procedure description.

Build libraries of reusable components

This could be measured by the number of components built. The actual reusability was to

be measured in the “development-with-reuse” phase to see how often a component is

reused and what changes are needed to use a component in another context. The time-

effort spent to tailor existing components to meet new requirements, together with the time

spent to build reusable components and the effort saved in reusing them, should be the

major parameters in the cost-benefit analysis measuring the value of the libraries.

Increase productivity and reduce time-to-market

Increased productivity should be measured as reduced man-hours used to accomplish

certain functionality. Any results will first be visible in the “development-with-reuse”

phase. Reduced time-to-market is related to increased productivity and can be measured by

the number of requirements met by the use of existing components. We wanted to use the

Repository actively during analysis and design in the baseline projects to search for

components that meet specific customer criteria; outlined in a Functionality evaluation

report.

Improve quality

We wanted to use the Factor-Criteria-Metric model to measure the factors reliability,

maintainability and reusability. Since we can never measure quality exactly, and since we

need some experience with maintenance over time; we did not expect to have good

measurements on quality until the later phases of the project.

Baseline project context

The selected baseline project was named Retail with Card and Loan. It was an internal

project of strategically high importance for our division.

Originally, we wanted to choose a part of the project as a basis for experiment – called

PIE domain. It was more realistic (and practical) to use the new methodology for a

complete project. Hence, the PIE domain was the whole project

Retail with Card and Loan. ProRetail is a banking system running on an MVS

mainframe. The strategic target sub-systems are CICS and DB2. At this point two

products, ProCis and ProDeposits had been developed to that platform. The other

products in the ProRetail family, ProCard and ProLoan, were running on IMS/ DL1

platforms. The purpose of this project was to

a) shift ProCard and ProLoan over to the new mainframe platform.

b) shift our in-house technical platform over to the new mainframe platform.

c) change the programming language from JSP to COBOL 2.

Session 3 : SPI and Re-Use

Page 3.7

It was a main goal for the project to come up with an integrated system, which could be

packed with functionality according to customer needs. The packages would be the defined

products. Architecturally, the products are modularised using building block (called

domains) to get a better integration, and to reuse common business functions. This is

illustrated in Figure KryTor. 2.

Domain 1

Domain n

Domain 2

CRM PAM

ProCis

ProDeposit

Used

Used

Used

ProCard

Used

Used

ProLoan

Used

Used

Figure KryTor. 2 Modularization using domains

The baseline project adding Card and Loan to this architecture, had a budget of 3 mill.

ECU and involved 25 people. The project was started late May 96 and lasted for about 12

months. Our main focus was on the design phase and a small part of the Cut (Construction

and Unit Testing)-phase.

Experiment Overview

The project work of REPRO was planned to be executed in four major phases, running for

approximately 3, 6, 6 and 3 months, respectively:

1. Preparation

2. Development for reuse

3. Development with reuse

4. Evaluation, dissemination

Within the phases the work was granulated into work-packages confirming to the key areas of

reuse, namely Organisation and Project management, Development (for and with reuse),

Repository management and Metrics and measurements. For some of the areas, the work was

split into several work-packages, in order to have a manageable size. In addition there are

specific work-packages for Project management, Evaluation and Dissemination.

Session 3 : SPI and Re-Use

Page 3.8

ID Workpackage

1 Initial preparation

2 Repository evaluation

3 Organisation/Proj. Mgm t.

4 Repository Management

5 Development for reuse

6 Metrics - working for reuse

7 Evaluation - working for reuse

8 Development with reuse

9 Metrics - working with reuse

10 Migration of m odules to OO Cobol

11 Dissem ination

12 Experim ent Evaluation

13 Project m anagem ent

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1996 1997 1

Figure KryTor.3 Project Gantt Chart

In Figure KryTor.3 solid bars are baseline planned work-packages and shaded bars are

actual.

Implementation of Improvement Actions

Start of baseline project.

In the first phase of the project Preparation we focused on activities defining reuse

strategy, roles and procedures. A cost/pricing model was also developed see [ESS, Ch.

13].

Early impact on organisation.

Our main achievement in this phase was the focus REPRO had got in the organisation,

with attention from managing director and down to programmers in the product

department. The emphasis we had in REPRO on organisational issues already made an

impact on the organisation as such; REPRO defined new roles that were implemented in

our product department - not only in our baseline project. The programming personnel in

the product department became organised around the domains. This assures high level of

competence through all phases of a project. Furthermore, the different groups were

capable of supporting several projects at the same time, incorporating requirements from

different customers.

Repository decision is strategic.

Furthermore, we became aware of the fact that it was not possible to change repository for

Session 3 : SPI and Re-Use

Page 3.9

one single project (i.e. the baseline project of REPRO) leaving the production line behind

using the old tools. This is due to the fact that all information in our current repository is

inter-related and that introduction of a new tool for a certain area would lead to major

migration problems later. Hence, the first conclusion was that to change the tool for

repository was a huge job, well beyond the scope of REPRO.

The Repository was planned to contain documentation, metrics, and configuration management

information in an integrated manner. At this stage it was decided, for the time being, to

continue with the same repository tools as we had used the last years.

For documentation we continued to use DataManager. For Configuration Management we

continued to use CCC. To gather metrics – for which we have had no tools earlier - we used a

new project repository, PG4.

Two baseline projects merged into one.

To a certain extent we changed the objectives of the second phase. The reuse assessment

had clearly showed that a natural way for Provida to achieve reuse is not an approach

where some projects develop for reuse and other develop with reuse as outlined in the

original plan.

A deeper analysis than the one we could perform the year before showed that Provida’s

ideal organisation for reuse development was somewhat different than assumed. We

typically have Integrated development for reuse and are reusing the components in similar

projects within the same domain (see section 2.2 of [Kar]). This is also reflected in the

organisation which is typically domain-oriented (see section 1.4.4 of [Kar]), where a

Product department co-ordinates the work of all delivery projects.

Hence, we focused around a domain in the baseline project. This analysis secured that the

development phases of the baseline project were according to the requirements set by

REPRO. Thus we guided the baseline project with respect to:

 Categorising reusable assets from earlier development

 Categorise the ProRetail domain into different sub-domains (this is required in order to

market and sell different modules of ProRetail as stand-alone products).

 Defining the procedures for reuse between different sub-domains

 Defining the generic interfaces between these domains

Domain analysis was a new process for our division.

The major adaptation was:

 Variability and generality analysis was made a more comprehensive exercise than

originally planned.

 The variability and generality analysis was carried out at the logical level of our

process, rather than on physical modules see [ESS, Ch. 15]

Reuse impact on logical level.

At this point savings of 30 % were reported achieved on the logical level. Our reuse

strategy was adjusted to address this saving potential focusing stronger on the product

owner role. Since our preparations based on REBOOT focused on reuse at the physical

Session 3 : SPI and Re-Use

Page 3.10

level, we had a problem to define proper metrics on the logical level.

Cancelling the migration to Object Oriented COBOL.

It was clear that neither our customers needed it nor was our development department

ready for this step. It seemed to be to many unknown parameters for us to cope with at the

same time.

New repository for documentation in place at end of the experiment.

Based on our earlier requirements, a new repository tool, Rochade, was bought for the

documentation purpose of the repository. It did not, of course, fulfil all our requirements,

but was mainly selected due to:

 Availability, running on a PC as a multi-user and multi-session process.

 Low threshold for initial use.

 Easy implementation of the customisation functionality from our old repository.

Since the phase development for reuse was shifted more into a preparation phase, the phase

development with reuse had to be some combination of both populating and harvesting the

repository. The repository in use up to this point was the old one running in a main-frame

environment. When shifting to the new repository, it was a huge job to customise the new

repository to reach the highly customised level we had in the old repository, and training the

staff before transporting the content. At the end of the experiment the new repository is in

place and gives a much better situation for following projects. However, it was too late to

gather experience in this experiment.

Tools

CCC

We continued to use CCC as our configuration management tool. Using this tool gives an

accurate track of each physical module, and it enables us to keep track of which version

was the actual version at a given time. It also enables us to document changes between

versions.

DataManager (DM)

DM has been our product repository manager since the start-up of the company, and we

used this tool in a major part of the REPRO project period. Rochade now replaces this

tool.

Software Engineer (SE)

SE was used to document the Gaps found in requirement analysis at the customer site. It

could be used to create Data Model diagrams and document the requirements in an

integrated manner. Moreover, it is integrated with Systems Engineering which was the

framework for our project process.

The tool was used in our baseline projects in Repro. However, we could not map this

description to our system model, which resulted in difficulties later when the

documentation should be converted to our repository. Thus it was decided not to go along

with this way of working.

Session 3 : SPI and Re-Use

Page 3.11

Project Gateway 4, project repository (PG4) from Marin Research.

We selected this tool to handle our project administration.

Project Gateway is a system for building and maintaining project repositories using Lotus

Notes.

Our intention was to use this tool to gather all the necessary metrics, and also use it as a

project information tool. This turned out to be a too ambitious goal.

However, we actively use the tool to publish project schedules made with MS-project. We

also use it for the individual project member to report hours used and outstanding on

individual tasks. This way we have an almost automatic project schedule tracking, and it

has given us detailed measurement of effort used on detailed activities, sometimes down to

physical module level.

Rochade

Rochade was selected as our new repository tool based on recommendation from the

Repro project. See [ESS Ch. 12]. Converting to a new repository, however, is a huge task.

The implementation could not be done within the timeframe of Repro, but the RC division

of Provida now has this fully operational.

As a part of evaluation of repositories we bought an already existing report [Ovum]

For details with regards to Rochade we refer to this evaluation.

Measured Results, Impact and Lessons Learned

The Measured Results

Before the development of Card and Loan systems we estimated the reuse potential:

The Reuse potential was calculated using the knowledge on the logical functional level, before

a mapping was made available on the physical module level. (In fact, that mapping will not be

available until the detailed physical design in the Development with Reuse phase).

On the logical functional level under each domain, all functions that need changes or

amendments, and all new functions, were listed together with an estimate of the effort of the

change. It was further mapped if the functions were needed in the Card, and/or in the Loan

development.

From this mapping, the development cost for both Loan and Card separately and together, was

calculated.

The findings from this analysis is shown in Figure KryTor.4:

Estimation for the Cut Stage Work days
Developing Card Separately 1501

Developing Loan Separately 1060

Sum if separately developed 2561

Development together 1735

Session 3 : SPI and Re-Use

Page 3.12

Gross Save 826

Variability & Generality Analysis 338

Net Save 488

Figure KryTor.4 : Cost/benefit findings

The table shows that for the cut stage, a net saving of 488 days are saved in developing

these systems on the common retail platform, rather than as two separate projects on that

platform. This is a net save of 19% if we regard the variability analysis as only needed for

this purpose. The fact is, however, that much of the work in the V&G must have been

done in each project - totally up to 70%. If we take that into consideration, then 237 days

of the V&G was needed anyhow (to describe requirements), and the real save is 725 days,

which is 28% of the total.

The real save will be higher because of considerable effects in system test and later on in

the maintenance phase.

Based on the above analysis, it was recommended (and decided) to develop those systems

in common, wherever appropriate.

That is:

- Card was selected since we had a customer contract on that system

- If a task (lowest logical functional description level) was to be changed, re-developed

or developed as a new task, we would check the V&G to see if there also were Loan

requirements on that task.

- Tasks containing Loan requirement (from the above search) would be developed with

the full Card and Loan functionality from the V&G.

- Tasks with only Loan requirement will be left out until we have a customer contract

on that product.

Following this procedure will take care of the reuse effect from this development.

After we have developed both the Card and Loan systems, we have run some measures on

our resulting (new) repository.

The result is shown in Figure KryTor.5.

Session 3 : SPI and Re-Use

Page 3.13

Figure KryTor.5: Reuse Numbers

As shown in Figure KryTor.5, the ProRetail product family consists of ProCis, ProDeposit,

ProCard and ProLoan. All of which are now converted to our new environment and

technical architecture.

ProCis is used in ProDeposit, ProCard , and ProLoan as well as a stand alone system.

ProCis contain 1.081.633 lines of code, and the other modules all together contain

2.638.158 lines of code.

We first developed ProDeposit, then ProCard and ProLoan. In Figure KryTor.6 the

percentages of new code are shown.

Product Developed new

lines of Code

Total lines of

code in Product

% new code in

product

ProDeposit 2070105 2070105 100%

ProCard 375842 2319010 16,2%

Session 3 : SPI and Re-Use

Page 3.14

ProLoan 192211 2232292 8,6%

Figure KryTor.6: Reuse Numbers

Since the measurement was taken after all systems were developed, we have, however, not

counted for the amendment of code in each system. When we developed Card, we

amended some domains in Deposit, and when we developed Loan, we amended some code

in both Deposit and Card (because of our tactic – as stated above – the amendment to

Card was minimal). The real reuse would be lower than the table indicates. However,

even if the amendment is as high as 30%, we have a reuse ratio of more than 50% in both

the Card and the Loan development.

That is almost twice as high as we expected!

Impact

Organisational Impact

 Impact on the Organisation

A reuse strategy is defined and is continuously improved, according to overall

strategies. Furthermore, the strategy is understood and accepted by the management.

The organisation is set up to support integrated development for reuse.

If required, internal cost models will be changed to stimulate reuse.

We also had a goal to establish a reuse board which should on a regular basis review

and guide the reuse activity in our company. This reuse board has not been

established. Our experience is that reuse must be an ongoing activity in the

professional staff, and hence this is one of the obligations assigned to the group

leaders for our product domains.

Also the long-term funding of the reuse activity must be within each project, giving

payoff in each project.

 The Development Process

In this paragraph reuse means reusing logical structures, i.e. reusing the syntax of our

data model in new domains (or part of domains), or mapping new functionality into

existing parts of our model by generalisation of the existing structure. We also reuse

general rules and framework from existing functions in new areas.

Reuse is reflected in all phases of the development process, from requirement

specification, through analysis, design and construction to testing. Hence we have:

 Improved development procedures taking reuse issues into account. Furthermore,

the procedures will be constantly changed based on results from previous projects.

We do not use proper metrics and measurements in these improvements.

 A more mature organisation, where the roles responsible for reuse (which lies on the

domain leader) will see to that the projects deliver results according to long-term

Session 3 : SPI and Re-Use

Page 3.15

product plans, and not only to satisfy one single customer.

This will lead to a more stable core of the ProRetail system. It is anticipated that

this core will continue to grow and include functionality from future customers,

making a delivery more a matter of configuring the right system.

 Project Management

The reuse experts is represented during requirements specification for all projects, by

professional staff for the domain groups concerned. Further reuse is an integral part of

the development procedure in our product department.

The project leaders thus have no special concern for reuse in their projects.

In our post project reviews we collect reuse information and estimates, but we have

not established formal procedures for this.

Cultural Impact

The practical reuse of code and design/documentation in our division before the REPRO

experiment, was similar to the situation in many other companies. The experienced

designers and programmers were owners of proprietary libraries, from which they selected

components – best fited according to their memory of the components - and amended it for

their new use, creating a new component. Typically there would be no connection to the

original component. In this way of reuse, the most experienced would be the ones

“reusing” most, and the novice would have almost no reuse of components.

Maintenance done in one configuration was not built into other configurations because we

had no direct reference where we could find out which amendments were needed to those

configurations.

The REPRO experiment has changed this behaviour in our division. “Reuse” is now a

common known aspect, and is focused on in every discussion regarding productivity.

Project planning and start-up activities, focus on how to reuse methods, procedures and

components to get the job done in the best possible manner. This reuse thinking

emphasises the reuse both on the traditional individual level and on the formal level.

Maintenance is always built into the last common base of the product, and where found

necessary – offered to other configurations as well.

Skill Impact

The skill impact is hard to measure. There has been several changes in the organisation in

addition to the introduction of new tools and techniques. When too many parameters are

changed at the same time it is hard to identify the reasons. However we can state some

qualitative scenarios.

 The domain groups have participants in our business requirement analysis.

This task requires better business functional skills in the development domain, and it

has lead to better business understanding giving a more comprehensive design. It is

also very valuable when designing test cases.

Session 3 : SPI and Re-Use

Page 3.16

 The domain groups take part in all stages of our process.

This gives a skill transfer from our sales and technical personnel to the developers, and

also helps disseminate product knowledge from developers to sales personnel.

 The reuse attitude gives broader product knowledge.

It is necessary to investigate other parts of the product to find reuse candidates. This

process helps disseminate product knowledge among the domain groups, and gives a

much more flexible staff, being able to work in various parts of the product, wherever

the need is.

Because of these changes we now have a better skilled staff. This gives us more flexibility

to adjust our development according to changing needs and requirements from our

customers.

Key Lessons Learned

As outlined above, we believe there are a large number of organisations that can benefit

from the results of REPRO. Especially, organisations similar to Provida can benefit from

our results; namely small and medium sized enterprises (SME’s) operating in a high-

competitive international market. Such companies must work smarter or faster to cope

with competition, and we believe reuse is one step in this direction.

Companies having most of the characteristics described below, could probably use our

results in a Process Improvement Project introducing reuse:

 Have a defined level for the system development process according to the Capability

Maturity Model, but low score according to the Reuse Maturity Model.

 Realise the benefits of reuse, but do not have the means to introduce it to the

organisation

 Have the management’s commitment to introduce organised reuse

 Develop large systems.

 Use Data Modelling as a basic tool for development.

 Have several versions of the same system, but some problems with configuration

management.

General

The experiment was planned with a number of updates to our new reuse procedures and

guidelines. It was not manageable to update these during the project. We had neither

enough experience nor management capacity to do these updates. These deliverables was

thus merged with later versions into one update at the end of the experiment. In

retrospective view, this is due to unrealistic expectations.

 The change and enhancement of procedures was planned in too narrow time-scales. It

was not possible for the organisation to adopt to all the changes, and hence some steps

had to be merged.

 It was not practical to start reuse on the physical level before preparing/ structuring

the logical level for reuse.

Start the reuse effort on the logical level will mean to reuse parts of “models”. Look for

Session 3 : SPI and Re-Use

Page 3.17

similar structures in the data model, and try to repeat this for other parts. Similar business

functions were mapped to existing parts of our model, using generalisation of the model to

cover for new functionality. Adapting this method requires that the company use data

modelling.

To start a reuse experiment on the physical level – like outlined in reference REBOOT –

we need an organisation with strict conformance to detailed procedures. It is likely to

expect this only in ISO – 9000 certified organisations, or in organisations having a similar

quality system. The reason for this is that the change in roles and procedures is a huge

step. It is not likely to succeed if all these changes are imposed as one step – the

organisation needs time to get used to thinking “reuse”. Also gathering all the required

metric for each physical module is a huge change, if this is not already part of the

development process. The motivation will not be present until the organisation

understands and think “reuse”

Technological Point of View

Introduction of repository.

If this is needed for the organisation, it should be anticipated as a major task.

It will take time to plan the introduction, to train the staff, and to do the actual conversion.

However, an appropriate repository tool is necessary for reuse, either this is on the logical

or the physical level

Adaptability.

The adaptability of the organisation to the new paradigm was not as good as we expected.

This may be due to the fact that we underestimated the REUSE learning curve and the fact

that REUSE is not just another enhancement: it is another way of thinking, working and

modelling. It is important to educate managers as well, not only users and developers.

Understanding the REUSE.

The most important skill to obtain, is grasping the concept: what are the important aspects

of REUSE, yielding return on the long term investments and avoiding short term

optimisations.

TOOL stability.

Introducing new tools require training. It is often underestimated that this will take time.

Moreover, it is difficult to introduce many changes at the same time, so introducing new

tools should not be done simultaneously with introducing reuse procedures. Necessary

tools should be introduced before starting formal reuse procedures.

Business Point of View

Our experience is that investment in proper reuse methods and tools being applied in the

right amount and manner is saving us a lot of development and maintenance time. At this

stage we have not gathered enough experience to quantify this save, but it is a general

accepted statement in the product department.

By referencing to organised reuse and a model for maturity we achieve interest from the

market.

Once properly learned, we see clear evidence of organised reuse giving significantly

shorter time to market. Prototypes are more easily built and thus new user requirements

met.

New Roles. Be prepared to focus on new roles in your organisation. Roles such as

Session 3 : SPI and Re-Use

Page 3.18

architect, mentor and reuse expert are the most obvious.

Reuse will not happen all by itself. It is essential to incorporate reuse in the standard

development process, and thus avoid dropping out after your first project.

Focus on reuse as a long term investment and not as a short term benefit. However, to get

top management support, it is necessary with payoff in following projects. Try to achieve

integrated reuse.

Secure skilled people. The bottom line is the availability of good skilled people, and they

are hard to find. The Norwegian educational system does not typically produce candidates

that can be set to work directly. Additional internal education and mentoring is necessary

for increasing the skills in a way that can produce a component based-system. We feel that

REUSE should be focused in the education at the university.

Strengths and weaknesses of the experiment

Management Commitment.

The top management initially did have a strong commitment and supported the experiment

in the early phases. The first deliverable from REPRO, early in the project preparation

phase, was our Reuse Strategy and Role and Procedure Description. These two

documents were then implemented in the organisation. This was perhaps the most

important single step for the project, and the management felt we had taken a huge step

forward to fulfil their intention with the project.

At the start up of Development for Reuse we got some trouble in starting up the baseline

project, as the contract for the baseline project was not signed as planned in REPRO. This

delay also had financial effects of the company, and management attention was shifted

more towards the daily operations.

These two events, solving the strategic reuse problem and a difficult market situation, was

felt like shifting the focus from the Reuse project. In later phases the project participants

felt they no longer had this strong management commitment.

Organisational recognition.

As the problems with keeping up with schedules arose, the recognition of the Reuse project

suffered. This may be a general attitude in many companies, and especially affected a

project trying to change attitude and behaviour, and introducing new methodology.

Also the effort of the people involved in REPRO was not longer recognised by the

company management, and thus needed support vanished.

Process Maturity and Management.

At the end of the experiment we have to admit that our organisation was not mature for

this kind of experiment. Despite all the difficulties, we feel that this experiment has

contributed a lot to maturity of our organisation, so we are in a fairly good position to

succeed in assuring the assimilation of the reuse attitude in our organisation.

We have to take the rest step-wise in a time frame the organisation will accept.

Session 3 : SPI and Re-Use

Page 3.19

Introducing formal measurements of processes after projects and applying metrics to

measure the improvement should be the next steps forward.

In REPRO we introduced strict management tools and methodology to the baseline project.

This has resulted in very good tracking of projects in the product department.

Some Traps to Avoid

 Risk Management.

We did not have a proper Risk Management where the major risk was properly

treated.

- The timeframe between procedure changes was too tight.

- The timing of the baseline projects did not meet REPRO requirements, and the

time frame was too tight to be able to adjust properly.

We had no contingency plan to compensate for these problems. It is felt that a proper

risk assessment in the planning phase could have revealed these risks.

 An organisational point.

The project co-ordinator must be an operational member of the project team, being

given sufficient budgets to participate actively all the time. Being given a budget

aimed at only catering for the required co-ordination work is asking for trouble and

problems.

A certain amount of power through a suitable position in the line hierarchy is also

important.

 Key competence required.

We underestimated the learning curve. Partly we focused too much on training in

implementation, and accordingly too little on analysis, design and object thinking. As a

consequence we had to adapt the approach several times. Partly, mastering a new

paradigm sufficiently requires a quite deep understanding of the concepts. Especially

so whenever the developer is reasonably proficient in some other paradigm.

Conclusion and Future Actions

The current technical environment

In Figure KryTor.7 our current development environment is shown. PG4, Our test script

database and the CR/PTD database all are implemented in Lotus Notes. The experiment have

added the PG4 database into this environment to capture effort measures, and the main

repository tool is changed.

Session 3 : SPI and Re-Use

Page 3.20

Rochade

Planning

RequirementsMaintenance

Physical DesignTesting

Cut

Implementation

PG4

Test Scripts

CR/PTD-DB

Req.doc

Logical Design

CCC

Microfocus

Workbench

Figure KryTor.7: Tools in our development environment

Organisational Amendments

During this experiment we have improved our organisation with respect to reuse, and

introduced reuse roles and responsibilities in the organisation. The target to get to level 3

in RMM is not met on all five key reuse areas. We are on level 3 for both organisation

and project management. Also our development process has improved considerably and is

between 2 and 3, but in the areas for repository management and metrics we are still about

level 2.

Test Manager
(reuse test cases)

Component Expert

Repository Manager

Planning

Maintenance

Physical DesignTesting

Cut

Implementation

PG4

Test Scripts

CCC

Microfocus

Workbench

Domain Expert

Reuse Expert

Rochade

Requirements

CR/PTD-DB

Req.doc

Logical Design

Figure KryTor.8: Main areas of reuse

The main areas of reuse are shown in Figure KryTor.8.

Session 3 : SPI and Re-Use

Page 3.21

Our way of practising reuse is based upon integrated development for Reuse, as described

in reference [Kar]. We are currently focusing on the Data Model and our Logical

Description, but have also started the process for physical modules. In more details:

 The most important one is the domain expert/reuse expert area, where we have reuse of

structures as the main target.

 The component expert/ repository manager area is the traditional reuse where we reuse

component. Currently the clean component reuse is in its starting phase.

 On the test side we currently reuse much of our detailed test scripts, and we are working to

automate this area..

For the repository we will amend our standard on the logical level, and document more

comprehensively the domains and the interfaces between domains.

For metrics on modules we have to find suitable tools to do our metrics, before this is

incorporated into our ordinary working practice.

For future amendments we will use a more involving process from people executing the

established roles. In this way we expect a more rapid adoption of a new working practice.

Also such amendments should be a result of the work done with regards to reuse strategy

and role and procedure description.

Technical Enhancements

Integration of version control system and repository.

Currently an evaluation is going on in order to search for the possibility of moving or

version control system from our main frame repository to one on PC. One scenario is to

enhance our repository, Rochade, with such functionality.

Build libraries of reusable components was one of our goals in this experiment. This has

not been achieved for modules. Currently these modules have a general name, and not a

name placing them in one specific domain according to our naming convention.

We will strengthen our architectural role and assign reuse responsibilities to this role. As

a starting point we will use generality analyses on components as integrated part of our

development procedure. Applying metrics on this level will be introduced on a later stage.

Our development environment is illustrated in Figure KryTor.7. Introducing changes as

described above, will bring us a step further to our target solution, illustrated in Figure

KryTor.9. However it will still be some future steps to take until we have a totally

integrated solution. Figure KryTor.9 is almost the same as anticipated in ref. [Flaa], so we

believe there are many case tool suppliers working to reach this solution.

Session 3 : SPI and Re-Use

Page 3.22

Repository

Planning

RequirementsMaintenance

Physical DesignTesting

Cut

Logical DesignImplementation

Figure KryTor.9: Target solution for our environment

Business Point of View

The domain concept, dividing our total ProRetail Product into smaller building blocks

from which we build or market products, have come out to be a great success. Currently

all our products is converted and built this way.

This has both increased our overall productivity and thus reduced time-to-market for our

product. As the market products wary in functional scope, this is not easy to estimate. A

reduction on about 30% should be a fair guess. We will try to enhance our cost-pricing

model and thus “prove” the validity of organised reuse in business.

The improvement in quality will first show over time, as we get experience with

maintenance. Currently we do not have any estimate on this area, but we will continue

collecting data.

We have decided to take the division into separate domains a step further, making some of the

domains especially in our batch part of the product smaller. This will allow for better tailoring

the system according to customer need.

Session 3 : SPI and Re-Use

Page 3.23

Glossary

CMM

Capability maturity model - A general process assessment model developed by Software

Engineering Institute. In this paper we use it with extentions defined in chapter 5.4.3 of [Kar]

CM

Change Request – describes a separate change to the system

FCM

Factor-Criteria-Metric – A model for software assessment.

This model is described in chapter 4.3.3 of [Kar]

JSP

Jackson Structured Programming

PTD

Problem Tracking Document – describes a problem (or an error), its resolution and to which

configurations the problem is fixed.

RMM

Reuse maturity model – A model to assess the reuse maturity of a company.

This model is described in chapter 5.4.2 of [Kar]

V&G

Variability & Generality Analysis

References

[ESS] Final Report - REPRO, Reuse Process and Organisation improvement experiment,

ESSI Project 21513

[Kar] Karlsson, Software Reuse – A Holistic Approach, Wiley, 1995

 ISBN 0 471 95489 6

[Ovum] Repositories and Framework, Rosemary Rock-Evans

[Flaa] Foundations of Business Systems, Andersen Consulting Arthur Andersen & Co.

Session 3 : SPI and Re-Use

Page 3.24

Appendix 1 – Author CV

Mr. Roar Tørlen is a chief consultant at PROVIDA ASA.

He is born in 1947 and graduated from the Technical University of Norway in 1970,

Department for Information processing, and has thirty years of experience in developing

information systems.

In the years 1970 to 1975 he worked at the Computing Centre research institute at the

university with system development methods and data base systems. In 1975 to 1979 he

was with Kongsberg Våpenfabrikk, responsible for systems running on minis handling

manufacturing logistic. In 1980 he joined Sunnmørsbanken (later merged with Cristiania

Bank og Creditkasse) and has since than worked with banking systems.

He has broad experience in many areas as System Analysis, System Design, Data Base

Design, Operation Automation, Technical Architecture, Project Management and General

Management. He has been a project manager responsible for several system development

projects up to hundred man-month of effort.

In 1995 he joint Provida as a project manager in the Retail division.

Mr. Ulf J. Krystad is a chief consultant at PROVIDA ASA.

He is born in 1953 and graduated (M. Sc.) from the Institute of Informatics, University of

Oslo in 1982.

From 1982 until 1986 he worked within a Norwegian CAD/CAM company developing

systems for the offshore market. From 1986 until 1989 he worked at IDA building

financial systems. In 1989 he joined the department of Industrial Mathematics at SI

(Centre for Industrial Research, joined with SINTEF in 1995) as a researcher. In 1999 he

joined Provida with main responsibility for the development of clients within the Retail

division.

His experience is covering different Management responsibilities, a variety of customer

related activities including requirements and specification, lectures and presentations

especially within mathematical and numerical modelling, system development and process

improvement experiments.

Appendix 2 - PROVIDA ASA – a Company

Description

As a leading International Software and Consultancy house, Provida have served the needs

of the Financial and Banking Industry for over 30 years. Through creative systems,

harnessing modern technology, we have established ourselves as a market leader for these

products.

Provida has a wealth of technical and business knowledge, gained through long

associations with major financial institutions. With in-depth knowledge throughout the

organisation and with the strength of our systems, Provida strives to give our customers

the competitive edge needed to succeed in the banking and financial industry.

Provida- Business Areas

Session 3 : SPI and Re-Use

Page 3.25

Provida develops and sells software solutions and consultancy services to the International

Banking and Financial Market. The vision of the company is that Provida will, via its

system solutions, contribute to the overall profitability and efficiency of the bank and

financial institution.

The main business areas and therefore product offerings are best summarised by referral

to the following diagram:

Provida ASA – Business Areas

Provida ASA

International

Banking

Retail &

Corporate

Banking

Capital

Market

Systems

Consulting

Business areas

Retail & Corporate Banking Product Suite

ProRetail represents a new generation of banking systems, and has been developed with a

market-oriented banking philosophy and modern system architecture. Emphasis has been

placed on the design to provide a structure which, as well as addressing today's business

requirements, allows a cost-effective integration of essential new business functions and

technologies in the future.

The solution includes up-to-date banking applications for the personal and corporate

market. The core systems in ProRetail consist of a central customer, agreement and

product administration system plus systems for administering loans, deposits and cards.

Priority is given to real-time access to all customer information. This enables the financial

institution to have continually updated information concerning agreements between the

customer and the financial institution, the customer’s financial status and all other aspects

of a customer’s relationship with the financial institution.

By using the Product Warehouse, the financial institution can create and develop new banking

products on-line. This provides a unique opportunity to promote the right products to the

market at the right time. This solution enables the financial institution to launch aggressive

sales strategies, identify groups of customers with specific needs, and carry out banking

operations at a far lower cost than was previously possible.

Session 3 : SPI and Re-Use

Page 3.26

SEPIOR - Practical

Experiences with

Reusable CAM

Components

P. Bininda, A. Blessing, W. Daxwanger,

 T. Krenzke, O. Schmid

SEKAS GmbH

Perchtinger Straße 3

81379 München, Germany

http://www.sekas.de

K. Bergner, A. Rausch, M. Sihling

Institut für Informatik

Technische Universität München

80290 München, Germany

http://www4.informatik.tu-muenchen.de

Introduction

Recently, the componentware development paradigm has gained much attention. On the one

hand, approaches like COM or JavaBeans promise to boost the performance of application

developers, creating a fast-growing market for start-up companies especially in the areas of

GUI design and desktop computing. On the other hand, vendors of large enterprise systems like

SAP R/3 are planning to implement modular versions of formerly monolithic software systems.

In this experience report, we provide an example for the commercial, technical, and human

implications of componentware in a different context, namely, a department of the company

SEKAS [1] specialised in projects for computer-aided manufacturing (CAM) systems. The

main purpose of CAM systems is to control the fabrication process from raw materials to final

http://www.sekas.de/

Session 3 : SPI and Re-Use

Page 3.27

products. This task requires the co-ordination of a variety of different activities: 1) the

calculation of production schedules, 2) the control of production lines, machines, and transport

facilities, 3) the management of resources and tools, 4) the gathering and logging of machine

data and 5) the management and propagation of errors and alarms. Modern, highly automated

CAM systems can do all this with no or only minimal interaction by human users.

In this report, we describe the considerations and experiences of SEKAS during the Process

Improvement Experiment (PIE) SEPIOR [2], which is partly sponsored by the European

Systems & Software Initiative ESSI [3]. SEPIOR is an acronym for “Software Engineering

Process Improvement through Systematic Application of Object-Oriented Techniques and

Reusability”. Consequently, the specific goals of the SEPIOR experiment are:

1. Enabling the reuse of pre-fabricated software components by systematically

introducing object-oriented technology. This will reduce development time and

costs for customer-specific solutions.

2. Increasing the quality of the customer-specific solutions through the use of

reliable components as building blocks for individual solutions.

After outlining the initial scenario in the remainder of this section, the expected strategic and

commercial aspects of componentware are described with the focus on the involved chances

and risks. The following section then sketches parts of the development process for the

adoption and introduction of the new techniques. Based on this, the subsequent section covers a

practical application of the described process exemplified by the development of an alarm

management component. Finally, some of the lessons learned during the process are given,

concentrating mainly on the human impacts of the adoption.

Company Context

SEKAS is a small software company founded in 1988. It currently employs 40 employees, of

which over 85% are specialists in software engineering and computer science. Activities are

mainly focused on the European market, and sometimes also address the world-wide market.

SEKAS offers high-end products and quality services to middle-sized and large manufacturers

mainly in electrical engineering and electronic business. About 75% of the turnover is gained

with customer-specific development of sophisticated technical and scientific applications. The

remaining turnover is achieved with high-end products for quality management and automated

testing. The current success of SEKAS relies on the following cornerstones:

 Highly skilled and trained employees with much practical experience.

 Focus on market segments where the key competences of SEKAS can be

optimally applied.

 State-of-the-art development environments.

Motivation for the PIE

Despite its current success, SEKAS does not yet fully exploit its potential for productivity and

economic success. Although most of the software engineers at SEKAS are trained in

object-oriented techniques, the current level of software reuse is rather low. This is mainly

accredited to the fact that no systematic introduction of an overall OO-software engineering

process has been performed yet. This would include process modelling as well as organisation,

Session 3 : SPI and Re-Use

Page 3.28

training and coaching.

The need for improvement in this area arises from the growing competition caused by the

emerging software engineering countries (India, Romania, Russia, etc.) For the future, it is

mandatory for SEKAS to cope with this challenge by providing increased value for the money

spent by the customers. This implies further improvements with respect to development process

as well as software quality.

Strategic and Commercial Aspects

The development of CAM software is a very demanding task, as it requires knowledge in

distributed system architectures, and the ability to implement fail-safe software for a variety of

different real-time controllers and devices on heterogeneous platforms (cf. [4], [5]). During the

last decade, SEKAS has gained profound insight and large experience from a variety of CAM

projects. The acquired knowledge in the areas of embedded systems, real-time software, and

production control systems, as well as the achieved standards of software engineering and

quality management are regarded as the key competences of the company.

Despite this successful history, experience has also indicated some recurring problems,

including the lack of standardised technical infrastructures. Therefore, even software realising

basic functionality had to be developed from scratch multiple times. This pertains, for example,

to the implementation of several low-level communication libraries. The upcoming of

standardised infrastructures, protocols, and components will render such efforts unnecessary,

allowing SEKAS to accelerate system development and to concentrate on its core business. On

the one hand, this shortens the time-to-market for the customers of SEKAS. On the other hand,

it also leaves more time for SEKAS to realise additional features. Furthermore, the use of

standard infrastructures is expected to have a positive impact on software quality and

interoperability with other systems.

Another critical issue is that the reuse level within SEKAS is currently rather low.

Essentially, every production control system was built from scratch, tailored to the actual

customer requirements and technical infrastructure. Although the ability to adapt to different

technical infrastructures is seen as a strength of SEKAS, there is also consensus that a higher

reuse level could considerably raise the productivity. If SEKAS succeeds in developing

reusable, high-quality components independent from specific technical infrastructures, the

effort for developing different versions of the same functionality for different infrastructures

will be significantly lower. This will reduce the development costs and raise the

competitiveness of SEKAS in customised software projects. To achieve this goal, a clear

separation between domain-oriented modelling and technical modelling has to be achieved.

Consequently, the domain model represents those parts of the components that are independent

from a specific technical infrastructure. This way, the domain model can be reused or even

directly mapped to several infrastructures (cf. [6]).

In the long term, this strategy enables SEKAS to gradually transform into a component

vendor, selling products on the emerging CAM component market. The shift from custom

development projects to products naturally requires careful preparation, as it necessitates a

variety of additional capabilities and organisational measures, for example those regarding

marketing and customer support.

The main risk in the scope of the sketched componentware strategy is the uncertainty about

possible pay-backs for the costly development of reusable components. To reduce this risk, a

careful analysis and selection of suitable components is necessary.

Furthermore, most components evolve from actual projects which usually do not care much

for reusability due to the general lack of development resources and time. Thus, the decision to

Session 3 : SPI and Re-Use

Page 3.29

build a generic component has to be backed up by adequate funding, resources, and

organisational means.

To further evaluate the described approach, SEKAS has decided to set up the PIE SEPIOR.

A team consisting of in-house domain experts and experts in OO development was formed.

This team was supported by experts in object-oriented methodologies and componentware

techniques from Technische Universität München, who acted as consultants and coaches. In a

first step within SEPIOR, existing parts of a CAM system were refined and modelled as

reusable, platform-independent components.

Process Model

As a solid foundation for the development of components a suitable process model has to be

introduced. In this section, we present an architecture-centric, iterative, incremental, and

reuse-driven software development process that has been successfully integrated within the

SEKAS methodology. The main goal was the elaboration of a component-based architecture

that is flexible enough to be adapted to and reused in numerous applications of a common

domain. A software architecture of this kind basically consists of two parts: 1) a set of

components and 2) an underlying common framework gluing those components together. The

framework provides standardised interfaces, classes and communication mechanisms, and thus

allows the components to interact with each other in the scope of a predefined structure.

Especially the components within this framework serve as a point of adaptation and

configuration. Components can be conveniently adjusted or even replaced without touching

other components within the framework.

The presented process consists of four essential activities:

1. Identify components and describe their functionality.

2. Specify business-oriented component requirements, model component interfaces,

and design the interactions between them.

3. Design the underlying common framework.

4. Design the technical architecture and select a corresponding infrastructure.

Usually, these activities are interleaved and performed in an iterative and incremental fashion.

Note the clear separation of business-oriented aspects and technical activities (second and

fourth activity, respectively) in this process. This is an essential requirement as stated in

Section “Strategic and Commercial Aspects”.

Identify and Describe Components

Basically, there are two fundamental approaches for identifying the components of a system:

On the one hand, there is the more traditional “top-down” approach in which the overall system

is decomposed into components according to the specification of the corresponding

requirements. On the other hand, emerging component markets suggest the reuse of

prefabricated components. Therefore, a “bottom-up” approach aligns the system’s design to the

specification of appropriate, existing commercial or in-house components as much as possible.

Usually, in practice both approaches are combined in the context of an iterative and

incremental overall process. Such a process leads to an understanding which components are to

be developed from scratch and which ones can be reused (from previous projects or as bought

Session 3 : SPI and Re-Use

Page 3.30

on a component market).

Ideally, the set of components to be developed corresponds to the key competences of the

company. Each of these components should be further investigated as a candidate for further

reuse in other projects or even on a commercial component market. This task requires a great

amount of experience and domain knowledge to decide whether the additional effort in creating

a reusable component will result in an appropriate pay-back later on (for instance, as a result of

ongoing reuse). If so, even more effort needs to be put into widening the component’s

functionality. A good starting point are the experiences gained in previous projects. To get a

comprehensive overview, a company might consider further, unfulfilled demands and

requirements from clients, having a look at competing products, if they exist.

The result of this activity is the “big picture” of the domain under consideration. It includes

a set of components to be developed, a set of components to be bought and integrated, and a

description of their functionality and interaction.

Specify Component Requirements, Model Interfaces and

Interactions

After the components to be developed have been identified, a detailed analysis of each

component’s requirements and its relations to other components is carried out. This involves

modelling the interfaces of all involved components using common description techniques like

UML [7] as well as performing walk-throughs for selected use cases. Another main goal of this

step is to balance the level of abstraction of the component. If the abstraction level is too high,

a lot of work is needed for adaptation; if it is too low, the component is not likely to be reused

in other projects. There is no common solution for this problem. It depends on the experience of

the developer to find the right level of abstraction.

The results of this activity incorporate for each component a set of the use cases it is

involved in, as well as specifications of its behaviour and its interfaces. For this, graphical

description techniques as offered by the UML can be used.

Design the Framework

The activities described above result in a set of abstract, business-oriented components. For

most applications, this is not sufficient. They also need some common facilities that cannot be

assigned explicitly to a single business-oriented component. This pertains, for example, to

foundation classes that are used by a number of co-operating components, or to base

mechanisms like persistence management. Furthermore, the framework may encompass certain

guidelines that have to be observed by all components or interfaces.

The main result of this activity is a class diagram specifying the framework and

implementation classes for the components under development.

Design Technical Architecture

The last main activity is to capture the requirements for the actual technical architecture, and to

select a corresponding technical infrastructure consisting of suitable middleware components.

Usually, the separation of business-oriented and technical design leads to a clear architecture,

as technical details of a certain infrastructure don’t influence the business-oriented parts.

Furthermore, this approach allows the reuse of a certain business-oriented design for multiple

technical infrastructures.

Session 3 : SPI and Re-Use

Page 3.31

The main result of this activity is a specification of the technical components of the system,

including their interfaces and the interaction between them. Furthermore, the mapping from the

business-oriented components and concepts to technical components and mechanisms must be

provided.

Application Example: Alarm Management

System

This section demonstrates the application of the process model described in the previous

section at the example of an alarm management system (AMS) component. This component is

specified and implemented at SEKAS in order to serve as a reusable building block in current

and future projects.

Identify and Describe Components

Following the process model, a total of seven CAM projects were analysed as a starting point

in several workshops and design sessions at SEKAS. As a result of the analysis process, some

candidate components were identified whose functionality was needed in multiple projects.

Together, they represent a large portion of the company’s core competences. Figure SEKAS.1

shows a distilled and highly abstracted version of the identified components.

In our model, a superordinated ProductionPlanningAndControlSystem (PPCS) component

deals with the commercial aspects of the respective fabrication process, for example, product

pricing and customer orders. Product information for the necessary planning, scheduling, and

optimisation of production tasks is available from the ProductManagement component (PM).

The obtained information constitutes a part of the individual production plan for a certain

product. Furthermore, a production plan includes data like a bill of materials, production steps,

machine set-ups, and so on. The PPCS delegates the computed set of optimised tasks to the

LineControlSystem component (LCS) in form of orders for production lines and machines.

The LCS initiates and subsequently controls the processing of a production line order.

Depending on the degree of automation, the LCS may control the machines with or without

using the ResourceManagementSystem component (RMS). All products manufactured by the

LCS are managed and tracked by the PM throughout their whole lifecycle. The LCS usually

not only collects the product tracking data, but also gathers machine and production data.

Finally, the AlarmManagementSystem (AMS) component serves as a kind of global service

and may thus be used by any component. The AMS is used to inform users about system errors

or problems occurring during the production process. The AMS is a suitable component for

demonstrating the approach introduced in the previous section due to its importance; its

functionality was necessary in five of the seven projects analysed. Furthermore, to the

knowledge of the authors there is currently no commercially available AMS component that

fulfils all the requirements comprised in the subsequent section.

Session 3 : SPI and Re-Use

Page 3.32

Specify Component Requirements, Model Interfaces and

Interactions

A CAM system is by its nature a distributed system. There are components running on a wide

range of different heterogeneous platforms distributed throughout a factory. The platforms

include, for example, embedded real-time systems on production machines, real-time systems

for production control, database systems, and Windows and UNIX workstations.

Every component in the CAM system is a potential client of an alarm management system,

since every component can encounter events that need attention. However, it is not desirable to

have alarm handling done locally on every machine. An AMS should be manageable as a

single instance and should marshal access to central resources such as pagers and phone lines.

In order to emerge an appropriate design for a reusable AMS component, it is necessary to

define the requirements for the architectural design, the framework and the implementation.

The basic requirements are:

1. No loss of error information

2. Asynchronous error handling

3. Freely configurable error handling with escalation strategies

4. Platform independence

5. Transparent API

6. Context-sensitive error classification

Figure SEKAS.2 shows the major parts of the architecture of the AMS including the

framework to connect external systems to the AMS.

In detail, the External System 1 and 2 represent components that use the AMS for informing

its users about errors, problems or events appearing during the runtime of the external system

(for more details see Section “Design the Framework”).

The AMS in figure SEKAS.2 consists of two instances of the AMS-component, namely

AMS 1 and AMS 2. Each of them accepts errors from external systems and decides which

strategy is applied to handle the error according to its configuration. A strategy specifies which

error is handled by which device handler and states the parameters that are given to the

handler.

ProductManagement
PM

IProducts IProductionPlans LineControlSystem
LCS

IProduce
ResourceManagement

System
RMS

IResourceInformation

IResourceCommands

ProductionPlaning
AndControlSystem

PPCS

IProductData

IProductionTasks

AlarmManagementSystem
AMS

IAlarms

Fig. SEKAS.1: High-Level Component Architecture of a CAM System

Session 3 : SPI and Re-Use

Page 3.33

According to requirement 2, the error handling is done asynchronously, so that the external

system is not blocked and does not suffer from any overhead imposed by the error management

(for more details see Section “Design Technical Architecture”).

The core AMS gets the information about success or failure of the error handling in the

device handler. According to requirement 3, an escalation of this error is necessary in case of

failure of the error handling. Escalation means the automatic re-handling of the error with

another strategy.

Strategies are defined by the user of the AMS and are imported into the AMS by the

configuration tool. The decision to separate the configuration from the AMS has been reached

due to the fact that it should be possible to re-configure the AMS during runtime without

interfering the actual error handling. Because of requirement 1, no loss of error information is

allowed. Therefore, a minimal error handling independent from the configuration is provided.

This error handling has to be configured regarding the installed system.

The device handlers are those parts of the AMS that actually inform the user of the error. A

device handler can be a pager that reports critical errors to the user, or a printer that logs

important but not critical events. We decided to locate the device handler outside the core of

the AMS component so the user can add additional device handlers just by starting them and

re-configuring the AMS.

Design the Framework

To use the AMS component in an efficient and easy way, it is necessary to design a practicable

framework for the clients of the AMS as a part of the overall framework gluing together the

components of a CAM system. Since the external system cannot connect to the AMS without

the framework, the framework has to be designed very carefully.

According to requirement 5, the framework must provide a transparent API. It is needed for

the external system to use the AMS in an easy and therefore efficient way. Simultaneously, any

misuse of the AMS through the external system must be prohibited. The shallow interface

“handle”, shown in figure SEKAS.2, fulfils this requirement. Essentially, this interface is

sufficient for sending errors. No further knowledge about the configuration and the possible

External

System 1

Error

Logging

Alarm

Management

System

AMS 1

Alarm

Management

System

AMS 2

External

System 2

Error

Logging

configure

handle

handle

configure

Configuration Tool

Configuration Tool

Handler

Device 1

Handler

Device n

Handler

Device 2

Fig. SEKAS.2 : Architecture of the AMS.

Session 3 : SPI and Re-Use

Page 3.34

error handling is necessary.

The AMS fits into a system wide error handling mechanism, so that it is not necessary to

include different error handling mechanism in the external system. Therefore the basic AMS

error class is located in the framework, and the external system can derive its own error classes

from this basic error class. The external class can now use the error for internal error handling

and furthermore pass the error to the AMS. According to requirement 6, the basic error class

allows a context-sensitive classification of an error according to its severity. Furthermore, a

re-classification in a different context is possible.

The framework provides a functionality to log error information for example for debugging

purposes. This mechanism prevents that the AMS is blocked with debugging output. The design

allows the use of the framework without a connected AMS. This way a simple error handling

and logging mechanism is provided.

Design Technical Architecture

As stated above, various components throughout a factory must be able to access the AMS. To

enable communication, an appropriate infrastructure has to be established. The traditional

approach within most CAM systems is to use TCP/IP sockets with a proprietary protocol in

order to handle the communication between the components. This approach implies high

development efforts and does not encourage reuse. The alternative is to use a standard

infrastructure technology. We have chosen CORBA [8], because it is platform and language

independent and widely available. Consequently, the AMS component offers its functionality

via CORBA interfaces to its clients. The communication of the AMS component with its device

handlers also employs CORBA.

CORBA was chosen over DCOM [9] because it is an open standard with implementations

available for all relevant platforms, while DCOM is primarily available on the Windows

platform. In addition, production control and industrial applications are a traditional domain of

CORBA, while DCOM focuses primarily on desktop components.

As stated previously, the CORBA interface of the AMS is language independent.

Therefore, clients can communicate with the AMS regardless of the language in which it is

implemented. However, as error handling is an integral part of the implementation of any

component, language specific extensions of the framework are necessary. These framework

extensions are available for Java and C++, which allow clients to handle errors and to trace

information with minimal programming effort.

The anticipated performance bottleneck of the AMS is the network communication between

the client component and the AMS on the one hand, and between AMS and the alarm devices

on the other hand. Therefore, the efficiency of the programming language used to implement

the AMS is not an major issue. Consequently, we have chosen to implement the AMS in Java

although we expect inferior performance compared to other programming languages such as

C++. We encountered a significantly shorter development time than in C++, especially since

memory management and the integration with CORBA are much less complicated. Based on

experiences from a preliminary project1, the use of Java saved an estimated 30% in

development time. Thanks to the choice of Java and CORBA, the platform neutrality stated in

requirement 4 is also implicitly fulfilled.

Lessons Learned

1 The project comprised components written in both Java and C++ with various CORBA implementations.

Session 3 : SPI and Re-Use

Page 3.35

As mentioned above, the first step towards component development was the domain analysis of

the CAM domain. Although the participating staff at SEKAS already had basic training in OO

analysis and design, it was not easy to adapt this rather abstract knowledge to the concrete

request to do a domain analysis. The training has to be complemented by suitable guidelines for

the development process. Otherwise, the developers will be unsure where to start the analysis

and whether the analysis covers all critical sections later on. Coaching from OO and

componentware experts should be employed until the practical use of the learned techniques is

adopted by the team members.

For the domain analysis it is necessary to have experts for the problem domain and experts

for OO techniques. According to our experience, they do not need to be the same people.

We also learned that the ideal size of an analysis team is three to five members. One or two

members eventually forget critical details, more than five members sometimes linger in endless

discussions, drifting away to technical details instead of concentrating on the domain problems.

We also discovered that it is necessary to cut such discussions from time to time, and to restart

them with a smaller team. These results have an organisational impact on the planning of the

person power for future design activities.

During the whole design and implementation phase of the components a CASE-Tool with

UML-support and sophisticated code generation was used. We think it is not practical to make

the design without such a tool. It is also necessary to use the tool during implementation,

because an iterative development cycle is only possible if the way from design to

implementation and back to design is feasible. That implies that the tool supports good

synchronisation mechanisms between the source code and the design model and good code

generation possibilities. In fact, code generation and synchronisation really shortens the

implementation time and makes the design more robust, because the design is not hidden in

source code and so the developer is prevented from destroying good design during an

implementation enthusiasm phase.

We also found out, that a CASE-Tool using UML helps very much in providing

documentation and keeping it up to date. The reason for this is, that the UML diagrams are

easy to understand and are kept up to date, using the synchronisation techniques of our tool.

During design and development we experienced that the more time we spent to design the

important parts, the less time was needed for implementation and the more readable and simple

was the emerging source code.

However, it is not necessary to first design every detail of the component and then proceed

to implementation. On the contrary, it is sometimes necessary to make a detailed design of the

important parts and a very rough design of the less important parts, to implement the system

prototypically, and to try whether the design works. Then one can go back to design and

specify the missing parts. If it is found that there are conceptual errors in the design, it will cost

less time to make corrections according to this approach.

Result Measurement

The assessment of the degree of reusability is done based on a so-called base line project. The

base line project comprises selected parts from an actual project of a representative SEKAS

customer from the CAM environment. The customer project included the integration of distinct

manufacturing lines, transport, logistics and test into an continuous production process.

Customer acceptance was reached in May 1999.

The effect of reuse is assessed by comparing the effort needed for the original development of

the base line project (delivered to the customer) and the effort needed for the redefinition of the

base line project using the newly constructed components and their framework. The goal is to

reduce development effort by at least 20%. An analogous comparison is drawn regarding

Session 3 : SPI and Re-Use

Page 3.36

warranty and maintenance efforts. These should be reduced from 5% of the original

development costs to 2.5 %.

The introduced measurement avoids the need for prototypical projects, but takes some time to

get a statistical relevant result for maintenance efforts.

The expected commercial impact cannot be consolidated at the moment, but will be assessed at

the end of the project. However, the authors are confident in the success of SEPIOR, because

the lessons learned so far are more than positive.

Conclusions

Although the process improvement experiment SEPIOR is not completed the time this paper is

written, some preliminary conclusions can be drawn. The conclusions mainly summarise the

technical and human aspects in introducing component based software development.

Despite the initial expense of introducing component based development, the reuse aspect

permanently spreads at SEKAS, indicating the rising acceptance of these techniques and

methodologies. One of the major impediments is to create continuous stimuli to foster the

development of reusable components on the one hand, and to emphasise the deployment of the

components on the other hand. The primary risk of management activities inciting these stimuli

is that developers overshoot. A natural balance between developing reusable components and

specifically customised modules or prototypes has to be found. This premises a skilled

developer, who not only shows technical excellence and experience but also possesses common

sense. Thus, in the authors opinion the management activities should emphasise on continuous

professional technical and social training of the developing staff instead of financial or

non-financial incentives.

The major technical issue is the development of a framework for components both during

component development and component deployment. This topic is most important for

component vendors. The component framework has to include aspects such as communication,

configuration, persistency and distribution. Additionally, a framework has to comprise testing

and debugging aspects that even work with no introspection possibilities based on the code of

the components.

References

[1] Homepage of SEKAS GmbH, http://www.sekas.de/, 1999.

[2] Homepage of the SEPIOR project, http://www.sekas.de/, 1999.

[3] Homepage of the European Systems and Software Initiative,
http://www.cordis.lu/esprit/src/stessi.htm, 1999.

[4] Smart Fabrication Verbund CIM, Fraunhofer Gesellschaft, IPA,
http://smartfab.ipa.fhg.de/, 1997 (in German).

[5] Manufacturing DTF, OMG Document RFP mfg/98-07-05 v2.6, 1998.

[6] Klaus Bergner, Andreas Rausch and Marc Sihling, Using UML for Modeling a
Distributed Java Application, Technische Universität München, technischer
Bericht TUM-I9735, 1997.

http://www.sekas.de/
http://www.cordis.lu/esprit/src/stessi.htm

Session 3 : SPI and Re-Use

Page 3.37

[7] Unified Modeling Language Specification, Version 1.3, Object Management
Group, http://www.omg.org/, 1999.

[8] CORBA overview, Object Management Group, http://www.omg.org/corba/,
1999.

[9] DCOM overview, http//www.microsoft.com/com/tech/DCOM.asp, 1999.

Authors Information:

Dipl.-Inform. (FH) Paul Bininda studied Computer Sciences at the Fachhochschule München

from 1985 to 1991. His graduation project was a portable Oberon compiler and an object

oriented GUI-Framework implemented in Oberon. Since 1992 Mr. Bininda is employed at

SEKAS GmbH. There, he is the System Manager responsible for the companies heterogeneous

technical infrastructure and has been working on a wide range of projects including:

Development of the device layer of a radio monitoring system, development of a Motif GUI for

a radar surveillance system, test management for emulators, simulators and architecture models

of a new super computer, project management for the development of an automatic test case

generator/verifier, development of parsers and transformers for different programming

languages, development of a scheduler and visualisation process on INMOS Transputers,

development of a high performance test data archive and evaluation software for aeroplane

turbine manufacturers.

Dipl.-Inform. Andrea Blessing studied Computer Sciences at the Technische Universität

München from 1989 to 1995. Since 1995 Mrs. Blessing is employed at SEKAS GmbH. She

has been working in projects of different domains such as the design and implementation of a

graphical user interface for production test systems, development of a snmp proxy for

managing concentrator access multiplexer equipment in a backbone network, development of a

configuration tool based on a oracle database for developing graphical user interfaces for

measuring devices, development of a distributed security system for online maintenance in a

manufacturing company. She is currently second project manager of the SEPIOR project and

consultant for object oriented analysis and design at SEKAS.

Dr.-Ing. Wolfgang Daxwanger studied Electrical Engineering at the Technische Universität

München from 1986 to 1992. From May 1992 until December 1998 he worked as a research

assistant with the Laboratory of Automatic Control Engineering at Technische Universität

München. During this time he was concerned with the development of locomotion platforms

and computing systems for autonomous mobile robots in the Sonderforschungsbereich 331

„Information processing in autonomous mobile robots.“ For his dissertation on automatic

visual parking control using artificial neural and fuzzy networks he received the Dr.-Ing.

summa cum laude in July 1999. Since April 1999 Dr. Daxwanger is employed at SEKAS

GmbH. His current work is concerned with the design of reusable software components. His

major interests are object oriented software development, componentware and softcomputing.

Dipl. Inform. Thomas Krenzke studied Computer Sciences at the Technische Universität

München from 1989 to 1995. Since 1991 he worked as a developer for SEKAS GmbH in

several Projects. After his graduation in 1995 he was employed at SEKAS GmbH and was

involved in the design and implementation of large database systems within the CAQ/CAM

domain. He was project manager for the development of a large production control system for

the production of printed circuit boards. Due to his experience in the CAQ/CAM area, he is

one of the domain – experts in the SEPIOR project at SEKAS GmbH. So he‘s currently

http://www.omg.org/

Session 3 : SPI and Re-Use

Page 3.38

working on the design and implementation of reusable components for the CAQ/CAM domain.

His major interests are componentware, object-oriented software development and the design

and development of database systems.

Dipl.-Inform. Oliver Schmid studied Computer Sciences at the Technische Universität

München from 1989 to 1995. From July 1995 to December 1997 he worked as research

assistant with the Laboratory of Real-time Systems and Robotics at the Technische Universität

München. Between 1992 and 1997 he was involved in the Sonderforschungsbereich 331

„Information processing in autonomous mobile robots.“ There, he was one of the responsible

developers for a distributed, object-oriented, active knowledge base with real time capabilities.

Further, Mr. Schmid did fundamental research on the topic „Assembly sequence planning with

co-operating manipulators.“ Since 1998 Mr. Schmid is employed as software engineer at

SEKAS GmbH. His work concerns the area of automation (CAQ/CAM). Under this scope he

participated at the development of a production control system for the production of printed

circuit boards. Currently he is working on the development of a reusable alarm management

component and its final valuation within the SEPIOR project.

Dr. Klaus Bergner studied Computer Sciences at Technische Universität München from 1986

to 1992. Since February 1992, he works as research assistant at the Chair for Software &

Systems Engineering of Prof. Dr. Manfred Broy. His dissertation about the development of

graphical modelling techniques for object-oriented systems was finished in 1996. Since 1997,

Dr. Bergner leads the project FORSOFT A1, which is concerned with component-oriented

software development.

Dr. Bergner managed various academic software projects, among them the development of a

web-based database system and a distributed CASE-tool. His main interest areas are

object-oriented and componentware development methods and software architecture. Since

April 1999, he is CEO of the new-founded technology start-up company 4Soft, specialising in

componentware development and large business architectures.

Dipl.-Inform. Andreas Rausch studied Computer Sciences at Technische Universität

München from 1991 to 1996. Since February 1997, he works as research assistant in the

project FORSOFT A1 at the Chair for Software & Systems Engineering. His field of research

comprises software architecture, distributed and component-oriented systems, object-oriented

modelling and development, and methodological aspects of software engineering.

Before his job at FORSOFT, Mr. Rausch managed various industrial software projects for

distributed information systems. He is one of the co-founders and owners of the start-up

company 4Soft.

Dipl.-Inform. Marc Sihling studied Computer Sciences at Technische Universität München

from 1991 to 1996. He is currently working as research assistant in the project FORSOFT A1

about component-oriented software development. His main interest areas are object-oriented

and component-oriented software engineering and graphical description techniques. Mr.

Sihling is one of the co-founders and owners of the start-up company 4Soft.

Page 4.1

Session 4

SPI and Requirements

Management

Chairman

Richard Messnarz
ISCN, Dublin, Ireland, Graz, Austria

Session 4: SPI and Requirements Management

Page 4.2

The user

requirements

elicitation and

specification

process:

deployment

experience of

CSELT DOMINO

2.0 methodology

Antonella Bartocci, Marina Melchioni

CSELT, Via Reiss Romoli 274

10148 Torino, Italy

antonella.bartocci@cselt.it

Introduction

In the area of user requirements management CSELT has developed a methodology

called CSELT DOMINO (Distributed Object-oriented Methodology for and

Session 4: SPI and Requirements Management

Page 4.3

INcremental apprOach) which is now at its version 2.0 ([2], [3]). We started

elaborating and experimenting it since 1996 and it has now been applied to over 30

service oriented applications for user requirements elicitation and specification. Our

company was new to such an approach so a supporting process has been built to help

deploying this methodology. To pursue specific quality objectives our company

adopted the ISO9001 model, obtaining this certification two years ago: the cultural

change we need to perform is very broad and the feeling is that we’ve only just started

with it. This paper describes CSELT experience on this issue by providing an overview

of CSELT DOMINO 2.0, then by describing how it was decided to support its

deployment in software projects and the lessons learned from this experience.

About CSELT ..

CSELT, founded in 1964, is the Telecom Italia Group's Company for study, research,

experimentation and qualification in the field of telecommunications and information

technology. The Center has the technical know-how for the principal activities of the

Telecom Italia Group and applies them in the research for new services, advanced

applications and integrated solutions, working mainly according to the view of an

Operating Company. CSELT contributes to the study of advanced systemistic

scenarios, plays a link role between academic and applied research, thanks to its strong

presence in the international context, becoming reality through the participation in

common research programs and standardization activities. CSELT's lab constitute a

reference point for both feasibility and integration studies, development and

experimentation of advanced solutions, evaluation and qualification of products and

processes, demonstration of innovative services. Furthermore, great attention is paid on

in-field systems experimentation, especially in those areas where innovation can be

applied in a short-medium time scale.

.. and the Telecommunication Industries

Telecommunication industries are evolving rapidly and changes are often

unpredictable: liberalisation and competition put stronger constraints on the time-to-

market requirements for faster service delivery. At the same time, these new services

are requested to be customisable on one side, and to realise easy and secure access to

shared information, on the other side, increasing the use of network resources. All such

“environmental” changes require software systems to become always more flexible and

integrated with one another. Consequently, complexity of telecommunication

applications is always growing: the requested functionalities are increasing in number

and they must often be provided by etherogeneous systems. To build an application,

especially if it is distributed, it really becomes necessary to be supported by ‘a good set

of rules’ useful to formalize the process of user requirements capture (elicitation and

engineering) and for the corresponding development. This is in order to gain control

over developing ‘the right system’, according to the customer needs (it’s important to

get all requirements and to get them right as early as possible in the software life

cycle): in other words, the availability of a methodology useful in gaining control over

the complexity of a certain application problem becomes necessary, allowing to

analyse it according to different levels of detail, according to different points of view,

according to the customer feedback, so that the entire software project management

Session 4: SPI and Requirements Management

Page 4.4

becomes more systematic.

CSELT was originally a center for the medium-long term research while lately the

market trend has become such that it has become more focused and tightly drived by

its customer specific needs, on tightest time schedules. Typically today our projects are

such that we often act as software suppliers towards our customer without actually

being completely a software house ourselves, nor do we have such a mandate. In fact,

very often we realize our customer software applications either by outsourcing some

part (or even all) of the software development or by buying some kind of specific

software development consultancy from some external software house. This is the

basic reason why historically we have never needed a corporate approach for managing

a software project and why we’ve been gradually changing direction over the last

years.

CSELT’s Approach to User Requirements

Specification over the last years

Due mainly to historical reasons, CSELT has never had a uniform approach to

capturing and documenting user requirements, since this was never felt as a specific

need before. In fact, CSELT has never had a specific ‘organizational culture’ towards

this activity (nor towards software engineering in general) since our ‘products’ have

always been results of research studies, and even when software was delivered it was

accepted for it to be produced without having to follow any specific software life cycle,

with no explicit activities defined.

The new trend, previously described in the Introduction for telecommunication

industries, is quite challenging for CSELT and it has determined for us quite a radical

change since our major software projects now have become more focused and finalized

to delivery on a short-to-medium time scale, also changing our ‘traditional’ way of

managing relations with our customers. We are often being commissioned to deliver

software applications dealing through its entire software life cycle process, that is,

starting from understanding user requirements and going through to software delivery,

maintenance and evolution, and (in some cases) also through providing some

operational user support.

Our customer’s organizational and competitive environment typically change very

rapidly and they may impact on some (or all) of the needs previously defined for a

certain software system. Also, our customer seldom is able to define specific

requirements precisely since he is obviously mainly aware of the major, very high level

needs that need to be solved urgently by the software system. While this in the past

was not much of a problem, since there was ‘plenty’ of time to understand explicitly all

user requirements, to study and experiment different alternatives and different technical

solutions, nowadays this is no longer affordable.

Another somewhat critical issue that we are facing lately is that often we acquire

software development consultancy from external software houses, and it happens that

some consultants leave before the project has come to its end, meaning that we have to

manage such turn-overs, and the difficulties of reducing the cost of coping with them

may be enhanced by defining some ‘good organizational practices’ that all software

projects should follow.

As a matter of fact, all these ‘environmental’ changes are quite challenging for CSELT

Session 4: SPI and Requirements Management

Page 4.5

and to pursue specific quality objectives our company adopted the ISO9001 model,

obtaining this certification two years ago. Furthermore, to better understand and focus

on processes and activities to improve, and for the reasons just mentioned, concerning

the area of software project management, a specific project team has been set up whose

tasks can be mapped on the KPAs (Key Process Areas) of CMM level 2 [1]; among

these internal processes there is also user requirements management (other issues

considered by this team are concerned with: configuration management, testing,

software project management, external software suppliers rating and management).

CSELT DOMINO 2.0: what is it and how it was developed

CSELT DOMINO 2.0 is a methodology originally developed to cover, in CSELT’s

software projects, the user requirements specification and the software requirements

specification phases ([4], [5]).

CSELT’s need was to define a corporate process to provide a common way for people

in a project team to perform the same actions in the same order, for making the same

kind of choices, for producing the same documents in certain times, and so on. Also,

the need was for a process that is a systematic way for operating in a repeatable

manner (i.e., stable) and a common definition of the documents to be produced

(contents + structure). The need was also to increase control over the software to be

developed starting from the specification phase and to use “a tool” for representing

information in a rather rigorous way, reducing ambiguity, redundancy and incomplete

coverage of user requirements.

Furthermore CSELT’s objectives were to develop a methodology supporting

requirements elicitation and engineering in order to produce verifiable specifications,

with least ambiguities, increasing completeness and augmenting characteristics such as

consistency, modifiability and traceability. Among the objectives there was also the

need to support requirements analysis for service oriented systems, in order to define

an application as a set of components, to clearly define the application interfaces and

to define a first draft of the application architecture. This kind of approach should have

augmented software and specifications reuse.

With this set of requirements, the approach adopted was to go for an object-oriented

based methodology, looking at the de facto standard techniques of that time (mostly

Jacobson [6], Rumbaugh [7] and Booch [8]) and to merge and customize these

approaches according to CSELT specific needs. As a matter of fact, these OO

methodologies were not found completely adequate for our purposes, since for our

software projects we had the specific requisite to provide support starting from the

very initial activities of the analysis phase, while those OO methodologies provided

good modelling techniques mostly for performing detailed analysis. For historical

reasons, as mentioned above, not every department in CSELT is familiar with the main

acitivities of a software life cycle, so people are generally not used to specific tasks

such as capturing and documenting user requirements, making explicit all implicit

requirements, then tracing them through the testing phase, and so on. Moreover, people

are generally not aware about all the possible different types of user requirements they

should capture, so our urgent need was for a methodology providing guidelines for

assuring an exhaustive coverage of user requirements starting from considering the

application from the external users point of view. In [6] the Use Case technique was

found useful but not enough powerful to provide such support so we introduced a

Session 4: SPI and Requirements Management

Page 4.6

model also inspired by domain analysis for performing the first steps of the user

requirements capture activity, which is CSELT DOMINO 2.0 main focus (starting

from the user requirements specification developed applying our methodology it is

possible to perform detailed analysis and design using a specific object-oriented

methodology, or even a different kind of methodology).

Additional general characteristics of DOMINO 2.0 are the fact that it supports an

iterative and incremental life cycle and that its architectural framework refers to OSCA

[9] and TINA [10] approaches, meaning that it provides guidelines supporting design

separation of user interface specific aspects from application logic aspects and from

data management aspects (in OSCA these were called user interface-layer, process-

layer and data-layer): making design decisions keeping them separated provides

advantages for the later activities in the software life-cycle (e.g., maintanance).

Briefly, DOMINO 2.0 is structured as follows (see Figure 1): it is organized in two

main phases, User Requirements Specification and Software Requirements

Specification. Each phase is then organized in a set of tasks, and for each task we have

defined its activities, its inputs and outputs. For each activity DOMINO 2.0 provides a

set of guidelines and modelling techniques to perform the task and to produce its

associated output information. For the entire process DOMINO 2.0 provides a pre-

defined set of templates, customizable, to structure information in the User

Requirements Specification and to uniquely identify requirements.

Since CSELT experience is such that software is mostly outsourced (especially for

medium-big sized products) we have so far been able to apply mainly the first phase of

DOMINO 2.0 so this paper is focused on it.

User requirements specification Software requirements specificationSoftwareSoftware requirements specificationrequirements specification

User Requirements

Engineering

Dynamic model

definition

Logical Aggregation

of classes

Static model

definition

User Requirements

Elicitation

Fig. BARTOCCI.1: CSELT DOMINO 2.0 for User and Software Requirements

Specification tasks.

In DOMINO 2.0 the user requirements specification phase is structured in two tasks:

 User Requirements Elicitation: this task is made of the following activities:

Application Definition; Definition of Scenarios; Application Context Analysis;

Structuring the application services into Components (by performing the

Application functional structure analysis and the Identification of components for

Session 4: SPI and Requirements Management

Page 4.7

each service activities); Application increment definition. Note that these activities

are generally performed according to an iterative process (rather than sequential).

The goals of this task are mainly to provide a definition of what the application

should and should not do, of the relationships/interactions taking place between the

application and the entities identified in its external environment (or ‘context’), of

its main services and a sketch of the application (and service) components.

The modelling techniques used in this task were partly inspired by domain analysis

and, in DOMINO 2.0, they are called: context model (one diagram for the entire

application: it defines the application boundaries, the external entities and the

interactions taking place among them. This new modelling technique was

developed and introduced in DOMINO since the Use Case model resulted to be

less rich of semantic information useful at this point to depict the application

characteristic in one diagram and from the external users point of view, functional

structure model (one diagram for the entire application: it defines the application

basic processing components, through a functional decomposition structure; the

leaves of the graph in DOMINO 2.0 are called ‘process macro-elements’), and

macro-elements model (one diagram for each application service: it combines the

external and the internal functional views, i.e., the two preceding models, providing

the initial architectural definition for the application. This model defines which

process macro-elements are used to realize the service considered and it also

defines which kind of interface macro-elements are needed. In DOMINO 2.0 there

are three types of interface macro-elemnts, one for each possible type of external

entity: human user, database and network element). DOMINO 2.0 also strongly

supports use of scenarios to identify and characterize relationships between the

application and the external entities in its environment and the application services.

This task produces as main output the application scope definition, an overview of

its identified services and the identification of the application increments and

releases.

 User Requirements Engineering: this task is made of the following activities:

Application user requirements specification; Services user requirements

specification; Macro-Elements user requirements specification; User Requirements

Specification document Finalization. Note that these activities are generally

performed according to an iterative process (rather than sequential).

The goals of this task are mainly to capture and formalize: the application behavior

for each application service, the application non functional requirements and the

services and macro-elements functional and non-functional requirements.

This task usually drives back to the previous one in a refinement process, so the

modelling techniques are the same. The requirements formalization activities

performed in this task are supported by introducing a template with specific fields

(customizable to some extent) and numbering rules providing unique identification

of each single user requirement. This formalization scheme was introduced to

support features such as requirements classification of importance, verifiability,

modifiability and traceability. This task produces as output the functional and

non-functional user requirements definition (at the application level, services level,

process and interface macro-elements level), and the user requirements

specification document ready for sign-off (i.e., customer validation).

Session 4: SPI and Requirements Management

Page 4.8

The Process Implemented for Supporting CSELT

DOMINO’s deployment

After experimenting the methodology on a case study software project (based on a real

software project realization) CSELT DOMINO 2.0 has been gradually spread in our

company starting with just a few number of selected software projects, looking for

‘friendly’ users (i.e., colleagues quite familiar with software engineering concepts and

aware of the fact that this approach was not yet ‘istitutional’ in the organization). The

kind of support provided in this phase for learning and applying the methodology was

that of providing at the beginning a general overview of the entire methodology

approach and then by teaching it in more detail while the project was on-going, giving

new elements when they were needed. This experience has been useful both for refining

the methodology description itself and also for tuning the deployment approach.

The approach adopted to train future users of this methodology was to provide courses

to colleagues on a request basis. The course provided has now come to its eight edition

and refining it has been an “on-going” work. At the moment it is structured in three

days and it provides an initial general overview of the importance of quality

management in a software project, covering its main aspects, then relating these issues

to the user requirements specification process and then going in the details of the

DOMINO 2.0 methodology.

In parallel with this training activity a number of colleagues have been specifically

trained to provide support directly to software projects with a mentoring activity (this

support has also been provided on a request basis). The mentoring activities involved

have been modelled in a process (see Figure 2) in order to clearly define and separate

the mentoring activity (white color) with the project specific activity (grey color). The

“tools” made available for supporting the corresponding activity are shown on the right

side of the process. The ‘Checklist’ has been developed to support the mentor in

verifying, at certain points in the mentoring process, the correct ‘formal’ interpretation

and application of the methodology concepts and constructs (covering all its aspects,

from the models to the chapters to be included in the final specification document); all

other consistency doubts/checks need to be worked out together with someone from the

project team. The ‘Tool’ refers to a customization that was applied to some market

tools (RequisitePro and SoDA) to support requirements management and the automatic

generation of the user requirements specification template according to DOMINO 2.0.

Since DOMINO 2.0 is based on an iterative process, the mentoring process also results

to be iterative. The mentoring process activities shown in Figure 2 are:

 Explaining the problem: at the beginning, the person being supported has to

briefly explain what the application to be developed is about. This generally

happens through a few meetings and some documents exchange.

 Understanding the problem: the mentor needs to gain a sufficient understanding of

the application characteristics in order to be able to provide adequate support in

applying DOMINO 2.0 to that specific project.

 Customizing DOMINO 2.0 application for the specific problem: here the

objective is to determine which will be the user requirements specification

characteristics according to how this document will be used. Considerations in this

Session 4: SPI and Requirements Management

Page 4.9

activity are mainly concerned on issues such as fixing the level of detail that the

analysis should have, what fields of the requirements template need to be used, and

so on.

 User Requirements Elicitation: this task is supported by mentoring but, as shown

in Figure 2, the activities being specifically supported are those related to building

the models (while defining and writing user requirements in the document are

activities left up to the project team).

Explaining the problem

Understanding the problem

Customizing DOMINO 2.0
application for the specific problem

User Requirements Elicitation

Building the models

A

User Requirements Engineering

Writing a first set of templates

Writing remaining templates

Consistency
Check (2)

Reading the Specification Document

Project Team

END

Not OKA

Not OKA

Not OKA

Not OK

Check
list

Consistency
Check (1)

Formal
Check

Semantic
Check

Mentoring

Check
list

Check
list

TOOL

Fig. BARTOCCI.2: the mentoring process for CSELT DOMINO 2.0 deployment.

Session 4: SPI and Requirements Management

Page 4.10

 Consistency Check (1): this check goes through the models developed in the User

Requirements Elicitation task in order to verify that they’ve been correctly

understood and applied by the project team; this check also verifies ‘formal’

consistency among the different models. The mentor uses the Checklist here and

typically performs these checks together with someone from the project team. This

kind of consistency check is generally performed more than once and it is

performed the first time when the models start to be stable.

 User Requirements Engineering: this task is supported by mentoring but, as

shown in Figure 2, the activities being specifically supported are those related to

formalizing user requirements by filling the templates provided by DOMINO 2.0.

Here the project team may choose to use the Tool to be supported in managing

user requirements templates and in generating the Word document.

 Consistency Check (2): this check goes through the templates filled in the User

Requirements Engineering task to verify if they have been correctly applied and

also checks ‘formal’ consistency between these and the models previously

developed. The mentor uses the Checklist to perform this activity.

 Formal Check: this is to verify that formally the final user requirements

specification document is structured according to DOMINO 2.0 and according to

the customizations that were defined at the beginning. This check is performed by

the mentor.

 Semantic Check: this is to validate that the final user requirements specification is

in line with the customer needs. Of course this kind of check can only be

performed by someone from the project team (typically the project manager) and it

is actually an on-going activity, throughout the specification process. Here it is

highlighted just once, in a specific point, as a quality check before asking the

customer a final and formal validation of the document and for then allowing

exiting this phase of the project.

Lessons Learned ..

As already mentioned, due to historical reasons CSELT has never needed a corporate

approach for managing a software project but lately we’ve been gradually changing

direction. DOMINO 2.0 is the first methodology for capturing and specifying user

requirements being spread in our company (it is not the only one, though) and this is

only one aspect of the whole matter. The cultural transition we are performing is

broader and in fact there’s a specific project team providing support to software

project managers by selecting/developing and introducing in CSELT a set of

guidelines. All these guidelines are now being integrated in the definition of a basic set

of activities that any software project life cycle in CSELT should have. Another aspect

of the integration being performed, for example, relating to DOMINO 2.0, is that

guidelines have also been developed for defining test cases for user requirements

specifications generated by applying this methodology.

.. about CSELT DOMINO 2.0 and its deployment approach ..

DOMINO 2.0 application overall is giving a positive feedback. The major advantages

Session 4: SPI and Requirements Management

Page 4.11

appreciated by users are that it offers a structured and guided approach to gradually

approach the complexity of the specific problem, and the context model results to be a

powerful and sufficiently userfriendly technique to discuss the application boundaries

and services not only within the project team but with the customer also. Team

working and cooperation were also found to be improved by the adoption of this

methodology thanks to a better organization and documentation of requirements and by

using “a common language”, also allowing for easier walkthroughs and reviews with

the customer for sharing the application vision. Finally, another useful characteristic of

DOMINO 2.0 was found to be that it supports producing a specification document

with different levels of details so that it is quite easy to extract from it a specification

document containing the ‘right’ level of detail necessary to be validated by the

customer while giving the entire specification document to the development and testing

groups. Another advantage found by our users was that this kind of component-based

specification approach augments specification reuse (new releases may be specified

easily with least redundancy simply by referring to previous versions of the user

requirements specification). Regarding the User Requirements Elicitation task, it was

generally felt that the activities in this task are a good “tool” for enforcing exchanges

of ideas between the different roles involved in the project. Regarding the User

Requirements Engineering task, it was found useful especially for formalizing user

requirements when software development was outsourced and for deriving some test

cases. The major disadvantage DOMINO users talk about relates to the overhead of

documenting user requirements (which typically may change very often and very

rapidly on-going) and in such situations DOMINO 2.0 ends up in requiring too many

formalisms and overhead in updating coherently the requirements specification.

As far as the course is concerned, it was initially structured in order to provide

colleagues with a case study extracted from an application of DOMINO 2.0 to a real

software project. The target in doing so was to comment directly with the class how

DOMINO 2.0 specifications were going to look like, how the models are to be applied

and so on. This approach though resulted to be less effective than expected since it was

hard to make people understand that customizations are possible and also where and

when they can take place. The major refinement to the course objectives was then in

this direction: it was decided not to show any specific example but rather to work

directly in class on a case study, performing in small groups the task’s activities. This

resulted to be much more effective, providing room and suggestion for broader

discussion and questions on particular concepts.

About the mentoring process it was found positive in itself, though there were some

drawbacks/refinements necessary. First of all, when people new to the methodology are

supported, it becomes harder to trace the line between supporting understanding of the

methodology and actually performing the analysis of the specific application, this

sometimes resulted in going beyond the planned schedule for the time assigned to the

mentor. The major cost of supporting a project in using DOMINO 2.0 was generally

felt to be in checking and walking through the analysis models and specification being

produced: the mentor is generally not skilled in the specific project domain and yet

she/he needs to have some knowledge of it to understand if the modelling techniques

are being applied correctly. Also, when the methodology is being used for the first

time, the initial models are sometimes completely built together with the mentor. So we

looked for some sort of trade-off solution, and what we’re thinking is to train the

mentoring people in order to cover the different department areas, trying to shorten the

gap between the methodology and the domain knowledge in the person supporting

Session 4: SPI and Requirements Management

Page 4.12

deployment. Another relevant finding was that specific time needs to be planned and

scheduled ahead by the project manager to take into consideration all the above issues.

Furthermore, once a person has become familiar with DOMINO 2.0, by having

applied it to at least one project, then subsequent experiences need very little support.

For this reason two kinds of supports are being issued lately: a “first level support”

(mentoring projects that will apply the methodology for the first time) and “second

level support” (mentoring projects already skilled on the methodology but still

requiring some ‘spot’ kind of support on very specific issues).

As far as the Checklist is concerned, while it was originally thought to be a tool

supporting the mentor in performing the consistency and formal checks of a correct

DOMINO 2.0 application, they actually became tools supporting the analysts in

producing the specification, especially the models (as if it were a sort of “quick

reference guide”), so it is actually being used in both these ways. One difficulty with it

is that it becomes hard to apply when the methodology is being customized too much.

 DOMINO 2.0 is resulting adequate for medium/large software projects (referring to

complexity, cost, number of releases per year, time schedule, control, ..), while

resulting in too much overhead for medium/small software projects. For these latter

kinds of projects we developed (late last year) a more general set of Methodology

Guidelines supporting the user requirements specification process, containing general

principals, a small and simple set of suggested modelling techniques, and a

specification document template.

.. and about the cultural change that CSELT is performing

Over the past year there have been may occasions to realize that the cultural change

that CSELT needs to perform is really complex and for this reason it is being slow. In

CSELT this year about 50% of the total number of projects are software projects; the

DOMINO 2.0 courses so far have been attended by about 25% of the people allocated

on a software project and so far we have supported with mentoring 4 projects with a

‘first-level support’ and 3 with a ‘second-level support’; also other 7 projects asked

support in using the more general Methodology Guidelines mentioned above. These are

considered quite good numbers to start with, but the reality has been that only in those

departments where the top-management was convinced and sponsored a more

systematic approach to software engineering, we were really able to have some

concrete impact, otherwise we found most people reluctant to perform this change.

Another good result and impact for us has been that our System Quality department

has modified some of its procedures adopting several results that have been produced

by the project specifically set up to support software project management. Among

them is the must that every software project from now on will have to document user

requirements by producing a specification for them, either by applying DOMINO 2.0

or the more general Methodology Guidelines, and that they will have to provide Test

Plans correspondingly. On the other hand, due to historical reasons, CSELT was never

institutionally used to thinking and working ‘by processes’ but this new trend is now

gradually being adopted by our System Quality department, and the area of software

project management will be among the first to be involved by it. For the above reasons

in CSELT we don’t have yet a specific metric to measure our improvements (we only

keep track of the number of non conformities we get by each of the ISO9001

certification inspections), though another very ‘empirical measure’ we are having,

Session 4: SPI and Requirements Management

Page 4.13

relating to software project management, is that many progress reports of the projects

being supported with CSELT methodologies and corresponding mentoring mention that

they have produced the user requirements specification using such methodology, or

such mentoring (.. people is starting to talk about them).

References

[1] ISO9001: Quality systems - Models for Quality assurance in

design/development, production, installation and servicing.

[2] A. Bartocci, C. Gajetti, P. M. Maccario DOMINO (Distributed Object

oriented Methodology for an Incremental apprOach) versione 2 - La fase di

Specifica dei requisiti utente, Documento Tecnico CSELT dicembre 1998.

[3] A. Bartocci, C. Gajetti, P. M. Maccario Template del documento di specifica

dei requisiti utente (versione 2) sviluppato secondo la metodologia DOMINO

2.0, Documento Tecnico CSELT dicembre 1998.

[4] A. Bartocci, P. M. Maccario Proposta di approccio metodologico per

l’analisi di applicazioni software orientate ad oggetti - La Metodologia

DOMINO, Documento Tecnico CSELT dicembre 1996.

[5] Bartocci A., Grasso E., Maccario P.M., Martini G. Proposta di approccio

metodologico ed architettura di riferimento per i sistemi di supervisione e

controllo, Documento Tecnico CSELT, 1996.

[6] I. Jacobson Object Oriented Software Engineering - A use case driven

approach, Addison Wesley 1992.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen Object-

Oriented Modelling and Design, Prentice Hall 1991.

[8] Booch, G. Object Solutions Managing the Object-Oriented Project, Addison-

Wesley 1996, ISBN 0-8053-0594-7.

[9] Bellcore; The Bellcore OSCA™ Architetture, Bellcore Technical Advisory,

1992.

[10] TINA-C deliverable Computational Modelling Concepts, 1996.

About the Author

Antonella Bartocci received her degree in Computer Science in 1993 from Turin

Universivity. Right afterwards she joined CSELT where she was involved in the

Information Technology and Software Architecture Solutions department. She has

been active in the ITU-T SGX for standardization of formal specification languages

(mainly SDL and MSC) and she worked actively in the integration of the GDMO

formalism with SDL. In 1996 she joined CSELT’s Software Design and Product

Quality Support departement where she became involved on working with object-

oriented software analysis and design methodologies, and corresponding CASE tools,

to provide support inside CSELT to specific software projects in the different

telecommunications applications area. Over the last two years, she was actively

involved in the definition, training and mentoring of CSELT DOMINO 2.0

methodology and of the more general Mehthodology Guidelines produced in CSELT

for user requirements capture and specification. This recent working experience has

Session 4: SPI and Requirements Management

Page 4.14

also naturally brought her to work with CSELT’s System Quality department, in

relation with CSELT’s ISO9001 certification, for defining and refining some of the

guidelines and procedures developed specifically for software project managers, in

order to start considering them from a software process improvement point of view.

About CSELT

CSELT, founded in 1964, is the Telecom Italia Group's Company for research,

experimentation and qualification in the field of telecommunications and information

technology. The Center has the technical know-how for the main activities of the

Group and applies them in the research for new services, advanced applications and

integrated solutions, working mainly according the view of an Operating Companies.

CSELT contributes to the study of advanced systemistic scenarios, plays a link role

between academic and applied research, also by being present in the international

context. CSELT's lab are a reference point for both feasibility and integration studies,

development and experimentation of advanced solutions, evaluation and qualification

of products and processes, demonstration of innovative services. Among the various

areas where the Centre provides results, we can list: Innovative services for telephony,

multimedia, data networks, mobile networks, Internet; Evolution of system and

networks for fixed, mobile and satellite telecommunication networks, also addressing

planning issues; Development of interconnection services and management, to leverage

on the infrastructure for services offering; Qualification of equipment, systems and

services, quality aspects and environmental impacts for the whole life-cycle of telecom

products. CSELT provides also, both to the Group and to others, continuous services

for conformance certification to EU in various technical sectors, thanks to its LAP

(Accreditated Laboratory).

Session 4: SPI and Requirements Management

Page 4.15

Achieving

Customer

Satisfaction

through

Requirements

Understanding

John Elliott

System and Software Engineering Centre,

Defence Evaluation and Research Agency, Malvern, UK

Introduction

One key goal of all businesses is to achieve a continuous and high level of customer

satisfaction in the delivery of services and/or products. Such satisfaction is believed to

be the basis of long term profitability and business growth. In the sphere of computer

based system products, customer satisfaction is dependent on how system development

projects evolve to build operational product systems that satisfy the perceived and

actual customer need and associated system requirements.

Ultimately, successful customer satisfaction depends upon the depth of 'through-life'

understanding about the business need and associated user requirements for a future

system, and the ability to communicate those requirements to the system developer. In

Session 4: SPI and Requirements Management

Page 4.16

addition, customer satisfaction and confidence depends upon the level of system

assurance offered throughout the system development lifecycle. Requirements

understanding problems inevitably lead to poor customer-supplier relationships,

unnecessary re-works, and overruns in cost and/or time.

This paper discusses the concepts underpinning customer satisfaction and requirements

understanding relevant to software-based system development. In addition, the design

of customer-oriented development processes is described together with a process

improvement case study and associated experiment. The process improvement

experiment was EU project number 23893, REJOICE, whose Final Report [16] can be

found at the ESSI VASIE website [17]. The REJOICE experiments and their results

have been summarised later in this paper.

Customer Satisfaction, Requirements and Quality

Concept Overview

Customer satisfaction is dependent upon many factors that are associated with the

business need, the development project and resultant system product quality.

Ultimately the customer is looking for added value to benefit the business operations

within a defined timeframe but at an affordable price; hence the customer priority is for

an overall successful business. The system supplier perspective is to deliver a system

within the agreed cost plans to satisfy the customer requirements, thus contributing to

the supplier's profit and reputation; hence the supplier priority is for a successful

project. These different perspectives are typically controlled through inflexible and

formal contract management arrangements in the pursuit of a successful project for

both customer and supplier. The cornerstone to such 'success' involves an

appropriately rigorous and long-term approach to 'quality' by customers and suppliers.

This 'success' discussion implies that customer satisfaction is analogous to overall

project success. However, project success, see Garrity [1], also depends on other

concepts such as usability and adaptability. Usability concerns the wider process use

considerations beyond system delivery and acceptance embracing operational

experience; this involves different perspectives when applying the new system for

individual task support and business organisation performance enhancement.

Adaptability has a cycle (of planning, doing, filtering and learning) to adjust

development progress and direction based on business and development interaction.

Both success notions of usability and adaptability are vital to achieve longer-term

customer satisfaction.

'Quality' may be loosely inferred to mean 'satisfying requirements' embracing the

provision of added capability (i.e. improved business function and performance) and

any associated trustworthiness or integrity (i.e. continuously performs as intended

without harmful 'side-effects' on business services). One key aspect of the quality

perspective concerns the customer and supplier agreeing upon a required level of

quality to be achieved within defined and understood cost and time constraints. In

addition, the quality level must be defined and be subject to some agreed measurement

to monitor attainment.

The remaining development project consideration is the level of risk and uncertainty

associated with the attainment of the required and agreed quality level; the risk

Session 4: SPI and Requirements Management

Page 4.17

perspective depends upon the available knowledge about the project constraints and

their implications. Hence both customer and supplier need to understand the level of

risk each is taking within their quality level agreement. In practice, the notion of risk

sharing between customers and suppliers is a difficult area that influences the nature of

any supporting legally binding contractual arrangements. In summary, both customers

and suppliers need to plan and implement compatible quality and risk strategies for the

development project. These strategies will need to be reflected in any contractual

agreements.

Returning to quality within the customer satisfaction arena, customers need to be

assured that defined and measurable final product quality attributes demonstrate that

their defined needs and associated requirements are satisfied. Achieving defined

product quality depends upon 'getting the system requirements right' and then 'building

the product right' to meet these requirements. This is not easy to achieve especially

within traditional contracting processes that tend to encourage the communication of

requirements through formal documents and review activities. This inflexible and

formal approach to agreement and communication is often the main reason why

customer and supplier teams fail to be effective in achieving continuous levels of

understanding, which is sometimes coloured by a culture of disrespect and mistrust.

Customer Satisfaction Criteria

The necessary criteria for customer satisfaction are provided below to further

demonstrate the relationship with requirements understanding. Such criteria provide the

basis for defining measurement schemes from which to systematically argue and justify

whether customer needs and requirements have been adequately satisfied.

Area Criteria

Need and

requirement

s definition

and change

management

 The business need for supporting necessary or desirable (process and

information) change must be clearly defined.

 The system requirements must be clear (and error-free) and related to the

business need.

 There must be an ability to change the product development as the requirements

are better understood and refined (or even changed due to business reasons).

Process

definition

and

execution

 The supplier's development process (for all management, engineering and quality

activities) must be consistent with best practice.

 The supplier processes must closely interface with the customer's processes in

executing the acquisition and system creation activities.

 The competence and performance of the supplier teams must be of a high

standard.

 There must be high visibility of the executing development processes and of the

product evolution.

Product

quality
 The final system product must be compliant with the agreed and understood

requirements.

 The final system product must meet defined business needs and added value to

the customer's business operations.

 The final system product must have high levels of usability and be easily

integrated into customer processes.

Product

management
 There must be sufficient demonstration regarding the satisfaction of business

needs, system requirements and product quality (i.e. overall fitness for purpose).

Session 4: SPI and Requirements Management

Page 4.18

Area Criteria

 The agreed project schedule must be met ensuring that the final system delivery

and in-service dates are achieved.

 The project costs must not be changed without full agreement and justification in

customer terms.

Model of Customer Satisfaction and its Components

Partly derived from the criteria above, the customer satisfaction problem domain has

four key dimensions, see Figure JJE.1: business need, system requirements, product

quality and confidence in quality. This is the basis of a customer satisfaction model.

Figure JJE.1 – Four Domains of Customer Satisfaction

Those parts of the customer satisfaction model that address business need and

requirements understanding [12], must ensure that all aspects of user and system

requirements are considered. For example, the overall system requirement needs to

include the system product requirements as well as those requirements addressing

quality and risk levels, development process criteria and the project constraints, e.g.

interoperability with existing systems, timescales and costs.

Of key importance to customer satisfaction is the central product quality concept,

which loosely means ‘satisfying the customer requirements or need’ throughout the

System Requirements

Customer Satisfaction

Confidence in

Quality

Product

Quality

Business

Need

• Need for change

• Strategy

• Operation

• IT support

• Usability

•Product requirements

•(User requirements

•System specification)

•Requirements management

•Quality and risk levels

•Process criteria

•System constraints

• Confidence that product

requirements met

• Argument/ evidence about quality

•Development process

•Assurance process

•Process risks

•People competence

Depends on
Depends on

Business criteria for

success

Reflected as

Technical criteria for

success

Supports

Influencing

approach to

Contributes

to

Session 4: SPI and Requirements Management

Page 4.19

product life cycle, from ‘birth to death’. The product quality requirements will describe

a range of external and internal system product attributes; external attributes include

its functionality and performance (e.g. speed, reliability, maintainability, safety,

security, etc) whereas internal attributes include its architectural structure, portability

etc. Different authors such as Fenton and Gillies [2, 3] describe and review different

quality models including that developed for the ISO 9126 standard [4].

The key achievement of actual product quality can only be measured by reference to a

quality profile [5] that is a weighted representation of each system product attribute.

The attribute weights are derived through customer analyses at the beginning and

throughout the development project. The satisfaction of product quality is judged by

the combined final 'weighted' attributes achieved against that required through prudent

use of project resources to address attributes within designs, trade-offs reviews and

their validation.

The product quality achievements depend on the required quality and risk target levels,

and the design and execution of development (i.e. creating) and assurance (i.e.

checking) processes. This assurance provides the 'confidence in quality' by

demonstrating that the process definition and execution has been effective and

demonstrates the required level of quality control. Ultimately, assurance involves

checking all levels of the design and provides the argument and supporting evidence,

(i.e. as system measurements of 'fit for purpose') that the need and requirements have

been addressed to the required quality and risk levels. All processes need to follow

consensus best practice that has been suitably tailored to the specific development

project needs, while taking into account all associated quality and risk levels. These

levels are related to the appropriate process and product criteria. The process criteria

reflect the degree of development and assurance rigor to be adopted. The product

criteria reflect the design criteria to be adopted in system architectures and detailed

design. The customer's confidence in the final system product is affected by the visible

degree of thoroughness by which the defined and planned processes were followed and

executed; this confidence is also affected by the competence and performance of the

development (and customer) teams.

Customer-oriented Lifecycle Processes Attributes

The aim has been to define a technical strategy based upon the fundamental

understanding embodied in the customer satisfaction model. The strategy enhances the

level of customer satisfaction through improved customer-developer process design

with an emphasis on requirements and their understanding. There are three questions to

be considered in forming an appropriate technical strategy and in designing a

customer-oriented process:

 What are the attributes of a customer-oriented lifecycle process?

 How do these attributes relate to current lifecycle models?

 What techniques are appropriate within a customer-oriented lifecycle process?

Customer-oriented lifecycle process attributes

Based on the concepts described, the following are the key requirements on which to

Session 4: SPI and Requirements Management

Page 4.20

design a new approach to customer satisfaction. The required attributes are below.

Type Attribute

Frameworks

and lifecycles
 Through-life treatment of system requirements and business need; this will

focus attention on the ultimate project goals and success criteria

 Need to embrace the whole system evolution lifecycle; this will ensure that

systems are not viewed as totally new but rather as add-ons or modifications to

existing, albeit larger, systems.

Need and

requirements

management

 Need to be flexible to changing customer needs and perspectives; this will

encourage effective contracting and working arrangements to be in place that are

based on the premise that such change is inevitable and technical agreements

will need to change.

 Need to manage the customer needs and requirements and their satisfaction

through a flexible yet controllable approach to system planning and its execution;

this will focus both parties on the theme of customer satisfaction and project

success by on-going requirements understanding.

Evolutionary

techniques
 Need to ensure that customers get operational systems as a series of

increments to meet shorter-term priority needs; this will enable customers to get

useful employable systems as a series of incremental deliveries formed within an

well-founded overarching business system architecture.

 Must be fast to react to changing customer perspectives about system

requirements; this assists customers to quickly see the impact of their desired

changes.

 Enable executable system prototypes to be visible and allowing user 'play

back'; this enables the customer team to see the evolving product in concrete

terms and respond accordingly.

 Need to be able to roll the current system solution both forwards and

backwards; this assists the speed at which changes (using new or old

perspectives) can be played back.

Developer-

customer

communication

 Need for customer-supplier teams to work in partnership; this will enable

both parties with separate overall business aims to share a more focused and

explicit common project goal within a trusted contractual and working

relationship that involves more risk and information sharing, and joint decision

making.

 Need effective communication between customer and supplier teams; this

enables a common and shared understanding about the business need, system

requirements, and the development processes and products.

 Need customers and suppliers to be regularly interactive about key business

and development changes affecting the partnership; this enables an on-going

approach to holism, learning and adaptability throughout system evolution.

 Need frequent customer feedback to design concepts and system increments

prior to final acceptance and in-service use; this will ensure that customers

declare timely change based on business use perspectives.

Assurance

management
 Need to enable the risk and quality levels to be defined and agreed.

 Need to provide effective risk and quality control mechanisms to decide about

system fitness; this will enable customers and suppliers to understand their

shared risk and views about fitness prior to in-service-use.

Customer-oriented processes and current lifecycle models

There is much written about development lifecycle strategies, for example, see

Somerville, McConnell and Pressman [6, 7, 8]. The main lifecycle variant labels are:

Waterfall; V-model; Spiral; Evolutionary prototyping; Incremental/staged delivery;

Session 4: SPI and Requirements Management

Page 4.21

Design to schedule; Design to tools; Commercial of the shelf; and Evolutionary

delivery. These variants differ in their attempt at imposing different engineering

structures for project management purposes based on implicit premises about

flexibility and degree of change, speed of delivery, reuse and integration, and system

delivery strategies. The overall conclusion is that these lifecycle variants only partially

address the above requirements for a customer-oriented lifecycle process and a new

approach is required to fully encompass customer orientation. The main lifecycles tend

to be sequential, static and prescriptive in nature, and assume all projects need the

same process structure. No lifecycle adequately represents the real-world dynamic

activities between customer and developer, partly a result of their variability and

complexity.

Customer-oriented lifecycle techniques

The major techniques need to support the goals for customer satisfaction and in

particular requirements understanding. These techniques cover the following process

areas: Business analysis; Communication and interaction; Requirements management

and engineering; Project and risk management; Quality assurance; Rapid development;

Process assessment, e.g. SPICE and CMM; Project and software measurement; and

Object/reuse-oriented design methodologies.

The aim is to populate a customer-oriented lifecycle with a set of relevant techniques,

selected from a 'customer-oriented toolkit'. All techniques need to help facilitate the

achievement of customer satisfaction and requirements understanding.

Proposed Customer-oriented Lifecycle Processes

The customer-oriented lifecycle processes have been based on a technical strategy that,

in turn, has been founded on the customer satisfaction concepts described earlier.

Customer-oriented technical strategy

The proposed strategy is to:

 Define a customer-oriented lifecycle process with the above attributes; that will

place an emphasis on through-life ‘requirement understanding’ processes.

 Integrate the proposed lifecycle processes into established project, risk and quality

management practices; this will involve identifying the tailoring issues surrounding

the introduction of a customer-oriented approach into established software

practices and local cultures.

 Propose a set of techniques to support the new lifecycle that is appropriate to a

project situation.

 Define a means of measuring the effectiveness of the new lifecycle and supporting

techniques in business and project terms; this will focus on the cost-effectiveness

using criteria about identifying need, communication/interaction and

requirements control.

 Ensure that the new customer-oriented approach is focusing on business benefits

and be widely applicable; this directs the approach to be geared towards the non-

Session 4: SPI and Requirements Management

Page 4.22

software specialists, needing no specialist tools, knowledge or equipment.

Customer-oriented process overview

The aim is to establish an improved process and set of techniques that will assist

customer and supplier to gain a better understanding of initial and changing

requirements so that systems are delivered on time, to cost and actually meeting the

customer’s real need. These techniques will also need to address accomplishing and

preserving product quality throughout the product life cycle. The approach combines

and utilises techniques from separate strands:

 A customer-oriented lifecycle process supported by fundamental system models

that describe requirements understanding concepts and system 'fitness'

measurement.

 Use of business analysis techniques such as those exploited in Business Process

Re-engineering (BPR) [9] to guide the way in which the customer’s real needs are

articulated and understood.

 Interactive and iterative approaches such as JAD (Joint Application Development)

[10] and RAD (Rapid Application Development) [7, 11] to assist communication

and exploration.

 Formalised approaches to capture the statement of requirements, support their

management and allow traceability, etc.

The customer-oriented lifecycle process has been based on an adaptation [13] of the

Dynamic Systems Development Method (DSDM) [14, 15] framework. DSDM offers a

generic lifecycle framework that is geared to being more flexible, faster reacting and

dynamic practices involving joint customer-developer working. Figure JJE.2 shows the

five DSDM-based customer-oriented lifecycle process phases. The proposed process

adaptations to DSDM, as used within the REJOICE process improvement case study,

combine and refine Phases 1 and 2 activities.

Figure JJE.2 - DSDM Based Customer-Oriented Lifecycle Process

Framework and Principles

Feasi

bility

I. A c tive use r in vo lve m e nt is
im pe ra t ive .

II. D SD M te a m s m us t be e m p ow e re d to
m a ke de c is ions .

III. T he foc us is on fre que nt de live ry of
prod uc ts .

IV . F itne ss for b us ine ss pur pose is t he
e sse ntia l c rite r ion for a c c e pta nc e of
de live ra b le

V . Ite ra tive a nd inc re m e nta l

de ve lop m e nt is ne c e ssa ry to
c onve rge o n a n a c c ura te bus ine ss
so lut ion.

V I. A ll c ha n ge s dur ing de ve lop m e nt a re

re ve rs ib le .
V II. R e qu ire m e nts a re ba se line d a t a high

le ve l.
V III. T e s tin g is inte gra te d t hro ug ho ut the

life c yc le .
IX . A c olla b ora t ive a nd c o- ope ra t ive

a pproa c h be tw e e n a ll s ta ke ho lde rs is
e sse ntia l.

DSDM PRINCIPLES

Agree Schedule

Create

functional

prototype

Identify

functional

prototype

Review prototype

FUNCTIONAL

MODEL

Identify design prototype

Agree

schedule

Review

design

prototype

Create design prototype

DESIGN AND

BUILD

Phase 3 Phase 5

Phase 4

IMPLEMENT

Implement

Review

business

Train

users

User approval /guidelines

DSDM FRAMEWORK

Phase 2

Feasibility

Phase 1

Business Study

Session 4: SPI and Requirements Management

Page 4.23

The DSDM phases are:

 Phase 1 - Feasibility Study; An assessment is made as to whether or not the

DSDM approach is correct for the anticipated project. [This is not a conventional

form of feasibility, i.e. whether the system concept is achievable.]

 Phase 2 - Business Study; Provides the foundations on which all subsequent work

is based and provides an understanding of the business and technical constraints.

[This study is intended to be relatively short with the aim to describe a 'first-cut'

high level requirement.]

 Phase 3 - Functional model; this activity is broadly equivalent to a functional

specification, but expressed using an executable prototype with some

documentation support.

 Phase 4 - Design and build; this activity is refining the functionality to reflect

non-functional and other quality/integrity requirements; the detailed designs are as

executable prototypes but with improving quality attributes, supported by essential

documentation.

 Phase 5 - Implement: this activity is applying the product within a series of

systems trials ultimately being accepted in the operational environment.

The essence of this approach is for the customer and developer to work in partnership

ensuring that the needs and requirements are well understood by all. The system is

allowed to evolve in terms of refining prototypes resulting in useable increments. The

strategy is to be flexible and adaptive to changing requirements and to progressively

build quality into the evolving product. The customer-development interactions occur

throughout allowing for learning, feedback and adapting to influence development

directions. The risk of the flexibility offered needs to be countered through the

application of sufficient management and quality assurance practices incorporating

process and product checks with sufficient traceable documentation. This approach is

to some extent dependent on effective tool-sets in order to gain the customer

satisfaction benefits.

Process Improvement Case Study

A case study to examine the effectiveness of the new proposed approach to customer

satisfaction and requirements understanding was undertaken as an EU funded process

improvement experiment (PIE), referred to as REJOICE, ESSI Project 23893. The

purpose of the PIE was to demonstrate whether the new customer-oriented process

could provide the business benefits sought as improvement goals.

There are various elements to the experiment:

 Business context.

 Improvement goals.

 Proposed process.

 Experimental considerations.

 Results and assessment.

Session 4: SPI and Requirements Management

Page 4.24

Business context

The experiment was set in the UK Defence Evaluation and Research Agency's

(DERA's) System and Software Engineering Centre (SEC). The SEC is an

autonomous development and consultancy business that largely serves the defence

system businesses within DERA and the UK Ministry of Defence. The SEC is

associated with a very wide range of systems for high technology research, system

requirements and design modelling, tool development and operational activities. The

SEC operates within a highly controlled business management culture (based on the

ISO 9000 series) and its activities are regularly subjected to process assessments (e.g.

ISO, CMM, SPICE, EFQM-BEM). The SEC has a ‘maturing’ software culture

supported by its DERA Software Practices. The DERA practices incorporate an in-

built measurement system.

Improvement goals

The SEC is striving to achieve the highest levels of CMM maturity (currently

achieving Level 3 in some areas) for all its widespread activities supported by the use

of SPICE to develop excellence in particular project domains. There were a number of

improvement areas identified from various process assessments. This included those

concerned with customer relations and ensuring that the SEC met customer needs and

requirements. The relevant ‘customer-related’ goals to be satisfied through an

improved approach to requirements understanding were:

 20% more customer satisfaction.

 No extra effort on requirements activities.

 15% decrease in requirements generated problem (i.e. less reworks).

Proposed process

The customer-oriented lifecycle process, an adaptation of DSDM as shown in Figure

JJE.2, was applied within specific development projects. The adaptation was to

combine Phases 1 and 2 of DSDM into a single phase, 'User Requirements Study'. The

reason was to remove the DSDM suitability analysis (less important to the REJOICE

goals than to rapid application development objectives) and to increase the focus on the

feasibility and definition of user requirements against a real, and rigorously studied,

strategic need for business change. Hence, this new phase focuses on the

communication, understanding, elicitation and high level capture of business needs and

requirements. In addition, before the adapted DSDM lifecycle process (referred to as

the REJOICE process) can be applied, further DSDM 'tailoring' considerations need to

be addressed:

 How can the flexible proposed process be utilised within a high-control business

and quality management culture?

 What standardisation process details should be defined and to what level of detail?

 How do you define the exact process incorporating methods and tools to apply to a

specific project?

It should be stressed that the new customer-oriented process represents a major shift in

Session 4: SPI and Requirements Management

Page 4.25

development culture, a major issue for the REJOICE experiment. In support of the new

process, a set of specific methods and tools were selected from which the experiment

process details were selected. There was an emphasis on business analysis (e.g. BPR),

interaction management and facilitation (e.g. JAD), design methodology (e.g. object-

orientation) and requirements management support (e.g. procedures and tools).

Experimental considerations

The experimentation was divided into four parts:

 Experiment 1 - Defining, tailoring and introducing the new customer-oriented

‘REJOICE’ process.

 Experiment 2 – Partial Application of the REJOICE process to the development of

a Requirements Modelling Tool.

 Experiment 3 - Applying and measuring the impact of the ‘REJOICE’ process

during the development of a DERA Intranet based CMM Self-Assessment Tool.

 Experiment 4 - Comparing the ‘REJOICE’ process with the existing development

process during the development of a DERA Intranet based CMM Self-Assessment

Tool.

Each experiment had its own design that included a number of specific hypotheses to

be tested and an associated measurement scheme, each of which was linked to the

improvement goals. Overall the measurement strategy included maximising the use of

qualitative observations backed up by argument based on valuable experience

identifying the issues, in addition to collecting quantitative measures. The data

collection involved a combination of surveys, interviews, project resource extracts and

tracking what processes were being implemented in some measurable detail. The major

experimental part was the application of the new process to be applied to two tool

development projects. Each project had specific and well-informed customer teams;

one project was a requirement modelling tool and the other was a CMM assessment

support tool. The outline measurement scheme to examine the new process is shown

below (more details are described in [16]).

Goal Area/Factor Metrics:

20% increase in

satisfying customer

needs

Customer Satisfaction:

meet need;

confidence in product;

confidence in

process/people

Product Effectiveness:

product quality claimed;

demonstration of quality

Satisfaction (score) with project, product,

process, people

No. of prototype releases - planned, actual

No. of the original satisfied/unsatisfied

requirements

No of requirements changed

No of requirements priority changes

No of evolution’s of requirements

No change in costs of

requirements activity
Project efficiency:

process definition;

process cost;

people impact

Time spent in customer interactions

Number of customer interactions

Time spent demonstrating models/prototypes

15% decrease in

problems due to poor

requirements

understanding

Project efficiency:

requirement defects;

people interaction;

process cost impact

Number of requirements not satisfied

Effort spent satisfying incorrect

requirements

Session 4: SPI and Requirements Management

Page 4.26

Goal Area/Factor Metrics:

Experimental results

The main results of the four experiments are detailed in the REJOICE Final Report

[16] that provides detailed qualitative and quantitative (measurements) evidence

presented in a form that argues about the validity of the various customer-oriented

process hypotheses. The overall results are now briefly summarised in the following

table.

Experiment Main Results:

Experiment 1

Defining, tailoring

and introducing the

customer-oriented

process.

 Successive levels of tailoring are involved - they are difficult to clearly

define

 The DSDM based customer oriented framework is ‘loosely' defined and

requires further refinement and instantiation to be employable

 The new DSDM based process does not fit easily with existing Quality

Systems

 Detailed DSDM based processes cannot be fully prescribed due to the

highly iterative processes involved that is dependent on actual product

development progress

 Detailed project planning cannot be achieved: plans need to stay at a

high level or they will lag behind the actual development

Experiment 2

Applying and

measuring the impact

of the new customer-

oriented process:

Requirement Tool

Project

 The pragmatic use of principles leads to a ‘fit for purpose’ product

 ‘High level’ user requirements are difficult to resolve and manage

contractually

 The use of prototyping techniques are very effective

 The contract requirements would not have been met if traditional

processes used

Experiment 3

Applying and

measuring the impact

of the new customer-

oriented ‘REJOICE’

process:

CMM Assessment

Tool Project

 There was good ‘buy-in’ by the development team

 There were high levels of user involvement

 There was a high level of user satisfaction with the final product

 The users sometimes resented the demands on their time

 The team emphasis on development of product means

documentation/testing suffers unless control exercised; this may be a

problem for longer term customer satisfaction

 Any organisation and culture changes are non-trivial

 It was difficult to control and plan prototyping

 It was difficult to monitor project progress with traditional management

techniques

 The development team was not used to empowerment and they tended to

perceive a lack of direction and management

Experiment 4

Comparing the new

customer-oriented

‘REJOICE’ process

with the existing

traditional

development process.

 It is difficult to compare results with ‘traditional’ methods due to non-

equivalence with stages in ‘waterfall’ and variants.

 Customer surveys provided evidence of improved satisfaction

 The REJOICE process was found to be more efficient than traditional

methods in terms of required functionality achieved for developer effort

 If the development had followed the existing traditional process, that

may have led to the development of an altogether different tool, not taking

Session 4: SPI and Requirements Management

Page 4.27

Experiment Main Results:

 into account real business need

 The longer term customer satisfaction advantages are more difficult to

assess

 The REJOICE process developed products may be more difficult to

maintain and evolve

The collective evidence from all these experiments provides the basis for deriving the

lessons that have been learnt within the REJOICE process improvement case study in

terms of the technological and business impact of the new DSDM-based REJOICE

process. As in the REJOICE Final Report [16], these lessons are now described in

terms of these technological and business viewpoints.

Lesson Learnt

Lessons learnt - technological viewpoint

This viewpoint assesses the impact of the new process in relation to current software

practices and their evolution. The lessons are:

 Adoption by the SEC of a new, evolutionary yet controlled lifecycle approach

(where appropriate to the projects) is expected to lead to improved customer

satisfaction.

 DSDM offers a useful set of concepts (sensible principles, flexible requirements

philosophy, strong user and end product focus) that will advance the SEC best

practices.

 DSDM is not only suitable for ‘RAD type’ projects but its concepts can be

integrated, in full or in part, into more traditional lifecycle approaches.

 The integration of the DSDM based process within a traditional ISO 9000 quality

controlled software development operation is non-trivial, unless DSDM is used to

do RAD developments only.

 Commonly available tools generally support the basic DSDM based REJOICE

process although more model based tools are needed that facilitate effective user-

modelling interaction (to study requirements and acceptance testing issues).

Overall, the technological lessons about the DSDM based REJOICE processes are

fundamental. More radical software lifecycles are designed to improve customer-

developer relations. These require new ways of thinking about project control and tool

based cultures. There is clear evidence that the REJOICE process is sufficiently

mature and does indeed enhance customer satisfaction, assuming that a joint product-

focused management approach is taken by both customers and developers. In short, the

REJOICE process offers clear claimed benefits when used in part or in full, but there

are a number of non-trivial project and quality management issues to overcome.

Lessons learnt - business viewpoint

This viewpoint assesses the impact of the new process in relation to business goals and

Session 4: SPI and Requirements Management

Page 4.28

activities. The lessons are:

 Customer satisfaction and the attendant advantages are likely to be achieved by the

using the DSDM based REJOICE Process.

 The REJOICE process is likely to provide cost saving gains in the efficiency of

requirements-based activities, dependant on project complexity and associated

implementation issues.

 The REJOICE process requires a co-operative product focused management

approach.

 Definition and management of contractual boundaries will be challenging.

 Cultural changes may be difficult to manage.

 Consider applying DSDM techniques to smaller projects until confidence is

gained.

 A REJOICE type process will increase business opportunities through improved

customer relations.

Overall, many software businesses, often Small Medium Enterprises, should benefit

from the DSDM-based REJOICE concepts, process and techniques in terms of

customer satisfaction and requirements efficiencies. However, the degree of success

will depend upon the organisation and customer culture, the appropriate application to

suitably complex projects and an effective use of available software technologies. In

short, the REJOICE process framework is well founded but its success critically

depends on the management of people and technical resources during any development

project implementation.

Summary

This paper has described the underpinnings and development of a customer and

requirements focused ‘REJOICE’ process that has been adopted from DSDM. The

underpinning arises from the evolving development of an innovative customer

satisfaction and requirements understanding model that has a key system measurement

component. A new customer oriented lifecycle process has been defined and examined

within an EU funded process improvement experiment, REJOICE. REJOICE has

focused on the business impact of a requirements-oriented process improvement geared

to improve customer satisfaction; the business goals include improved customer

satisfaction and cost effective requirements management. The experimental findings

support the main hypothesis that the flexible process should yield the business benefits

suggested; however a careful approach to process introduction is required as a new

cultural approach to customer-supplier partnerships is critical. If implemented well,

both customers and suppliers should reap major benefits.

Acknowledgements and Disclaimers

The author would like to acknowledge the European Commission for funding the

Process Improvement Experiment, REJOICE, Project 23893, supplemented by internal

Defence Evaluation and Research Agency funding on the general concepts

underpinning requirements understanding. Furthermore, the author would like to thank

Session 4: SPI and Requirements Management

Page 4.29

the dedication of the REJOICE team, in particular that of Peter Raynor-Smith for his

major contribution.

The views expressed in this paper are entirely those of the author and do not represent

the views, policy or understanding of any other person or official body. Further details

can be requested from the Defence Evaluation and Research Agency (DERA Malvern),

Systems and Software Engineering Centre, Tel: +44 1684-895161, E-Mail:

jjelliott@dera.gov.uk.

References

[1] Garrity, E.J., Saunders, G.L., "Information Systems Success Measurement",

IDEA Group, 1998.

 [2] Fenton, N. E., Pfleeger S. L., "Software Metrics", 2nd Ed, Thomson

Computer Press, 1997.

[3] Gillies, A., "Software Quality - Theory and Management", Chapman and Hall,

1992.

[4] ISO 9126, "Software Product Evaluation", 1992.

[5] Van Ekris, J., "Towards business oriented questionnaires for the specification

of software product quality", ESCOM-ENCRESS 1998 Proceedings, May

1998, pp230-238.

[6] Somerville, I., "Software Engineering", Addison Welsey, 1996.

[7] McConnell, S., "Rapid Development", Microsoft Press, 1996.

[8] Pressman, R. S., "Software Engineering - A Practitioner’s Approach",

McGraw Hill, 1997.

[9] MacDonald, J., "Understanding Business Process Re-engineering", Hodder &

Stoughton, 1995.

[10] Bell, S., Wood-Harper, T., "Rapid Information Systems Development -

System Development in an Imperfect World", Second Ed., McGraw-Hill,

1998.

[11] Martin J., "Rapid Application Development", New York: Macmillian, 1991.

[12] Elliott, J. J., "System Understanding Reference Model", DERA Report, 1999.

[13] Raynor-Smith, P. M., "REJOICE Process", DERA Report, 1998.

[14] DSDM Consortium , "DSDM Manual", 1996.

[15] Stapleton J., "Dynamic Systems Development Method", Addison-Wesley,

1997.

Session 4: SPI and Requirements Management

Page 4.30

 [16] Raynor-Smith, P. M., Elliott J. J., REJOICE Final Report, Version 1.0, May

1999.

[17] ESSI VASIE website: http:// www.cordis.lu/esprit/src/stessi.htm

Page 5.1

Session 5

SPI and Establishment

of Models/Processes I

Chairman

Tor Stalhane
Sintef, Trondheim, Norway

Session 5: SPI and Establishment of Models/Processes I

Page 5.1

Process Description

and Training: The

Two Sides of the SPI?

Janis Plume

Riga Information Technology Institute

Kuldigas iela 45, Riga LV-1083, Latvia

E-mail: janis.plume@dati.lv

Introduction

This paper presents a summary of experience that has been gained at the DATI

organization during activities aimed at process improvement. DATI is the largest

contract software developer in the Baltic States, and process improvement activities

are the focus of considerable attention in the organization, which employs 400 software

engineers. Process improvement activities at DATI are the area of operations of a

subsidiary, the Riga Information Technology Institute (RITI).

The approach to process improvement that is used by the organization corresponds to

recommendations by such authors as Zahran [1]. The three main phases in process

improvement are description, training and enforcement. In this paper, I will devote

particular attention to the description and training phases. Experience shows that a

reduction in the level of detail of a process description can be a sensible procedure, as

long as good process improvement results are obtained by strengthening the respective

training program.

Thus, the approach that has been accepted at DATI is aimed at ensuring that process

descriptions contain only the most important process activities. We believe that the

training of our personnel is adequate to allow us to tailor standard processes to our

project needs, supplementing them with appropriate supporting activities in-house.

The establishment of a solid training program is of great importance in knowledge-

intensive production processes, especially when we are talking of software engineering

– a sector in which technologies (tools, methods) [10] are developing with enormous

speed. The new technologies in and of themselves have an effect on development

processes and dictate changes therein. Process changes can also be initiated within the

organization itself.

The advantage of a training program as compared to process description is that there

are direct links between the designer of a process (the instructor or teacher) and the

Session 5: SPI and Establishment of Models/Processes I

Page 5.2

user of the process. The program can be used to discover the level of understanding

among employees with respect to the various processes, and arguments can be

developed for the initial changes that are needed.

There is, however, one clearly visible shortcoming when emphasizing training in the

area of process improvement. When staff turnover occurs, the performance level of an

organization declines, and this means that additional attention must be devoted to

ensuring that employees are motivated to stay with the organization. It must be clearly

understood that when a staff member leaves, the organization loses critical resources

that have been spent on the training of that particular individual.

The main goal of this paper is to analyze the costs of the process description and

training phases of a process improvement program, so as to demonstrate the links

between the costs of the two phases.

Process description

The DATI organization has established a process improvement group to handle

process description. It is responsible for coordinating improvement work, as well as

for tending to and maintaining process descriptions. This is the main infrastructure

element in the area of process improvement, and management representatives from

DATI are involved in the process.

The selected approach

The process description approach is based on traditional considerations:

 Standards which set out process classification;

 Process notation which is used to describe the sequence of specific elements in

the process.

It is up to the process improvement group to select process classifications and

notations (language) which are used to provide process descriptions. The basis for the

process classification is the IEEE 12207.0 standard [5], or the ISO/IEC 12207

standard (these are basically equivalent).

The most important principle that emanates from these standards is the division of

processes into categories – primary, supporting and organizational. The highest

priority is attached to primary and supporting process groups. From the very

beginning in the description phase, it is clearly understood that each project process

description contains a specific combination of primary and supporting processes.

The main reason for the simplified process description is the specific nature of contract

software development, because the processes in various projects can differ to a great

extent, depending on the client with which work is being done.

There are several arguments which underpin the reduction in detail when it comes to

process descriptions:

1. As the level of detail in process descriptions increases, the descriptions

become massive, hard to maintain and difficult to understand;

2. The performance of supporting activities in a project involving contract

software development is often based on an agreement with the client, not

on specifications from the organizational process.

The notation was chosen to be as simple as possible, based on the following

Session 5: SPI and Establishment of Models/Processes I

Page 5.3

considerations:

1. The process description must not contain supporting activities which

complicate the process description, make it cyclical, or establish

branching;

2. The process description is not based on the development of a concrete

product. The process description is not aimed at a concrete result,

because the result of one and the same process can differ in various

projects, both in terms of form and in terms of content.

Thus, the notation in the process description is reduced to a simple chain of activities,

in which each activity is given entry information and exit information. There are two

kinds of entry information in an activity:

 Quality management system templates, forms, instructions, etc.;

 Information emanating from within the project (the concept “information”

here is used in the same meaning as the concept “life cycle data” is stated

in the IEEE 12207.1 standard [6]).

A few thoughts about the concept of project information. Information that comes from

processes and activities in an actual project is distributed via documents or products.

The grouping of such information is up to the project handlers, and it is a part of

tailoring the respective process. The distribution of information among documents is

usually based on the standards which are being used as the foundation for the project

work. This is something that requires agreement with the client, and here, too, it is

assumed that the project personnel have sufficient skills to do the necessary tailoring.

Training in the organization

Training in the organization is critically important when it comes to process

improvements, and this in several ways.

First of all, the effectiveness of an untrained process is significantly lower than that of

a trained process, irrespective of how precisely the process has been documented. By

untrained process here is meant a process, which users are not trained in performing

this process. This assumption was a cornerstone of our training program and

corresponds to the ideas of [1].

Let us stipulate that the mission in training is to ensure that employees of the

organization understand the defined processes and are able to carry them out. A well-

trained employee is one who is familiar with the process description and can interpret

the description and tailor it to the respective project situation. It’s also important to

understand that personnel must be able to react to changes in the process definition and

to work in accordance with those changes. The main benefit of a proper training

program is the fact that when small process changes occur, employees find themselves

able to work in concert with the changes, without any need for additional training.

Secondly, training programs must deal with the problem of resistance among personnel

– a problem that is not denied by a variety of authors, including [8] and [2].

It is assumed that process improvement must be a democratic process, but a

democratic approach to process improvement does not resolve the problem that

attitudes toward such activities tend to be negative. It has been found that many

employees consider participation in democratic processes to be a burden that keeps

them from their everyday work. Participation in process improvement activities

Session 5: SPI and Establishment of Models/Processes I

Page 5.4

requires additional communication skills among employees, and software engineers are

often not prepared for this. As a result, those who initiate process improvement

activities are often seen as wasters of money who are not handling the day-to-day

problems of employees. The work of process improvement groups in this kind of

atmosphere is less than effective.

This means that a second – and no less important – mission for training is to overcome

personnel resistance. When training courses are organized, groups of specialists from

various sectors are set up, and it is within these groups that an environment is formed

where participants can reveal the weak points and shortcomings in the processes that

are being elaborated in a timely way, and where there are favorable conditions for

communication.

The significance of a quality manual

An important element in maintaining skills that have been learned in training programs

is the quality manual of the organization [4]. A quality manual for our purposes is a

brief and general description of the activities that occur within an organization, not a

detailed description of the organization’s software development process.

A process description, therefore, consists of two levels:

 The level of the quality manual, which describes the accepted practices in

the organization or, to put it another way, the culture that has been

accepted in the organization;

 The standard process description level, which consists of instructions,

check lists, etc., as well as from more traditional and standard charts of

the processes, which can be used in the projects as larger fragments.

The intermediate level, which differs from project to project, does not contain a

concrete description, and its implementation under the auspices of projects depends on

the knowledge and skills of personnel, through which the standard process description

is tailored to the project (see Fig. JPL. 1).

Quality manual

Organization

defined process

Project defined process

Learning

Tailoring

Quality system

documentation

Figure JPL.1. The quality system and the project

Session 5: SPI and Establishment of Models/Processes I

Page 5.5

In order to make it easier to reach the goals of a training program – especially the goal

which has to do with the ability of personnel to use process descriptions – the training

program must be based on the principles that are set out in the quality manual.

Thus, the content of the training is more in line with what is described in the quality

handbook, also addressing the way in which the process descriptions are to be used in

order to tailor them to the project specifics (the tailoring guidelines).

In short, we can say that the role of training is to establish a certain culture in the

organization, and it is the role of the quality manual to serve as a description of that

culture.

The training program

Another critically important element in the training that occurs within an organization

is teaching employees about the new technologies and methods that are appearing in

the world all the time and in great volume. This is important irrespective of the work

that the organization does. Training of this kind will not be discussed in detail in this

paper, however. Here we are addressing training that has to do with handling the

processes of an organization – the information that has been created within the

organization.

Process training is in and of itself a complicated process, for several reasons:

 It is hard to find process specialists who have the proper pedagogical skills

and understanding of the organization’s SPI goals;

 Training may show no immediate results. The cost of this may be a loss of

management support for a training program as one of the key elements of

process improvement activities. Without management support any activity

can be doomed to failure. In the next part of the paper I shall propose a

solution which can be applied to this problem.

During the course of training programs, it is important to show that there are several

ways to carry out supporting activities in a primary process. In other words, the tactic

in a training program should be to demonstrate the link between the quality manual and

real-life projects. This is easiest to do with the help of examples, which means that

instructors in the program must be highly experienced specialists from the respective

process group.

The process of developing a training program involves the following:

 Selecting and appointing the process instructors;

 Preparation of the training materials;

 Planning of personnel training;

 Staging of the training courses in accordance with the plan;

 Evaluation of the results of the training.

Training courses must be mandatory for all of the employees in the respective

organization’s production process.

Measurements

A measurement program is used to evaluate the effects of training [9]. The indicators

and figures in this part of the paper do not reflect precise measurement results, and

Session 5: SPI and Establishment of Models/Processes I

Page 5.6

they can subsequently been updated. The figures are based on the early results of a

measurement program that is still being conducted, and in some instances they

represent hypotheses that will be checked in the future but which have obtained

trustworthy justifications during initial operations.

Effort

With respect to the effort that is needed in process improvement, it is taken into

account that the costs associated with each process improvement activity emanate from

the initial implementation of the activity and its maintenance in the case of changes. It

is assumed that the basic costs exist in the maintenance area, because the most

important thing is the long-term evaluation of process improvement costs.

In this context, the mission of process description is to maintain the timeliness of

process descriptions, taking into account any changes which occur as the result of the

introduction of new technologies and other ways of optimizing the process.

The mission of training programs in the maintenance phase is much more complicated

– to maintain the level of skills in process applications in the organization. The effort

needed in the training program is influenced not only by changes in processes, but also

by the speed of staff turnover. Here we are speaking not only of the hiring of new

workers to replace departed ones, but also the retraining of personnel within the

organization.

Let us assume at this point that the three main indicators describing the effort that is

needed in process description are:

 The complexity of the process description. This indicator actually consists

of two parts – the complexity of the process description’s notation or

language [7], and the level of detail in the process description. The

simplest methods for process description are those which require no other

skills than the ability to read. Notations which are the basis of modern

business modeling tools can be seen as complicated, because they involve

quite a few (up to 10) different concepts (symbols). The level of detail in

process description is closely linked to the complexity of notations or

language. There is no point in using primitive description language in

highly detailed phase descriptions, nor is it useful to use complicated

language when describing a general process. The complexity of a process

description as a purely quantitative measurement is something that must

be studied in greater detail;

 The size of process changes. Here it is rather simple to select a purely

quantitative indicator. On the basis of the selected process description

notation, it is possible to classify the elements that are used in the

description and to count them precisely. In that case, when changes occur,

it is possible to evaluate how much of the previous version of the process

description must be changed (added, deleted);

 Personnel turnover rate. This is a traditional indicator which shows the

extent to which employees of the organization feel motivated to work at

the organization and to be loyal to it.

Comparisons of the necessary effort are shown in graphic form in further sections of

the paper.

Session 5: SPI and Establishment of Models/Processes I

Page 5.7

Process description

The effort involved in process description is directly dictated by these two indicators:

 The complexity of the process description notation and the level of detail

in the process description itself, i.e., the two indicators that underpin the

whole concept of process complexity. In the graph that is shown in the

next part of the paper (Fig. JPL. 2), it is assumed that effort increases in a

linear way. There is, however, a yet-untested hypothesis which posits that

as complexity increases significantly, the level of effort may increase even

more.

 The size of process changes. Here, too, it is assumed that effort increases

in a linear way (Fig. JPL. 4). Changes in the process occur via traditional

change management techniques [3].

When both of these indicators are combined, the effort needed in process description

can increase considerably, even to the point where the initially allocated resources for

process description are no longer adequate for the maintenance of those descriptions –

collecting requests for changes and implementing the changes in descriptions which

have already been decided upon.

It is safe to say that the effort involved in process description is in no way affected by

personnel turnover rate.

Training

The costs of maintaining a level of skills have to do with two major indicators:

 Personnel turnover rate, which affect training costs in the most direct way

and are, in fact, the most important indicator to be taken into account in an

organization that emphasizes training in process improvement activities

(Fig. JPL. 3);

 The volume of changes. As was noted previously, process changes can

occur for two objective reasons – the appearance of new technologies and

improvement activities which are aimed at process optimization. It is

undeniable that there are costs associated with the implementation of a

new process description, but in the case of small process changes, there is

no need to gear up a training program. Personnel adapt easily to small

changes in the process. If previous skills have been sufficiently

convincing, no new training processes are, in most instances, needed. It is

enough to conduct an information campaign about the fact that changes

have been made to the process, and that is what makes up the cost of

implementing the new processes. If, however, the changes are sufficiently

significant, it may well be that training is necessary. In that case there is a

large jump in expenditures (Fig. JPL. 4.).

Our approach to organizing training programs (see the section on training in the

organization) makes the training process less dependent on the complexity of the

process description that is being taught. It is not the process changes that create

additional effort in the training process, because training programs are largely based on

the quality manual, and the main goal is to train personnel in the basic principles of

tailoring.

Comparative graphs

The following figures show qualitative comparisons of the effort that is needed in

Session 5: SPI and Establishment of Models/Processes I

Page 5.8

process improvement activities. The graphs show the influence of one indicator on the

effort needed for training and description.

Complexity of

process description

SPI Effort
Process

description

Process

training

Figure JPL.2. SPI effort and process description complexity

Personnel turnover rate

SPI Effort

Process

description

Process

training

Figure JPL.3. SPI effort and personnel turnover rate

Session 5: SPI and Establishment of Models/Processes I

Page 5.9

SPI Effort

Process

description

Process

training

Size of

process changes

Figure JPL.4. SPI effort and process changes

Inconsistencies in the process

In order to conduct a full cost-benefit analysis, it was necessary to elaborate a

measurement whereby we could specify the effectiveness of the process implementation

(in this case – description and training). The basic approach is a measurement of

improvements in the performance of the process, as well as a decline in the density of

defects in the results that are obtained through the process. If we look at the direct

goals of training activities, however – the fact that personnel must be made to

understand the various processes – we can use an indirect measurement that is

universal for several process groups.

We decided to measure process effectiveness by counting the number of clear

inconsistencies in the process instances. In other words, the issue is the extent to which

the defined process is being followed. This level can be measured in several ways.

One way which would allow us to judge whether the process is being implemented

correctly, would be counting the number of inconsistencies in that type of process. The

collection of such data, however, is too complex – indeed, how are we to define an

instance inconsistency? A fairly close approximation, therefore, is the relationship

between process instances and incorrectly implemented processes. In this case the

number of process instances must be sufficiently high to allow the measurements to

illustrate general trends.

In this case each process instance must be reviewed only in the context of asking

whether it is being implemented correctly or not. This measurement, however, is also

not without its problems. It requires a regular and fairly frequent review of a certain

cohort of processes. Such measurements are a natural result of the next phase of

process improvement – the process enforcement phase.

The use of a measurement during the implementation of process improvement activities

Session 5: SPI and Establishment of Models/Processes I

Page 5.10

is shown in Fig. JPL. 5. The number of instances of non-conformity is not stable – as

is the case in the software maintenance phase, the improving changes cause a varied

occurrence of problem reports.

Total number

of process instances

Number of

process

instances

Time

Process changes

Number of inconsistent

process instances

Figure JPL.5. Number of inconsistent process instances

The result of an effective training program is a more rapid reduction in process

inconsistencies. In Fig. JPL. 5 this is represented by the line which limits the number

of inconsistent process instances from the bottom. This means that the process users

are themselves adapting the process changes, and the changes become less painful as a

result.

This measurement can be used to demonstrate to management the investment of

process training in an overall process improvement program. This is particularly

effective if the same measurement is applied to an untrained process, and then the

results are compared.

It must be taken into account that improvements in these indicators can be interpreted

in various ways, which means that the reason for a process inconsistency must also be

considered. There are three main reasons why inconsistencies occur:

1. The process is not understood correctly;

2. Employees are lazy or negligent;

3. There is a crisis situation.

Training can battle only the first type of inconsistency. The fight against the second

problem is an issue for process enforcement, while the avoidance of crisis situations

has to do with the overall position taken by an organization with respect to the issue of

whether key departures from standard processes are to be permitted or not.

Conclusions

These are the main conclusions that can be drawn from the current phase of the

Session 5: SPI and Establishment of Models/Processes I

Page 5.11

process improvement program that is being implemented at DATI:

1. An important measurement in evaluating process effectiveness is the number of

process inconsistencies that are revealed. The effectiveness of training is indicated

by the ongoing reduction in this indicator, especially when the reduction is

occurring more rapidly than in a process where there has been no training. This

indicator tends to be highly variable, appearing in waves on a chart. The high

points correspond to the time element of changes conducted in the process. It is

critical to conduct such measurements so as to prove to management that training

programs are beneficial. A diagram of a trained process will show a more rapid

decline in the number of inconsistencies than that of an untrained process.

2. There is good reason to encumber a training process with additional functions that

are not particularly traditional in training as such. A training process involves

many additional opportunities which, when sensibly used, can improve training

results fundamentally, and at little additional expense. This is most true with

respect to the ability of staff to use described processes. Training sessions also

serve to reduce resistance among personnel and dislike against process

improvement activities as a whole. These training functions must be clearly

understood, and the training program must be set up in accordance with these

functions.

3. It may at first seem that training-oriented process improvements are more

expensive, and greater investments are needed to improve the process. In practice,

however, it is the training phase in which process improvement resources are

saved. It is frequently believed that a process description is adequate to allow

employees to train themselves in the use of the process. A recommended

approach, however, is one in which employee training is always part of any

process improvement activity. In that case it makes sense to save effort on the

process description phase.

The main way to preserve training-oriented SPI effectiveness is to provide for

personnel stability and to motivate employees to work in your organization. Emphasis

on training is in line with the idea that in a knowledge-intensive area of production

which changes frequently, training in the organization can make all the difference.

Future research could focus on the process enforcement phase, seeking to specify the

burden that is placed on this phase as a result of investments, or lack thereof, in the

first and second (description and training) phases. Control processes will not work if

necessary training is not done. In such instances the resources needed for control

increase considerably, and the result is that control functions are not implemented, and

the actual implementation and supervision of processes are lost.

References

[1] Zahran S. Software Process Improvement – Practical Guidelines for

Business Success, Addison-Wesley, 1997

[2] Humphrey W. A Discpiline for Software Engineering, Addison-Wesley, 1995

[3] Pressman R. Software engineering- a Practitioner’s Approach, McGraw-Hill,

1997

Session 5: SPI and Establishment of Models/Processes I

Page 5.12

[4] Ince D. Software quality assurance – a Student Introduction, McGraw-Hill,

1995

[5] IEEE/EIA 12207.0 Industry implementation of International Standard

ISO/IEC 1207:1995. Software Life Cycle Processes.

[6] IEEE/EIA 12207.1 Guide for Information Technology. Software Life Cycle

Processes. Life Cycle Data.

[7] Martin J., McClure C. Diagramming Techniques for Analysts and

Programmers, Prentice-Hall, 1985

[8] McFeeley B. IDEAL: A User’s Guide for Software Process Improvement,

Software Engineering Institute, 1996

[9] Solingen van R., Berghout E. The Goal/Question/Metric Method – A

Practical Guide for Quality Improvement of Software Development,

McGraw-Hill, 1999

[10] Solvberg A., Contents of an Information Systems Engineering Education, in:

Proceedings of the Third International Baltic Workshop on Databases and

Information Systems, Vol. 1, pp. 3-6, Riga, 1998

Session 5: SPI and Establishment of Models/Processes I

Page 5.13

The impact of a new

software

development

methodology and

how to afford the

changing resistance:

the RESPECT

experience

E. Cozzio

Federazione Trentina delle Cooperative,

Via Segantini, 10 - I-38100 Trento, Italy

tel. +39 0461 898320, fax +39 0461 895431

e-mail: enrico.cozzio@ftcoop.itetc.

F. Calzolari

ITC-Irst, I-38050 Povo (Trento), Italy

tel. +39 0461 314583, fax +39 0461 314591

e-mail: calzolar@irst.itc.it

Session 5: SPI and Establishment of Models/Processes I

Page 5.14

Abstract

The software industry has to cope with the rapid technological evolution and the global

market competition, in order to satisfy the growing user demands for quality, services and

bandwidth.

Although experience in developing systems has shown that an inadequate understanding

of system requirements is the single most important cause of user dissatisfaction and

system failure, the software development process is often largely unformalised and it lacks

of support for the early phases of requirements collecting and definition, especially in small

companies.

Therefore the FTC (FTC stands for the Trentino Federation of Cooperatives) addresses

this problem, providing a way to move from an informal and unsupported software

development process to a more formal one, adopting new methodologies and applying

suitable tools. The main technical objective of the Process Improvement Experiment

RESPECT is to improve the requirements' specification and analysis phase by formalising

the process of requirement capturing and by adopting a CASE tool to support this phase.

Unfortunately one may expect that moving from an informal development process to a

more structured and formal one will add an overhead to the programmers' activities.

However, from the business point of view the challenge is to measure the impact of process

changes in order to assess that the new practice really improve products' quality, time to

market and customer satisfaction at the price of some added burden for development

activities.

This article summarises the first year experience with the RESPECT project and

addresses the problem of measure the impact of the new development methodology and

how FTC afforded the changing resistance in order to make the improvement really

effective.

CHAPTER 2 INTRODUCTION

Page 5.15

Introduction

Federazione Trentina delle Cooperative s.c.r.l. (FTC) is a non-profit association,

organised as a consortium of co-operatives operating in the area of Trento, a small town in

the heart of the Italian Alps. It provides a set of services for all its members, with the

objective of maximising synergies and implementing a uniform set of standards in the

region (see Appendix 2).

ICT support for the whole of FTC is provided by an internal software development

team, the responsibilities of which span from software development to maintenance, from

on site assistance to network support.

In recent years the FTC has identified a potential expansion of its overall activities from

the captive market of the represented co-operatives to the external market. This poses a set

of new challenges for the software development team, in particular regarding the way

expectations of external customers are addressed.

This is primarily due to the fact that, as it happens with many small companies, FTC’

software development process is largely informal and deadline driven. In this context, the

capture of user requirements is usually done in an ad hoc and often imprecise fashion, with

the assumption that the real expectations will be clarified along the way through informal

progress meetings. This has proven wrong in several occasions and is one of the long-

standing identified weaknesses of FTC’ development process.

In the awe of the business expansion for FTC, the software development team has the

opportunity as well as the duty to address the issue in a systematic fashion. FTC’ software

development team has therefore initiated an improvement programme for the entire

software development process, starting from the requirement specification and analysis

phases.

The RESPECT project represents the starting point of this programme. The aim of the

experiment is to implement a new requirement specifications process supported by

automatic tools, and to show that improvements in the requirements specifications process

enable FTC’ software staff to decrease the overall development effort and increase

software quality.

If the experiment will be successfully completed, two primary objectives should be

reached:

 FTC’ management will have evidence of business benefits deriving from software

process improvement and will be able to take informed decisions regarding future

improvement actions;

 ICT staff will be more inclined to adopt new methods for software development and will

be more willing to accept the overheads in exchange for reduced overall effort.

For this experiment FTC is being assisted by ITC-Irst, a public research institute whose

activities spans from microelectronics to software engineering and software maintenace.

ITC-Irst co-operates with the FTC for scientific and methodological aspects, supporting

activities regarding tool selection, customisation and training, implementation as well as

requirement process and guidelines definition.

Session 5: SPI and Establishment of Models/Processes I

Page 5.16

The starting scenario

The software development process early followed by FTC programmers is typically

iterative. A prototype is usually developed to gain feedback from the user, but not all of the

required features are immediately implemented into the prototype. For each iteration, only a

fraction of the requirements are implemented. When a meaningful subset of all the

requirements is implemented into the currently developed prototype, a working (sub-)

system is delivered.

Although the software process has not yet been formalised nor has a standard

methodology been defined to describe the nature of each phase and the documents and

artefacts to be produced, some efforts toward adopting a more formal development process

have already been made:

 the OO paradigm and technology has been adopted as the standard development

technology. The company has migrated from a Clipper based environment to the

Smalltalk programming language and environment.

 a general framework of working and utility classes has been built as the main

development structure in order to ease code reuse. The classes framework has been

acquired from an associated partner, responsible for its updating and maintenance.

 standards for class documentation have been defined and case tools to automatically

generate documentation form source code have been adopted.

 a configuration management system supports the development process: at present source

code and run-time environments have been put under configuration management.

 maintenance interventions are automatically reported in the release version document:

this is enforced by automatic tools, in order to guarantee an up-to-date documentation.

Identified weaknesses are the following:

 Product requirements were collected in an informal way, expressing them in natural

language as a result of several interviews with the (internal) customers.

 No final user feedback is required until a first prototype of the product has been

developed.

With regards to the design phase, the FTC approach is mainly based on identifying

which classes of the framework can be directly reused, and which classes have to be

developed from scratch. Identified corrective actions are:

 Formalisation of the software development process, indicating phases and related

outputs

 Formalisation of the development phases (requirement specification, analysis and

design phase) by adopting a standard methodology and tools to support them

With the RESPECT project, FTC has chosen to focus on the requirement specification

and analysis process improvement as it is perceived as a strategic step which can

guarantee a higher quality of the products and higher customer satisfaction.

CHAPTER 4 THE PLANS AND THE EXPECTED OUTCOME

Page 5.17

The plans and the expected outcome

The experiment is being performed over a baseline project named “PROUD” (Progetto

Reti per l’Organizzazione delle Unità Distributive – Project Distribution Units Network

Organisation). It involves the FTC Programmers team supported by people involved in

management, auditing and marketing services.

The PROUD project is a pilot project, performed before transferring main results and

the same experience to other market fields. In particular, agricultural co-operatives, social

co-operatives, and production co-operatives will be involved in the next step, thus being the

natural candidates for adoption of the same solutions, experimented during the PROUD

project.

The project is nevertheless a real production project. A complete system to support the

commercialisation, direct retailing and consumer loyalty is going to be developed. Two of

the components of the entire system will be the “Fidelity card management software” and

the “Sales data warehousing”.

The completion of the PROUD project is planned to require about 800 person/days.

Several companies are involved in the baseline project with different roles: two external

companies, will develop some of the software components. Within the scope of the

PROUD project, the FTC itself behaves as a client for the PICO project (Progetti

d’Innovazione tramite la Cooperazione – Innovation Projects through the co-operation), a

project focused on financial auditing.

From an operational standpoint, the RESPECT project is expected to have a twofold

impact on the customer-supplier interaction. On the one hand it is expected to rationalise

the definition of the needed software product characteristics, for the benefits of the software

developers. On the other hand, since customers tend to provide imprecise descriptions of

their real requirements, it is expected to facilitate customers in describing their final

expectations earlier on in the prototyping phase.

Most importantly, from an organisational standpoint, the RESPECT project is expected

to help overcome the resistance encountered during the introduction of the new

methodologies, a problem which has been all too frequent in the past. In particular, past

experience in adapting solutions to the FTC environment is being used to reduce the

resistance to change and to minimise the overhead that the adoption of the new

methodology introduces.

Finally, RESPECT is expected to enhance the software-related documentation.

Currently the two selected components of the baseline project are the first ones in the

several years FTC software development experience provided by requirements related

formal documents. Until now, it is the very first time that informal verbose descriptions are

substituted by a structured document, compliant with general requirement standards.

Session 5: SPI and Establishment of Models/Processes I

Page 5.18

The implementation of the improvement actions

The experiment is being performed by defining a new requirement specification process

that includes the use of automatic tools to be applied to the selected baseline project and

by measuring the benefits obtained in terms of higher customer satisfaction, reduced effort

per requirement, reduced time to market, reduced rework and higher software quality.

The basic approach is that after a training session in the new methodology and tools, an

existing development team is employing the new techniques in the baseline project,

comparing them against their own past experiences with a traditional methodology (i.e.,

comparing the situation with the existing development process).

As most EEC-funded projects, the work plan for RESPECT is divided into several

work-packages. The most significant ones, from an implementation point of view are

WP2 – Tools acquisition and Integration, WP4 – Training, WP5 – Experimentation,

and WP6 – Analysis and Consolidation of results.

Fig. E.C. 1: The RESPECT Project Gannt

Although WP2 is not directly related to the organisational and business objectives, it is

nevertheless an integral part of the implementation as it makes use of a methodology

for tool selection (DESMET) that has been particularly important in leading the

project staff towards a structured approach to requirements definition. The influence of

adopting such a methodology is pervasive across the project – this is a positive side

effect of its use. However, since it primarily relates to technical objectives, the results

of WP2 are not presented in this article for brevity reasons.

Session 5: SPI and Establishment of Models/Processes I

Page 5.19

The measured results and the lessons learned so far

At the time of writing, the analysis and consolidation of results (WP6) has not taken

place yet and therefore only informal results can be presented. However, based on the

feedback from the activities in WP4 and WP5, it is already clear that several results are

being achieved in line with the expectations. The points worth noticing are presented

below.

The operational stand point

The general guidelines for requirements definition are providing a structured reference

for the requirements definition phase. In the experience of the involved staff, support to

software development process is certainly enhanced.

The adoption of a couple of tools (Rational RequisitePro and IBM Visual Age)

supporting the requirements definition phase and the analysis and design phase, has proven

to provide an effective means for the development early phases. The availability of a

company database containing previous projects requirements and designs is facilitating

reuse, thus reinforcing the expectation for a shorter time to market for future applications.

The business standpoint

The new requirements specification phase is resulting in increasing confidence that the

object model derived better implements what a customer/user really wants.

The new analysis phase supports a more natural partitioning of a complex system into

smaller components, easier to be managed. This results in a better application definition in

the design phase according to customer expectations, rather from later arbitrary design

choices.

By improving clarity of the communication channel back to the user, the perceived

quality of the product is improved by making an impact on customer satisfaction earlier.

That is, the user can see from the clear representation of his expectations whether the

system will satisfy the needs (rather than vaguely suspecting that they satisfy the need, but

awaiting a completed prototype to verify the suspicion). In such cases, where multiple

contracts may be under consideration simultaneously, the improved user satisfaction earlier

in one contract may be the triggering event to facilitate the choice.

The total business volume for FTC’ software development team is increasing, thanks

also to improved customers' confidence in the quality of requirements definition.

The organisational standpoint

As a result of the experience made within this PIE, some professional roles are being

considered in order to better support the software development process. In particular, it will

be probably defined a new responsibility about requirements definition and analysis

phases.

More in general, a better defined and more structured development process is leading

FTC to define roles and responsibilities more precisely, thus improving the structure of the

organisation.

From another point of view, having identified a defined requirements responsibility,

FTC is forced to carefully planning and scheduling of the ongoing projects, thus supporting

a better defined development process.

Session 5: SPI and Establishment of Models/Processes I

Page 5.20

The cultural standpoint

Staff generally agree that the new process is improving the final quality, and they also

recognise that new methodologies are reducing the number of interactions between supplier

and customer.

Staff also feel that the most part of these benefits will be probably available after that a

number of projects will be completed, providing feedback and support for reuse. Until then,

the introduction of the new methodologies risks to be perceived to increase the “project

bureaucracy”.

However FTC people feel that the project is perceived as the necessary first step to

define a more formal development process.

The skills standpoint

People involved in RESPECT are gaining new skills and knowledge about several

different fields and methodologies. For example FTC staff learned how to use the

DESMET methodology for tool selection. After this experience, they applied the same

methodology to screen and select other ones, choosing the best suited for a certain task.

Fig. E.C. 2: How DESMET is used by FTC

The impact is clearly evident at FTC and it is expected that the analysis to be conducted

in WP6 will reinforce these findings. To conclude, however, a few considerations can be

made regarding resistance to change.

All in all, FTC’ experience is that methodologies need to be explained and adapted to

be useful in practice. In particular, FTC developers have been trained about software

engineering fundamentals. Only after the training sessions it has been possible to define

general guidelines for the requirements definition phase. This is one of the main learned

lessons. Training is one of the most important factors to overcome resistance to

User

requirement

definition Tools and

Tool suppliers

identification Tools

features

analysis Tools evaluation

and

Tool selection
Functionality

analysis

and choice

FTCFTC

uirements

Environment

Product

test

Selected

otool

Check-list

Available

tools

Suitable

tools

Selected

tools

Session 5: SPI and Establishment of Models/Processes I

Page 5.21

change.

Equally, the newly introduced tools have been used to define not only requirements and

classes structure for a specific project, but for the whole of future FTC developments.

A database of requirements has been established, that, although it is based on a few

projects, already contains a number of requirements and use-cases defining typical

interactions with the system. Another lesson is therefore that thinking ahead for reuse

can really make a difference in the way the requirements are captured. In turn,

facilitating reuse makes it easier to win developers acceptance of the new methods.

Session 5: SPI and Establishment of Models/Processes I

Page 5.22

APPENDIX 1: Authors

Dr. Enrico Cozzio - Federazione Trentina delle Cooperative, Trento, Italy.

Managing Director of Ufficio della Cooperazione di Consumo Trentina, a department

of Federazione Trentina delle Cooperative.

This department deals with accounting and auditing, and also offers financial and

administrative help, together with organisation and planning strategies to retail co-

operatives (Famiglia Cooperativa scrl) and their consortium (Sait scrl), in the province

of Trento (Italy).

Dr. Francesco Calzolari - ITC - Irst, Povo (TN), Italy.

Francesco Calzolari received his Laurea degree cum laude in Computer Science from

the University of Pisa, Italy, in 1991, with a thesis in the field of Fault Tolerance, and

his Ph. D. in Informatics Engineering from the Politecnico of Milan, Italy, in 1996,

with a thesis about Timed Petri Nets and Real Time Systems.

In 1997 he joined the Software Engineering group at the Istituto per la Ricerca

Scientifica e Tecnologica (IRST), Trento, Italy. He was involved in the researches

about dynamic models for software maintenance and testing.

Actually he is member of the STAR Project team (Maintenance of Software Systems)

at IRST, and his current research interests include software engineering, dynamic

models and reverse engineering.

Session 5: SPI and Establishment of Models/Processes I

Page 5.23

APPENDIX 2: Companies

Federazione Trentina delle Cooperative (FTC)

The Trentino Region.

The Autonomous Province of Trento is situated in northern Italy, in the Alps, with a

population of 464,000 inhabitants over a mostly mountainous area of 6,207 km sq/.

Out of 223 council towns, only 5 have over 10,000 inhabitants, and they assimilate

38.9% of the population.

Trento, the capital of the region has over 100,000 inhabitants and the town of Rovereto

33,000 inhabitants, both of which are situated in the valley of the river Adige.

The Co-operative Movement in Trentino.

The Cooperative Movement in Trentino was born at the end of the last century, based

upon the economic theories of Friedrich Wilhelm Raiffeisen.

The Trentino area was a fertile breeding ground for the development of these ideas,

whether due to the culture of the population or to the favourable administration, ever since

its recognised origins, (in that which was a province of the old Austro-Hungarian Empire),

thus so today under the administrative bodies of the Autonomous Province of Trento and

the Region Trentino Alto Adige/Süd Tirol.

The Coop. Movement, within Trentino culture, is the economic consequence of the spirit

of associationism, of voluntary work, of good will and the capacity to “do things together”,

in essence, of the culture of self -government and self-management deeply rooted in this

Land and tangible in everyday life.

Therefore, Trentino is a land of consolidated co-operation, so much so that out of

464,000 inhabitants more than 160,000 are co-operative associates (100,000 not counting

double or triple subscribers) which traditionally operate in the following sectors.

 Credit. With a network of over 330 counters, the 80 Casse Rurali (Savings Banks)are

present in every council towns of the province and they assimilate globally 60% of the

market. The activity of the system is coordinated by the Cassa Centrale (Central

Bank), a consortium of all the Casse Rurali of the Province, which acts as a centre of

service and a common meeting point.

 Retail Co-operatives. With a sales network of 324 shops the 120 Famiglie

Cooperative (Family Cooperative Stores) operate in every council towns of the province

and assimilate globally 35% of the market. The activity of the system is coordinated by

SAIT, a consortium between all the Famiglia Cooperativa of the Province.

 Agriculture. By means of the Cantine Sociali (Wine Producers), the Caseifici Sociali

(dairies), the Magazzini Frutta (Fruit Warehouses), the cooperative collects, handles,

conserves and distributes over 80% of the agricultural produce of the entire province.

The individual co-operatives are then guided and coordinated in the running of their

activities by sectorial consortiums: Apot (divided into Melinda, La Trentina, Piccoli

Frutti) for fruit, CAVIT for viticulture, and CONCAST for dairy production.

 Production, work, services. An emerging Sector which consists of C.T.A. (Land and

environment Association), the reference point modelled upon the traditional sectors

cited above.

 Social Services. These are the co-operatives of the future and supplement the

deficiency of the welfare state in caring for the needs of assistance, even for individual

Session 5: SPI and Establishment of Models/Processes I

Page 5.24

cases, of marginalized subjects, helpers for the handicapped or the sick. Even this sector

has its own reference point Consortium, Consolida.

The Trentino Federation of Co-operatives.

The Trentino Co-operative Movement is assisted, co-ordinated, guided and controlled

by the Federazione Trentina delle Cooperative (Trentino Federation of Co-operatives), a

consortium amongst all the co-operatives of the province and their consortiums.

It is precisely the guidance and co-ordination of the Federation which confers upon the

Movement of Co-operatives the combining power of the system and the claims of the

economic model, according to the ideology which inspired Raiffeisen.

The Co-operative Movement in Trentino employs 7,788 permanent staff and 2,752 for

seasonal work.

ITC - IRST

ITC-Irst, the RESPECT subcontractor, is a public research institute whose activities

include software engineering and maintenance. ITC - Irst holds a solid background in

software engineering issues, especially in object-Oriented modelling, effort estimation,

static and dynamic code analysis as well as in software metrics. Several tens of articles

presented at international conferences or published by scientific journals the impact of such

activities on the scientific community.

Within the RESPECT project, ITC - Irst co-operates with the FTC for scientific and
methodological aspects, supporting activities regarding tool selection, customisation
and training, implementation as well as requirement process and guidelines
definition.

Session 5: SPI and Establishment of Models/Processes I

Page 5.25

Software process

improvement using

CASE: lessons from

the front-line

David Wastell

University of Manchester, UK

Chris Williams & Mike Willetts

Salford City Council

Karlheinz Kautz

Norwegian Computing Centre, Oslo, Norway.

Peter Kawalek

Warwick Business School, UK.

Tom McMaster

University of Salford, UK.

CAPELLA: context and aims

CAPELLA (CAse tools for Process Enhancement in LocaL Authorities) was initiated in

March 1997 as a result of a successful bid the previous autumn to carry out a process

improvement experiment (PIE) under the European Union’s ESSI programme (European

Systems and Software Initiative). The overall aim of the project was to develop a new

methodological framework in Salford City Council’s IT Services Department (ITSD) for

developing software based on the use of a CASE tool (Oracle’s Designer 2000, D2K). It

was expected that the project would lead to an in-depth appreciation of the implications of

implementing a CASE tool and associated methods, and engender a wider understanding of

the issues and impacts of technological change within an organisation. An interesting

feature of CAPELLA is that it represents a collaboration between the Council and

academic researchers from local institutions, and also the Norwegian Computing Centre.

Session 5: SPI and Establishment of Models/Processes I

Page 5.26

The rationale of this paper is to narrate a frank and honest history of the project and to

highlight its achievements in terms of lessons learned and its lasting legacy.

At the outset of the project, the software development group in ITSD consisted of around

28 software professionals organized in three teams under a single manager. They were

responsible for the development and maintenance of software systems for user departments

throughout the Council, the principal users being the Directorates of Education, Housing,

Social Services, and the Treasury. Although the department had a generally good reputation

amongst its user community, there were pockets of dissatisfaction and ITSD had a mixed

reputation for performance. The quality of software produced was generally acceptable.

However, timeliness and budgeting targets were regularly exceeded and the customer

departments felt that ITSD failed to provide sufficient information with regard to progress

and project budgets. Interestingly, where strict deadlines were imposed, for example

through legislation, those projects were delivered on time.

It was hoped that the use of CASE within a systematic methodology would achieve tangible

benefits in terms of both improved developer productivity and enhanced software quality

(especially in terms of user satisfaction). Productivity would be enhanced by two primary

means: through the standardisation of working methods and through the technical facilities

provided by CASE, e.g. integrated analysis and design tools, automatic code generation, a

central code repository enabling more re-use. Improvements in software quality were

sought in terms of both its technical dimensions (maintainability, cost of ownership etc.)

and in terms of a better fit with user needs. It was hoped that CASE would directly

improve technical quality and would indirectly support better business alignment by

enabling higher levels of user participation in the development process (primarily to be

achieved through the ability to prototype rapidly). The project aspired to introduce a new

software paradigm, described as the “Total Team” approach. It was hoped that the above

benefits would also translate into increased developer job satisfaction resulting in staff

retention and improved customer satisfaction resulting in repeat business.

In a nutshell, the original CAPELLA plan was structured in two phases. It was recognised

that the introduction of CASE and a new methodology represented a major change. Driving

the implementation strategy was a concern to develop internal capability, not to become

dependent on outside experts or consultants. This approach would also maximise feelings

of ownership and minimise internal resistance. Accordingly, the first phase of the project

(initial 6 months) aimed at creating such internal capability in the form of a Centre of

Excellence (CoE). Key skills would be developed by using CASE on a pilot project. Once

the skills were in place, CoE personnel would then play the role of internal consultants

assisting in the deployment of CASE (and new working methods) throughout the rest of the

department (months 6 to 18).

An unexpurgated account of the project in terms of its main events now follows. The

account is broken into 6 month segments (i.e. semesters). Dates are approximate.

Semester 1: First steps (inception to late summer

97)

The early phase of the project was problematic. Following a well-publicised and relatively

well-attended launch event (by both ITSD staff and to a lesser extent users), the project

Session 5: SPI and Establishment of Models/Processes I

Page 5.27

went into a quiescent phase. During this time, the project was being managed by the Head

of Software Development (HSD), who had played a supporting role in the original bid.

Although the CASE tool had been procured and some staff trained in its use, work on the

baseline project, a major integrated system for the Housing department, stopped due to

rapidly escalating costs and timescales, and the customer department took the decision to

review the market to compare new systems with the in-house development. Ultimately, they

decided to purchase a package solution.

Although an alternative project was identified concerned with the financial management of

regeneration projects (to be known as PROJ_1), both momentum and enthusiasm had been

lost. The deployment of CASE on a major project was critical to the whole strategy of

CAPELLA. It would mean that many developers would ultimately be involved in its use;

seeing CASE deployed on a flagship project was also of obvious symbolic value in

showing how central CASE (and CAPELLA) was to ITSD’s long-term strategy. Use by a

small group on a small project suggested the opposite. However, this should not be seen as

a tactical error so much as a genuine change in the business environment. The loss of the

Housing project was simply a reflection of a more general trend affecting ITSD (and

internal IT/IS departments in general), namely a move away from in-house bespoke

development to outsourcing and the use of packages. That CASE was coming to be seen as

marginal was thus accurately reflecting the wider business realities.

Summarising this period, the main positive outcome was that a small group of staff had

been trained in the use of D2K, and that the CoE now existed in the form of this group.

Little work on methodology had been initiated, although some preparatory work on metrics

had been carried out (for evaluating quality and productivity gains). The main user

departments had been interviewed and an internal investigation of the use of function point

analysis (Fenton, 1991) had been undertaken (with generally positive findings). Although a

CoE existed, it is fair to say that it (and CAPELLA in general) lacked a high profile within

the department as a whole, with most developers seeing it as having tangential relevance to

their work. The primary reasons included: the loss of the Housing project and the general

lack of appropriate development projects; lack of strong project leadership; low morale

amongst developers leading to a general weariness in respect of any innovation.

Towards the end of this semester, HSD left his position at Salford and there was a major

re-organisation within ITSD. The Customer Services and Software Development business

groups were merged with the Customer Services manager (HDCS) taking on the head-ship

of the newly formed “Development and Customer Services” business group. HDCS had led

the original bid on the Council’s side. Availability of staff resources was obviously affected

during this re-organisation, and a key member of staff also left the CoE for a position in the

private sector.

Semester 2: The Salford Methodology: a false

dawn? (autumn 97 to spring 98)

The second semester of the project was characterised by a switch in focus towards the

development of the methodological framework that had figured as the second main element

in the original proposal. CASE development work continued on the baseline project and a

further project was identified (PROJ_2); however, no significant expansion in its use

occurred. Although training requirements for CASE were examined, little actual training

Session 5: SPI and Establishment of Models/Processes I

Page 5.28

occurred over this period either internally or externally. A member of ITSD staff was

designated to work full time on the methodology (PR1). Prior to Christmas, the main event

was the holding of a workshop, attended by several development staff including PR1 and

one team leader, on Soft Systems Methodology (Checkland, 1981); this was seen (by the

academic researchers) as a tool that could form an important element of the new

framework.

Following Christmas, a concerted attempt was made to define the new methodology,

drawing on best practice in past projects. A structured methodology focused on the use of

CASE, with 14 stages covering the whole life cycle, was mapped out as a joint exercise by

a team comprising one of the researchers, a senior practitioner (PR2) and PR1. Two of the

stages were defined in detail. This work was however curtailed following a visit by PR1

and another member of the CoE (PR3) to a D2K workshop where they were introduced to

CDM, Oracle’s proprietary methodology associated with D2K. This appeared to hold much

promise as a potential framework. It was defined in detail, appeared to conform well to the

kinds of development projects handled by ITSD, and was geared to the application of D2K.

“Why invent a methodology of our own” was a persuasive argument which re-directed

effort to the evaluation of CDM. The decision was made to apply it to PROJ_2 and

retrospectively to another project, the ultimate aim being to customise it to ITSD’s working

practices. PR1 was to take the lead in this.

This work continued over the latter part of this semester. Some progress was made but

ultimately the decision was made to discontinue this line of work. PR1 showed increasing

disillusionment with CDM and with CAPELLA in general. CDM appeared to consist of no

more than a set of Word templates for holding documentation; in detail, it did not conform

well to the standards in place within ITSD. It was also unclear as to whether there was any

real need for CDM, given both the dearth of development projects and the marginal

position of CASE. The sense of an impending crisis was becoming strong and in late spring

a series of meetings was held which were to betoken a major change in the direction of the

project.

Semester 3: The renaissance of CAPELLA (spring

98 to late summer 98)

The conclusions of these meetings were twofold. First, that lack of internal resources had

impeded project progress and that a significant injection of new effort was required to drive

forward the technical work of the project. However, experienced staff were not available

given the extreme demands on the department at that time arising from the mainstream of

its work: the maintenance and upgrading of legacy systems, package development, and

increasingly, Y2K auditing. The limited role foreseen for CASE made it difficult to argue

for more internal resource at such a time, to progress its further deployment or the work on

methodology. The second conclusion was to switch the focus of the work onto activities

that did appear to be of real benefit to the department and to reappraise the work that had

been done, whilst remaining consistent with the general thrust of the project.

Early summer saw a major restructuring of the project. A senior member of ITSD was

appointed to lead the project. Two students were recruited from Manchester University to

carry forward the bulk of the technical work, and a further researcher was engaged. Three

main lines of work were mapped out: a codification of the methodological work that had

Session 5: SPI and Establishment of Models/Processes I

Page 5.29

been done, the development of a set of software metrics using the GQM approach (Basili,

1995), and an assessment of the lessons learned from the experience of implementing

CASE. ESSI were informed of the status of the project and a request was submitted for a 6

month extension on the basis of past problems, the proposed restructuring and the future

benefits. This was granted.

Work proceeded on metrics and methodology over the summer, and resulted in several

reports, which formed the inputs for a 2 day workshop in early October at which the

objectives and work programme for the remainder of the project were defined. Two reasons

for the desultory progress made in the project were identified. The decline in in-house

development was re-affirmed as a major inhibitory factor; this had rendered both CASE

and the work on a development methodology of increasingly marginal business

significance. A second factor also received extensive discussion, namely the low level of

software engineering discipline that appeared to prevail in ITS. This had been highlighted

as a result of a CMM assessment (Humphrey, 1995) performed over the summer which

showed ITSD to be at level 1, i.e. chaotic. More tellingly, the lack of formality had come

to light as a result of an attempt to introduce some basic mechanisms for project control; an

analysis of current commitments had revealed that much of the department’s work was

unofficial (up to 50%!) in the sense that no record was present in the formal order book.

Given these factors, the conclusion of the workshop was to focus the remainder of the

project on process improvement areas that were desirable and attainable given the working

practices and culture that prevailed in the department. Work on a monolithic development

methodology was no longer regarded as appropriate and it was resolved to re-focus the

methodological work on key practices. This was felt to represent a more flexible approach

allowing the department to improve its performance in discrete areas as part of an on-going

process of continuous improvement attuned to the exigencies of its business environment.

Each year, one or more practices would be targeted for focused effort.

Two such practices were identified for the remainder of CAPELLA. The first, and the most

important in terms of effort, was a metrication initiative aimed at putting in place a simple

set of metrics that would provide a rudimentary degree of project monitoring and customer

feedback. Part of the inspiration for this was to enable the efficacy of CASE to be

evaluated (to the limited degree that it had been deployed). The second motivation was that

this would be a significant move towards the creation of an effective project management

infrastructure. Although some project control mechanisms were in place, we have seen that

they needed strengthening and formalising. In practice many projects were initiated without

plans or indeed formal approval, and where plans existed there were wide variations in the

degree to which projects were monitored or controlled against those plans.

The second key practice was peer review. Two benchmarking studies recently carried out

by one of the researchers had identified this as a practice which had been successfully

adopted by two other level 1 organizations, and which had led to real improvements in

software quality.

At this point, a further significant development will be mentioned which had occurred in the

early part of the semester, namely the inauguration of a Standards and Methods Group

(SMG) within ITSD. The remit of SMG was to identify existing standards and methods, to

develop new ones where appropriate, and to promulgate their use. Membership of SMG

was open to any member of ITSD; participation in its work was voluntary. CAPELLA and

Session 5: SPI and Establishment of Models/Processes I

Page 5.30

SMG were clearly related in the sense that both initiatives were aimed at improving

software practices and a formal link was established. It was resolved that CAPELLA

activities would be progressed in concert with this group, and that we would draw on any

relevant standards work that was being done by SMG.

A presentation of the results of the workshop was made to SMG. Several staff members

volunteered to work on both the metrics and the peer review strands. The two students were

retained as ITSD staff (RA1 and RA2); their primary remit was to carry through the

metrics thrust of the project. One of the academic researchers took lead responsibility for

progressing the peer review initiative.

Semester 4: The denouement (autumn 98 –

spring 99)

The October workshop had generated some provisional proposals regarding metrics. Two

classes of metrics had been distinguished: developer metrics and customer metrics. The

former focused on project deliverables and key products, measuring such features as the

planned/actual effort to produce deliverables, planned/actual delivery dates, software

complexity, tools used etc. Customer metrics represented the users’ evaluation of a

software system in terms of its ease of use, its reliability, maintenance cost, and so on.

Work in these two areas was progressed separately, and will be reported in the following

two sub-sections. The results of the peer review work will then be summarised.

Developer metrics

6 projects were selected on which to pilot the developer metrics. 3 of these were CASE

projects, including the two projects already mentioned, namely PROJ_1 and PROJ_2. The

third was a new CASE development. A non-CASE project was also selected for

comparison, and two package development projects were included on the same basis. This

pilot experiment began in mid- November, the aim being to run for 3 months and then to

analyse the data and evaluate the effectiveness of the initiative.

Major problems were encountered immediately in that only one of the 6 projects was

actually live and running, namely PROJ_2. The new CASE project had been cancelled, the

two package projects were in abeyance, and the other two projects were finished.

Collecting the proposed set of metrics on PROJ_2 also turned out to be infeasible, for a

variety of reasons. Some metrics were seen as “too complicated” (i.e. it appeared

impossible to devise a standard method for assessing the complexity of design products

such as DFDs given the wide variations in way that they were produced); other metrics

were abandoned on the grounds that no relevant and reliable information could be found in

the existing project documentation (e.g. type of deliverable, delivery dates etc.).

In the light of these problems, the original set of developer metrics was scaled back to a

very limited subset, effectively providing timesheet information recording how much effort

was expended on different activities (e.g. logical design, data conversion) for a given

project. A detailed booklet was issued to the PROJ_2 team members (3 in number)

indicating how the timesheets were to be used, and the data collection exercise was then

initiated. The trial itself was disappointing in that very little work on PROJ_2 occurred

Session 5: SPI and Establishment of Models/Processes I

Page 5.31

over the course of the experiment, and the team members showed decreasing willingness to

complete the sheets. Only 5 timesheets were ever returned. However, the experiment was

invaluable methodologically in that it stimulated the development of a high level lifecycle

model for CASE development, in which the development process was divided into 15 tasks

(e.g. produce logical design) grouped in 8 stages. By the end of the pilot, this Process

Model had been through a series of refinements and was seen to conform well to the work

the developers did.

Overall, the trial was a useful learning experience, which had demonstrated the general

feasibility of collecting timesheet data in real time, providing that an accurate process

model of the type of project was defined. The decision was made to develop the approach

further and to implement it across the whole of ITSD for a one month trial period. The RAs

devised high level process models for each of the 10 types of project undertaken by the

department (CASE development, non-CASE, package work, Y2K testing, database

upgrades etc.) drawing on such standards that existed (e.g. a standard for package

development had been developed by SMG).

In the end, this experiment ran for 8 weeks. Data was successfully collected for a high

proportion of ITSD personnel, peaking at 20 individuals over the first 4 weeks before

tailing off to 10 for the final 4 weeks. Exploratory analyses have shown that usable

information was gleaned (e.g. accurate pie charts showing the distribution of time and

effort across the different types of project work). The validity of the various process models

has also been examined by checking if a valid task type has been specified against each

timesheet entry. For many processes, validity was high: for CASE development, for

instance, 85% of entries were valid, for non-CASE, 87%. The figures for other major

processes such as package development (59%) and Y2K work (65%) were somewhat

lower, indicating that further refinement of the process models and standardization of work

practices is required in these areas. The RAs also investigated a number of other issues of

interest, such as variations in task length across teams.

Customer metrics

The methodology for the definition of the customer metrics is of interest, the aim being to

produce a questionnaire instrument for assessing customer satisfaction in relation to their

use of IT systems. Following a review of seminal papers from the research literature (e.g.

Doll and Torzadeh, 1988) a prototype questionnaire was constructed. This was shown to a

group of volunteer users who provided valuable but relatively minor feedback, e.g. that

clearer topic definitions needed to be provided and a more logical grouping of questions

was required. Subsequently a focus group meeting of user representatives was held which

helped to clarify the concept of quality from a customer perspective and provided further

feedback on the service provided by ITSD.

The resulting questionnaire contained a number of sections, grouped in two main areas:

past experience of software development (users were asked to rate how involved had they

been in the development of the system they used, how much control they had had, how

responsive were ITSD etc.) and their levels of satisfaction with the resultant system (the

support given, accuracy of the data, informational content, format, ease of use and

flexibility). The motivation for the first set of question stemmed from our conviction that

user participation was the key to successful software development (the Total Team

approach) and that CASE was a means to achieve this.

Session 5: SPI and Establishment of Models/Processes I

Page 5.32

Customer data was then collected by distributing the questionnaire to the users of a sample

of extant systems. It had been hoped to carry out a comparison of CASE vs. non CASE

systems; however, no CASE systems were operational at the time of the survey. Hence it

was targeted on non-CASE systems only, 3 in all operated by two departments (Corporate

Services and Social Services). Nonetheless, the exercise was seen to be of value in that it

would provide a baseline for the future and that it would provide feedback on feasibility

and validity of the methodology.

Questionnaires were distributed to the identified contact person for each of the systems;

they were asked to pass them on to staff who were users of the system and/or had been

involved in its development. Questionnaires were returned from only one of the

departments; 27 responses were received from an estimated 70 distributed. Regarding the

first section of the questionnaire, respondents were overwhelmingly positive about their

experience: e.g. 75% of responses indicated an appropriate level of involvement and

control, 85% indicated that user/developer relations and communication had been good.

However, the number of respondents here was relatively small. The systems themselves

were judged to be satisfactory in most respects: support (86% positive responses), accuracy

against specification (100% positive), content (99%), output format (92%). For ease of use

(67%) and flexibility (50%) the proportion of positive evaluations was somewhat lower.

Whilst these results are generally positive, and indicate a highly suggestive relationship

between participation in development and project success, they reflect attitudes to only two

systems in one department. They broadly confirm the findings of our early interview work

that this department believed strongly in a user-led approach, that they committed resources

appropriately, and that they were very satisfied with the systems that they currently use.

Peer review

Peer review can be defined as a structured, quality improvement process whereby a team

member submits an item of work for constructive evaluation by a group of colleagues, who

may be team members or indeed drawn from outside the team. It was seen as bringing

several major benefits to ITSD: as a tool to improve quality, as a way of disseminating

good practice (including new standards), a mechanism for strengthening teams, and a

means of sharing critical knowledge so that it was no longer “locked-up” in the heads of

single individuals.

Several members of the SMG worked alongside one of the researchers in an effort to define

a standard procedure for peer review and to evaluated its usefulness. Two experimental

reviews were carried out, which were seen to be valuable, and a standard was defined

which outlined a methodology for peer review (preparatory work, who should attend, key

roles, the review format, guidance for reviewers, reporting and feedback). Quality criteria

for a set of high priority topics for peer review were also outlined, including feasibility

studies, project definition documents, and design documents.

The legacy of CAPELLA

In this section we will take stock of the results of CAPELLA. For each major area of work,

we will comment on what was ultimately achieved and what is planned for the future. We

Session 5: SPI and Establishment of Models/Processes I

Page 5.33

will conclude with some general reflections on what has been learned in relation to the

management of technological change.

A resume of technical achievements

Although the original grand design for CASE has not been fully realised (i.e. to provide a

common platform for all application development) nonetheless a CASE tool has been

acquired and expertise developed in its usage. Although this expertise is confined to a small

group of staff and has been applied on a minority of projects, it is likely that the demand for

these skills will continue, and should larger scale in-house development projects

materialise, a core of experience has been established. Informal interviews with developers

have revealed positive attitudes towards CASE and it is felt to have enhanced job

satisfaction; on the technical side, its ability to produce high quality documentation is felt to

be a particular benefit. Quantitative assessment of the benefits of CASE has not been

possible for reasons given above; i.e. that no CASE developed systems are presently in use.

The Total Team approach reflected our philosophical commitment that user participation is

the key to achieving high quality software systems, and the interview/survey data

confirmed the importance of a user led approach. Our original plan had been to develop a

semi-structured development methodology exploiting the features of CASE (e.g.

prototyping) to promote more intensive user involvement. In practice, achievements in this

area have been limited, given the changing priorities over the course of the work. A

methodology was defined, but only at a high level. The move away from a monolithic life-

cycle methodology towards key practices reflected the need for a flexible, modular

approach to improving working methods. Establishing the key practice approach is an

important result; it provides ITSD with a general framework for continuous process

improvement that will stand them in good stead in the face of a highly dynamic and

increasingly customer-oriented business environment. The modularity of the framework is

important as it enables incremental changes to be made that are attuned to the availability

of resources and the prevailing business priorities.

The Peer Review initiative exemplifies the Key Practice approach. The introduction of this

practice was felt to be an important step towards improving software quality, and the

results of the experiment were promising. Peer review was seen to be a useful tool and a

draft standard is now in place, including document templates. There is a clear intention to

proceed with its implementation, following further refinement of the methodology.

Questions being debated include: what products to apply it to, when should it be done (mid

or end of phase), how should it be followed up? As a first step, it has been proposed that all

projects must include at least one peer review built into the project plan.

Both metrics initiatives led to positive results. The timesheet experiment was a success in

that data was collected over an short but not insignificant period, and that the information

generated appears to be both valid and of intrinsic interest. However, the experiment also

indicated that staff compliance will be problematic and that more detailed consideration

needs to be given to the content of the information to be collected from both management

and operational perspectives. The experiment thus demonstrated the feasibility of the

methodology; it provided valuable experience and generated a set of useful document

templates and process descriptions. A system for recording effort against projects in real-

time is important for resource management and it is likely that, after further refinement, the

timesheet mechanism will form an important component of ITSD’s embryonic project

Session 5: SPI and Establishment of Models/Processes I

Page 5.34

management system (see below). Timesheets were also felt to be beneficial as a “self-

productivity” check.

The results of the customer metrics study were also positive in that the metrics appear to be

valid and meaningful, showing that customer satisfaction is measurable not only in relation

to the systems developed but that the development process is capable of metrication too.

Valuable feedback on the methodology was obtained as a result of the experiment,

indicating it to be generally sound, although there are problems that remain to be

addressed: e.g. the absence of responses from one department was a major flaw that needs

further investigation, with the methodology to be improved as a result. As a result of the

experiment there is a clear intention to refine and implement the customer metrics as a

routine feedback mechanism, and a further survey is planned for next year.

The October workshop identified an urgent need for improved mechanisms for project

management and CAPELLA has certainly instigated important work in this area. Apart

from the timesheet experiment, work on the creation of a standard for project management

has commenced over the last semester, under the aegis of CAPELLA. Three concrete

achievements may be noted:

 a detailed set of documents has been written defining the draft outline of a project

management system (including a detailed set of pro formas for recording information);

 it is a requirement now that all projects have a Project Definition Document, setting

out scope, objectives, risks, resources, timescales and milestones (the PDD is seen as

an obvious priority target for peer review);

 it is also required that all projects produce monthly progress reports, using a form

modelled on the report used by ESSI to monitor periodic progress (PPR).

These latter two documents (the PPR especially) represent real concrete achievements in

the sense that they have continued in use after the end of CAPELLA, and although still

uneven there is a steadily rising trend in the quality of the reports being produced.

As a final achievement, the inauguration of the SMG should be noted. CAPELLA in part

inspired this, in the sense that SMG’s creation reflected an awareness of the need for self-

reflection and process improvement that CAPELLA has helped to engender. In terms of its

work, the liaison with CAPELLA has been of reciprocal benefit; standards generated by

SMG have been used within CAPELLA and the results of our work have been reported

back to SMG. In this sense, CAPELLA has strengthened the role of SMG. It is felt that

SMG has proved itself as an effective forum, although it has declined in vigour over the

last six months owing to the voluntary basis on which its technical work was done; in the

future, SMG projects will be treated on the same basis as any other project and resourced

fully and formally.

Final reflections on the management of change

The foremost observation to be made about CAPELLA is that it was a highly ambitious

project, the aim being to make radical and comprehensive changes to working practices in a

sizeable IT department over a short period of time. That the outcomes can seem modest in

relation to our original ambitions reflects more on the magnitude of our goals rather than

the lack of real achievement. The project has undoubtedly been a valuable exercise which

has raised awareness in many areas, generated important pockets of new expertise and has

Session 5: SPI and Establishment of Models/Processes I

Page 5.35

produced tangible outputs, some of which have already been incorporated into practice and

others which are likely to have a significant impact in the short term.

The first part of this report presented a detailed history of the project. The reason for

recounting such a blow-by-blow narrative (rather than the usual bland and abstract

account) is to provide a body of data to reflect upon regarding the lessons to be learned

from the project for the introduction and management of technological change.

Arguably the most important lesson is the importance of strong alignment of new

technology with the short-term demands on the business and its long-term goals. Although

both are important, our experience shows that immediate exigencies tend to take

precedence over future aspirations in terms of their claim on attention and resources.

However important CASE and the Total Team approach might have been in the long term,

the limited nature of our achievements in these areas in large part reflects the lack of

relevance of CASE and the methodology to the prevailing demands on ITSD. Our

experience has emphasised the high degree of dynamism in today’s business environment

and that vigilance and constant effort are required if change initiatives (such as PIEs) are to

remain congruent with changes in the internal and external environment. We have seen that

gaps can easily open up, even over relatively short time-scales, and that delays in

addressing these can seriously jeopardise the improvement initiative.

Our results underline the truism that complex technologies require a greater investment of

implementation effort in terms of training, changing working practices etc than simple

innovations. The benefits at an organisational and individual level will take longer to

realise and the short-term costs will be greater and more inhibiting. Not only is more effort

required but the learning and dislocation entailed in the immediate term are likely to

engender decrements rather than improvements in performance. This is a serious problem

for complex technologies such as CASE; the business risks of deploying these innovations

on business-critical projects is very inhibiting. The lack of adoption of CASE is only partly

explicable by the paucity of development projects. It is arguable that it could have been

more widely used than it was, and we may attribute this to the investment of effort that

would have been required, in terms of training and in the standardization of work practices

in an organisation characterised by highly informal methods. These concerns have almost

certainly held back its wider adoption, and the question is a moot one of the degree to

which it would have been deployed on the original baseline, given the risks involved. These

considerations indicate that incremental approaches to technological change are more likely

to succeed for complex innovations. This was reflected in our original plans to roll-out

CASE on a team by team basis. It is also reflected in the positive reaction to the Key

Practices framework.

Leadership in terms of both vision and implementation has also been shown to be crucial to

success. Arguably, leadership was lacking in the first semester of the project and this was a

cause of some of the problems encountered. Implementation is critical, and our experience

has shown how problematic this can be and has given important insights into the critical

success factors. Ownership is at the heart of this issue; innovations will be adopted more

readily if people personally identify with them. This lay behind our original decision to

make use of internal personnel. Although external resources can give momentum to

experimental initiatives (as we saw in the last semester) there is a danger that the these

efforts can be come marginalised because they are executed by outsiders. It is significant

that, although there are plans to implement metrics, the only initiatives from the last phase

Session 5: SPI and Establishment of Models/Processes I

Page 5.36

that are currently institutionalised are the PDD and the PRR: the implementation of both

these documents was championed and led internally.

Let us examine further the success of these two innovations in terms of our previous

analysis as the contrast with CASE is revealing. In terms of relevance, the benefits are

clear: ITSD will find it more and more difficult to survive in an environment increasingly

dominated by commercial imperatives without stronger control systems. The PDD and PRR

represent important components of a nascent project management system that is crucial to

survival. Relatively simple technology is being used (simple paper documents) and, as we

have said, leadership is internal and at a senior level. The attention given to implementation

has also been crucial and shows the importance of monitoring and accountability.

Articulating a vision for change is not enough; implementation must be followed up

rigorously through management structures with staff held accountable, especially middle

management. PDDs and PRRs are now mandatory requirements in ITSD and team leaders

are held accountable for their production. Despite early problems of incomplete recording,

there is a steadily improving trend in the quality and timeliness of these documents.

References

[1] Basili, V., Applying the Goal/Question/Metric paradigm in the experience

factory. In: Fenton, N. et al., Software Quality Assurance and Measurement,

International Thompson Computer Press, 1995.

[2] Checkland, P., Systems thinking: systems practice. Wiley, Chichester, 1981.

[3] Doll, W. and Torzadeh, G., The measurement of end-user computing

satisfaction, MIS Quarterly, 259-274, 1988.

[4] Fenton, N., Software metrics: a rigorous approach. Chapman-Hall, 1991.

[5] Humphrey, W.S. A Discipline for software engineering. Addison-Wesley,

Reading, MA, 1995.

Page 6.1

Session 6

SPI and Virtual Team and

QA Systems

Chairman

Timo Mäkinen
Pori School of Technology, Pori, Finland

Session6: SPI and Virtual Team and QA Systems

Page 6.2

Experience with Process

Improvement

Collaborations in

Distributed Virtual Work

Environments

Klaus D. Zesar, Hyperwave Software R&D GesmbH., Austria

Kzesar@hyperwave.com

Dr Richard Messnarz, Director ISCN Ltd., Dublin, Ireland

Rmess@iscn.ie, rmess@iscn.at

Gabor Nadasi, Rainer Bernhard, NQA Developers, ISCN, Graz, Austria

Rbernhard@iscn.at, gnadasi@iscn.at

Abstract:

This paper describes (a) research work about virtual organisations performed

at the University of Technology Graz, and (b) experience with an actual

implementation of a virtual organisation for quality assurance for the

company Hyperwave.

It contains a description of the underlying principles of a virtual organisation,

the paradigms followed in a system called NQA (Network based Quality

Assurance) to establish such a virtual collaboration for the purpose of shared

quality assurance, and presents an outlook into the future of virtual

organisations.

Richard Messnarz, Dr., Florence House, 1 Florence Villas, Bray, Co.

Wicklow, Ireland, ph.: +353 1 286 1583, fax.: +353 1 286 5078

Klaus D. Zesar, Hyperwave Software R&D GesmbH., A-8010 Graz, Austria,

ph.: +43 316 820918, fax.: +43 316 820918 99

mailto:Rmess@iscn.ie
mailto:rmess@iscn.at
mailto:Rbernhard@iscn.at
mailto:gnadasi@iscn.at

Session6: SPI and Virtual Team and QA Systems

Page 6.3

Introduction into Virtual Organisations

What is a Virtual Organisation

Nearly most methods for improving and managing software processes have been

focused on single individual organisations and their processes. Little attention has

been paid to software development projects which involve a number of organisations

of varying size and software process maturity. Companies which form strategic

partnerships in situation- and target-depending ways, are commonly referred as ad-

hoc-organisations or „virtual organisations“ [1]. Such temporary forms of partnership

are more advanced, because an ongoing change of partners requires more flexibility in

terms of company culture, communication and information management [19].

Organisations that join their core competencies together to carry out a specific

software project build a software development co-operation network. Each core

competence is represented through a special software process called core-process

performed by its organisation. A core process is organised as a service within a

company and is available throughout the whole virtual organisation. Others can order

these services and do not have to worry about the availability of certain persons at

certain times. The virtual organisation itself uses a pool of such services. The best

processes for each part of the project are connected to a co-operation network by the

initiator of the virtual software organisation. For a virtual organisation the effective

configuration of these processes is of essential interest to be able to produce products

in an efficient way, for which customers are willing to pay for [5].

Given that it is not likely a virtual organisation will form by itself, a moderator or

broker is needed. The moderator initiates businesses, discovers technological gaps in

the involved companies, finds a common language between suppliers and customers,

and assists the initiator in an organisational and technological way to establish the

virtual organisation [20].

Session6: SPI and Virtual Team and QA Systems

Page 6.4

Before a project starts, the organisations involved have to sign a general agreement

which contains the requirements and goals. This contract is created out of a common

understanding of business and in relation to the confidence of one process in the

performance of the other. This understanding includes the product specification, the

terms of co-operation, and the specification of social behaviour [1][15]. If there is a

common understanding of business and the necessary portion of trust between co-

operating partners written contracts are not necessary [6]. After agreeing to the

contract, the supplier takes full responsibility for the fulfilment of the required

performance, and for the performance of its suppliers to achieve maximum customer

satisfaction as the primary quality goal.

How does a virtual software organisation look like? Each virtual software

organisation generally consists of three main components (see Fig.1) with different

goals and tasks that are used to organise the software project [25].

Customer-oriented processes define an interface between the customers and the

software development process. Their rate is to support the customer, analyse the

customer's requirements, manage the services, projects and the product.

Software development processes are organised in a so-called software factory, much

like a factory for mass production. Inside the software factory, software products are

produced with the help of standardised computer-based tools. They use formalised

processes that are controlled by technical and economical metrics [2]. These processes

are optimised for a specific area of making them in appropriate for other application

areas.

Additional, processes are needed that do not explicitly add value or define value, but

Customer
Customer

Key Account Management

Product Management

Domain Management

System Development

Component Development

Module Development

...

Customizing

Glueing

Consulting

Customer related Processes : representing values , the customer is

willing to pay for

„Backoffice Processes “:

Supporting upper level

processes

„Software Factory“: Professional

Software Development

Order Delivery

Figure 1: Generic sample of a process oriented software organization [24]

Session6: SPI and Virtual Team and QA Systems

Page 6.5

which support the processes described above.

The Underlying Success Principles

Mostly nowadays organisation is nothing more than a resource pool still organised by

functions and only supporting the processes by staffing projects. But what is needed is

an organisational form with optimised for the software process and all other important

processes within a company [4]. A virtual organisation is such a form. It must posess

a few underlying principles that are necessary for its economic success. It must be [8]:

Process Oriented

 Each process has a end-to-end responsibility to fulfil the contract to decrease the

time-to-market and increase the performance all tasks for a particular project have to

be organised as a process. The flow of information, work and products are inherently

combined together.

Customer Oriented

 Customer satisfaction is the primary goal for each process as well as for the virtual

organisation as a whole. Therefore it is necessary that each software process could

conceivably be a customer for other processes as well as a supplier for their own

customers.

Transaction Oriented

 Between software processes, there are order-delivery relationships with clearly

defined interfaces for communication and data exchange. Through streamlining the

amount of interfaces should be reduced since they are sources of information loss.

Object Oriented (principle of autonomy)

 Each of these processes can be seen as an object that uses resources and fulfils

tasks. Objects can be described via different performance and quality parameters.

These parameters are combined with metrics that are used for the selection of the best

available processes for a particular virtual organisation.

Continuous Improvement

 In a virtual organisation, continuous improvement occurs at the network level

because the network is constantly improving the co-ordination and communication

between the individual companies (nodes). And at the individual node level, each

company is constantly improving its core competencies.

Virtual

 Companies have to go with their products and services to the geographical

location of their customer, and they have to talk the same language as them.

Distributed processes are necessary to fulfil such a requirement. A virtual organisation

is the result of such an intention.

By combining the core competencies of many individual companies within the

network, each virtual enterprise is more powerful and flexible than it individual parts.

Session6: SPI and Virtual Team and QA Systems

Page 6.6

Each company in a virtual organisation is chosen because of its process excellence.

The result is a more powerful organisation since it is made up of the best available

core competencies. By having all partners agree with and commit to defined

schedules and costs before the start of the project, the risk is reduced to a minimum.

What is the Economic Impact

To stay competitive in today's global market, it is necessary to set up win-win based

agreements in cost sharing projects where partners from different countries share the

risk and the effort, and jointly exploit ideas, products, and services. Through effective

and distributed collaborations, organisations can cut down their risk significantly (e.g.

sharing the development cost with other partners), and can reach a much larger

market.

This new approach of collaborative development leads to opportunities for creating

financial leverage (by joint risk and effort funding) and an increased marketing

leverage (by joint representation on the market, and larger distribution through a

network of partnerships).

One of the principal benefits is that it provides strategies for improving service

velocity - the rate at which software can be brought to market and/or customised.

Through such an organisation, access to resources, know-how, and the markets of

partners are available, in a way that costs and time can be saved in favour of a joint

production. However, the major goal is, via an optimised information management, to

increase flexibility, productivity and customer orientation [18]. Quality itself is not

the primary goal of a virtual organisation, rather it is accepted as a necessary

condition for maintaining competitiveness [23].

Collaboration through a virtual office also implies a need a need for a knowledge base

that can be shared between organisations. The difference between information (as it is

offered now by many Web servers) and knowledge is that knowledge is created from

information by putting a structure onto the information so that it can be shared,

multiplied, and understood across a team. Not only the information and its structure is

relevant, but also meta-information like owner, creation time, or when the information

was last retrieved and by whom. This information about information is also necessary

for turning information into knowledge.

This may also have a strategic impact for the European Union in general. Under the

4th framework program the ESSI (European Systems and Software Initiative)

initiative funded hundreds of PIEs (Process Improvement Experiments) at smaller and

medium sized companies across Europe to improve their development capabilities and

software processes.

The 5th framework program supports the virtual information society strategy so that

technologies are sought that could connect those efficient companies into focused

collaborations building the strengths together as if they are a big company.

In a Europe where most industry is small and medium sized, such a strategy could

create competitive advantages against other countries and continents.

Session6: SPI and Virtual Team and QA Systems

Page 6.7

What are the Functions

Whereas the virtual organisation’s life span is limited by the software project’s life

cycle, there is need for a permanent and preferable flat organisation that provides for

the availability of required competence resources, optimised communication channels

and definition of a meta process facilitating co-operation and interaction. Therefore,

management activities encompassing all software processes are needed to configure

the virtual organisation, to co-ordinate their co-operation, and to conform them to a

common strategy.

Distributed collaboration requires effective co-ordination between the involved

partners' work and quality control mechanisms. This can be addressed with by a

virtual office on a network that includes project archives and document management,

configuration management, guide-lines and computer support for project

documentation, network and computer supported information flow, and appropriate

security mechanisms assuring privacy of the materials exchanged and produced. In

addition such a system needs a flexible access control and authentication system to

manage the access to all information for every individual on the network.

However, virtual organisations are not limited to just such quality assurance

functions, they can also offer a vast array of additional services like customer support,

project management, component and other administrative functions, where quality

assurance is a core component.

The majority of communication in a distributed collaboration uses asynchronous

mechanisms (e.g. email, web-publishing and retrieval) but there is also need for

synchronous communication like chat or telephone conversations. The information

which is included in synchronous communication should also be archived by the

information infrastructure. The integration of information- and telecommunication

systems seems to be necessary.

Requirements for successfully applying the concept of a virtual organisation to the

software production process are among other things an open and standardised

information infrastructure, defined software processes, confidence in the performance

of all partners involved, the participation of all partners in the decisions and the

overall result, as well as a modular software architecture.

Individual companies can be geographically distributed and therefore use different

languages, and different legal and social systems. The connecting information and

communication technology is charged with selecting, measuring and controlling the

processes in spite of these constraints. The underlying technologies have to meet the

requirements for knowledge and information storage, for de-centralised information

access and retrieval, as well as for the short-term merging of distributed knowledge

[19].

Session6: SPI and Virtual Team and QA Systems

Page 6.8

Information Infrastructure

However, most of the requirements that virtual organisations demand (in terms of

information infrastructure, especially technical openness, distributed storage of data,

and security mechanisms) can be fulfilled with existing information and

communication technologies [18]. Today, the most powerful and cost-effective

infrastructure for enabling virtual organisations is the Internet [3]: with its failsafe

network topology as the communication infrastructure and the different Internet

services like email, WWW and ftp, as the information infrastructure.

Via virtual private networks virtual organisations can use the Internet as an Intranet.

The information (e.g. project documentation, customer data) that is necessary for

performing the business is presented by application servers to all the members of a

virtual organisation. Such a Web-based application server is the Hyperwave

Information Server - a broad and feature-rich application development platform that

has been used to build web-based applications in areas that are important for virtual

organisations: knowledge management, document management, Web-based training,

project management, and many more. This flexibility and customisability is one of the

major strengths of the Hyperwave Information Server.

To meet the requirements discussed above for a virtual organisation, flexible IT-

systems are necessary. They have to be quickly adaptable (like the plug&play

concept) to new processes and IT-system. As an example for such a system the

Hyperwave Information Server supports a virtual organisation and its processes with a

great deal of built-in functionality including the following:

A dynamic structure for the presentation of documents and links that allows

customised views of information

A clear separation of information and its presentation

Documents are stored as objects containing information, metadata and functions

A built-in user and group based security mechanism (access control)

A scalable architecture for connecting many Hyperwave Information Server together

into one server pool

A channel mechanism that supports passive information retrieval (notification)

Users can create new information through linking documents together

Collaborative authoring is supported with integrated document versioning, locking,

and configuration management

Object-Oriented programming methods allow the development of new applications

and/or the extension of existing functions

Combining the concept of an virtual organisation with such an infrastructure leads to

following simplified scenario:

Each process (or company) runs its own information server for their special tasks.

Process dependent applications control the input and output of data. All servers in an

virtual organisation are combined into a server pool where each member can access

information from the other. But some information should not be accessible to the

Session6: SPI and Virtual Team and QA Systems

Page 6.9

whole virtual organisation. Therefore the access rights must be restricted to the

information that is defined in the general agreements. These contracts also specify the

overall workflow and the interfaces between processes. Information that should be

exchanged is linked from the server that holds the information to the server where the

information is needed without copying it. This reduces the amount of storage,

increases the maintainability of information (only one source), and simplifies the

access control. After a common project is finished, the servers are removed from the

server pool and all links between servers are automatically removed or disabled.

The features and the scenario described above are only a small overview of what is

possible when a Web-based server act as an information infrastructure for a virtual

organisation. Better is a real world example of an actual implementation for a specific

project. NQA is such an example. It supports the quality management in a virtual

office in conjunction with ISO 9001.

NQA (Network based Quality Assurance)

Paradigms Underlying the NQA Concept

The NQA approach bases on three principles which have been discussed and

published at previous ISCN conferences (http://www.iscn.ie/conferences) and about

which there is a book being published by IEEE [13]: Better Software Practice for

Business Benefit - Principles and Experience (ed. Richard Messnarz, ISCN).

The three principles

Role and information flow based team work process management

Development by configuration

Re-Use pool concept

are discussed below.

A major feature to make such a virtual approach applicable for different environments

is that such a system must be kept completely configurable. The menu, the data, the

functions, the document/information flows can be configured for different user

scenarios and this high configurability is the major feature of an NQA virtual office. It

is based on standard Internet languages and scripts and on the Hyperwave information

server.

The Underlying Management Principle

A software process is not seen as just a sequence of tasks with a planned result [10],

but it is the result of an integrated team work environment [14]. The organisation is

broken down into work scenarios (management use cases, e.g. scenario for planning,

scenario for design, scenario for marketing, etc.) and each scenario is designed with

http://www.iscn.ie/conferences

Session6: SPI and Virtual Team and QA Systems

Page 6.10

Roles who have responsibilities

Work steps to which roles and resources are assigned

A network of work steps forming a work-flow

Results produced by roles performing a certain work step in the work flow

The new approach is to think role-centered, so that by staffing of roles work scenarios

in an organisation are initiated.

The advantage of the new approach is

People know their responsibilities better and know their communication interfaces to

other members in the team

New staff can easily be integrated (assign a role, learn the skills required to play the

role, follow the communication flows in the team)

Information technologies like NQA (because the communication interfaces become

visible) can be used to support the team communication, documentation, and

configuration of results.

Benefits Measured

Experiments with this approach ave been carried out since 1993 at firms in Austria,

Germany, Spain, and Ireland, and 7 other countries. Results are [13], [14]

A 50% reduction in effort in new staff integration

A 67% higher team motivation for using documentation efforts like ISO 9001 (share

the work in a team in a defined way)

A 67% reduced maintenance and 50% higher productivity because a decomposed role

based team with clear responsibilities allows good distribution of tasks (parallel and

not sequential work) and avoids monolithic program architectures (all are responsible

for the same software without clear distinction of interfaces and modules).

Management Steps

Define the roles

Identify communication flow between the roles

Formalise communication flows (only where necessary) and define results

(exchanged between roles)

The work-flow, after that, is just a waste product of the team-work model

Example from a planning scenario at Hyperwave

For each scenario there is an underlying role play clearly describing the roles played

in a team, the responsibilities, and the communication flows. These communication

flows result in a number of work instructions describing the roles’ duties and the

sequence of work steps to be performed. The same working instructions are then used,

Session6: SPI and Virtual Team and QA Systems

Page 6.11

for instance, to show compliance with working instructions required by ISO 9001

[11], [12].

Product Mgmt.

Team

CTOCo-ordinator

Project Manager

4. PM

Installation

Configuration

Manager

Archive

All material

FR, RR,

URD, WP

1.FR

11.
5. URD

and WPf

3. FR

Quality Assurance

9.URDs

and WP

5. URD

and WPf

6.RR

6.RR

7. URDs and WP

8. RR for URDs

 and WP

10.RR

2.RR

 of

 FR

Figure 1: A Role Play for Feature Request Management and Planning

Work Instructions for the Feature Request and Planning Scenario at Hyperwave

The Product Management Team (PMT, customer) makes a Feature Request (FR). The

Chief Technical Officer (CTO) receives it and archives it.

The CTO reviews the features together with the PMT resulting in Review Reports

(RR) for the feature request and decisions about their implementation.

The refined feature request (for which an implementation was decided) is forwarded

to the Co-ordinator (CRD).

The Co-ordinator assigns the feature request to a responsible project manager. For

each release there are many such feature requests so that the previous steps are

repeated many times.

The responsible Project Manager (PM) draws up a draft User Requirements

Document (URD) and a URD specific Work Plan (WPprj), and forwards the draft for

review to the Quality Assurance (QA) and the Co-ordinator (CRD).

The draft URD and WPprj are at the same time reviewed by the Quality Assurance

(QA), and the Co-ordinator (CRD), resulting in Review Reports (RR).

The Co-ordinator approves the WPprj and combines them into an overall Work Plan

(WP) for the organisation, and forwards all URDs and the overall WP for review to

the CTO.

CTO approves the URDs and the WP.

PMT receives URDs and WP for final review.

PMT reviews and gives acceptance to the URDs and the overall WP.

Configuration Manager (CM) controls that all materials produced in the work flows

have been properly archived. Special care is taken on the trace-ability between feature

requests, requirements in the URD, and proposal/agreement issues.

Session6: SPI and Virtual Team and QA Systems

Page 6.12

Only after the establishment of such a role-based model the information flows become

clear and a tool can start to support the team communication and quality control

activities through a virtual office of distributed competence teams.

The Information Technology Principles Underlying an NQA Concept

Development by Configuration

This paradigm bases on the fact that functionality is to be separated from data, and

that data can be assigned with functionality by the user through configuration. NQA

concepts must developed according to this principle and allow each organisation to

insert their own documentation or result templates, and the NQA system then

automatically generates (with the creation of objects from the templates) the

functionality to the created objects.

This way users can insert and maintain document or result templates and adapt the

system to their own specific documentation requirements without any change or

customization of code (just by configuration of data).

Best Practice

Work Scenarios

Role Models

Doc + Results Templates

Categories e.g.

Planning (wp.htm, …)

Design

Quality

Maintenance

Project Administration

Distribution Lists and

Document Flows

Document Management and

Configuration Management

Link Existing

Functionality

Figure 2: Data and Functional Configurability

Function Base Driven Configuration (Re-Use Pool Concept)

At the moment three basic elements can be configured to which the above

functionality is generated.

Documents - The below picture shows the standard window for document creation,

with SAVE the functionality is generated to the template taken from the pool and a

first version is issued under configuration management)

Session6: SPI and Virtual Team and QA Systems

Page 6.13

Figure 3 : Document Object Creation Window

Reports - The below picture shows the standard window for report creation, after

ADD a report is added to a list and the functionality is generated to the template taken

from the pool and a first version is issued under configuration management.

Figure 4 : Report Object Creation Window

Linked Reports - same as with reports, plus the report is automatically linked

backward and forward to what has been selected in the right combo boxes.

Figure 5 : Linked Report Object Creation Window

Depending on the user needs the three elements are configured. E.g. Linking Feature

Requests (FR) with user Requirements Documents (URD), so that an URD is

automatically created by the links to accepted FRs (example from a customer wish

from Daimler Benz).

Further basic elements might be considered and inserted into the NQA configuration

pool in later releases.

Session6: SPI and Virtual Team and QA Systems

Page 6.14

How an NQA Virtual Office Works

A required functionality of an NQA system comprises the automatic assignment of

the following functionality to created objects -

Document Management

Creation of documents from a template pool (configurable by customer). Automatic

administration within a project structure under a certain documentation category (e.g.

planning document). Electronic submission to a distribution list (workflow). Version

management and change control (see configuration management). Automatic forward

linking to reports (e.g. a number of Review Reports linked forward and back to the

document version, see link management). Download, edit, and publication facilities.

Computer supported test status.

Report Management

Creation of reports from a template pool (configurable by customer). Automatic

administration within a project structure under a certain documentation category (e.g.

quality control reports). Electronic submission to a distribution list (workflow).

Version management and change control (see configuration management). Automatic

forward and backward linking between documents and reports, or reports and reports

(e.g. linking test protocols with problem reports, and problem reports with

modification reports). On-line edit of forms at server side, and on-line submission (no

download necessary for edit).

Workflow Management

Electronic submission of reports ad results to team members. Encryption module can

be used. Administration of distribution lists (for automatic forward). A

communication log per project archiving all communication flows between team

members (roles).

People are assigned to project groups, and distribution lists are automatically

generated and proposed for the submit of documents and reports.

Figure 6: A Standard Notification Message for Submissions

Session6: SPI and Virtual Team and QA Systems

Page 6.15

Configuration Management

Version management. Registration of versions in a document (result) history. Check-

in and Check-out functions. Revert to previously archived versions. Test status

information in document history.

Figure 7: Version control with Object History Including Test Status

Link Management (Forward and Backward Tracing)

Definition (see functional configurability) of links between report and document

types. Automatic assignment of linking properties to created objects. Automatic

forward and backward linking according to the defined functional configuration

(configurable by system administrator). E.g. linking review Reports with documents,

so that by a click you switch between the document and the related reports.

Figure 8: Forward and Backward Linking (e.g. Review Reports Linked to a User

Requirements Document)

User Administration

Administration of a team per project (see only their project). An NQA system

administrator nqaadmin (sees all). Administration of a distribution list (for electronic

submission) per team (and in future role based per document).

Session6: SPI and Virtual Team and QA Systems

Page 6.16

Figure 9: Identification and User Control

Security Management

No access without identification possible. The information in the electronic

submissions contains only links to info at the server which requires identification. If

even these links should be protected an additional encryption module from

Hyperwave can bee installed.

By just using Netscape the team members (from home, from any work place, etc.) can

access the NQA virtual server and work on-line through a joint interface.

The ISO 9001 Experience Pool

NQA is delivered together with a complete electronic ISO 9001 manual, with

examples and role plays and with templates in German and English for all required

ISO 9001 documentation.

It is also delivered with implemented procedures and scenarios to run ISO 9001

compliant planning, design, delivery, and maintenance.

This comprehensive set of information allows organisations to achieve an ISO 9001

certificate much easier.

It also gives (through its configurability of a template pool) organisations who have

already an ISO 9001 certificate a huge support in shifting from a paper based ISO

9001 environments to a fully electronic based ISO 9001 computer supported system,.

NQA systems at organisations in Austria, Germany, and Hungary have already been

certified by TÜV, Norske Veritas, and ÖQS.

NQA’s Future Plans

NQA is an application developed by ISCN on top of the Hyperwave information

server. It is planned that NQA in future is encapsualted as a virtual quality assurance

solution for ISO 9001 under Hyperwave, and sold on a CD to all Hyperwave users.

Future Outlook into Virtual Organisations

As an organisation form the co-operation network virtual organisation is very suitable

for the development of software [3]: not only to decrease costs, to be able to react to

rapidly changing situations in a flexible way and to distribute risks, but moreover to

increase customer benefits by ensuring performance and quality. To achieve this, it is

necessary to understand the underlying methods and processes, especially because of

the already existing quality problems in software development [4][9].

Session6: SPI and Virtual Team and QA Systems

Page 6.17

The quality of the whole company is a condition for the quality of the products they

produce - the quality of the processes and the quality orientation of the company

culture, as well as the quality of the employees and the management [16]. Because of

the temporary nature of the co-operation no identification with the virtual organisation

will evolve, and therefore no company culture as well. The loyalty to the company

will be replaced by the loyalty to the product.

It is also a disadvantage that the performance of the Internet is not as good as it should

be, because of insecure parts of networks and slow transmission rates. A final area of

problems is represented by the existing legal vacuum, especially in terms of the

validity of legal documents in electronic form, the acceptance of electronic signatures,

patent rights and international product liability [18].

References

[1] Arnold, O., Faisst, W., Härtling, M., Sieber, P., Virtuelle Unternehmen als

Unternehmenstyp der Zukunft?. HMD – Handbuch der Datenverarbeitung, 32

185/1995, pp.8-25.

[2] Cusumano, M., Japan's Software Factories: A challenge to U.S. management.

Oxford University Press, New York, Oxford, 1991.

[3] Gao, J.Z., Chen, C., Toyoshima, Y., Leung, D.K., Engineering on the Internet

for Global Software Production, IEEE Computer, May 1999, p.38-47.

[4] Gillies, A.C., Software Quality: Theory and management. Int. Thomson

Computer Press, London, 1992.

[5] Hammer, M., Champy, J., Reengineering the Corporation. Harper Collins

Publishers, New York, 1993.

[6] Handy, Ch., Trust and the Virtual Organization. Harvard Business Review,

May-June 1995, pp.40-50.

[7] Herzwurm, G., Mellis, W., Schmolling, K., Software Factory - Ein

Statusbericht. HMD – Handbuch der Datenverarbeitung, 180/1995 p.8ff.

[8] HPO, High Performance Organizations Handbook. Technical University Graz,

1996.

[9] Humphrey, W.S., Managing the Software Process. Addison-Wesley, Reading,

1989.

[10] IEEE Software Engineering Standards Collection, IEEE Standards for

Software Quality Assurance Plans (IEEE 730-1989), Quality Assurance Planning

(IEEE 983-1986), Project Management Plans (IEEE 1058.1-1987), Configuration

Session6: SPI and Virtual Team and QA Systems

Page 6.18

management Plans (IEEE 828-1990), Software Verification and Validation Plans

(IEEE 1012-1986), IEEE Computer Society Press, 1991

[11] ISO 9000-3. Quality management and quality assurance standards.

International Standard. Part 3: Guidelines for the Application of ISO 9001 to the

Development, Supply and Maintenance of Software. ISO (1990).

[12] ISO 9001. Quality Systems. Model for Quality Assurance in Design/

Development, Production, Installation and Servicing. International Organisation for

Standardisation, Geneva (1987)

[13] Messnarz R., Tully C. (eds.), The PICO - Book: Better Software Practice for

Business Benefit - Principles and Experience, IEEE Computer Society Press, in

publication

[14] Messnarz R., Stubenrauch R., Melcher M., Bernhard R., Network Based

Quality Assurance, in: Proceedings of the 6th European Conference on Quality

Assurance, 10-12 April 1999, Vienna , Austria

[15] Marciniak, J.J., Reifer, D.J., Software Acquisition Management. John Wiley &

Sons, New York, 1990.

[16] Mellis, W. Herzwurm G., Qualitätsmanagement. Business Computing, 8/1994,

p.36ff.

[17] Mellis, W. Herzwurm G., Stelzer, D., TQM der Softwareentwicklung.

Vieweg, Wiesbaden, 1996.

[18] Merkle, M., Virtuelle Organisationen – Ihr Erfolgspotential: eine integrative

Informationsinfrastruktur. Institutsbericht des IFI der Universität Zürich, 1996.

[19] Mertens, P., Faisst, W., Virtuelle Unternehmen, eine Organisationsstruktur für

die Zukunft?“. Technologie & Management, 44 2/1995, p.61ff.

[20] Mertens, P., Faisst, W., Virtuelle Unternehmen nutzen weltweite Netze, 1996.

[21] Picot, A., Reichwald, R., Wigand, R.T., Die grenzenlose Unternehmung –

Information, Organisation und Management, 2. Auflage. Gabler, Wiesbaden, 1996.

[22] Scholz, Ch., Die virtuelle Organisation als Strukturkonzept der Zukunft?

Arbeitsbericht Nr.30, Lehrstuhl für Betriebswirtschaftslehre, Saarbrücken, Universität

des Saarlandes, 1994.

[23] Tapscott, D., The Digital Economy. McGraw-Hill, New York, 1996.

[24] Zesar, K.D., Zechner, M., Salhofer, P., Schuster, G., Muelleitner, G.,

Performance and Quality Aspects of Virtual Software Enterprises. In: Proc. of the 24th

EUROMICRO Conference, Västeras, Sweden, August 1998.

Session6: SPI and Virtual Team and QA Systems

Page 6.19

[25] Zesar K.D., Mesaric G., A Process-Oriented Quality Management Model for

Software Developing Cooperation Networks. Proc. of the 6th European Conference on

Software Quality, Vienna, April 1999.

Session6: SPI and Virtual Team and QA Systems

Page 6.20

Results from the ESSI process improvement

experiment -Virtual Team

Author : Jochen Lüling

In the past teleworking was used only in big companies. This was a result of

the high costs for the technical infrastructure. Due to the new technologies like the

internet, teleworking is becoming now efficient also in small companies or small

teams. The IVM AUTOMOTIVE Stuttgart GmbH has executed a process
improvement experiment called "Virtual Team". In this experiment StarTeam (a

software configuration management tool), remote access and videoconferencing

was tested to establish a new software development process.

The chosen small budget solution was tested in two baseline projects. The results

of these projects show, that it is possible to make effective and economic

teleworking even in small teams.

Systems & Software

Initiative

SSI
European

E

1. Summary

1.1 VITE (virtual team)

IVM AUTOMOTIVE

Stuttgart GmbH

Blumenstraße 29

70736 Fellbach

Telefon

0711 / 9514-0

Telefax

0711 / 514026

Internet

http://www.ivm.com

eMail

stuttgart@ivm.com

Session6: SPI and Virtual Team and QA Systems

Page 6.21

IVM provides specialist solutions, mainly to the automotive industry. The total IVM group has more

than 2000 employees. The subsidiary at Stuttgart employs a staff of 50 in its software development
team. Due to the fact that most of the software produced by IVM is custom software built in

accordance with requirements specified by the customer, the developer are sometimes required to work

on customer sites, wherever these may be. Other development resources are scattered through the

company. In addition there is an increasing part of external consultancy assistance.

The purpose of IVM's PIE, VITE (Virtual Team) is to put the technical infrastructure and processes in

place to support geographically distributed working. This will have three main benefits :·

It will allow employees to work from home or from customer sites, while still remaining part of a

development team. This will cut down time wasted in travel and improve their quality of life.

It will allow IVM to make better use of the specialist resources scattered across the company. Before
the PIE, there was little knowledge transfer between software engineers in different parts of the

company.

It will enable IVM to bring in contract workers/partners on specific projects where there expertise is

needed, for example, it envisages closer ties in the future with partner organisations in Germany or

India.

The Internet-based technical infrastructure was deliberately chosen to ensure that it could be used by

small project teams on low budgets. On the process side, VITE has had to carry out a number of

adaptations to its ISO 9001 procedures in order to support distributed working. It identified process

requirements by interviewing project leaders and developers using a 'Bootstrap-like' questionnaire with

60 questions on topics ranging from quality management and metrics to organisational capabilities and

employees' knowledge. The PIE team then set about putting in place tools and structure to support the
extended processes, for example,

New StarTeam configuration management tool in place of SourceSafe, because StarTeam has a

Internet browser interface.

New firewall concept

The new processes and infrastructure are being tested on two baseline projects developing different

systems in different languages. The aim of this exercise is to come up with a generic set of rules and

guidelines to be used in distributed development. Once IVM has established common procedures,

processes and directory across the development organisation, it will be easier to incorporate external

consultants into teams, and to use resources flexibly between teams. The PIE has come up with a useful
checklist of organisational issues that teleworkers need to consider before they can start in this role, for

example: have they got appropriate home insurance, the right technical infrastructure, call forwarding

to their home etc. . The chosen solution is for a development team of about 50 employees. Therefor it

can be easy adopted to other companies where the number of involved staff is ca. 40-80 employees.

Session6: SPI and Virtual Team and QA Systems

Page 6.22

1.2 Content of presentation

the technical part of the VITE experiment e.g.
The tools evaluated, StarTeam, NT RAS Server, PictureTel LiveLan

The technical solution and the firewall concept

The new process enhancements for the distributed development e.g.

New development process due to the versioning and change requests via the internet

New checklists / flowcharts for creating a teleworkers place

New contracts with the employees

The results of the PIE e.g.

An increase of 20 % of the distributed development

the lessons learned during the experiment

1.3 Information about the speaker Jochen Lüling

Born 1965, Stuttgart Germany

Academically qualified mechanical engineer 1992

Working at TechnoData 1992-1997

Working at IVM since 1997

Microsoft Certified Solution developer 1997

IVM project leader 1998

IVM team leader 1999

At the moment he is responsible for several projects developed in Visual C++ and Visual Basic for

Oracle or SQL-Server databases.

Session6: SPI and Virtual Team and QA Systems

Page 6.23

Starting Scenario

Experiment context

Based on experiences we became convinced, that there must be a better more flexible way to use our

specialists located in different teams at different subsidiaries.

Together with the requirement of the former very rarely used possibility to work together with external

employees we created the project virtual team (VITE).

Two goals should be achieved with the new possibilities of the virtual team:
Optimising the creation of proposals with assistance of external specialists

Greater flexibility at the implementation phase e.g. with more possibilities of choice of resource

The experiment context is divided into two parts :

Technical context:

A new access from outside IVM using new technical features like videoconferencing or internet

connectivity. Through remote access all employees should have the total functionality of the local

network like the internet services SMTP, HTTP, FTP, NNTP and DNS. In addition customers will have

the possibility to work with the HTTP based software configuration management tool over the internet.

It is important to take into consideration the fact that IVM is a company with 2000 employees world-
wide but the software development group of the subsidiary of Stuttgart has only about 50 members.

Therefore the solution is interesting for a small company or development team.

It is a low budget solution: This means the videoconference system is a desktop system, the firewall is

not build with expensive special router hardware but with a cheaper software solution and good but

nevertheless “standard “ ISDN cards.

Adoption of the software development process:

The origin of the experiment resulting in the purpose of the virtual team is not originated in a deep

diagnosis of the organisation against models like bootstrap. It is more the result of some bad

experiences we made. Therefore at the beginning of the experiment a deep analysis of the starting
scenario is important to focus the purpose and to have later a metric for the success of the project.

An analyse and evaluation of

the discussions and interviews with the project leaders and team leaders of the baseline project

A questionnaire (sort of “small bootstrap”) fill in through the hole development staff

will bring us the results.

With enhancements and optimising of the existing process definitions for software development, the

new distributes work will be well co-ordinated and documented.

An example of a change is the switch in the software configuration management utility (SCM). We

used former Microsoft visual source safe. The new tool we use is called StarTeam from Starbase. This

offers a lot of enhancements e.g. the possibility to check in and out files over the internet. This is an

important criteria for our new environment.
The new process requires the adoption of our existing ISO process definitions. The steps in forms like

flow charts to build up a new teleworking place (e.g. at the developers home) must be created.

The size of the development team of the 2 baseline projects is 8 employees.

The baseline projects will be used to test the new communications and data exchanging methods with

the customer. The team members are high qualified software engineers e.g. we have Microsoft certified

solution developers. We have no stand-alone quality team inside of the development group. At the

moment the quality actions are performed by the team itself, which is not easy if involved in a

Session6: SPI and Virtual Team and QA Systems

Page 6.24

productive process. A purpose of the experiment is to bring together the rules and guidelines of the

teams resulting in a company guideline.

Company Context

IVM was founded 1968 and the company grew from a original small local company, called

Engineering office for Process technique and Engine design, into an international corporation.

That means one has to reach the quality and productivity required on the international market.
That goal was reached in small steps, for example the German company group is ISO 9001

certified. With the next step we will try to put resources, that are located in different offices,

to better use. That target should be reached by establishing requirements for distributed
development.
Right now a small team at any IVM office is always responsible for his software development.

Communication between offices takes place only twice a year at internal workshops. It is currently

impossible to make use of available resources easily, when a difficult situation arises within a project.

This is unfortunate because the various IVM offices posses a couple of software specialities. Even if a

project could use the assistance of a specialist, distance and limited telephone communication makes

this difficult.

Teleworking at home was not possible until now. The important integration in the normal working
process lacks.

External consultants are used rarely because integration into the development environment is difficult

and inefficient. An easier communication with consultants, defined access to the sources, and well-

defined programming guidelines should bring improvements.

As mentioned above, most IVM software is customized software developed in response to specific

customer requirements. These projects involve the use of many different tools. At the moment we have

projects being developed with Visual Basic, Access, Visual C++, C, LabWindows and Java. The long

training period for new projects is not just a result of the specific project knowledge demand and the

different tools, but through the different quality assurance rules between the projects or tools. Quality

control depends on the project requirements and is performed individually. Some programming rules

exist but they are language dependent. Developers tend to specialise in a language and this reduces

flexibility with respect to taking action on behalf of different projects.
Experience has shown that our use of the special skills available throughout our organisation is poor at

best. More effective use of all resources has been identified as an important corrective action by our

management. This means that we must create the technical and organisational skills to be able to get

easy access to distributed resources.

Session6: SPI and Virtual Team and QA Systems

Page 6.25

 3. Experiment description

Building up on the analysis of the existing quality assurance rules, style guides and programme rules

have been improved with the aim to be project and language-independent. Distributed development

requires more enhancements of the normal ISO processes. We will strive to solve problems with co-

ordination, information or team-development in a suitable process.

As a baseline, two projects for different customers were chosen, developed in different languages at

various locations.

The Internet will be used for access to sources for the project. Therefore it is possible to do version
control, defect tracking, threaded management, audit logs, and similar work without regard to the

location of the developer.

The new possibilities must conform with a high security requirement. Therefor a detailed tool and

system evaluation took place.

The key for a effective distributed development is the way you can communicate with your partners.

To achieve a high level, IVM will use a videoconference system, which offers not only the possibility

to see and speak with each other, but also to work on different screens with one application.

Evaluated tools

Video Conference :

The tool evaluation has shown, that in the segment of videoconference systems a
great bandwidth of quality exists. This is true especially for the desktop segment than
for the room systems. An important criterion was the feature of application sharing. (
a detailed description of the tool evaluation is shown in the annex)

On the basis of the evaluation the choice was LiveLan from PictureTel.

One videoconference system costs about 1000 ECU. If working with a server
software and a gateway between then LAN and ISDN additional costs of about 2800
ECU arise .

The using of the videoconference system was very easy and comfortable:
The installation and using of the software was better than expected. Especially the
application sharing possibility has been proven very well.

The following example is a typical scenario:
The developer at home has a software problem. He calls the specialist at IVM with
the videoconferencing system. Because of the visual connection the team feeling is
OK. The specialist at IVM is now able to open and debug the programme at the
developer PC at home via remote control. For example look in the source code, try to
reproduce errors etc. .

An important criteria is the ISDN connection. In the beginning of the baseline
projects, it has been shown that there are at the customer site often no full ISDN port
with an S0 bus, because normally the telephone system does not path the S0 bus. At
this side additional costs for special cards in the telephone system would arise. This
is in a bigger company in praxis very difficult to realise.

Because of this reason the internet connection is often the better connectivity possibility. This is a

standard which is normally found at an engineer workplace.

Session6: SPI and Virtual Team and QA Systems

Page 6.26

Software Configuration Management tool : StarTeam

The chosen SCM tool offers new features :
- access over the internet
- change request management
- Mail integration in project management

Session6: SPI and Virtual Team and QA Systems

Page 6.27

RAS Connection :

The new installed RAS Server is a NT-Server with 3 ISDN cards. They are connected
with an 2x3 port ISDN connection which are working with one number. It is important
that they work with analogue, ISDN and GSM calls. Through this RAS Server the
developer at home reaches the hole LAN functionality.
Step 1 was realised with call back procedure. Therefor only special sites with explicit
telephone numbers can use the RAS system. To enable more flexibility for example
for the sales department, we are testing at the moment security token cards, to
generate a dynamic password login.

The firewall concept for the e-mail, and internet connection has three stages :

- Screening Router outside
- Bastian host on basis Microsoft Proxy

- Screening Router inside

This concept brings time if the worst case happen and one stage is hacked. The screening router outside

does packet filtering, the bastian host does IP masquerading and IP-shadowing .

Session6: SPI and Virtual Team and QA Systems

Page 6.28

4. Resulting scenario

4.1 Technical impact

The intensive work on the firewall theme has brought us a lot of know how. As an
important factor we found a couple of security holes. Our old internet access was
with no firewall protected (everybody thought that the internet provider has a firewall!)
some unsecured modems were found etc. Even if we learned a lot with security,
TCP/IP ... , we ordered additional training in this sector.
Some unsecured connections to our customers are redefined.

The new version control procedures are developed and implemented in the new framework of our

production process. This was very important because less than 30% of a developer's time is spent in

programming new software. Most of the time is occupied with existing code. Certainly in team

development, time and money could easily be wasted on redundant efforts, accidentally overwritten

code, etc.

Introducing StarTeam and the procedures takes on the time consuming and non-creative tasks of

project management and version tracking, leaving developers free to concentrate on code. Ultimately, it

also leads to better quality software, so developers spend fewer resources on code maintenance duties.

4.2 Business impact

An increase in productivity was achieved because we were able to use resources and employees

effectively from geographically different departments throughout IVM projects.

For the identification of the financial impact of the virtual team for IVM we decided to
use a metric system from Markus Forschner.
In the deliverable 2 we introduced this system in detail. In short terms the basic ideas
are declared below:

The names of the 4 important process parameters of the top level are used like the
suggested terms from “Forschner” (the perspectives of the balanced scoregards)

PP1 (1): Financial strength

(Kaplan/Norton: „The financial strength“)

PP2 (1): Internal Effectiveness

(Kaplan/Norton: „The internal process perspective“)

PP3 (1): Customer benefit

(Kaplan/Norton: „The customer perspective“)

PP4 (1): competitive advantage

(Kaplan/Norton: „The learn and development perspective“)

The impact of a process parameter of a process level is investigated with the process
of hierarchy Fuzzy-Interferenz.

The process parameters of the level n depend on the process parameters of the level
n –1 .

Session6: SPI and Virtual Team and QA Systems

Page 6.29

PP1

(1)

PP2

(1)

PP3

(1)

PP4

(1)

Finanzkraft
Interne

Schlagkraft
Kundennutzen

Wettbewerbs-

vorteil

PP1

(2)

PP2

(2)

PP1

(3)

PP2

(3)

PP3

(3)

PP4

(3)

PP5

(3)

PP6

(3)

PP7

(3)

PP8

(3)

PP9

(3)

PP10

(3)

PP11

(3)

PP12

(3)

PP13

(3)

PP14

(3)

PP15

(3)

PP16

(3)

PP3

(2)

PP4

(2)

PP5

(2)

PP6

(2)

PP7

(2)

PP8

(2)

Unternehmenserfolg

Top-Down-Ermittlung

der Prozeßparameter

Ursache-Wirkungs-

Beziehung

Bottom-Up

Based on this system we created for the four important process parameters a hierarchy chart.

One example is shown in the annex.

The possible grading categories for each process are

-2 = much less
–1 = less
0 = equal
+1 = more
+2 = much more

The result of this metric for the Virtual Team is

PP1 (1): Financial strength = + 0,7

PP2 (1): Internal Effectiveness = +1,3
PP3 (1): Customer benefit = +1,3
PP4 (1): competitive advantage = +1,3

The number of external subcontractors and external employees is rising. The good
economical situation requires this flexible use of those resources. At the moment we
have two new contracts with subcontractors at Baden Württemberg. This external
assistance will help us to lower the internal pressure because of the many projects
we have to handle at the moment.
Because of the new contract with one subcontractor we were able to get one order
from our customer, which we had normally refused.

We are able to produce the product faster than before the PIE. This “time-to-market”
aspect is an important benefit of the PIE.

Organisation impact

New definitions for installing a teleworking place have been created. An example is
the new directory structure which must be used from all projects within the IVM

Session6: SPI and Virtual Team and QA Systems

Page 6.30

subsidiary Stuttgart. The rising team work with other subsidiaries leads to the wish
that they have to use this as well. This is discussed at the moment of writing this
report.

Resulting from an analyse of the threat, a new security strategy was created.

The new security guidelines are sometimes not comfortable. For example we
physically cut the connection to one customer. To work with this customer we have
one PC standing stand alone. Even if not comfortable those actions are accepted.

It is important that the new tools and methods do not replace good know how for
– Operating systems
– network protocols
– risks’
– used applications

Security is not a unique action, but a continuous process.

4.4 Culture impact

The starting scenario for installing a firewall was not good. The developer had all
possibilities which means all protocols for the internet : SMTP, HTTP, FTP, NNTP
In the first step after the installation of the firewall nothing was allowed and therefor
the protest was great. Step by step were important protocols allowed, and in some
longer discussions some other not. Every protocol which passes the firewall can be a
risk. E.g. FTP was not allowed. The discussions lead to an expansion of
consciousness concerning the security problems inside the team. In addition some
hacking examples (e.g. sending an e-mail with an alien sender’s address) show the
risks.

VITE has brought together people of different nature: managers, senior engineers, developers.

The combination of the business view, the solution oriented view and the theoretical view

initiated fruitful discussions that resulted to a common understanding of the project’s goals.

Our effort to enhance our software development process with "tele-development-possibilities"

caused a complete new cultural and organisational approach.

4.5 Skills impact

Through the intensive working on the security theme and the connectivity problems, the

network know how was rising. The security awareness of the hole staff is now higher than at

the beginning of the PIE.

A second important improvement is the working together of different project members. An

example are the new C++ styleguides which are created from different teams.

A lot of discussions within the project improved the social capability of the team-members .

Session6: SPI and Virtual Team and QA Systems

Page 6.31

5. Key Lessons learned

5.1 Technological point of view

From a technological point of view, we learnt the following lessons:

In the project VITE , the firewall is an important part of the new distributed development

process. Only if the firewall is secure against all attacks from outside, we can allow the

developers to work in virtual team. The technique to configure , install and test the different

firewall components is more complex than estimated in the Project proposal. As an example,

all computers, our Mail Server, database server etc. had to be changed to a new TCP / IP
address. Therefor a lot of problems arose which took more time than estimated. The security

concept which divides the IVM network in different IP subnets is difficult to handle e.g. a lot

of routing table entries had to be done. For this work good network and TCP / IP know how is

essential and were sometimes missed. The planned effort of an external consultant was

underestimated. Additional training for our network administrators is planned. Nevertheless

the solutions show that a low budget solution is realisable and working fine.

StarTeam is accepted very well from the staff. It has an easy to learn graphical interface. It

offers more possibilities than we are using.

The big problem we have in the baseline projects are
- the missing ISDN telephone ports (S0) at the customer site
- the high telephone costs from India

If we have no ISDN connection an important part : the videoconference system and
the RAS connection is missing.

5.2 Business point of view

Right now we have a lot of work, new projects with short delivery dates. For those
project we use with growing amount external employees. For the integration of those
employees we use the new technology and process definitions.

The ESSI project is a very good marketing argument. At various seller’s meetings this process

improvement experiment was introduced. The security actions (sometimes with a decline of comfort

for the customer) were also positive accepted. The internet based process of change requests is very

well accepted from the customer and is one of the most important impact of this PIE.

Training people in the new procedures has been an important part of this PIE. Training will be an

ongoing task in IVM as procedures evolve.

Session6: SPI and Virtual Team and QA Systems

Page 6.32

References

Teleworking

http://www.telearbeit.de

http://www.telework.at/

LanLine Number 10/99 ,' Telearbeit und Remote Access' , AWI Lanline Verlagsgesellschaft

LanLine Number 11/98 ,' Telearbeit rechnet sich' , AWI Lanline Verlagsgesellschaft

Technologie&Management 4/97 ,'Anlagenbauer setzen auf Tele-Engineering'

SCM

http://www.teamproductivity.com/

http://www.starbase.com

Video

http://www.colibri.de/

http://www.man.ac.uk/MVC//SIMA/video1/toc.html

http://www.intel.com/proshare/conferencing/products/21data.htm

http://picturephone.com/

http://www.vcon.com/

http://www.videoconference.com/glossary.htm

http://www.vtel.com/

http://www.picturetel.com/

LanLine Number 12/98 ,' Videokonferenzen im LAN und WAN' , AWI Lanline Verlagsgesellschaft

EU :

http://www.cordis.lu/esprit/home.html

http://www.cordis.lu/esprit/src/essi.htm

http://www.cordis.lu/esprit/src/stessi.htm

http://www.esi.es/VASIE/Misc/ESSIgram/Download.html

http://www.telearbeit.de/
http://www.telework.at/
http://www.teamproductivity.com/
http://www.starbase.com/
http://www.colibri.de/
http://www.man.ac.uk/MVC/SIMA/video1/toc.html
http://www.intel.com/proshare/conferencing/products/21data.htm
http://picturephone.com/
http://www.vcon.com/
http://www.videoconference.com/glossary.htm
http://www.vtel.com/
http://www.picturetel.com/
http://www.cordis.lu/esprit/home.html
http://www.cordis.lu/esprit/src/essi.htm
http://www.cordis.lu/esprit/src/stessi.htm
http://www.esi.es/VASIE/Misc/ESSIgram/Download.html

Session6: SPI and Virtual Team and QA Systems

Page 6.33

Metrics :

http://irb.cs.uni-magdeburg.de/sw-eng/us/

http://irb.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/

http://www.mccabe.com

http://www.plumhall.com

http://www.iplbath.com

Ebenda S 49 ff., Traeger, Dirk: Einführung in die Fuzzy-Logik, 2. Aufl., Stuttgart 1994

Forschner, Markus:

Prozeßorientiertes Investitionscontrolling: Bewertung von Informationssystemen mit Hilfe
der Fuzzy Logic, Schriftenreihe: Forschungs-/Entwicklungs-/Innovations-Management, Diss.

Stuttgart 1996, Wiesbaden 1998

Kaplan, Robert S. / Norton, David P. (Hrsg.):
Balanced scorecard: Strategien erfolgreich umsetzen, Stuttgart 1997

Juran, Joseph M.:

Der neue Juran: Qualität von Anfang an, Landsberg/Lech 1993, S. 36 f.

http://irb.cs.uni-magdeburg.de/sw-eng/us/
http://irb.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/
http://www.mccabe.com/
http://www.plumhall.com/
http://www.iplbath.com/

Session6: SPI and Virtual Team and QA Systems

Page 6.34

Automating the Use of a
Quality System

Oscar Tejedor-Zorita

GMV, S.A.

c/Isaac Newton, 11. P.T.M.

Tres Cantos 28760 Madrid

Spain

Tlf.: +34 91 807 21 00

Fax: +34 91 807 21 99

Email: otejedor@gmv.es

Introduction

GMV maintains since its origins a complete compromise with the quality of its services and

products through the application of an ISO-9001 compliant Quality System (QS).

The QS was initially paper oriented and shows because of that a number of known weakness:
Time consuming activity (both from staff and the quality manager), low flexibility (both in

application of the procedures and updating the procedures themselves), etc.

To address this topic, some corrective actions were evaluated by GMV, and a Process
Improvement Experiment (PIE) called ACQUASY (Automated Corporate Quality System)

was defined to improve the efficiency and effectiveness of the GMV QS. The objective of the

experiment is a system able to automate some of the tasks of the QS such as document search

and retrieval, quality procedures application and measures collection and processing.

Motivations and Objectives

GMV S.A is a Spanish company which supplies engineering, consultancy and

software services to a variety of international customers mainly in the aerospace

market. The company was created in 1984 with the aim of providing engineering and

consultancy studies for the European Space Agency (ESA). In 1988 the company was

recognised as a Centre of Excellence in Orbital Mechanics because of the quality of

its services. Since then, and under a continuous evolution, GMV has become more

and more a software intensive company. This trend represents today that about 110

employees of the company out of 140 are mainly involved in software production.
The SW applications for the aerospace market must satisfy strict quality constraints

(reliability, safety, etc..) and be under a permanent and strict control. Therefore GMV's offer
must be characterised by the application of common advanced technologies and methodologies

to satisfy the most demanding customer requirements. In other words, GMV's philosophy must

Session6: SPI and Virtual Team and QA Systems

Page 6.35

be based upon the mastering of technologies and methods, which are afterwards applied in this
market where they can bring competitive advantages to the client.

With customers demanding greater reliability and cost effectiveness, the company has

continued improving its productivity and quality in its coped niche of activity (mainly ground
and on-board space software). As an aerospace company, GMV started applying ESA PSS-05

standards for its developments. In 1985, these standards become the baseline reference for the

company, and up to date they continue being used. This has claimed for a further effort aimed

at gaining a tighter control of the projects being developed by the company. With the target in
mind of maintaining its compromise with the quality of the services, GMV decided in 1995 to

set up an ISO-9001 compliant Quality System (QS). After 18 months of quality procedure

analysis and formalisation the GMV Quality System was finally put under application. This
QS passed through several internal and external audits which put in evidence its drawbacks

and which have been corrected during the application of the QS. Finally it will be audited for

certification in the last quarter of 1997. However it is recognised by the company that this QS
is, up to date, paper oriented and shows a number of known weaknesses. The risk is

consequently that, on the long run, the QS may have some non-positive effects on the

company productivity. Management of the identified risk was the main motivation for

defining, developing and using the ACQUASY System.
To address this problem the following technical objectives were identified:

Facilitate the access to the QS documentation. Provide on-line access to the overall Quality

Manual. This implies not just to support it by electronic means but to organise the
documentation in such a way that can be indexed by different keys.

Facilitate the continuous adaptation and improvement of the quality system. The QA

processes and documentation are being continuously revised and adapted to meet the

changing necessities of the organisation.
Automate QS procedures application. Support the quality assurance activities according to the

procedures defined in the QS.

Improve and increase the project controls. The availability of a set of indicators of the project
trends improves the communication between the business managers and the managers or the

running projects, allowing better and shared visibility of the project and reducing

incomprehension and delays in performing corrective actions. Provide to the project (and
business) managers the means to realise of the status of the project from the quality point of

view.

Facilitate the exchange of information with customers and partners.

Automation of paper based internal communications aiming to the process improvement
within the company organisation. Electronic publishing would increase the speed and breadth

of information flow across the company to a degree unobtainable with paper.

Establish a historical record of the quality issues related to projects. This will result into a
better effort estimation in future projects.

Project Organisation

The development of the overall PIE was split into two phases for the system implementation
and experimentation respectively.

Phase I: System Implementation

The first phase was devoted to the definition and development of the new tools that support

the needed infrastructure. To define the system, the first phase included the activities of

assessment of the current situation of the GMV QS to provide findings and recommendations
to facilitate improvements, and the redesign of the procedures of the QS to adapt them for

automation when appropriate.

Session6: SPI and Virtual Team and QA Systems

Page 6.36

The QS assessment and system development followed a traditional life cycle. The system was
set-up using state-of-the-art and mature technologies and commercially available tools,

capable of meeting the necessary requirements of supporting classification, storage, search

and retrieval, data collection or procedure automation. The ACQUASY was built upon
following tools/technologies:

Intranet, providing the underlying communication infrastructure to connect the GMV staff to

the Quality System. Internet, and in particular Intranet, arises as the technology that fits in the

experiment requirements. An Intranet is an internal information system based on Internet
technology. In particular the elements used to build the intranet included:

Apache web server.

Netscape browsers (version 4.5 or higher) to navigate through the information system.
Java development kit (JDK)

ApacheDBI

Database System to store and retrieve project data and quality procedures. ORACLE was
selected as the relational database management system to manage the information about the

QS and projects.

Office Software for retrieving, consulting and updating quality and project data. Microsoft

Office 97 is used for this purpose as it is the standard office software imposed by the GMV
QS.

Figure 1 shows the different elements that compose the ACQUASY System and the

interactions between them.

A Pentium based PC with Linux operating system, is used as the information server in

which the web and database servers were installed to dispatch users requests.

Each GMV engineer is assigned with one PC connected to the corporate LAN and

MS-Office tools installed. The web browser Netscape 4.5 is installed in the user’s PC

to enable access to the system.

Figure 2 shows how data are accessed through the use of the GMV computer

infrastructure.

Session6: SPI and Virtual Team and QA Systems

Page 6.37

Figure 1 : ACQUASY Components

Figure 2: Access to ACQUASY through the GMV Computer Infrastructure

Phase II: System Experimentation

The second phase of the project is being dedicated to the experimentation of the system and

the measurements of results. The experimentation includes the activities of:

Selection of a baseline project, that is representative of the typical projects developed within

GMV.
Training of the staff assigned to the baseline project to familiarise with the new system.

Experimentation of the new tool on the selected baseline project.

Session6: SPI and Virtual Team and QA Systems

Page 6.38

Collection of measurements on the benefits provided by the use of the new system.
Currently, the system is being used by a pilot project. Project staffs as providing valuable

feedback on the system itself and measurements are being defined and collected.

Results and Lessons Learned

The automated quality system has already been applied to a baseline project where

between 30 and 40 developers are using it. The PIE is receiving feedback on the

usability of the system and by the end of the year, it expects to have measured how

well the system has been accepted and how it has influenced the product

development.

There is already increased acceptance as a result of ease of access to the documents

and ready guidance on how procedures should be applied. However, there are other

paybacks for the automated system as well, particularly in facilitating configuration

management and knowledge sharing across the company. Every new project will have

an entry in the main page of the quality system, so all members of the development

team have access to the same information in the project documents (and other types of

items such as source code files, etc.). This eases the problem of configuration

management across teams, which is proving particularly valuable.
Then, using the same Internet technology, all the documentation associated with a project can
be made accessible to anyone in the company, so developers can search for other projects that

have developed algorithms that can be reused, and new teams learn from past examples of

other projects. Furthermore, experience in previous projects can be used for future

estimations.

Instead of remaining local to projects, documentation is replicated to a central server

in the company's main building and everyone has read-only access. Write access is

password protected.

The feedback received from users up to now lead us to consider ACQUASY as a

valuable tool for the GMV activities, so that its development will go beyond the PIE

itself in order to improve it and provide it with the capabilities that eases the GMV

development activities. As a matter of fact, users are providing valuable inputs in

form of user requirements, for new capabilities of the system in the future.

The services provided by the system more appreciated by users are:

Access to the Quality System elements. Access to these elements has been enforced

by the system.

Access to information of interest for different areas of the company. Users

contributions to a common references spool, increased the accessibility to information

by users.

After the first experiences by the baseline project, other projects requested their own

entry in the system in order to exploit its capabilities. This saved time in preparing

and maintaining configuration management procedures and tools.

The Company

Founded in 1984, GMV us a private Spanish company, fully independent from other

national or international groups. Today, GMV´s turnover exceeds 12 MEUROs and

the company employs over 200 people.

GMV activities cover the full system lifecycle, except for hardware manufacturing:
Technology and concept studies, including engineering services,

Definition, design, development, integration and maintenance of software systems.

Session6: SPI and Virtual Team and QA Systems

Page 6.39

Specification, design, procurement, integration, delivery and operations support for turnkey
systems.

The major fields of activities of the company are:

Aerospace sector: GMV is heavily involved in European space programmes as a

regular contractor to institutions and operators leading these initiatives. The company

has had he opportunity of cooperating successfully with the most important European

companies in the market, and has achieved the highest levels of competitiveness in the

following areas:

Orbital Mechanics, being the only company recognised by the European Space

Agency (ESA) as a Centre of Excellence in this discipline.

Satellite Control Centres Software, particularly within the Flight Dynamics

subsystem.

Software for Satellite Data Processing, in particular those from Earth observation

instruments.

Missing Analysis for space systems, contributing to the initial study and design

activities of most ESA missions.

Global Navigation Satellite System (GNSS), geared towards the development of new

systems as well as advanced applications.

Design and development of software for Orbit and Attitude Control Systems, or

guidance, navigation and control, and space instruments.

Transport sector: Our offer within this market is oriented towards the improvement

of operations efficiency and the increase of quality of service for all modes of

transport, comprising:

Advanced air navigation and air traffic management systems.

Telematic systems for management and operations of transport means, both in airport

facilities and maritime and terrestrial transport, including user information systesms.

Vehicle navigation and localisation systems, based upon advanced satellite

radio-navigation means and mobile communications.

Training simulators for operations staff.

Simulators for design of transport systems and operations.

Systems for planning and management of companies logistics.

Defence sector: GMV is a supplier to the Spanish Armed Forces and participates in

the research and development programmes of national as well as westerns institutions

for defence and security (WEU, NATO), having the required security and quality

certifications. We offer products and services mainly in the following areas:

Weapon systems simulators, aimed at being used for training as well as for

development purposes.

Space systems applications for defence, such as observation satellites.

Embedded real-time software for military applications.

Satellite systems for precision navigation and localisation.

Training in advanced technologies especially in software engineering and simulation.

Telematic sector: When telecommunications and computer sciences have converged,

GMV has capitalised on its traditional efforts in the development of total solutions for

bussiness in areas such as:

Data processing centres for a variety of applications.

Decision aiding systems

Systems and tools for network management.

Distributed database systems.

Session6: SPI and Virtual Team and QA Systems

Page 6.40

Advanced graphics interfaces and multimedia.

Global solutions for connections to the information highways, designing and

developing safe systems and providing value-added services based on INTERNET.

Industrial sector: The skills the we have acquired in the domains of systems

modelling and simulation, development of control algorithms, software engineering

for industrial environments and systems integration, allow GMV to provide

customised solutions for the industrial market:

Manufacturing process management systems.

On-site integration of advanced industrial control applications.

Production processes monitoring and diagnosis.

The Author

Born in 1963, Oscar Tejedor is a Bch. in Computer Science since 1986. He joined

GMV in 1988, where has participated in different projects and developments in

several fields of the software engineering, including:

Artificial intelligence.

Definition and implementation of MMI.

Software verification and validation.

Internet developments.

Currently he is the Project Manager of the ACQUASY Project.

References

Implementation of ISO9000 in the Software Development (I & II, in Spanish). By

Mirko Donié and Wolfgang Dette (IBM Germany). Published in Forum/Calidad

42/93.

Software Process Improvement via ISO9000? By Dirk Stelzer, Werner Mellis and

Georg Herzwurm (University of Koeln, Germany). Published in Software Process -

Improvement and Practice, Vol.2 197-210 (1996).

Web based Configuration Management System. By Gonzalo García (GMV, S.A.) (20

April 1998).

Pro-active or Reactive Quality? (in Spanish). By Giuseppe Satriani (European

Software Institute, ESI), 12 March 1999.

Change Management System User's Guide. By the Scientific Project Department of

the European Space Agency. October, 1997.

Review Item Discrepancy (RID's) System User's Guide. By the Scientific Project

Department of the European Space Agency. October, 1997.

Document Management System WWW Interface User's Guide. By the Scientific

Project Department of the European Space Agency. October, 1997.

Page 7.1

Session 7

SPI and Assessments /

Evaluations

Chairman

Tor Stalhane
Sintef, Trondheim, Norway

Session 7 : SPI and Assessments / Evaluations

Page 7.2

SPI Risk Assessment
by Allan Baktoft Jakobsen

Supporting SPI projects successfully requires detailed information about the project,

and precise and quick feedback to the project. The TPR-PIF assessment method is

designed to be used at a preliminary risk assessment meeting as a basis for further

support. It has already been used by several companies participating in the European

ESSI program.

The assessment will take 1-2 hours to complete and the aim is to obtain enough

information about the project during the meeting to be able to list a few but precise

bullets of feedback at the end. It should be emphasized that the assessment is not meant

to give an objective or scientific measurement of the risks. The purpose is to facilitate a

systematic discussion with the project in order to successfully address the risks and to

reduce the resistance against improvements.

PIE project and Baseline project

The following model is the frame for the TPR-PIF method.

Create

Control

Figure: Create and control processes in a project.

In most projects, in particularly software projects, two fundamental processes can be

recognized:

 The Create project, which eventually produces the final product of the project.

 The Control project, which controls and manages the Create project.

These two projects are obviously equally important.

For a PIE i.e. a Process Improvement Experiment (an ESSI term for a project working

with software process improvements), we have

 Create project - Baseline project

 Control project - Improvement project

Thus, the changes initiated in the Improvement project should interact with the Baseline

project, and hopefully lead to a better overall project.

Assessing the Baseline project using the TPR diagram

Session 7 : SPI and Assessments / Evaluations

Page 7.3

The TPR (Task-Process-Resources) model is developed by Allan Baktoft Jakobsen

[IEEE Software Jan/Feb 1998] to provide a framework for capturing the various

knowledge about a software project.

Examining the following generic process model, three different points of view can be

identified:

Input Output

TASK

PROCESS RESOURCES

roles/jobs

persons

Figure: Three points of view in the generic project model.

These are:

The Task: This point of view focuses on the concrete inputs and outputs of the project.

The ultimate output of the project is usually the product itself, but during the development a

lot of sub-inputs and sub-outputs or internal deliveries are present. The Task often have

primary interest of the management and sales people since the (external) inputs and outputs

usually involves interacting with customers. Questions about the task are usually What-

questions.

The Process. This point of view focuses on the transformations of inputs to outputs. If

the transformations can be generalized and described in an abstract form independent of the

concrete input and output in order to be reused we have the concept of a process. If the task

focused on the starting point A and goal B of the projects, the process is about the map of

the way from A to B. Questions about the process are usually How-questions.

The Resources: This point of view sees the project in terms of the people of flesh and

blood who play the roles defined in the process. Questions about the resources are usually

Who-questions.

A baseline project can be systematically examined in the frame of these three points of

view.

The TPR assessment process

The TPR assessment process is the following:

Session 7 : SPI and Assessments / Evaluations

Page 7.4

Input: Documents and people from the project.

Transformation: Questions in the frame of the TPR model. Evaluations of answers.

Output:

 Timeline of the project.

 Organization diagram.

 TPR-diagram.

Examples of questions are listed below. There are 9 groups of questions corresponding

to the 9 areas of the TPR diagram. The list is not complete. It depends on the assessors

feelings and knowledge of software development to ask the optimal questions.

When the questions for a given area are asked and discussed, the assessor makes for

himself a quick decision regarding the following question:

 Is there anything in this area that is an obvious risk and how critical is it?

 If there are many critical risks, a mark should be plotted close to the center of the TPR

kiviat diagram (Short radius.)

 If there are no major risk or they are under control, a mark should be plotted close to

the periphery of the kiviat diagram (Large radius.)

Input

precision

Opportunities

for success

Simplicity

Work

breakdown

Coordination

Transformation

Output

precision

Commitment

Role

precision

TASK

RESOURCESPROCESS

Figure: TPR diagram for assessing the baseline project.

When the 9 marks have been plotted into the TPR diagram, they are connected to a

polygon. A discussion of the findings can now begin:

 If the polygon is smooth, round and large there are no critical risks.

 If the polygon has bumps, potential risk areas are visualized.

Task questions – General

 Describe the products of the project.

 Describe the vision and goals.

Session 7 : SPI and Assessments / Evaluations

Page 7.5

 Describe the customers and the market.

Task questions – Input Precision

 Describe the requirements to the project in terms of: Documentation, level of details,

completion, consistence, and correctness.

 What is your relation to the customers?

 What is your company's background in the technical domain?

 Describe the internal documentation in terms of level of details, completion,

consistence, and correctness.

Task questions – Simplicity

 What is the complexity of the product?

 What is the size of the product?

 What technology is used in the product? How well-known is it? How advanced is it?

Task questions – Opportunities for success

 What is the importance of the product compared to the other products from the

company?

 If the product is successful on the market how significant will it be to the company?

 If the product fails what does it then mean?

 How prestigious is the project?

Process questions – General

 Describe the mission of the project.

 Draw a time line of the project.

Process questions – Work break-down

 How is the work break-down in the project?

 Is it documented?

 How detailed is it?

Process questions – Coordination

 How is the work in the project coordinated? Are there any defined processes?

 How does the organization support the coordination?

 How is the planning?

 Is there a documented project plan? (Let us see it, please!)

Process questions - Transformation

 How do you intent to go from A: The requirements to B: The product

 How is it ensured that the goals of the project are reached?

 Are there any defined processes for the transformation?

 How does the organization support?

Resource questions – General

 Draw an organization diagram of the project. Don’t forget the names of the persons

involved.

Resource questions – Role precision

 Are the persons involved aware of their specific role in the project? (as analyst,

Session 7 : SPI and Assessments / Evaluations

Page 7.6

designer, programmer, tester, etc.)

 What is the process competence/skills of the various persons involved? (Do they know

how to analyze, structure, plan, design, produce, check and test?)

 What is the social competence of the various persons involved?

 How precise is the match between process and people in the above areas?

Resource questions - Motivation

 What is the motivation of the persons involved?

 Who is taking the initiative in the project?

 Does anyone come up with new ideas?

 Does people work on overtime?

 How is the work atmosphere?

 How is the work environment?

Resource questions – Output precision

 Are the persons involved delivering the output they are supposed to? At the right time?

 What is the technical competence of the persons involved?

 How is the performance of the people?

Overall triangle

The faces of the TPR triangle, that is, the relations between T-P, T-R, and R-P, are

sometimes called the dimensions of Management, Leadership, and Dedication, respectively.

How does the company value these dimensions when decisions are to be made?

Assessing the Improvement project using the PIF diagram

The PIF (Process Improvement Footprint) model was proposed by Chuck Myers and

Suzanne Garcia at the E-SEPG 98 conference in London and slightly restructured by Allan

Baktoft Jakobsen.

Improving processes and changing in general has little to do with technology but a lot to

do with human beings. So the PIF diagram is about them. People in relation to change can

be assessed from three different points of view: As individuals, as groups, and as

organizations. This is the essence of the diagram.

Session 7 : SPI and Assessments / Evaluations

Page 7.7

Organisational

push

Opportunities

for success

Culture

Change success

history

Resources

Resistance

Management

commitment

Change Agent

skills

SPI skils

ORGANISATION

INDIVIDUALGROUP

Figure: PIF diagram for assessing the improvement project.

The PIF assessment process

The PIF assessment process is the following:

Input: Information from the people from the project.

Transformation: Questions in the frame of the PIF diagram. Evaluations of answers.

Output:

 PIF-diagram.

When the 9 marks have been plotted into the PIF diagram, they are connected to a

polygon. A discussion of the findings can now begin. Again:

 If the polygon is smooth, round and large there are no critical risks.

 If the polygon has bumps, potential risk areas are visualized.

Below the areas of questions are listed.

Questions on individuals – Management commitment

 How is the management commitment? Does the top management pay any interest? Do

they show up at your meetings?

 Who is sponsor for the improvement project? Who is paying?

Questions on individuals – Change Agent skills

 Is there a champion among? (i.e. a person with the personal authority and charisma to

drive the change.)

Questions on individuals – Technical skills in SPI

 Which SPI skills are present?

 Has the SPI manager carried out SPI before?

Session 7 : SPI and Assessments / Evaluations

Page 7.8

 What knowledge on best practiced is present?

 Does the SPI manager attend SPI networks or conferences? Do they read papers or

books?

Questions on groups – Resistance

 What’s the level of resistance among the people?

 If the resistance visible or hidden?

 How old are the people involved?

Questions on groups – Resources

 What is the resource situation for the improvement project compared to the general

situation in the company?

Questions on groups – Change success history

 Does the company have any recent success histories about improving and changing the

processes?

Questions on the organization – Organizational push

 What is the aggregated attitude to improvements from the organization, that is the top

managers, the middle managers, the developers, the culture, and the business areas

operated?

Questions on the organization – Culture

 How is the company culture in relation to quality, improvements, and change?

 Who generates ideas for improvements?

 Who take responsibility for improvements?

 Who are the drivers of change?

Questions on the organization – Opportunities for success

 If the improvement activities are successful, what will the consequences be?

 If the improvement activities fail, what will the consequences be?

Overall triangle

Are the decisions driven by: The individuals, the groups, or the organization? What

level of capability maturity do you suspect of the company?

Final assessment: TPR and PIF results combined

After the meeting with the SPI project the assessors discuss the results of the TPR and

PIF diagrams.

An ordinary SWOT (Strengths, Weaknesses, Opportunities, Threats) list with 5-6

bullets is produced and mailed to the project.

Experiences with TPR-PIF

Anyone who has been involved in software process improvements know how difficult it

can be. Many times the battle of convincing/persuading the project managers and the

developers to go on is not really won. Pressure from top management cannot avoid people

resisting the proposed changes.

Session 7 : SPI and Assessments / Evaluations

Page 7.9

Resisting change is a key area of SPI work and although the reasons for this

phenomenon is fairly well understood, it is seldom systematically counter-measured. In

fact, it's all about insecurity and fear of loosing control - in other words, a very human

reaction.

The TPR-PIF method has been successfully used by DELTA in Copenhagen, by FZI in

Karlsruhe, and on Iceland. These companies are all EspiNodes in the ESSI program. The

number of assessed projects (PIE’s) is currently about 20. The method is still being refined.

As mentioned earlier, the assessment is not an attempt to measure the risks in any

quantitative way. The main purpose as we have seen it in practice is that it opens up for a

qualitative yet highly structured discussion of the risks of carrying out improvements. The

awareness and overview of the potential risks have a double purpose. First, to reduce the

total risk of baseline project failure and second, to reduce the resistance against the

improvement project due to insecurity and lack of knowledge

In the interviews we have noticed the effect of discussing the problems of both the

baseline project and the improvement project from the various points of view. The frame

provided by the TPR-PIF method ensures that most of the important topics are covered.

Moreover, the final summery using few very simple kiviat diagrams is an excellent way of

sharing the overview of the current situation. If done properly, key insight can be gained

here.

Traditionally, risk analysis is hard. Project managers say that this is what they are doing

all the time. Developers say that there are two kinds of risks: The ones you can do

something about and the ones that are simply out of your sphere of power and control. The

first ones occupy most of your time.

Thus, in a hectic software project, all the things to do and to be aware of soon seem

overwhelmingly many. Proposing process improvements on top of all that is bound to

provoke resistance. The TPR-PIF method helps by bringing in the overview that is blurring

the intellectual control of the project. This means reducing the insecurity in the project by

increasing the knowledge of the real problems.

References:

1. Allan Baktoft Jakobsen: Bottom-Up Process Improvement Tricks, IEEE Software,

Jan./Feb. 1998, pp. 64-68.

2. Allan Baktoft Jakobsen: Over My Dead Body, The SPIDER Kourier, October 1999.

3. Chuck Myers, Suzanne Garcia: SEPG SkillShop: Building Your Process Improvement

toolkit. E-SEPG 1998.

4. Gerald Weinberg: Quality Software Management Vol. 3: Congruent Action. Dorset

House 1994.

5. Gerald Weinberg: Quality Software Management Vol. 4: Anticipating Change. Dorset

House 1997.

6. Watts S. Humphrey: Managing Technical People. Addison-Wesley 1997.

7. Susanne Kelly: The Complexity Advantage: How the Science of Complexity Can Help

Your Business Achieve Peak Performance. McGraw-Hill 1999.

Session 7 : SPI and Assessments / Evaluations

Page 7.10

Allan Baktoft Jakobsen has an educational background in mathematics and physics

from Copenhagen University and Dartmouth College. He has been working in the software

business with maintenance, design, coding, test, quality assurance, and as an SEPG

member. He has recently founded his own company, MindMate, counseling best software

practices and process improvements. Contact Jakobsen at baktoft@mindmate.dk.

mailto:@mindmate.dk.

Session 7 : SPI and Assessments / Evaluations

Page 7.11

Rethinking the

Concept of Software

Process Assessment
Tore Dybå, M.Sc.

Nils Brede Moe, M.Sc.

SINTEF, Trondheim, Norway

Introduction

Much of the discussions on software process improvement (SPI) during the 1990s have

focused on software process assessment and “best practice” models such as the

Capability Maturity Model (CMM) for software [11], and ISO/IEC 15504 (SPICE)

[5].

In this paper we present a critique of the global “best practice” approach to

software process assessment and improvement, focusing on the necessity to explore the

contingencies of individual software organisations. Furthermore, we present some of

our experiences in using tailor made assessments based on a participative approach to

focus software process improvement activities in Norwegian software companies.

The participative approach to software process assessment is part of the

methodological basis used in a major Norwegian SPI program called SPIQ (Software

Process Improvement for better Quality). The objective of SPIQ is to increase the

competitiveness and profitability of Norwegian IT-industry through a systematic and

continuos approach to process improvement.

The goal of SPIQ is twofold: (1) to establish an environment for process

improvement in software companies associated with SPIQ, and (2) to transfer and

diffuse the knowledge gained to the remaining IT-industry in Norway through training,

seminars, and conferences.

The rest of this paper is organised into five sections. In the first section we discuss

the role of assessment in SPI. Next, we present a participative approach to software

process assessment, and our experiences with using this approach is then exemplified

with two case studies. Finally we summarise our experiences in terms of lessons

learned, and lastly we make some concluding remarks.

Session 7 : SPI and Assessments / Evaluations

Page 7.12

The Role of Assessment in SPI

An increasingly popular way of starting a SPI program is to do an assessment in order

to determine the state of the organisation’s current software processes, to determine

high-priority issues, and to obtain organisational commitment for SPI.

Why Perform Assessments?

Not all software companies are equally skilled at identifying the causes of their

problems or to identify the most rewarding opportunities for future competition.

Without a preliminary problem analysis, “solutions” are seldom effective; on the

contrary, they are often irrelevant to the underlying causes of the symptoms that are

being treated and only add more noise to the system. Consequently, it is of utmost

importance that complex problems in software development must be thoroughly

understood before a solution is attempted.

In many cases, process assessment can help software organisations improve

themselves by identifying their critical problems and establishing improvement

priorities before attempting a solution [6]. Therefore, the main reasons to perform a

software process assessment is [13]:

1. To understand and determine the organisation’s current software engineering

practices, and to learn how the organisation works.

2. To identify strengths, major weaknesses and key areas for software process

improvement.

3. To facilitate the initiation of process improvement activities, and enrol opinion

leaders in the change process.

4. To provide a framework for process improvement actions.

5. To help obtain sponsorship and support for action through following a

participative approach to the assessment.

As described later, the last point – a participative approach – is crucial for a successful

software process assessment.

Ways of assessing software processes

There are three ways in which a software organisation can make an assessment of its

development practices:

1. Benchmark against other organisations.

2. Benchmark against “best practice” models.

3. Assessment guided by the individual goals and needs of the organisation.

The first way of doing an assessment is a traditional benchmark exercise used to gain

an outside perspective on practices and to borrow or “steal” ideas from best-in-class

companies. This type of benchmarking is “an ongoing investigation and learning

experience that ensures that best practices are uncovered, analysed, adopted, and

implemented.” [3]

Hence, benchmarking is a time-consuming and disciplined process that involves (1)

Session 7 : SPI and Assessments / Evaluations

Page 7.13

a thorough search to identify best practice companies, (2) a careful study of one’s own

practices and performance, (3) systematic site visits and interviews, (4) analysis of

results, (5) development of recommendations, and finally, and most importantly, (6)

implementation.

The second way of performing an assessment is to benchmark the company against

one or more of the “best practice” models on the market. Over the years, several

assessment models have emerged in the software industry, and there is a range of

possible assessment models that one can choose from. In addition to the CMM for

software and ISO/IEC 15504, further examples of such models are ISO 9001

(including 9000-3), TickIT, the European Quality Award, Bootstrap, Trillium, and

ISO/IEC 12207.

The models focus on different aspects of the software processes and the

organisation, and they are all associated with specific strengths and weaknesses.

However, they share a common set of problems, which mainly has to do with the fact

that they are artificially derived and based on idealised lists of unvalidated practices.

Besides, they are associated with both statistical and methodological problems [2].

Furthermore, most of these models also emphasise an improvement approach based

on statistical process control (SPC), which is a highly questionable approach for the

majority of software companies [10].

The third way of performing an assessment is with a participative approach tailored

to the individual needs of the company. This approach is less time-consuming than the

traditional benchmark approach, and it is clearly more relevant and valid than the

model-based approach.

During the 1990s, “software process assessment” has become synonymous with the

model-based approach. In our view it is time to rethink this conception of software

process assessment, and to proceed to a tailor made and participative approach

focusing on what is unique to each company and how this uniqueness can be exploited

to gain competitive advantage.

A Participative Approach to Software Process

Assessment

The objective of our approach to software process assessment is to focus on the

necessity of participation for SPI to take place. Basically, there are three reasons for

this: (1) Developers and managers alike must accept the data from the assessment as

valid, (2) they must accept responsibility for the problems identified, and (3) they must

start solving their problems.

General principles for performing model-based software process assessment are

given in [6, 7, 11, 13] and specific guidelines for performing CMM-based assessments

are given in [4] and for ISO/IEC 15504 conformant assessments in [5].

Participative Assessment Process

We adopted a general approach for organisational assessment and specialised it to the

domain of software development. The process involved researchers and practitioner

acting together in a participative approach to diagnose problems in software

Session 7 : SPI and Assessments / Evaluations

Page 7.14

development using the basic principles of survey feedback (see e.g. [1, 8]) which is a

specialised form of action research.

The assessment process is an adaptation of the evaluation model developed by Van

De Ven and Ferry [12] and consists of six steps, as shown in Figure 1, and described

below:

ASSESSMENT
INITIATION

FOCUS AREA
DELINEATION

CRITERIA
DEVELOPMENT

ASSESSMENT
DESIGN

ASSESSMENT
IMPLEMENTATION

DATA ANALYSIS
AND FEEDBACK

Figure TDNBM.1: The Assessment Process.

In the first step, assessment initiation, the insiders and outsiders of the organisation

should clarify their respective roles and the objectives of the assessment by answering

the following questions:

1. What are the purposes of performing software process assessment?

2. Who are the users of the assessment, and how will the results be used?

3. What is the scope of the assessment in terms of organisational units and issues?

4. To what extent is there a commitment to using scientific methods (e.g

psychometric principles) to design and implement the assessment?

5. Who should conduct the assessment, and what resources are available?

It is important that due considerations are taken in answering these questions, since

they are crucial for determining whether an assessment is relevant in the first place,

and for tailoring the process and content of the assessment to the specific needs of the

organisation.

The second step, focus area delineation, is an exploration of the overall issues

identified for the assessment in step one. In our experience, most companies do not

have a shared understanding of their specific goals. A conscious analysis of commonly

used high-level performance goals and focus areas in standards and reference models

can, therefore, be useful as a starting point for group discussions in this step.

Examples of such focus areas are software processes (e.g. customer-supplier,

engineering, support, management and organisation), competitive priorities (e.g. price,

quality, flexibility, and service), organisational learning (learning from past

experiences, learning from others, and current SPI practices), and perceived factors of

Session 7 : SPI and Assessments / Evaluations

Page 7.15

success.

In the third step, criteria development, multiple operational criteria are developed for

each of the high-level goals. The process of criteria development requires that

practitioners select and define concrete characteristics that are to be measured and used

as indicators of goal attainment. A decision also has to be taken regarding the use of

aggregate or composite measures.

To operationalise the criteria, one question is defined for each characteristic such

that the theoretical abstractions can be closely related with everyday work situations.

We adopted the format used in the European Software Institute’s 1995 Software

Excellence Survey, such that two subjective rating scales accompany each question:

one to rate the current strength or practice level and one to rate the future importance

(see Figure TDNBM.2).

Furthermore, to help the companies, we developed a standard questionnaire that

could be used as a starting point for internal discussions and for the development of

tailor-made questionnaires. The standard questionnaire is based on our experiences of

performing process assessments in six companies during the SPIQ pre-project phase,

and includes four sections. The first section, on competitive priorities, is adapted from

the aforementioned ESI survey. The second section is adapted from the software

process areas in the emerging ISO/IEC 15504 standard. The third section concerns SPI

processes and learning from past experiences and the experiences of others. Finally, the

fourth section is concerned about finding the most important factors enabling SPI

success in the organisation.

 Current strength Future Importance

 1 2 3 4 5 DELIVERY 1 2 3 4 5

 Ability to deliver on schedule

Figure TDNBM.2: Typical question format from the questionnaire.

The issues pertinent to step four, assessment design, relate to where the assessment

will be conducted (organisational units), the role of the insiders and outsiders, the time

horizon of the assessment, the unit of analysis, as well as deciding what the sample

would be, how the data will be collected, how aggregate concepts will be measured,

and how the data will be analysed.

When aggregate or composite measures are used, one should be careful about

deciding the corresponding requirements of psychometric properties (see e.g. [9]). That

is, unless the composite scales in the questionnaires are constructed and evaluated

along the lines associated with psychometric tests, they may produce assessment

results that are seriously misleading.

It is important, however, to note that the more rigorous the assessment design

becomes, the greater the time, costs, and other resources expended on the assessment

are likely to be. Therefore, one should ask the question at every decision point whether

the benefits that result from a more sophisticated design to ensure accuracy,

confidence, generalisability, and so on, are worth the investment of more resources.

In step five, assessment implementation, the assessment is implemented according to

Session 7 : SPI and Assessments / Evaluations

Page 7.16

the procedure decided upon in the previous step. The main considerations during this

step are completeness and honesty in data collection procedures and the recording of

unanticipated events that may influence the assessment results.

The major concerns during step six, data analysis and feedback, are to provide

opportunities for respondents to participate in analysing, interpreting and learning from

the results of the assessment. And, furthermore, to identify concrete areas for

improvement. There are many ways in which this could be done. We have relied upon

half-day workshops in which preliminary findings on initial questions and problems are

presented verbally, in writing, and with illustrations.

These workshops begin with a review of the objectives of the assessment, the focus

areas and the design and implementation of the assessment. Findings regarding the

scores on current strengths and future importance are presented in terms of a gap

analysis. Normally, the participants raise a multitude of questions and issues when the

findings are presented, and they take part in group discussions and reflections as they

review and evaluate the preliminary findings. Some of the questions can be clarified

and answered directly with the data at hand, other questions can be answered by

reanalysing the data, and finally some issues are raised which cannot be resolved with

the current assessment data. In the last case, a decision has to be taken regarding

further data collection.

Typically, we use scatter plots, bar charts and histograms to illustrate preliminary

findings from an assessment in order to highlight gaps between current levels of

practices and future importance and the dispersion of responses both within and

between groups.

0

2

4

6

8

10

12

14

16

1 2 3 4 5

Current

strength

Future

importanc

e

The number of persons

answering the different levels

Ability to deliver on schedule

Average gap per person: 1,9

F
r

e

q
u

e

n
c

y

Question and gap

Alternative level

Levels one could choose between

when answering the questions.

Figure TDNBM.3: Illustration of preliminary findings.

Figure TDNBM.3 shows an example of an illustration that was used in a feedback

session presenting preliminary findings from an assessment. Some of the information

was presented verbally. The extra information for this graph was “100% of the

respondents have a gap that is larger than or equal to one”.

Session 7 : SPI and Assessments / Evaluations

Page 7.17

Model-based approach versus participative approach to assessment

In summary, our approach to software process assessment is based on a structured

process emphasising participation in each and every step. See Table TDNBM.1 for a

comparison of the model-based approach and the participative approach to software

process assessment.

Feature Model-based Approach Participative Approach

Focus areas and

criteria from

“Best practices” according to

the reference model.

Tailor made to the needs of the

organisation.

Data collected from Selected group of managers

and representatives from

specific projects.

Everyone in the organisation or

department.

Data reported to Sponsor (top management and

department managers).

Everyone who participated

(including management).

Role of researcher

or consultant

Administration of question-

naires, documenting findings

and recommendations.

Obtain agreement on assessment

approach, joint design and

administration of questionnaire,

design of workshops.

Action planning

done by

Top management. Teams at all levels.

Probable extent of

change and SPI

Low. High.

Table TDNBM.1: Two approaches to software process assessment.

Case Studies

In this section, we take a look at how two companies made significantly different

implementations of the participative approach to software process assessments and in

the next section, we present the key lessons learned from these cases.

Company Y

Y is nearly 15 years old, and has grown to become one of the leading consulting

companies in Scandinavia. Current customers include large industrial enterprises,

government agencies and international organisations. They focus on using an iterative

and incremental development method. The company has a flat and open organisation,

with a process-oriented structure, and employs about 140 persons. Over 90% of these

hold a MSc/MBA.

Session 7 : SPI and Assessments / Evaluations

Page 7.18

In the first step (assessment initiation) members from the SPIQ project team had an

opening meeting with the manager of technology. This meeting resulted in formulation

of two objectives for the assessment:

1. Get a survey of today’s process status.

2. Get an “outsiders” view on the company to suggest areas for improvement.

The assessment was mainly focusing on project managers and department leaders. All

the questions in the assessment were related to software development. The scope of the

assessment in terms of organisational units and issues were all the process-areas of the

company. The assessment was decided to be conducted by the SPIQ-team and the

manager of technology.

In steps two and three (focus area delineation and criteria development), Y used

the standard questionnaire as a starting point for internal discussions, and for the

development of tailor-made questionnaires. They did not change anything, which was a

bit surprising. The purpose of doing this was the wish for external impulses. No

aggregate or composite questions were used; the focus was only on single questions.

In step four (assessment design), the date of the assessment was determined, and it

was decided that one of the researchers from SPIQ should hold a presentation for the

managers in the company. This was to be followed by the assessment. The presentation

was an introduction to SPI with the focus on general improvement. The purpose of this

was to describe the questionnaire and its purpose, and also have a quick walkthrough

of the questions.

After a short period of planning, all was set for stage five (assessment

implementation). After the presentation, the participants (10 persons) from Y filled out

the questionnaires in the meeting-room. This gave them the opportunity to discuss and

agree upon the interpretation of unclear questions in the questionnaire. The

participators in the assessment only answered for the unit and those levels that were

part of their own area of responsibility. All the information was treated confidentially.

Filling out the questionnaire took about 30 minutes.

In the final step (data analysis and feedback), most of the respondents participated

in the analyses and interpretation of the preliminary result. A half-day workshop was

set up for this event. The most important results were then presented. The participants

raised a lot of questions and issues , and they started a big discussion as they reviewed

and evaluated the preliminary findings. Some of the questions were clarified and

answered directly, others were answered by reanalysing the data.

The discussion ended in a priority list of four key areas. These were: delivery (time-

schedule and budget), customer supplier-relationship, testing and configuration

management and risk control. Some of these results were not expected, while others

were obvious to the participants.

The next step for company Y will be an internal discussion of the results, and then

figure out the necessary SPI actions. However, they are first going to co-ordinate this

work with the work going on in a parallel project.

The result of the last section of the questionnaire was also of great interest. This

section is divided into tree sub-sections, and is concerned about finding the most

important factors enabling SPI success in the organisation. The most important

arguments in favour of SPI in the company Y were: Continuous adjustment to external

conditions, job satisfaction, and vital importance for future competitiveness. The most

important arguments against SPI were: Increasing workload (resource demanding), SPI

suppresses the creativity and the sense of responsibility, and it moves focus away from

Session 7 : SPI and Assessments / Evaluations

Page 7.19

the project.

The most important factors for ensuring successful process improvement in the

company were: Management involvement, motivation/employee participation, and

well-defined and simple routines.

Company X

X is one of the leading companies in their field. Their products are a combination of

software (embedded software or firmware) and hardware. In addition to corporate

offices and manufacturing facilities in Norway, X has significant marketing, sales and

support operations in the USA, Europe, and the Far East. The company employs about

550 persons in Norway, of which the firmware division employs 30 persons.

During the first step (assessment initiation), members from the SPIQ project team and

company X had an opening meeting where the objectives of the assessment were set. X

wanted to get a survey of today’s process status and potential for improvements. After

identifying some key areas of improvement, the intention was to make a plan for SPI-

actions. The assessment was focusing on project managers, customers and co-workers

in two firmware departments and one hardware department. These groups were divided

into tree subgroups: Managers, customers and developers. All departments in company

X were represented. The assessment was decided to be conducted by the SPIQ-team

and the people responsible for the assessment at company X.

In steps two and three (focus area delineation and criteria development), X used

the standard questionnaire as a starting point for internal discussions, and for the

development of a tailor-made questionnaire. A committee was put together for

evaluating the questions. In this committee there were two designers, four managers,

two customers, and one from the quality department.

After two meetings the number of questions were doubled. None of the original

questions were removed. We recommended X to reduce the number of questions, and

to do some minor changes in the wording of items, in order to be more precise in the

question text. Some rewording was subsequently done. However, the number of

questions was not reduced. No aggregate or composite questions were used; the focus

was only on analysing answers to single questions.

During step four (assessment design), it was decided that the assessment co-

ordinator in the company should hold a presentation regarding the assessment’s role in

improving X’s software processes. In step five (assessment implementation), the

presentation was hold. Most of the participants in the assessment were present at this

meeting. After the presentation they had 30 minutes to fill out the questionnaire. This

was too little time, however, so almost everyone had to deliver the questionnaire later.

The leader of the assessment personally visited those who did not show up for the

presentation helping them to complete the questionnaire. 32 employees from company

X participated, however, four did not deliver the forms. The participators in the

assessment only answered for the unit and those levels that were part of their own area

of responsibility. Most of the respondents participated in the analyses and

interpretation of the presented result in step six (data analysis and feedback). A half-

day workshop was set up for this event. The most important results were then

presented. The problem with this session was the lack of discussion. Although this

complicated the process, the session ended with a priority list of four key areas. These

Session 7 : SPI and Assessments / Evaluations

Page 7.20

were: Flexibility vs. stability, long-term quality, teamwork, and learning from past

experiences.

The next step for company X will be an internal discussion of these results, and to

start a process to suggest alternative SPI actions to start with. This job is a bit difficult

at the moment because company X is in the middle of a rearrangement.

The result of the last section of the questionnaire was also of great interest. The

most important arguments in favour of SPI in the firmware-group were: Quality,

motivation/employee participation, and job satisfaction. The most important arguments

against SPI were: “This only creates new procedures and rules” and “a waste of

recourses (bad priority).”

The most important factors for ensuring successful process improvement in the

firmware-group were: Motivation, developer/designer in focus, and management

involvement

Discussion of the cases

These cases are from two quite different companies; Y, a pure software company and

X, a combined software and hardware company with their own production. They both

had the same method to follow, but the accomplishment was quite different in a lot of

areas. The objectives of the assessment was much the same.

Company Y did not work on the questionnaire template, and let the researchers

perform the assessment. The questionnaire was therefore not as tailor-made as one

would expect. The reason for this was, as explained before, the wish for only external

input to the assessment. If this way of conducting the assessment is successful or not is

too early to conclude.

On the other hand, company X did a lot of adjustments and therefore developed a

highly tailor-made questionnaire. The problem with this case was the lack of

involvement from the researcher’s side. To many questions were produced without

removing any from the template. Too many questions were too similar, and there were

problems interpreting some of them.

With this situation in mind, one could expect that there would be a great discussion

on the result from the tailor-made questionnaire, and less discussion on the result from

the standard questionnaire. It was a big surprise that the opposite occurred. There

could be a lot of reasons for this: At company X over 20 persons participated in the

discussion, at Y there were only 10 persons. Also, the participants at X were a mixture

of managers and developers, and there is a possibility that this prevented people from

speaking out.

Another distinction between the two companies is the composition of the groups

that participated in the assessment. In company Y, the group was homogenous (only

process managers), but in company X there were three different groups. In this kind of

assessment, the results are more interesting if there is a large group answering the

questions, and if they come from different parts of the companies. This was the case at

company X.

Comparing data from different groups and between different members of the same

group gave interesting results. For example did Project manager have the opinion that

the level in “Current strength” (topic: “making fast design changes”) was low and that

one should improve this area significantly. The developers had the opposite opinion.

They meant the level today was too high, and wanted to decrease it. People from the

Session 7 : SPI and Assessments / Evaluations

Page 7.21

customers group thought the level was OK.

The results from the discussions had very little in common. The results from the

fourth section of the questionnaire had more in common. Under the category “The most

important arguments in favour of SPI”, the results tell us that both companies think

that SPI activities will improve quality and make the employees more satisfied. SPI

activities seem like a necessary thing to do if you want to achieve success.

In the category “The most important arguments against SPI”, the companies had

the same opinion on SPI-work increasing the workload and as a source of new

procedures and rules, which will cost a lot of resources and move the focus away from

the projects. Comparing the results from these categories is interesting, because they

first argue that SPI is necessary for the company to survive, but there is a lot of

negative work to be done doing this. Maybe SPI has a problem with the association of

“quality control”!

Under “The most important factors for ensuring successful process improvement”,

the companies had two factors in common: Employee participation and management

involvement.

During the presentation of the data, there were a lot of “expected” conclusions, but

also some the company had never thought about. The conclusions they had expected

had, however, never been externalised before. This happened for the first time as a

result of the assessments.

Lessons Learned

1. Assessment initiation

 By involving more than one group in the assessment, there exist possibilities for

multiple views and interest in the discussion and analyse phase.

2. Focus area delineation and criteria development

 A team should be put together in the company performing the assessment in order

to construct a tailor-made questionnaire.

 The time needed to complete the questionnaire should not exceed 30 minutes

(about 60 questions). If there is a problem with not covering all the areas wanted

in the initiation, the company should conduct more than one assessment.

 There should be a close co-operation between the outsiders and the insiders.

Companies have problem to distinguish between important and less important

questions. They may also have a problem with noticing if two or more questions

express the same concept. In such cases, people from the outside will be able to

help.

 It is very important for the outsiders to get to know the company well enough to

be able to give useful advice. To achieve this, it is critical that they work closely

together with the people in the company performing the assessment.

3. Assessment design

 Hold a presentation for the persons participating in the assessment. This

presentation should be both motivating for the assessment, and secure that

Session 7 : SPI and Assessments / Evaluations

Page 7.22

everybody has the same understanding of the questions and the goals of the

assessment.

 During the assessment, there will always be discussions regarding the

interpretation of questions. It is therefore advantageous to let the participants

conduct the assessment at the same time.

 All information should be treated as confidential. If not, there will always be

someone not speaking from the heart.

4. Assessment implementation

 Do not wait too long before performing the feedback-session. This may lead to

loss of SPI focus in the department/company.

 If definitions of questions are discussed during implementation, it will be wise to

document the conclusions of these discussions. During the analysis and feedback

session, it is highly possible that these questions will be discussed again, and the

participants will not remember how they interpreted these.

5. Data analysis and feedback

 Do not leave this session without identifying concrete areas for improvement.

These areas will be input to the next phase of improvement – action planning.

 To have a useful discussion in this session, make sure the group participating is

not too large or too small. If there is a big group, the assessment leader in the

company should prepare the data to suggest some key areas before the half-day

workshop. The ideal size of the group is 8 – 14 people.

Maybe the most valuable lesson learned was the need for the assessment to be closely

aligned with and tailored to the company’s overall strategy. Without this it will be hard

to get acceptance by the managers, and this will lead to fewer resources and low

priority. It is also necessary with a tight time-schedule. Waiting too long between the

steps will only lower the interest and motivation.

Conclusions

In this paper we have described a participative approach to software process

assessment, experiences from two divergent implementations and the lessons learned.

In summary, SPI efforts should be tailored to the goals and needs of the individual

organisation, not benchmarked against a “synthetic” model of so called “best

practices”. Furthermore, researchers and practitioners should work closely together in

a mutually accepted setting of inquiry, action and learning to solve the problems at

hand and to explore possibilities of competitive advantage through improved

development processes.

Session 7 : SPI and Assessments / Evaluations

Page 7.23

References

[1] Baumgartel, H. Using Employee Questionnaire Results for Improving

Organizations: The Survey ‘Feedback’ Experiment, in Kansas Business Review,

Vol. 12, pp. 2-6, December, 1959.

[2] Bollinger, T. and McGowan, C. A Critical Look at Software Capability

Evaluations, in IEEE Software, pp. 25-41, July, 1991.

[3] Camp, R.C. Benchmarking: The Search for Industry Best Practices that Lead

to Superior Performance, Milwaukee, Wis.: ASQC Quality Press, 1989.

[4] Dunaway, D.K. and Masters, S. “CMM-Based Appraisal for Internal Process

Improvement (CBA IPI): Method Description,” Technical Report, Software

Engineering Institute, CMU/SEI-96-TR-007, 1996.

[5] El Emam, K., Drouin, J.-N. and Melo, W. (eds.) SPICE: The Theory and

Practice of Software Process Improvement and Capability Determination, Los

Alamitos, California: IEEE Computer Society Press, 1998.

[6] Humphrey, W.S. Managing the Software Process. Reading, Massachusetts:

Addison-Wesley, 1989.

[7] Humphrey, W.S. Managing Technical People: Innovation, Teamwork, and the

Software Process. Reading, Massachusetts: Addison-Wesley, 1997.

[8] Neff, F.W. Survey Research: A Tool for Problem Diagnosis and Improvement

in Organizations, in A.W. Gouldner and S.M. Miller (eds.) Applied Sociology,

pp. 23-38, New York: Free Press, 1966.

[9] Nunnally, J.C. and Bernstein, I.A. Psychometric Theory, 3rd edition, New

York: McGraw-Hill, 1994.

[10] Ould, M.A. CMM and ISO 9001, in Software Process – Improvement and

Practice, Vol. 2, pp. 281-289, 1996.

[11] Paulk, M.C., Weber, C.V., Curtis, B. and Chrissis, M.B. The Capability

Maturity Model: Guidelines for Improving the Software Process. Reading,

Massachusetts: Addison-Wesley, 1995.

[12] Van de Ven, A.H. and Ferry, D.L. Measuring and Assessing Organizations,

New York: John Wiley & Sons, 1980.

[13] Zahran, S. Software Process Improvement: Practical Guidelines for Business

Success, Harlow, England: Addison-Wesley, 1998.

Tore Dybå was born in 1961 and received his M.Sc. in Computer Science and

Telematics from the Norwegian Institute of Technology (now NTNU) in 1986. He

worked as a consultant for eight years both in Norway and in Saudi Arabia before he

Session 7 : SPI and Assessments / Evaluations

Page 7.24

joined SINTEF in 1994. In addition to being a Research Scientist at SINTEF, he is

also a Research Fellow at the Norwegian University of Science and Technology

working on a Ph.D. thesis in Software Process Improvement (SPI). The focus of his

Ph.D. thesis is an investigation of the key learning processes and factors for success in

SPI.

Nils Brede Moe was born in 1972 and became a M.Sc. at the Norwegian University

of Science and Technology (NTNU) in 1998. His main research areas in the field of

Software Processes Improvement include: Measurement based improvement,

assessments and improvement on an organisational level. Other research areas are

Human-Computer Interaction (HCI) and E-commerce.

Session 7 : SPI and Assessments / Evaluations

Page 7.25

Philosophies and Approaches to

Software Process Improvement

Yingxu Wang and Graham King*

IVF Centre for Software Engineering

Argongatan 30, S-431 53 Molndal, Sweden
Tel: +46 31 706 6014, Fax: +46 31 27 6130

E-mail: Yingxu.Wang@ivf.se or Yingxu.Wang@acm.org

*Research Centre for Systems Engineering
Southampton Institute, Southampton, SO14 0YN, UK

Tel: +46 31 706 6014
E-mail: Graham.King@solent.ac.uk

Abstract

Software process improvement (SPI) has been a widely accepted technology

in software engineering research and in the software industry. This paper

reviews existing methodologies for SPI, and explores alternative SPI

methodologies. Philosophies behind the SPI methodologies are described. A set

of generic rules and procedures of SPI are formally presented.

Key Words: Software engineering, software engineering process,

software process

 improvement, philosophies, approaches, methodologies,

rules

1. Introduction

Concepts and methodologies of software process improvement (SPI) have

been largely inspired by the work in management science, particularly in quality

system principles and enterprise reengineering research. Shewhart [1]

developed the concept of plan-do-check-act iteration. Later this concept was

extensively applied in the Japanese manufacturing industry known as KAIZEN

method [2], and was extended and interpreted by Deming known as the

Deming cycle [3].

A number of SPI methodologies have been developed in the last two

decades. These methodologies can be categorised into two types: model-based

and benchmark-based SPI. The model-based SPI has been developed by

Humphrey [4], Paulk et al. [5,6], Curtis et al. [7], Basili [8], Kuvaja et al. [9],

mailto:Yingxu.wang@ivf.se

Session 7 : SPI and Assessments / Evaluations

Page 7.26

ISO/IEC TR 15504-7 [10], and Wang et al. [11,12]. The benchmark-based SPI

has been developed by IBM [13], IBM/IVF [14], and Wang et al. [12,15].

In practice, an SPI project starts by mapping of a software organisation’s

existing processes to a process model that is chosen for an assessment. The

usual cases are that a software development organisation has only some loose

and informal practices in software development, rather than a defined and

coherent process system. However, a rigorous process-based software

engineering has to start from process establishment, rather than process

assessment in a software development organisation. Therefore the right order

towards software process excellence in an organisation is first process

establishment, second process assessment, and then process improvement, as

shown in Figure 1.

 Figure 1. Process-based software engineering

In the following sections, the common rules of SPI are presented,

philosophies for SPI is contrasted, and SPI methodologies that follow different

philosophies are explored.

2. Rules of Software Process Improvement

Software process improvement is a complicated, systematic, and highly

professional activity in software engineering that requires theory and models,

skilled technical and managerial staff, as well as motivated top management

commitment. A set of basic rules that predominate over software process

improvement is summarised as follows:

Rule 1: Software process improvement is complicated system

engineering.

Process system improvement

Process system assessment

Process system establishment

A software engineering process

reference model

Optimised software eng.
 process system

Session 7 : SPI and Assessments / Evaluations

Page 7.27

A process improvement programme has to be thoroughly planned. There

will be little achievement if an organization attempted to improve only a part of

the many identified necessary processes in order to improve the whole process

system and its performance.

Rule 2: Software process improvement itself is a goal-driven and a

 continuous process.

It is goal-driven because process improvement should have pre-determined

goals and pre-designed approaches to achieve these goals. It is a continuous

process because the trace of software process improvement is spiral-like and

endless. During a software process improvement programme, the goals may

aim to higher, organizational requirements may dynamic, and implement

complicity may be increasing. Therefore, there is no absolute final end for a

process improvement.

Rule 3: Software process improvement is an experiment process.

Empirical improvement recommendations and rules of thumbs should be

treated as hypotheses. Impact and effectiveness of process improvement

activities should be monitored and checked by periodical process reviews

and/or assessments.

Rule 4: Software process improvement is risk-prone.

With regard directly to Rule 3, it can be seen that risks are naturally

attached to any process improvement activities. Therefore, process

improvement risks and potential impacts on other processes for an

improvement should always be predicted. Also, risks for not implementing

required improvement for identified problems should be estimated.

Rule 5: Software process improvement is a time varying system.

Process improvement is working in a dynamic environment, for varying

application domains, and fast changing technical platforms. This means there is

no specific model one can completely copy; and no specific methodology one

can always follow. Therefore, model and methodology adaptation is always

required in process improvement.

Rule 6: Software process improvement is a random system

dominated by

 human factors.

Parallel to Rule 5, process improvement is carried out by human being. The

Session 7 : SPI and Assessments / Evaluations

Page 7.28

features of human factors in software engineering are mainly of diversity and

goal-orientation.

A basic assumption is that a skilled software engineer as individual is an intelligent

unit in a software engineering process, who would automatically adjusting one’s

activities to an optimising goal in the system.

It is noteworthy that process improvement solutions for an identified

problem would be multiple; implementation for an recommended solution

would be achieved by multiple approaches; and times and effort spend on

implementation of an approach would be varying greatly by different

individuals or teams. All these varying human factors should be taking into

account in a plan of process improvement.

Rule 7: Software process improvement has preconditions.

Process improvement requires formally defined, established and experienced

process systems. Process improvement on virtual processes has been proven

wasteful.

Software process improvement can only be started based on established

software processes. Otherwise, it's effect would be virtual if the process system

is virtual itself.

Rule 8: Process improvement is based on process system

reengineering.

Process system reengineering is the kernel of SPI. Reengineering can be

carried out by: a) enhancing a process; b) changing a process; c) adapting a

process; d) merging processes; e) cancel a process; and f) re-organising a

process system.

Rule 9: Software process improvement achievement is cumulative.

At all above technical, organizational and cultural costs, the benefits of

process improvement achievement, fortunately, can be cumulated permanently,

if an organization continuously pursues software process improvement in a

systematic and consistent way.

3. Philosophies in Software Process Improvement

In this section we describe the philosophies that behind the process

improvement methodologies. There are various philosophies towards SPI. Key

categories of SPI philosophy are as follows:

Session 7 : SPI and Assessments / Evaluations

Page 7.29

 Goal-oriented process improvement

 Operational process improvement

 Continuous process improvement

3.1 Goal-Oriented SPI

Definition 1. Goal-oriented process improvement is an approach by

which a process system’s capability is improved towards a predefined goal,

usually a specific process capability level.

This approach is based on a simple and the most widely adopted philosophy

to SPI: "The higher the better." For example, ISO 9001 provides a pass/fail

goal with a basic set of requirements for a software process system. CMM,

ISO/IEC 15504, and SEPRM (the Software Engineering Process Reference

Model [12]) provide a 5/6-level capability scale, which enable software

development organisations to set more precise and quantitative improvement

goals.

Related approaches to goal-oriented SPI based on measurements and

metrics can be refereed to the Goal/Question/Metric (GQM) paradigm [13, 14]

and AMI method [15].

3.2 Operational SPI

Definition 2. Operational process improvement is an approach by

which a process system’s capability is improved towards an optimum profile,

rather than the maximum capability level.

This is a realism philosophy towards SPI, that can be interpreted as "the

smatter the better." It was argued that for maintaining sufficient competence, a

software organisation do not need to push all its software engineering

processes to the highest level, because it is not necessary and not economic.

This philosophy provides a different thought on the idea that the higher the

better for process capability as presented in the goal-oriented process

improvement approach.

By the operational improvement approach, an optimised process

improvement strategy is to identify the most sufficient (the minimum required)

and economic target process profile, which provides an organisation the

sufficient margins of competence in each process, but not necessarily sets them

Session 7 : SPI and Assessments / Evaluations

Page 7.30

all at the highest level of a capability scale.

To illustrate this philosophy, we take the following historic story as an

example. There was a well known story about King Qi’s horse racing in China

about 2000 years ago. King Qi had the best horses in his kingdom. He liked

horse racing very much and he expected to win every time. However, once he

lost to Ji Tain, a wizard of that time.

The horses were categorised in three classes, i.e., for the King: K1, K2, and

K3; and for Tian: T1, T2, and T3. In the first match, they raced in the way: K1 –

T1, K2 – T2, and K3 – T3. Not surprising, the King had won, as shown in Figure

2, because he had the best horses in each class.

T3

K3

T2

K2

K1

T1

0

1

2

3

4

5

6

7

P e r f o r m a n c e

 Game 1 Game 2 Game 3

Figure 2. Example for decision making in process improvement (1)

However, in the second match, the wizard changed his strategy. Tian used

his third class horse (T3) against King Qi’s first class (K1), and of cause allowed

the King win again for the first game. Then in the following two races, Tian

used his first (T1) and second (K2) class horses against the King’s second (K2)

and third (K3) class horses respectively. Eventually Tian won the three-game

racing for the first time in the history of the kingdom, as shown in Figure 3.

T2

K3

T1

K2

T3

K1

0

1

2

3

4

5

6

7

P e r f o r m a n c e

 Game 1 Game 2 Game 3

Figure 3. Example for decision making in process improvement (2)

This story provides a useful operational strategy in decision making for

process improvement. That is, for software process improvement, an

organisation is not necessarily to get all of its processes at the highest level to

be competitive, because it would not be the best, most feasible and most

economical solution for the organization. Instead, the best solution is just to

have a marginal competitive in each process than the competitors. This inspires

a new approach to software engineering process improvement – the

Session 7 : SPI and Assessments / Evaluations

Page 7.31

benchmark-based process improvement, which will be developed in Section 4.

3.3 Continuous SPI

Definition 3. Continuous process improvement is an approach by which a

process system’s capability is required to be improved continuously, and

towards better performance in all the time.

This is a philosophy towards ideal optimisation and perfection for a set of

systematic activities. Continuous process improvement has been proven

effective in engineering process optimisation and quality assurance. By this

approach, SPI is a continuous spiral-like procedure.

In his work on ‘Statistical Method from the Viewpoint of Quality Control,’

Shewhart [1] established the statistical foundations of generic quality control

system. He developed the concept of ‘plan-do-check-act’ iteration. The

statistical quality control approach has largely influenced today’s software

process capability modelling and software metrics studies, as a proof that

almost all of major current process models require systematic data collection

and recommend quantitative process improvement.

Deming’s work [3] drawn the attention of researchers and industrial

practitioners for both quality and productivity. He proposed the approach to

TQM. TQM is a management philosophy for achieving quality improvement by

creating a quality culture and attitude throughout the entire organisation’s

commitment and involvement. This approach has been widely accepted in the

manufacturing industry, and has been presented in the ISO 9000 standards.

Both statistical quality control and TQM have been extensively applied in the Japanese

manufacturing industry. Based on these a ‘KAIZEN’ method was developed in the

1980s in Japan. Imai [2] supposed the term ‘KAIZEN’ as the key to Japan’s

competitive success in its manufacturing industry. ‘KAIZEN’ is, actually, two Chinese

characters (Gai-Shan). ‘ZEN’ means good, satisfactory, or perfect; ‘KAI’ means

change, update, or reform. Therefore ‘KAI-ZEN’ simply means to make better. Whilst

its internal philosophy implies gradual and continuous improvement and/or attaining

perfection. This is perhaps the most influential philosophy that has been widely

accepted as one of the important quality principles as those of statistical quality control

and TQM.

In continuous process improvement, there is no end for process

optimisation, and all processes are supposed to be improved along the time.

There is argument that the goals for improvement are not explicitly stated in

this philosophy. Therefore, when adopting continuous process improvement,

the top management should make it clear what are the current goal, as well as

the short, middle and long term goals in a continuous process improvement

pursuit in a software development organisation.

Session 7 : SPI and Assessments / Evaluations

Page 7.32

In empirical software engineering, goal-oriented SPI methodologies will still

be in the main stream. While with the 2-D process models like ISO/IEC 15504

provide more precise process assessment results, and the benchmark-based

process models provide empirical indications of process attributes, the

operational process improvement, especially the benchmark-based SPI, will

gain wider application. Also, the continuous process improvement approach

will provide sustainable long-term strategic planning for software process

improvement.

4. Methodologies for Software Process Improvement

Based on the above discussion of the philosophies for process improvement,

this section investigates possible SPI methodologies in software engineering.

Two basic SPI methodologies – the model-based and benchmark-based process

improvement will be explored. The former improves a process system from a

given level in a defined scale to a higher level; The latter provides improvement

strategies by identifying gaps between a software development organisation’s

process system and a set of established benchmarks. In addition, a combined

approach of the above can be adopted.

4.1 Generic Approaches to SPI

A generic procedure of SPI has been identified in [12] with 6 steps as

follows:

1) Examine the needs for process improvement;

2) Conduct a baseline assessment;

3) Identify process improvement opportunities;

4) Implement recommended improvement;

5) Review process improvement achievement;

6) Sustain improvement gains.

In the following sections, we will explain how the generic process improvement

procedures are implemented by different techniques. Three software process

improvement methodologies, such as model-based, benchmark-based, and

integrated SPI, will be presented as follows.

4.2 Model-Based Improvement

Definition 4. Model-based improvement is an SPI methodology by which a

process system of a software development organisation is improved based on

its performance and capability profile provided by a model-based assessment.

Model-based improvement is a kind of absolute improvement approach. By

Session 7 : SPI and Assessments / Evaluations

Page 7.33

this approach, processes of a software development organisation are suggested

for improvement according to a process system model step-by-step. CMM,

BOOTSTRAP, and SEPRM are examples of such model-based process

improvement methodology.

There is also a special case in model-based improvement - the standard-based

SPI. By this approach, processes of a software development organisation are

suggested for improvement according to a standardised process system model.

ISO/IEC 15504 provides a standard-based improvement method. However, it

is noteworthy, that ISO 9001 is probably not suitable for being a standard-

based improvement method, because it lacks a process improvement model and

a step-by-step improvement mechanism.

Referring to the generic procedure of SPI, when the baseline profile of a

software organisation is obtained, and process strengths and weaknesses are

analysed, the potential process areas for improvement and priorities can be

identified following the method provided in Table 1.

Table 1. Improvement opportunities analysis

Input Method Output

 Processes to be assessed

 and target capability

levels;

 Process capability profile

as

 derived in the assessment;

 Process strengths and

 weaknesses analysis;

 The SEPRM process

 reference model.

 Analysis of process improvement

opportunities

 will be conducted according to the generic

 procedures;

 Identify improvement priorities of each

 process by evaluating the gap to the target

 capability level. The improvement priority

will

 be described as high [H], medium [M], low

[L],

 or No [N];

 Analyse and describe impact and potential

 risks that may be risen in an improvement

 activity.

Process improvement

opportunities analysis.

A case study on SEPRM-based process improvement is shown in Table 2.

In Table 2 the criteria adopted for classifying the improvement priority, IP, can

be formally derived by the following formula:

 IP = H, Weakness > 1 capability level;

 = M, Weakness within 1 capability level;

= L, Strength < 0.3 capability level, which would

(1)

 be sensitive when capability turbulent;

= N, The rest, which have no improve requirement with

Session 7 : SPI and Assessments / Evaluations

Page 7.34

 regard to the specified target capability level.

 Different thresholds would be defined in Formula 1 for a specific process

improvement case.

 Table 2. Sample Template for Process Improvement Opportunities

Analysis

N

o.

Process Strengths(+

)/

Weaknesses

(-)

Improvem

ent

Priority

(IP)

Remar

ks

and

Risks

1 Organisation

1.
1

Organisation structure category

1.
2

Organisational process category

1.
3

Customer service category

2 Development

2.
1

Software engineering methodology
category

2.

1.1

Software engineering modelling 0.1 L

2.

1.2

Reuse methodologies -0.4 M

2.

1.3

Technology innovation -0.9 M

2.
2

Software development category

2.

2.1

Development process definition 1.5 N

2.

2.2

Requirement analysis 0.4 N

2.

2.3

Design 0.3 N

2.

2.4

Coding 0.4 N

2.

2.5

Module testing 0.3 N

2.

2.6

Integration and system testing 0.1 L

2.

2.7

Maintenance -0.1 M

2.
3

Software development environment
category

Session 7 : SPI and Assessments / Evaluations

Page 7.35

2.

3.1

Environment 0 L

2.

3.2

Facilities 1.2 N

2.

3.3

Development support tools -0.5 M

2.

3.4

Management support tools -0.8 M

3 Management

3.
1

Software quality assurance category

3.
2

Project planning category

3.
3

Project management category

3.
4

Contract and requirement management
Category

3.
5

Document management category

3.
6

Human resource management category

4.3 Benchmark-Based SPI

Definition 5. Benchmark-based improvement is an SPI method by which a

process system of a software development organisation can be improved based

on its performance and capability profile provided by a benchmark-based

assessment.

Benchmark-based improvement is a kind of relative improvement approach.

By this approach, processes of a software development organisation are

suggested for improvement according to a set of process benchmarks. As

described in Section 3.3, benchmark-based process improvement is supported

by the operational process improvement philosophy. It would provide an

optimised and economical process improvement solution in practice.

A benchmark-based process improvement will be carried out in 6 steps as

described in the generic improvement procedure. With regards to the model-

Session 7 : SPI and Assessments / Evaluations

Page 7.36

based process improvement methodology, the features of a benchmark-based

process improvement are as follows:

 The philosophy for a benchmark-based process improvement is to

‘filling the gaps’ rather than ‘the higher the better’ as that in a model-

based process improvement;

 The improvement opportunities are identified based on gap analysis

between the plotted process profile and the benchmarks;

 The improvement priorities are determined by quantifying the degree of

gaps between the plotted process profile and the benchmarks;

 The improvement achievement is evaluated by checking if the gaps have

been reduced, and if the process capabilities have been enhanced

marginally above the process benchmarks.

A case for demonstrating an organisation’s baseline and improved capability

profiles in a benchmark-based process improvement is shown in Figure 4.

Figure 4 shows, the baseline process capability profile (P) of an organisation

has been improved to an adaptive process profile (R) that is marginally above

and along with the benchmarked curves (B).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.3.1 2.3.2 2.3.3 2.3.4

Process

Capability

Level

B P R

 B – Benchmark curve; P – Baseline process profile; R – Improved process profile

Figure 4. SEPRM benchmarks-based process improvement

Note in Figure 4 only the development process benchmarks and profiles

were shown. Adopting the SEPRM benchmarks provided in [12], the

organisation and management process subsystems improvement can be carried

out in the same way.

4.4 Integrated SPI

Definition 6. Integrated improvement is a combined model-and-benchmark-

based SPI method by which a process system of a software development

organisation is improved based on its performance and capability profile

Session 7 : SPI and Assessments / Evaluations

Page 7.37

provided by an integrated model-and-benchmark-based assessment.

The integrated process improvement method inherits the advantages of both

absolute and relative SPI methods. By the integrated improvement method,

processes of a software development organisation are suggested for

improvement according to a benchmarked process system model. SEPRM is

the first benchmarked model for enabling integrated model-and-benchmark-

based process improvement.

5. Conclusions

This paper has reviewed the historical development of software process

improvement methodologies and philosophies, and its connection with quality

system principle research in management science. A set of basic rules of SPI

has been developed. The generic procedure and preconditions of SPI have been

explored. Different philosophies and corresponding methodologies are

contrasted in the context of process improvement.

References

[1] Shewhart, W.A. (1939), Statistical Method from the Viewpoint of Quality

Control, The Graduate School, George Washington University,

Washington, D.C.

[2] Imai, M (1986), KAIZEN: The Key to Japan’s Competitive Success,

Random House, New York.

[3] Deming, W. E. (1986), Out of the Crisis, Massachusetts Institute of

Technology Press, Cambridge, Massachusetts.

[4] Humphrey, W.S. (1988), Characterising the Software Process: A Maturity

Framework,

 IEEE Software, March, pp.73-79.

[5] Paulk, M.C., Weber, C.V. and Curtis, B. (1995), The Capability Maturity

Model:

 Guidelines for Improving the Software Process, SEI Series in Software

Engineering,

 Addison-Wesley.

[6] Paulk, M.C., Curtis, B. and Chrissis, B. (1993), Capability Maturity Model,

Version 1.1,

 IEEE Software, July, pp.18-27.

[7] Curtis, B., Kellner, M.I., and Over, J. (1992), Process Modelling,

Communications of the

 ACM, Vol.35, No.9, pp.75-90.

Session 7 : SPI and Assessments / Evaluations

Page 7.38

[8] Basili, V. (1993), The Experience Factory and Its Relationship to Other

Improvement Paradigms, Proceeding s of 4th European Software

Engineering Conference, LNCS 717, Springer-Verlag, pp. 68-83.

[9] Kuvaja, P., Simila, J., Kizanik, L., Bicego, A., Koch, G. and Saukkonen, S.

(1994), Software Process Assessment and Improvement: The BOOTSTRAP

Approach, Blackwell Business Publishers.

[10] ISO 15504 ISO/IEC TR 15504-7 (1998), Information Technology –

Software Process

 Assessment - Part 7: Guide for Use in Process Improvement, ISO/IEC,

Geneve,

 pp. 1 - 36.

[11] Wang, Y., Court, I., Ross, M., Staples, G. and King, G. (1996a),

Towards a Software

 Process Reference Model, Proceedings of International Conference on

Software Process

 Improvement (SPI’96), Brighton UK, pp.145-166.

[12] Wang, Y. and King, G. (1999), Software Engineering Processes:

Principles and

 Applications, CRC Press, USA.

[13] Basili, V.R., Caldiera, C., Rombach, H.D. (1994), Goal Question Metric

Paradigm, in

 Encyclopedia of Software Engineering (Marciniak, J.J. ed.), Vol.1, John

Wiley & Sons.

[14] Solingen, R. V. and Berghout, E. (1999), The Goal/Question/Metric

Method: A

 Practical Guide for Quality Improvement of Software Development, The

McGraw-Hill

 Co., London.

[15] Pulford, K., Combelles, A.K. and Shirlaw S. (1996), A Quantitative

Approach to

 Software Management: The AMI Handbook, Addison-Wesley

Publishing Co.

[16] IBM (1996), Ensuring Profitable Investment in Software Process

Improvement, IBM

 Technical Report.

[17] Wang Y., Wickberg, H. and Dorling, A. (1999e), Establishment of a

National

 Benchmark of Software Engineering Practices, Proceedings of 4th

IEEE International

 Software Engineering Standards Symposium (ISESS’99), IEEE

Computer Society Press,

 Brazil, May, pp.16-25.

[18] Wang Y., King, G., Dorling, A., Ross, M., Staples, G., and Court, I.

(1999), A

 Worldwide Survey on Best Practices Towards Software Engineering

Session 7 : SPI and Assessments / Evaluations

Page 7.39

Process Excellence,

 ASQ Journal of Software Quality Professional, Vol.2, No3, Sept. 1999

Session 7 : SPI and Assessments / Evaluations

Page 7.40

The General Effect of an Integrated Software Product

Evaluation

Jozsef Gyorkos , Ivan Rozman, Robert T. Leskovar

1 University of Maribor, Faculty of Electrical Engineering and Computer Science,

 Smetanova 17, SI-2000 Maribor, Slovenia; e-mail: gyorkos@uni-mb.si

Abstract

Well organized software product evaluation has a general effect to the discipline of

the software processes. In our paper a case of the governmental institution where

step-by-step introduction of formal evaluation methodologies has been forced to the

outsourced projects is presented. The strategic influence of outsourcing is stressed

throughout and the methods of risk prevention with improved communication of the

outsourced client and vendor described. Risk prevention is based upon the formal

controllability of outsourced projects. Formality is achieved by using, firstly, project

management environments, which allow communication between parties, whereby it

is not only a planning/tracing tool. Secondly, there are process and product

assessment mechanisms.

I. INTRODUCTION

Outsourcing is an important method of managing information systems (IS). In relation to

government projects, it is now a common practice, primarily when there is a requirement

for the development of different applications, integrated into a comprehensive system.

Changes in the labour market have brought even more intensive outsourcing. Recently

companies have moved away from traditional long term employment arrangements

(insourcing) to relatively short-term market mediated arrangements (outsourcing)

[Slaughter, 1996]. This source states (Derived from research in U.S.), that firms in the

public sector are more likely to outsource IS employment, than firms in the private sector.

Our paper will use as a basis for the discussion the Government Information Centre of

the Republic Slovenia, the CVI.

Outsourcing has brought about dynamic boundary changes, i.e. (distributed application

development, non transparent organisation structure of vendors and heterogeneous

methodologies). However, the continuos operation of an integrated information system,

must be assured at a conceptual level, being in relation to the data and common functional

structures. The structure is based on the rules and processes of public administration, but at

the same time it is highly dependent on actual decisions, rules and policies of the State and

(actual) Government. Outsourcing also circulates the resources (money) received from the

tax payer, back to its productive source - the tax payer.

CVI has a very broad aim, that is the introduction and maintenance of information

technology in all government institutions, and to lesser degree public institutions.

Slovenia is small country in relation to many other European states, and like others born

or 'reborn' in the late 1980s and early 1990s, it has had to develop a whole new IS

supported administrative apparatus, which is a requirement for a modern functional state.

In the world of computer technology, there is a similar situation, whereby, there are not so

many clients, but the functionality of the server is the same as in larger states.

II. TYPES AND EXTENT OF OUTSOURCING

Session 7 : SPI and Assessments / Evaluations

Page 7.41

Outsourcing is the contracting of various systems to outside information systems

vendors [Nam, 1996]. For most managers – IS outsourcing clients - outsourcing sounds like

'entropy' – the possibility for disorder an uncertainty in a system. Consequently, outsourced

projects can be endangered by 'entropy', if they are not managed in a proper fashion. The

minimal attributes of 'properly' managed IS are those well known from software process

models - best illustrated in the key process areas of Capability Maturity Model [Paulk,

1995]. For example, at least the second level key process areas must be covered:

requirements management, project planning, configuration management, project tracing and

oversight, quality assurance, subcontract management.

Nam mentions four types of outsourcing when he talks of the relationship between

'Extent of substitution by vendor' and 'Strategic impact of applications', these are: support,

reliance, alignment and alliance. Using the CVI as a model we can see the distribution of

outsourcing contracts among different types of outsourcing in Table I below.

In non-information technology industries, 'alignment' and 'alliance' are the usual types of

outsourcing. In the forthcoming information society, the business process in a given public

administration will be under pressure to re-engineer, due to the process automation and the

demand for information dissemination, with or without administrative assistance.

The low level of alignment and almost non-alliance in outsourcing explains the strategic

position of CVI. Whereby, we have not only a reliable information technology (IT) service

provider for public administration but also the added responsibility of having a forum for

making long-term, highly influential decisions in IT.

TABLE I

TYPES OF OUTSOURCING AND

THEIR APPROXIMATE EXTENT IN CASE OF CVI

Type of Outsourcing Tasks (e.g.) Distribution of

Outsourcing

Contracts*

1. Support

(non-core IS activities, small

contracts)

contract programming,

hardware maintenance,

minor technical services,

installations etc.

50%

2. Reliance

(large extent of substitution by

vendors in non-core IS activities)

same activities and tasks as

above, longer length of contracts

30%

3. Alignment

(low extent of substitution and

high strategic impact)

consulting,

technical supervision for IS

planning and design,

small contracts with strategic

influence

20%

4. Alliance

(high extent of substitution by

vendor and high strategic impact)

substitution of in-house IS

operations and vendors'

responsibility for highly strategic

IS activities,

based on mutual

relationships,

highest commitments from

vendors and clients

almost 0%

* Derived out of values of contracts.

III. SUPERVISION THRESHOLD

Preparation and control of the Outsourced projects performed by client, are both

highlighted in this paper.

The scope of preparation is the requirements definition and selection of the vendor

Session 7 : SPI and Assessments / Evaluations

Page 7.42

(usually directed by the legislative council). The outsourcing vendor is the organisation

which delivers the required product and/or service. In this paper we will focus on

outsourced projects where software develops within information technology projects and all

IT related services.

Control of the Outsourced project by client consist of project tracing, quality assurance

and of change management (technical or contextual – business process - changes).

When an outsourced project is running, threshold must be drawn on the scale,

representing the degree of supervision of the vendor by the client. Table II highlights the

achievements and drawbacks for a client regarding the different degrees of supervision.

IV. SOURCES OF RISK

Different classifications of risk can be found in the literature [Boehm, 1989; PRINCE,

1995] but the aim of all methodologies is the prevention of project being endangered. Risk

management is an built-in part of practically all software development methodologies and

quality assurance techniques (at least indirectly). The different phases of the software

process, or software project development, have the effect, whereby, risk management

appears in many forms and with different scopes of influence. Table III highlights this.

TABLE II

DEGREE OF CLIENT SUPERVISION IN OUTSOURCED PROJECTS

Type of

supervision

Supervised products Achievemen

ts

for Client

Drawbacks

for Client

minor general specification,

contract,

integration test results

of the final product

minimal in-

house resources

needed

unexpected results

managed as in minor,

project tracing results

(schedule, resources)

dependable

resource

management

technical

imperfection

can turn up

technical as in minor,

technical specification,

change management

records,

test coverage plans and

test results

technical

overview,

reliable products

highly-specialised

technical staff required

optimal minor, managed and the

technical joined

early

uncertainty

detection,

reliability

resource

pretentious,

asking about

worth of outsourcing

V. EVOLVING PRACTICE

Three years ago within our environment of organised activities of risk prevention in

outsourced projects, there was the introduction of an overall quality system based on ISO

9001, with the addition of a Capability Maturity Model. We gave a special attention to

those processes that contributed to the overall control of (1) the outsourcing vendors and

their processes, (2) the products delivered by vendors and (3) the activities of the client.

It is important to stress, that these processes not only control the vendor but also

contribute to a flexible and transparent project management in relation to the client (in our

Session 7 : SPI and Assessments / Evaluations

Page 7.43

case the CVI). The intensity of project management activities, carried out by a client,

depends on the type of supervision, formulated in Table II. Table IV, enumerates the

existing practices within CVI in relation to risk prevention.

A. Assessment of the process

The most important aspect of the assessment of the process is, when a new outsourcer is

chosen i.e. - no previous experience with him or her. This assessment can now be carried

out using a different criteria, usually CMM or ISO and this is done before a formal

agreement between vendor and client is agreed. PROCESSUS methodology is highlighted

in [Györkös, 1996; Rozman, 1997]. This approach is also mentioned in Table III, which

joins both approaches in an comprehensive tool supported questionnaire. Figure 1 shows

the logical object model of the tool. However assessment of any process as a means risk

prevention, must be done also when the project is in progress, with checking of existing

practice and of an active quality assurance model established.

TABLE III

MEANS OF RISK MANAGEMENT IN THE SOFTWARE PROCESS.

Phase/Part

of the Process

Critical Success

Factors

Means of Risk

Management

Requirement

definition

formality of

requirements

specification (RS)

compliance of RS with

- long term strategy

- actual needs

Audit and

Review of

specification

Procurement/

acquisition

credibility of

outsourcer in public

competition

Audit, reference

and

previous experience

(PROCESSUS

Tool, chapter 5.1)

phase of

development

methodological

approach enabling

traceability and

technical quality

Technical

review

Project tracing

Release product quality

(using the parameters

derived from ISO 9126)

Product

assessment (PRO+

Tool, chapter 5.2)

When consistent project management is used only the ‘products’ of the project

management process can be checked. In our case the consistency of project management,

ensures the adopted PRINCE methodology [PRINCE, 1996]. This PRINCE methodology is

applied in the form of ProjectOffice, a distributed environment with functionalities, i.e.

project group co-ordination, process control, exception handling and quality assurance.

B. Assessment of the product

Review is an activity that checks the correctness of particular software development

phase at technical level. In the context of an ‘outsourcing review’, this is rarely done by the

outsorcing client, but by the vendor himself. The vendor is obliged to perform the quality

assurance of his products at a technical level. The client checks periodically whether the

partial results are correct, this results are then published within progress reports by the

ProjectOffice.

Before a release, the customer (CVI) performs one final assessment of the product not

only from general view. This assessment can take up to five days, depending on the size of

Session 7 : SPI and Assessments / Evaluations

Page 7.44

the product and the level of its integration with other (existing or in-development) products.

These results are then collated in a tool called PRO+ which is planned to be a consistent

part of the ProjectOffice application.

PRO+ is based on quality attributes described in standards; ISO 9126 (IT – Software

product evaluation – Quality characteristics and guidelines for their use), and partialy on

ISO 9127 (Information processing systems – User documentation and cover information for

consumer software packages) and ISO 12119 (IT – Software packages – Quality

requirements and testing). In the background of the tool a formal decision support is

defined, this enables calibration of parameters and in the process will give reports of the

different views (client, developer, user). The calibration is fully transparent and enables

multiple-level assessment of the same product.

TABLE IV

EXISTING RISK PREVENTION PRACTICES IN CVI

Activity/task,

subject of the outsourcing

contract

Type of

outsourcing

(according to

Table I)

Me

thod

Tool Practi

ce

application

development

(full life cycle, technical

level)

reliance

we

ak, TBD

yes good

programming/prototypi

ng

support

reliance

stro

ng

yes good

procurement/acquisitio

n

- stro

ng, BOR

yes good

strategic plans

preparation

alignme

nt

(alliance)

we

ak

none mediu

m

IS planning and design alignme

nt

me

dium,

TBD

weak

(different tools)

Maintenance reliance non

e

medium

(interactive

database

apllication)

impro

ving

project management alignme

nt

stro

ng

yes

(ProjectOffice)

good

quality assurance

(technical supervision

including acceptance testing

and validation)

support,

alignment

stro

ng

PROCESSUS

PRO+

impro

ving from

medium

TBD – to be declared (method preparation/selection in progress).

BOR – based on legislative regulation.

Session 7 : SPI and Assessments / Evaluations

Page 7.45

Fig. 1. High-level report from PRO+ Tool.

Fig. 2. The logical object model of the PROCESSUS Tool.

Session 7 : SPI and Assessments / Evaluations

Page 7.46

The results of the final decision (assessment of the product), are given in the form of a

vector, containing multiple parameters, with normalised values (from 0 to 1). Each

parameters (functionality, reliability, usability, efficiency, maintainability, portability and

completeness of the documentation) is kept on its own ordinary axis, in the form of a Kiviat

diagram (Figure 1).

VI. CONCLUSIONS

This paper has described the various practices and problems involved in a large

governmental institution, and how to solve them. Client-vendor relationships in outsourced

projects, are often limited to a project initiating and a product delivery.

Initially we listed the various types of outsourcing, and declared the degree of client

supervision in various projects. A practice based on mutual project management and

methodology-approach to the quality assurance. With three years of experience, practicing

this approach, we can show an essential progress in the controllability of outsourced

projects. This has resulted in a more reliable risk prevention, better product quality,

resource optimisation and not least of all, in better communication and co-operation with

vendors.

REFERENCES

[Boehm, 1989] B.W. Boehm, Software Risk Management, IEEE Computer Society, 1989.

[Györkös, 1996] J. Györkös, I. Rozman, R. Vajde-Horvat, M. Hericko, "Quality Management in Software Development

Process: An Empirical Model", Proceedings of IEEE International Engineering Management Conference, IEEE Press,

1996.

[Paulk, 1995] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, Capability Maturity Model for Software, Version

1.1, Software Engineering Institute, CMU/SEI-93-TR-24, February 1995.

[Slaughter, 1996] S. Slaughter, S. Ang, Employment Outsourcing in Information Systems, Communications of ACM,

Vol. 39, No. 7, 1996.

[Rozman, 1997] I. Rozman, R. Vajde-Horvat, J. Györkös, M. Hericko, "PROCESSUS - Integration of SEI CMM and

ISO quality models", Software Quality Journal, Volume 6 Number 1 March 1997, ISSN 0963-9314, Chapman &

Hall, 1997.

[Nam, 1996] K. Nam, S. Rajagopalan, R. Rao, A Chaudhury, "A Two-Level Investigation of Information Systems

Outsourcing", Communications of the ACM, Vol. 39, No. 7, 1996.

[Paquin, 1996] J.P. Paquin, J. Coulliard, P. Paquin, D. Godcharles, "Earned Quality: Improving Project Control",

Proceedings of IEMC'96, IEEE Press, 1996.

[PRINCE, 1995] Management of Programme Risk, CCTA The UK Central Computer and Telecommunications Agency,

London, 1995.

[PRINCE, 1996] PRINCE 2, Project Management for Business, The Stationery Office Publication Centre, London, 1996.

Page 7.47

Page 8.1

Session 8

SPI Surveys

Chairman

Miklos Biro
Sztaki, Budapest, Hungary

Session 8 : SPI Surveys

Page 8.2

Software Process

Improvement Network

in the Satakunta

Region

- SataSPIN -

Timo Varkoi & Timo Mäkinen

Tampere University of Technology,

Information Technology, Pori, Finland

Abstract

The core of the SataSPIN project is to help small and medium sized software

enterprises to develop their operations using international software process models.

The project uses ISO/IEC 15504 TR (SPICE) as the software process assessment and

improvement framework. The main goal is to set up a software process improvement

(SPI) program in each of the participating companies and thereby to establish a

network of companies promoting good software practices in the region. The project is

based on the co-operation of the participating enterprises. The main activities in the

project are process assessments, improvement planning, and consultation and training

to support the improvement activities. The project has offered a wide variety of courses

and seminars in the area of software engineering and management.

At this point the companies have set their own priorities for SPI and first SPICE

assessments have been performed. In the assessments all of the seven companies were

involved, 11 projects and 27 SPICE-processes were assessed. Each company was

assessed separately and the assessment results were reported in feedback sessions and

in detailed assessment reports.

During the project special attention has been given to e.g. requirements traceability and

measurement.

The second phase of the project will ensure the continuity of the SPIN and the active

co-operation within the Satakunta software industry and enlarge the number of the

companies participating the SataSPIN project.

Chapter <Nr><Title>

Page 8.3

Introduction

A project to establish a software process improvement network (SPIN) in the

Satakunta region in Western Finland was started in August 1998. The project is called

SataSPIN. The core of the project is to help small and medium sized enterprises

(SMEs) in software business to develop their operations using international software

process models. In the first phase of the project seven small software organisations are

participating to improve their software processes. The project uses ISO/IEC 15504 TR

(SPICE) as the software process assessment and improvement framework [2].

The project provides the participating companies with training and consultation on

subjects related to software processes. An essential part of the consultation activity is

the process assessments. The companies can get assistance also in planning and

implementation of the improvements. Training activities within the project are targeted

to support the improvement of the software processes and to enhance the competencies

of the personnel. All the activities are tailored separately for each company to ensure

flexibility in the participation and alignment with the business goals.

The organisations in the project have from 2 to 50 employees in software engineering

related positions. Typically the personnel in the companies is professionally

experienced and highly motivated in their work. All participating companies have

distinguishable software products, are expanding their businesses and are eager to

dynamically develop their operations. The most outstanding feature in these companies

is their almost unconditional customer orientation. In the beginning of the project the

organisations naturally had poor knowledge of software process models but, on the

other hand, rich experience and good understanding of software process

implementation. For the time being all companies have been assessed and are now

working to plan and implement the improvements.

During the project special attention has been given to requirements traceability and

measurement. The requirements management is an important process in ensuring a

sound starting point for a software project. The measurement is often considered to be

a key element in successful software process improvement (SPI).

The project is now moving to its second phase, in which more software companies in

the Satakunta region will be involved. The experiences of the first phase will be used to

assist the SPI efforts of the whole software industry in the region. In addition the

project management experiences of the SataSPIN project will be disseminated.

Project goals

The main goal is to set up a software process improvement program in each of the

participating companies and thereby to establish a network of companies promoting

good software practices in the region. The second phase of the project will concentrate

in increasing the number of the organisations participating, and distributing the

experiences of the first phase. The potential in the area is estimated to be 40 enterprises

and 400 professionals.

Session 8 : SPI Surveys

Page 8.4

From the SME's point of view the benefits of the project include the improvement of

customer satisfaction and competitiveness; the management of the growth of the

business; the improvement of competence and motivation of the personnel; the

development of working methods and the improvement of knowledge and skills by the

software engineering training.

Project implementation

The project is based on the co-operation of the participating enterprises e.g. by sharing

software process improvement experiences and best practices among the participants.

The main activities in the project are process assessments, improvement planning, and

consultation and training to support the improvement activities. General structure of

the project is displayed in fig. TKVARKOI.1.

Fig. TKVARKOI.1: SataSPIN - the general structure of the project

The project receives substantial public funding from the European Social Fund (ESF).

The responsible organiser is Pori School of Technology and Economics (PoSTE) and

the project's operative management is delegated to Software Process Improvement

Center (SPIC). Project stakeholders are shown in fig. TKVARKOI.2.

 PoSTE

 SPI Center

Satakunta region

information technology sector

•small and medium sized

enterprises (SMEs)

•other

Pilot-enterprises

SataSPIN

project group

Project subcontractors, e.g.
•PoSTE Continuing education

•Software Technology Transfer Finland

•Tampere University of Technology

 Project

 support group

 Satakunta Employment and

 Economic Development Centre

 - ESF funding

 Regional Council of Satakunta

Project

steering

group

Software

engineering

methods and

technologies

Process

workshops

Seminars, updates

SPICE-training

Introduction to

process thinking

Priority evaluation

and development plan

Focused process

assessments

Improvement planning

Process improvement

Follow-up assessments

Process training Consultation Method and

technology training

Chapter <Nr><Title>

Page 8.5

Fig. TKVARKOI.2: SataSPIN - the stakeholders

Results

At this point the companies have set their own priorities for SPI and first SPICE

assessments have been performed. In the assessments all of the seven companies were

involved, 11 projects and 27 SPICE-processes were assessed. The companies have

participated actively in both training and consultation provided by the project. The

training consists of software process improvement related training and training of

software technologies and methods. By June 1999 the project had trained 145 persons

with an average of 3,8 days each.

Consultation is mainly software process assessments, assistance in improvement

planning and guidance in adaptation and implementation of single processes.

The companies are now working on process improvements and concrete, assessed SPI

results are available after the follow-up of assessments.

Software process improvement background

Software process improvement (SPI) in small enterprises or business units requires

special attention when applying models and standards which usually have been

designed from the viewpoint of large organisations. Today the two publicly available,

comprehensive models for software processes and process improvement are The

Software Engineering Institute's Capability Maturity Model for Software (SW-CMM)

[5] and the International Standards Organisation's ISO/IEC 15504 Technical Report -

Software Process Assessment (SPICE) [3]. Both models can be applied to small

organisations.

The SPI views of the small companies are not fully aligned with the SW-CMM

maturity levels [7]. The SPICE Engineering (ENG) process category corresponds to

the SW-CMM Software Product Engineering KPA on level 3, but the companies

ranked it their first priority. Similarities can also be found, e.g. in Project Management,

Requirements Management and Quality Assurance.

The differences can, to some extent, be related to the actual process capability of the

company. For instance, a company with strong project management does not

necessarily see it's strength and therefore may overlook the process. In small

companies Subcontract Management could be a very small process as there is only a

few suppliers, and small companies could also be very closely networked together. Few

products and small number of employees can partly explain the relatively low priority

of Configuration Management; only one person can be responsible for e.g. version

control. On the other hand the individualism practised could direct the interest in

testing within software engineering processes.

Similarities in the interviewed priorities and the models confirm the view that SW-

CMM adapts to small organisations, too. On the other hand the strong customer-

orientation of small companies also explains their interest in the processes like

Requirements Management and Quality Assurance.

Session 8 : SPI Surveys

Page 8.6

The type of business does not seem to affect the interests of small companies but

clearly the size of the organisation does. A larger organisation of the small ones seems

to be more interested in the management processes like Risk management and also in

ensuring the product quality.

Software process improvement priorities

The project uses SPICE as the framework for software processes and also follows the

eight-step cycle for continuous software process improvement described in SPICE Part

7 [4]. In step 1. Examine organisation's needs, we define the improvement goals for

each company. This is done using BootCheck quick assessment tool [1]. The results

support preliminary process improvement program planning and guide in selecting

processes for the SPICE assessment. The assessment output is also used in detailed

process improvement action planning.

As a part of the step 1, the representatives of management and engineering in the

companies were asked to list the processes they would like to start the SPI with. The

participants were specifically asked to think about processes that needed improvement

first and would benefit the company most, and not the processes that are in general

critical for the company. The results of the study are described in [7].

First the process categories were prioritised on a scale from 1 to 5 and then the most

important processes within the categories were discussed and selected. The two most

important process categories were considered to be Engineering (ENG) and

Management (MAN), while Organisation (ORG) processes were of least interest.

The processes of common interest in the two most important process categories include

ENG.1.2 Software requirements analysis and ENG.1.6 Software testing, and MAN.2

Project management and MAN.4 Risk management. Other notable processes of interest

are CUS.3 Requirements Elicitation, SUP.1 Documentation, SUP.3 Quality assurance

and ORG.2 Improvement process.

Process assessments

During the SPI project several software projects of the participating companies have

been assessed. Each company was assessed separately and the assessment results were

reported in feedback sessions and in detailed assessment reports. SPICE assessments

are carried out using the assessment forms developed by Risto Nevalainen of STTF Oy

and distributed by the Finnish Software Measurement Association (FiSMA). The

assessment program is described in fig. TKVARKOI.3.

Assessment results and observations point out, for instance, that requirements

management is based mostly on individual effort and that documented traceability

practices are nearly non-existent. Even though it might be possible to manage very

small projects without established requirements management, most often the outcome

is an obscure scope of the customer project, slipping timetables and decreased profit.

The assessments give lots of detailed information and improvement ideas to the

assessed organisations [8].

Chapter <Nr><Title>

Page 8.7

Fig. TKVARKOI.3: SataSPIN - the assessment program

Requirements traceability

Requirements traceability is one of the subjects that the project has emphasised.

Pressman [6] gives one definition of traceability: The ability to trace a design

representation or actual program component back to requirements. This definition

contains the idea of backward traceability: from work products to requirements to

ensure that work products fulfil the requirements. On the other hand it is equally

important to have forward traceability from requirements to work products to be able

C-SAM : SataSPIN SPICE Assessment Method

Focused Process

Assessment

Process Assessment Session(s)

(FiSMA Assessment Forms)

Start-up Session

(SataSPIN Assessment Plan Template)

Assessment Report Preparation

(FiSMA Assessment Report Template)

Work Product Evaluation

(Preparation and Preliminary study)

Feedback Session

(Assessment Report presentation)

Software Processes

and Their Capability

(Introductory course)

Quick Assessment

(BootCheck Method/Tool)

Session 8 : SPI Surveys

Page 8.8

to ensure that all requirements have been satisfied.

Small organisations have typically difficulties to meet traceability demands presented

in assessment models. Customer requirements are collected, but changes are not

systematically managed. Requirements are not identified, which impedes traceability.

Though positive exceptions exist, too, when requirements are managed throughout the

project to satisfy both the customer and the supplier. In SPICE the traceability

improvement is related to improving the process capabilities primarily of the

engineering processes and their base practices on level 1, and to supporting it with the

level 2 management practices. The essential improvement targets common to most

small organisations are [8]:

 Identify the requirements and track changes

 Establish documentation and version control

 Reviews of customer requirements

 Checklists to assure quality of work products

Measurements

Another topic of interest during the project has been measurements [9]. Measurement

is a key issue in software development process improvement as well as in developing

software product quality. We collect and analyse data to be able to make better

decisions. Measurement can be applied to all phases of software development lifecycle

from collection of customer requirements to maintenance of the software product. Even

without any actual measurement program, companies can measure something of the

process, e.g. cost, profitability, time, or the product, e.g. size, number of errors,

downtime. The measurement programs presented in the literature are usually based on

the experiences of large software organisations. Small organisations don’t have

specialised resources for measurement, and they can have different information needs

compared to larger organisations.

SPICE contains a lot of references to measurements. A measurement process is

defined, many management practices are related to measurement and some work

products are classified as measures.

As part of the BootCheck analysis the companies were asked to think about the most

important improvement areas and to prioritise process categories accordingly. In

addition they were asked to list the most important processes. The two most important

process categories were considered to be Engineering (ENG) and Management (MAN),

while Organization (ORG) processes were of least interest. In addition, only one of the

companies indicated interest in the ORG.5. Measurement process [7]. This confirms

that small organisations have very little interest in measurement and that the use of

software metrics in small organisations is very limited.

To stimulate companies' interest in more precise measurement the project started to

offer training containing measurement aspects. The first course provided was titled

"Software project size estimation" and it introduced the participants to function point

analysis. The second course was about "Risk management in software projects" and

the third course helped companies to perform "Customer satisfaction surveys". All

these courses contained information and practical guidance in different measurement

types. The companies expressed lots of interest in these courses and at least some

customer satisfaction surveys and risk analyses have already been made.

Basis to develop actual measurement programs will be laid in workshops and

Chapter <Nr><Title>

Page 8.9

additional courses. The idea is that the companies will co-operate in the workshops to

create measurement programs that fit general small company needs as well as the

individual needs of those who need the results.

To help measuring the benefits of SPI, Zahran has divided measures in three classes:

process-related; project-related; and product- and customer-related measures [10].

Whatever the basis of the measurement program development will be, the steps in the

beginning should be small. Small companies can and will not dedicate specialised

resources for measurement and their interest towards measurement itself is also very

limited [9].

Training activities

Training is targeted to support process implementation by updating personnel skills

and knowledge on software engineering methods and technologies. The project has

offered a wide variety of courses and seminars in the area of software engineering and

management. Training services has mainly been provided by subcontractors and partly

by the project itself. In the near future some of the courses will be repeated and new

topics will be included. The courses have been categorised according to SPICE process

categories as follows:

Organisation

 Introduction to software processes

 Software process improvement models

 SPICE in assessment and improvement

 Process definition and design

 SPICE assessor training

 Product focused SPI

 Software engineering measures and measurement

 SPI update seminar

 Management of SPI

 Team work

Management

 Project management in information technology projects

 Risk management in software projects

 Software project size estimation

 Management program

 Quality management

 ISO9000 for software SMEs

 Software engineering process

 Software project management

Customer-Supplier

 Requirements management in software projects

 Customer satisfaction surveys

 Help desk working

Engineering

 Introduction to relational database design

 TCP/IP structures and concepts

 Seminar on objects

Session 8 : SPI Surveys

Page 8.10

 Relational database design and implementation

 Relational database design with CASE tools

 Introduction to SA method

 Data structures and algorithms

 Software testing

 Object oriented specification and design

 Java-based application engineering environments

Support

 Webmaster

 Process automation and documentation in software engineering

 Documentation and configuration management tools

 Inspections and reviews in software engineering

 Software documentation

 Online help design

The initial goal was to arrange training for 100 persons during the project but already

the project has clearly exceeded that. Main reasons for the extensive interest is that

many courses are tailored according to company needs and most courses are held close

to the companies.

Future of the project

Next the follow-up process assessments will be carried out to confirm the SPI

achievements. Special attention will be paid to encourage continuous self-assessments

in the companies. The consultation and the training activities will continue with the

pilot-companies.

The second phase of the project will ensure the continuity of the SPIN and the active

co-operation within the Satakunta software industry and enlarge the number of the

companies participating the SataSPIN project. An essential part will be to create an

SME-oriented SPI handbook, which will include recommendations for the SPI priority

determination and the applicable process models.

Pori School of Technology and Economics will continue to strengthen its expertise in

SPI and thus serve the software industry.

Chapter <Nr><Title>

Page 8.11

References

[1] BOOTSTRAP Institute: BootCheck assessment tool, http://bootstrap.ccc.fi.

[2] ISO/IEC TR 15504-2:1998 Information technology - Software process

assessment - Part 2: A reference model for processes and process capability.

[3] ISO/IEC TR 15504-5:1998 Information technology - Software process

assessment - Part 5: An assessment model and indicator guidance.

[4] ISO/IEC TR 15504-7:1998 Information technology - Software process

assessment - Part 7: Guide for use in process improvement.

[5] Paulk M., Curtis B., Chrissis M. B. & Weber C., Capability Maturity Model

for Software, Version 1.1. Technical Report CMU/SEI-93-TR-24, SEI 1993

[6] Pressman, Roger S., Software Engineering: a practitioner's approach, McGraw-

Hill 1992.

[7] Varkoi, Timo, Mäkinen, Timo & Jaakkola, Hannu, Process Improvement

Priorities in Small Software Companies, Proceedings of the PICMET´99,

Portland, Oregon, 1999

[8] Varkoi, Timo & Mäkinen, Timo, Requirements Traceability Improvement in

Small Software Organizations, Proceedings of the PNSQC´99, Portland,

Oregon, 1999 (in press)

[9] Varkoi, Timo, Development of Measurement Programs to Support Software

Process Improvement in Small Software Companies, Proceedings of the

FESMA´99, Amsterdam, 1999 (in press)

[10] Zahran S., Software Process Improvement: Practical Guidelines for business

success, Addison-Wesley, 1998

Session 8 : SPI Surveys

Page 8.12

Mid-term results of the SPIRAL

Network Development

Béatrix BARAFORT, Anne HENDRICK

Joint contribution of the SPIRAL*NET1 team

Centre de Recherche Public Henri Tudor, L-1359 Luxembourg

Introduction

The European Commission (through ESSI - European Systems and Software Initiative)

supports Software Best Practice Networks (in other words ESBNET projects) in order to

disseminate best practices.

SPIRAL*NET is an ESBNET project[1]. It focuses on best practices in the

Customer/Supplier processes quality management (CSPQM) and aims at optimising

and generalising such practices in a French speaking area composed of the Grand-Duchy

of Luxembourg, Wallonie (the French speaking part of Belgium) and the French Lorraine.

The Customer/Supplier processes quality management covers Customer/Supplier processes,

support processes such as quality assurance, joint reviews, configuration management,

documentation management, project management.

The objectives of the SPIRAL*NET project are:

 to make the market aware of best practices on Customer/Supplier processes and

associated support processes,

 to improve the visibility and the access to structured information related to the regional

software market,

 to provide and standardise the market with CSPQM tools selected from best practices

and adapted to regional practices,

 to support CSPQM implementation with the shared tools,

 to provide the market with service offers on CSPQM (services supported by the project

partners and a qualification program proposed by the project).

The partners of the project are the Centre de Recherche Public Henri Tudor in

Luxembourg, as co-ordinator, the Centre de Transfert de Technologie de Charleroi

(innovation Centre created from the University of Namur – Facultés Uuniversitaires Notre-

Dame de la Paix) in Belgium and the “Unité de Formation Recherche – Mathématiques et

Informatique” of the University of Nancy 2 in France. They developed an implementation

strategy throughout 5 layers in order to meet the objectives :

 to heighten the market awareness,

 to set up a common electronic platform,

 to select and to share support tools,

 to support the implementation of CSPQM and the use of common tools,

 to provide the market with qualification and certification.

Following this 5-layer strategy, this paper describes how significant results have been

reached after one year of project running[2]. Then, before the conclusion, the dissemination

1 SPIRAL*NET is the ESSI ESBNET project 27884

Chapter <Nr><Title>

Page 8.13

actions show how the SPIRAL*NET project and other European projects results are

spread, and how European co-operation is established in order to develop the network.

To heighten the market awareness

The software market has to be made sensitive to the benefits of a formalised approach

and of Customer/Supplier quality processes through standardised tools and dedicated

support services. In order to do so and to promote the SPIRAL network development,

several actions had been organised like awareness events and workshops, participation in

local trade fairs and exhibitions, and prospective visits.

The first semester of the SPIRAL*NET project (June to December 1998) was stand out

by preparation activities in order to enable the implementation of the electronic platform

infrastructure with basic facilities, and the definition of products and services to be

launched in 1999: basic Extranet services and the regional software market directory,

SPIRAL activities such as working groups and support services to propose to SSDs and

SMEs. All along the first semester of the project, prospective visits were planned and

companies were called on. The objective was to aware them on CSPQM, to attract

companies in the network, to take part in activities and more particularly to include them in

the software regional directory. A co-operation agreement has been developed and

companies are asked to sign it in order to register and formalise their membership in the

network.

At the beginning of 1999, a new phase started and was named the "call stage" or

network launching for implementing the first set of services and activities. The SPIRAL

network activities were promoted and the following actions and/or activities were

proposed:

 to register and formalise the membership in the network,

 to appoint a quality interlocutor (from the SPIRAL*NET project team) for the

company,

 to register and provide descriptive information about the company's IT activities and

competencies in order for the company to be listed in the regional software directory,

 to make the company know the training courses available in the SPIRAL training

catalogue,

 to participate in working groups,

 to be assisted and advised in Software Process Improvement (SPI) (SPI services are

proposed such as micro-assessments, SPICE assessments, improvement plan

determination, SPI actions implementation, customer/supplier relationships assistance),

 to participate in a specialised training cycle in SPI.

To set up a common electronic platform

In order to attract as many IT actors as possible in the regional software market, a

common electronic platform has been prepared at the very beginning of the project,

with basic facilities. An electronic frame has been set up in order to support all

activities related to the SPIRAL network. Several entry points are provided through

icons for:

 presenting SPIRAL partners,

 accessing the training catalogue where CSPQM related courses are proposed,

Session 8 : SPI Surveys

Page 8.14

 announcing local, regional and international conferences,

 presenting actual and future working groups,

 proposing electronic services like a directory of the regional software market, a search

engine on IT quality standards which are available in the Centre Henri Tudor's library

and a work placement market service, and CSPQM services (support services and

mentoring) that can be performed by the SPIRAL*NET team.

Figure BB&AH.1 : Homepage of the SPIRAL web platform

The directory of the regional software market

The main component of the electronic platform is the directory of the regional software

market. This directory is aiming at providing structured information on IT suppliers and

customers. So that, for instance, buyers are able to electronically consult on their needs.

The directory shows IT services and competencies of the Lorraine, Wallonie, and Grand

Duchy of Luxembourg.

The displayed professionals are IT departments, software houses, IT independent

workers, associations and individual members. The directory is intended to people seeking

representative and precise information on one or more actors of the software market and

competencies or services meeting their needs.

After a first development phase, a prototype has been put online since the beginning of

January 1999 (with a bunch of a dozen SPIRAL member companies and a hundred of

regional companies copied from a public file, with limited information such as descriptive

and activities). It is accessible to general public through the SPIRAL Web site. In its

current version, it aims at gathering information on the companies of the SPIRAL network

targeted area. These data are primarily their descriptive information, their activities and

references. This service allows the search for companies via a multiple criteria search

engine. Then it enables the information consultation and retrieval of the search results.

The integration of the companies' competencies was the next goal to reach in the project

Chapter <Nr><Title>

Page 8.15

in order to improve the visibility and the access to structured information related to the

regional software market. So, a second phase of the directory development (second

semester of the SPIRAL*NET project) has been devoted to the analysis of the context

(definition of the IT competencies structure, needs analysis, alternative solutions study,

final solution choice) and the implementation (design, tests of the tools, technical

implementation). At the end of the summer 99, the new version of the directory will

integrate the competencies dimension.

You will find below an example of scenario that can be followed (with user interfaces)

by somebody who is looking for companies with specific competencies.

Figure BB&AH.2 : Search criteria in the directory

Session 8 : SPI Surveys

Page 8.16

Figure BB&AH.3 : Search results

Figure BB&AH.4 : Example of a company description

The work placement market service

The market of the training periods is another telematics project whose finality is the

implementation of an on-line service on the SPIRAL Web site. It can offer three function

levels:

Chapter <Nr><Title>

Page 8.17

 a companies function, thanks to which companies can publish training period offers,

 a higher education establishments function, thanks to which a profile for training

periods can be presented,

 a students function, thanks to which students can post their candidatures.

For each function, it will be possible to consult training period’s offers and demands.

This service will be in relation with the directory of the regional software market

previously described. Thus, when a company proposing a training period is recorded in the

directory database, the training periods market application will automatically recover the

data. In the future, this service could be spread out to other fields than the IT one.

The work placement market service will be online at the end of the summer 99.

The telematics forum

A tool named AltaVista Forum 98, accessible by a Web browser complements this

electronic platform. The AltaVista Forum is an application that provides an easy way to

communicate and to share resources with different groups of people. You can post notes

and replies in an online conversation, notify users through electronic mail when new

information has been added, share documents, post Internet web site addresses.

The SPIRAL*NET team uses the telematics forum for internal project needs. But the

forum is particularly used within the SPIRAL network for working groups and training

cycles.

To select and to share support tools

Main topics structuring the SPIRAL*NET activities development

In order to provide and standardise the market with CSPQM tools, the SPIRAL*NET

project partners identified main topics throughout the SPIRAL network. These are the

following with their associated objectives:

 Project Management

 to assess IS project management practices and to define a grid for analysing IS

projects,

 to define the project management process needs in terms of tools, organisational

structure of methodological framework,

 to establish the implementation approach of the project management process in

order to manage it, to supply it with tools and to improve it,

 to think about the associated processes and connected activities implementation

such as risk management, practices standardisation, results and knowledge

capitalisation, indicators set up, competencies management…

 Customer/Supplier relationships

 to identify and formalise best practices in the requirements engineering field,

 to define practices to adopt in order to structure customer/supplier

relationships,

 to establish a typical approach for purchasing IT products (hardware, software

or service),

 to examine juridical aspects for customer/supplier relationships.

 Software Engineering

 to introduce software engineering and support activities topics all along the

development lifecycle of any IS projects, by more particularly focusing on

Session 8 : SPI Surveys

Page 8.18

requirements elicitation and requirements analysis, design, quality assurance,

documentation management, configuration management and with presentation of

methods, case studies, testimonials…

 to provide tangible results in the form of synthesis, templates, checklists, a

glossary…

A technology watch is made on these topics. All elements related to them are

considered in order to contribute to the preparation of SPIRAL activities and to

provide the electronic platform with quality tools such as software, case studies,

framework models, questionnaires, reference sets, and recommendations. A Project

Management tool has been particularly studied for this period and is experimented in

the SPIRAL*NET project itself.

All the approach is supported by a methodological set stemmed from the "Process

Professional Portfolio"[3] licensed by Compita Ltd (UK). This methodological framework

is associated with training courses. The whole project team has been trained to Process

Professional Assessment in the context of the ISO/IEC 15504 standard[4] (also known as

SPICE: Software Process Assessment and Capability dEtermination), to "Supplier

Management" and "Assessing Suppliers".

Working groups objectives

It is through working groups focusing on the three previously mentioned topics that

recommendations and harmonisation means for best practices are going to be established.

The working groups are a meeting point and an experiment exchange space between IT

actors willing to improve their professional practices and to contribute to the IT profession

enhancement. These meetings gathering peers focus on topics related to management and

Information System (IS) engineering. Participants exchange viewpoints, share their

analysis and experiences, invite experts and thus participate in the development and the

animation of the SPIRAL network.

By gathering fellow workers from several activity sectors, the working group is

representative of the IT profession needs. Its works aim at formalising recommendations,

synthesis and studies development in the covered field, and then producing deliverables.

The working group arouses harmonisation efforts of the practices and also participates in

the writing of a professional charter.

As it was quoted before, the three organised working groups focus on the improvement

of software engineering practices, project management practices and customer/supplier/

relationships. Each working group sets its goals and expected deliverables. The outcomes

are disseminated throughout the SPIRAL network in various forms such as

recommendations and guidelines, templates and user guides, documentary and

methodological frameworks, and market studies. These works are enhanced by testimonials

and case studies presented by working groups' members or external participants.

Working groups organisation and running

At the end of March 99, three free working groups have been launched via a round-

table conference. Until the 99-summer start, two sessions of each working group occurred.

Every working group meets monthly. Between each session, participants can access the

telematics forum in order to consult and supply a document base, to exchange and

summarise the main questions, answers and experiences.

Working groups inter-session communication

The telematics forum. is a useful communication mean between the meetings for posting

documents, announcing events and next meetings agenda, asking and answering

questions… After 3 months of working groups running, the forum is mainly used for

Chapter <Nr><Title>

Page 8.19

consultation. The working groups members watch meeting minutes and handouts and the

next sessions' programme. One of the challenges of the forum use consists in a more

sustained involvement from the working groups' participants as far as the groups

orientations are concerned and in the expression of discussion topics on the studied themes.

This objective could be reach when the members are involved for producing deliverables.

Working groups leading

An expert in the domain leads each working group. Leading tasks concern:

 technological watch in the topics covered by the working group: bibliography, Internet

survey, searches for similar experiences within the SPIRAL network…

 next session preparation: scientific content of the sessions, search for speakers,

discussion topics and preparation of the deliverables to produce,

 communication and spreading liven up throughout the electronic forum.

Working group leaders have quite a tricky position in the group running. They have to

combine an expert attitude (to keep the debates prolific) with a leader one in order to

encourage participants to voice their opinions and experiences. This double role means a

balance to reach; this takes some time before the leader knows the group and vice versa.

Major changes have already been noticed between the first session and the second one

wherefore exchanges between participants increased.

Meetings running

Most of the time meetings are organised with the following outline: theoretical

presentations, case studies presentation, debate/discussion, thoughts about the deliverable

to produce on the studied topic. Theoretical presentations and case studies testimonials are

the means to transfer information to participants who directly benefit from them. They

trigger discussions about current practices within the participants companies. These

discussions are rather rich even though not structured. And because of lack of time,

deliverables thoughts rarely succeeded.

After three months running, the statement is that the meeting agendas were often too

ambitious. So the deliverable thoughts that were planned at the end of the session could not

be performed. The working groups' success can be measured through the participants'

assiduity and the produced deliverables. For the first sessions, the objective was to mainly

win the "loyalty" of the registered participants. Then the sessions were more focused on

theoretical presentations than on deliverables production. In order to reach the deliverable

production goal, the session running will have to be tailored; sharing of experiences,

participants' involvement in the working group running and exchanges between them will

have to be highly stimulated.

The second half of the project will take particular care to develop the working groups

and to deduce regional software best practices (in the form of a directory associated to an

improvement best practices guide) from the working groups' outcomes.

To support the implementation of CSPQM and

the use of common tools

The implementation consists in providing the network with a direct support in launching

CSQPM and their associated tools in business relationships.

Training

The training catalogue is the showcase of available training courses in the SPIRAL

Session 8 : SPI Surveys

Page 8.20

network. The SPIRAL*NET team particularly contributes to three developed topics among

the following channels: Information System Project Management, Software Practices

Assessment and Improvement, Improvement of Customer/Supplier Relationships.

Support services and mentoring

Support services provided to companies throughout mentoring projects have been

performed for the first half of the project. Here are the main features of the types of

services that were proposed:

 Assistance in the elaboration of a management plan for the IT infrastructure

 Assistance in defining an IT strategy

 Assistance in the IT architecture design based on new technologies

 Coaching and advising for the re-engineering of the information system

 Coaching and advising for supplier selection

 Coaching and advising for supplier follow up during the solution implementation

 Software quality standards awareness meetings

 Improvement quality project definition in an ISO 9000 certification preparation context

 Assistance in project Management and quality assurance for project activities

All mentoring actions and support services are SPI experiences and CSPQM

implementations in the SPIRAL network. They are progressively formalised in order to

contribute to a case studies corpus. Each case study adopts the same structure: introduction,

context of the firm, origin of the support service, description of the service (objectives,

actors, project running), firm results, outcomes/lessons learned/capitalisation for the

SPIRAL network, plan for the future.

Micro-assessment

A micro-assessment service has been developed and performed within several

companies. A company contacted within the SPIRAL network can be put through the

questionnaire by telephone. It addresses the vision of the company and the CSPQM

practices. Results of the questionnaire point out the planned improvement actions and their

effects in the company. The micro-assessment service is described with more details below.

In the assessment context, regular contacts and sharing of experiences have been

established with a project team, which works for the Walloon region[5] on the building of

an SME dedicated framework for software assessment (via a project named OWPL for

"Observatoire Wallon des Pratiques Logicielles[6]"). Common work has been

accomplished for the micro-assessment development.

The aim of the micro-assessment is to give a first outlook of the software practices in an

organisation, to make a diagnosis and guide the next steps of software process

improvement. The main requirement that drives the design of this model is to be as less

costly as possible, in time and money.

So, the designed model corresponds to a half an hour interview based on a well-

prepared questionnaire. The questionnaire covers six key lines selected as the most

pertinent and the most prior to target organisations. The questionnaire has been based on

SPICE and CMM concepts. All adaptations were made by considering that the micro-

assessment had to be short in time and money, and had to particularly suit SSDs and SMEs.

So the key lines are the following:

 quality assurance,

 customers management,

 subcontractors management,

 project management,

Chapter <Nr><Title>

Page 8.21

 product management,

 training and human resources management.

The questionnaire includes a dozen of questions covering the above mentioned topics.

Questions are open, and each of them is associated with one or more sub-questions

allowing the interviewer, if needed, to adjust and refine the information he gets. Micro-

assessments are performed by a member of the SPIRAL*NET team; the interviewee has to

be in charge of software quality in the organisation; this is usually one of the executive

staff members or the quality engineer, if this function exists.

Answers are interpreted according to a fixed rating scale. The results are presented

graphically. Figure 3 below gives an example of the resulted grids. The first grid is the

detailed evaluation results according to the selected practices while the second one is a

summarised picture according to the six selected key lines.

Figure BB&AH.5 : example of micro-assessment resulted grids

The results of the micro-assessment are drawn up in a report that first briefly presents

the approach, then develops the results of the questionnaire and summarises them according

to the six key lines, analyses them according to the situation of the assessed organisation

(the age, the history, the declared goals…) and finally gives some recommendations.

The micro-assessment has been performed with about 20 representative organisations

(IT small companies, IT services in other businesses, public administrations using IT). The

experience showed that the micro-assessment model is very attractive for SSDs and SMES

as a tool to start with SPI, mainly because of its extreme simplicity. All of the assessed

organisations declared to be happy with the results and want to carry on their SPI efforts.

Up to now there are no significant trends in the regional software practices. Nevertheless,

the micro-assessment will enable to measure the impact of the SPIRAL*NET project on the

organisations and to show the maturity level enhancement after implementing SPI actions

(the micro-assessment is proposed every six months to the companies).

Quality Assurance (A)

Customers management (B)

Subcontractors management (C)

Project management (D)

Product management (E)

Training and human resources

management (F)

Commitment towards quality (1)

Source of quality (2)

Requirements formalization (3)

Change management (4)

Customers integration (5)

Subcontractors selection (6a)

Subcontractors tracking (6b)

Project phasing (7)

Development methodology (8)

Project planning (9)

Project tracking (10)

Problems management (11)

Verification (12)

Versionning (13)

Product structuring (14)

Training and human resources

management (15)

Session 8 : SPI Surveys

Page 8.22

To provide the market with qualification and

certification

In order to ensure continuity of the SPIRAL proposed services, the network will develop

a qualification and certification process. In that context, a SPI dedicated training cycle has

been defined. It is named "Amélioration des Pratiques Logicielles" (APL) for improving

software practices.

Training cycle context

This training cycle aims at producing quality engineers in the Information System (IS)

field. At the end of the cycle, attendees will be able to implement a software quality process

in their company after having:

 initiating a software practice improvement programme and successfully managing pilot

actions in a business key area of their company,

 deploying and implementing quality assurance activities in IS projects,

 mastering a methodological baseline and competencies in order to combine business,

organisation and the company's strategy with its improvement goals.

The training cycle addresses anyone involved in a quality process in an IT department

or a software house.

The cycle alternates theoretical sessions, case studies and experiments analysis with

practical actions within each attendee’s respective company. An on-site monitoring is

proposed. The unifying thread of the cycle is the software practice improvement

project adapted to the company’s goals and specificity. The dynamics induced by the

control of actual quality actions enables the training cycle participants to gain concrete

experiences. The cycle progress is organised with 10 monthly sessions interspersed

with on-site assistance dispensed by a SPIRAL*NET team member.

Each participant have access to the telematics forum which is organised around studied

topics in order to consult and supply a document database, to exchange and capitalise

questions, answers and experiences from participants and trainers.

Training cycle structure

The SPIRAL*NET SPI training cycle has been built according to a progressive

approach, based on the methodological framework “Process Professional Portfolio”[3] of

Compita Ltd (UK). This methodological portfolio enables to structure the SPI approach and

includes software process assessment, improvement and capability determination concepts.

The Compita's framework is made up of a process model that is ISO/IEC 15504[4]

compliant. Other frameworks will help to structure the approach. These are for instance the

ISO 9000[7] standards, or other assessment and improvement frameworks such as xx-

CMM (Software-CMM[8], People-CMM,…).

Guidelines of the ISO/IEC 15504 standard[4] recommend 8 steps in the "Guide for use

in process improvement" (Part 7). The adopted approach for the APL training cycle is

based on these SPI steps, gathered in 4 main stages. For each of these stages, one or several

training sessions are the opportunity to tackle associated concepts, and to explain

appropriated tools and techniques. This is aiming at progressively building the

methodological framework that is the main outcome of the cycle and to give the participants

all necessary components in order to implement improvement actions within their company,

all along the training sessions. The outlines of the APL training cycle programme are the

following:

Chapter <Nr><Title>

Page 8.23

Initialisation / Launching

 Kick-off of the improvement approach

 Discovery of the SPI context and introduction to a process oriented quality

approach

 Quality standards and more specifically software standards (ISO/IEC 15504, xx-

CMM, ISO 9000)

 Key processes selection approach

Definition / Organisation

 Implementation of a process improvement environment in a company

 Diagnosis, assessment, audit of software practices

 Improvement plan definition

Implementation

 SPI actors

 Activities related to the process performance (base practices)

 Activities related to process management (to plan and control process practices,

quality assurance activities)

 Activities related to process improvement (to control and measure processes, the

technological and human resources environment, to formalise processes)

Improvement

 The continuous improvement cycle (experiment, adjustment, institutionalisation)

 The capitalisation of experiences

Figure BB&AH.6 : Structure of the APL training cycle

The inter session

All along the training cycle, participants will have the opportunity to take benefit from

assistance days included in the APL package. This monitoring will be provided by

SPIRAL*NET team members. They will act as a mentor within each company. The

participants have to plan key improvement actions and choose the SPIRAL*NET on-

site assistance which suit them best among activities like:

 mini-assessment (for instance, a SPICE assessment of a single process),

 deliverable and project reviews,

 specific assistance on project and/or process

 animation / participation in working groups in order to formalise processes,

 templates, procedures, framework development,

 tools specifications, quality service specification, …

 normative and technological watch.

The telematics forum also plays a part between each session. It allows participants to

share documents and points of view related to the studied topics.

APL training cycle progress

The APL training cycle definition phase has mainly occurred for the second semester of

the project. At the same time, the promotion of the cycle was performed in order to attract

potential quality engineers. The project target was set to 6 quality engineers to be trained.

Up to now, 5 registrations have been recorded. The training sessions will occur during the

second half of the project (from July 1999 to June 2000).

Session 8 : SPI Surveys

Page 8.24

Dissemination actions

Dissemination is dealing with the promotion of the network and wide dissemination of

the SPIRAL*NET results throughout all regions of Europe. To do so, several dissemination

actions happen all along the project.

Presentations were made by SPIRAL*NET team members in local events such as the

annual SPIRAL 98 conferences and in international conferences such as EuroSPI’98,

SPI’98, EuroSPI’99.

European exchanges and co-operation are also developed : dissemination materials

were provided by European projects (SPIRE[9] – ESSI Project 23873 and SMILE[10] –

ESSI Project 23973) and distributed throughout SPIRAL*NET activities such as training

courses, working groups, awareness events,… In the same context, the French

FESPINODE representative organised two events in Luxembourg and Belgium and took

part in both round-table conferences that occurred for launching working groups.

All other types of co-operation and exchanges are welcome. It can be as various as

inviting CSPQM experts to participate in local and regional events or providing software

facilities via the electronic platform. All the means that can favour the SPIRAL network

development are encouraged. All opportunities for the SPIRAL network model to be

instantiated again and/or to be extended in any way are studied.

Conclusion

After one year of project running, the SPIRAL*NET results are globally satisfying in

terms of awareness impact and welcome of the initiative. A great interest has been recorded

for the SPIRAL network in connection with the harmonisation of the market software

practices, with the acknowledgement of SPI initiatives, approaches, and competencies in

the regional companies aiming at improving their practices. Moreover, this interest has

been shown despite a strong mobilisation of human resources in the companies for Euro

and Y2K projects.

The second half of the project will consist in implementing all prepared activities and in

gathering as many actors as possible within the network in order to study label aspects,

acknowledgements mechanisms by the IT professionals themselves, and the maintenance

and means to perpetuate SPIRAL*NET activities after the end of the project.

Chapter <Nr><Title>

Page 8.25

References

[1] SPIRAL*NET Project Programme - ESSI Project 27884 - V 2.0, May 1998

[2] SPIRAL*NET Mid Term Report - ESSI Project 27884 - V 1.0, June 1999

[3] Compita Ltd, Process Professional Process Portfolio, Process Professional Library

Services, 1996

[4] XP ISO/CEI TR 15504, Parties 1, 2, 3, 4, 6, 7, 8, et 9 : Septembre 1998 et Partie

5 : Décembre 1998, Technologies de l'information - Evaluation de processus

de logiciel, Edition AFNOR en français du référentiel ISO/SPICE

[5] Habra N., Du Bois P., La crise du logiciel : vers une démarche d'amélioration des

processus logiciels dans les PME Wallonnes, in : revue Athena de la DGTRE

du Ministère de la Région Wallonne, Namur, B, September 1998

[6] Habra N., Niyitugabira E., Lamblin A-C., Renault A., Software Process

Improvement in Small Organizations Using Gradual Evaluation Schema, In

Proceedings of the International Conference Product Focused Software

Process Improvement, PROFES'99, Oulu, Finland, 1999

[7] EN ISO 9001, Systèmes qualité - Modèle pour l’assurance de la qualité en

conception, développement, production, installation et prestations associées,

CEN, Bruxelles, B, Juillet 1994

[8] Dymond K.M., Le guide du CMM (SM) - Introduction au modèle de maturité

CMM, Traduction : A.Combelles et al. - Objectif Technologie, Cépaduès

Editions, Toulouse, F, 1997

[9] The SPIRE Handbook : Better, Faster, Cheaper Software Development in Small

Organisations - ESSI Project 23873 – 1998

[10] SMILE (Spreading Multimedia Information for Learning and Enlightenment

about Software Process Improvement) CD-Rom, Multimedia information

system and CD-Rom funded by the ESSI Project 23973 – 1998

We would like to thank all SPIRAL team members who contributed to this paper :

Jean-Charles Bernacconi, Pierre Brimont, Yves Collet, Sandra Grunewald,

Véronique Henrotte, Naji Habra, Jean-Pierre Jacquot, Anne-Catherine Lamblin, Jean-

Pol Michel, Eustache Niyitugabira, Alain Renault, Jeanine Souquières, Norbert Vidon

Page 8.26

CV of the authors

Béatrix BARAFORT
 Co-ordinator of several projects of process assessment (SPICE) and improvement

programs.

 Currently project leader of SPIRAL*NET (ESSI Project 27884).

 Qualified assessor (certificate of achievement of “Process Professional Assessment”).

Anne HENDRICK
 Member of the board.

 Branch manager for Software Process Quality.

 Co-ordinator for the SPIRAL platform. This resource centre aims to enhance

information and experience exchanges between IT professionals.

Responsible for the definition of service offers in the domain of software

engineering, process improvement and quality management, such as consulting,

technological and methodological assistance, specialised training, working groups

and forums.

 Qualified assessor (certificate of achievement of “Process Professional Assessment”).

Session 8 : SPI Surveys

Page 8.27

Centre de Recherche Public Henri Tudor

The Centre de Recherche Public Henri Tudor, founded in 1987 as a public research

centre, was created to promote innovation and technological development in Luxembourg.

The Centre's goal is to improve the innovation capabilities of the private and public sectors

by providing support services across the main technology-critical areas : information and

communication technologies, industrial and environmental technologies. It is assisted in its

mission by a diversified network of industrial and institutional partners.

The Centre de Recherche Public Henri Tudor participates in European Union

programmes including ESPRIT, Craft, Info 2000, LIFE and Telematics Applications

Programme. As a result, Luxembourg businesses are able to draw on the knowledge and

expertise of Europe’s greatest research centres.

The Centre is also actively engaged in inter-regional co-operations within the "Grande

Région" (Saarland and Rheinland-Pfalz in Germany, Lorraine in France and the province

of Luxembourg in Belgium). It is a co-founder of the European College of Technology, a

tri-state initiative based in the European Development Pole at the Athus-Longwy-Rodange

intersection, and contributes to the innovation programmes of the EU Structural Funds.

Main figures

- a full-time staff of 130

- 5 research laboratories

- 4 innovation support services

- 6 technology resource centres

- annual turnover of more than ECU 6 millions

- 60 % self-funding

Session 8 : SPI Surveys

Page 8.28

Software Engineering

in the UK – A Brief

Report

Dr Zaigham Mahmood

School Of Mathematics and Computing

The University, Derby, UK

- Introduction

In 1997, a project was undertaken to investigate the state of software engineering in the

UK. The objective was, mainly, to gain insight into the way the industry carried out the

practice of software development but also to investigate the sources of difficulties,

problems and concerns inherent in the process. The underlying purpose was to discover

trends and gather information for course designers.

It was decided that a survey would be carried out by sending copies of a detailed

questionnaire to a number of IT departments of large organisations in the UK. Target

organisations were carefully chosen and the questionnaire was appropriately designed.

The organisations chosen were all in the business of producing large-scale software

and the questionnaire contained questions relating to the various phases of software

development life cycle as well as those concerning project management, estimation of

cost and time, team working, documentation, quality and standards.

This paper presents the result of the survey. Our study reveals that major concerns

exist in the areas of group working, staff experience, time and cost estimation, CASE

tools and documentation, although, it appears that the industry has learnt to cope with

the difficulties of the requirements phase, project management and quality control.

We hope the information gathered from the study will prove useful for course designers

as well as those working in the industry.

Session 8 : SPI Surveys

Page 8.29

- Design of Questionnaire

Response to postal surveys is often poor: usually because the recipients are too busy to

find time for such an activity but often because questionnaires are badly designed. We

ensured that our questionnaire was well structured and designed in a way that the

recipients would find it relatively easy to complete them.

The questionnaire consisted of three parts. Section 1 asked for certain general details

about the organisation such as their size, number of staff in the software development

section and break down of computer staff (project managers, programmers, designers,

systems analysts, other). Section 2 required details of the kind of software development

undertaken by the organisations and the way it was carried out. So, there were

questions relating to the following:

 type of software produced

 time spent on a typical project

 team size

 frequency of team meetings

 use of methodologies and CASE tools

 quality and standards.

Section 3 referred to problems and difficulties encountered during the development

process. Questions were grouped under the following headings:

 user requirements

 development methodologies

 CASE tools

 documentation

 group working

 project management

 cost and time estimation

 standards and quality.

- Target Organisations

The organisations we chose to study were mostly medium-to-large, although there were

also a few very large companies. Questionnaires were sent to their IT departments.

Their size ranged from 20 to 1000 computer personnel, although a majority of them

had in access of 150 computing staff each. They were all in the business of developing

large-scale software and included banks, building societies, insurance companies,

service and consumer agencies, car manufacturers/designers, communication industry,

superstores, a railway agency, an aerospace agency and several software houses.

Questionnaires were posted to relevant named personnel as we wanted to approach

those directly involved in the design, development and management of software

systems and projects. One hundred questionnaires were sent: 48 were returned and 35

were used in the final analysis. 21 of the companies involved in our research produced

Session 8 : SPI Surveys

Page 8.30

financial software, 5 were in the business of producing educational, research and

scientific software, 6 organisations belonged to communication industry and 28 of

them produced information systems for manufacturing, distribution, retail and other

similar applications. Some of them produced more than one type of software.

Of the 35 organisations, 28 had an average development time of 6-12 months for a

typical project whereas 9 companies took more than a year on average to complete a

typical application. Since the team size varied from project to project and from

company to company, it was difficult to determine the average number of person hours

spent on a software product. Nevertheless, looking at the figures given for development

time and team sizes, we have no doubt that the organisations involved in the study

were, on the whole, medium-to-large.

- Analysis of Questionnaires

Summary of our findings will appear in a later section. Here, we present quantitative

analysis of the survey using separate headings for clarity.

- User Requirements

We expected to hear some major problems in this area. But, recognizing the fact that

requirements will always change, most organisations allowed such changes but then

they negotiated new contracts and agreed new time scales and costs with clients. 70%

of companies used internally defined 'change control procedures' which included re-

costing. 61% of the companies used prototyping to elicit user requirements. Three

organisations mentioned Rapid Applications Development (RAD) and PRINCE as a

way to handle changing requirements.

Surprisingly, 3% of the respondents disagreed with the statement that requirements

often change during the course of development and 20% said that they had no formal

procedures to handle such requests. One organisation reported that they put a freeze on

further changes.

Our survey revealed that 60% organisations consulted users at regular intervals and

the remaining 40% consulted clients as and when required.

- Development Methodologies

Those involved in the study used at least one well recognised method for software

development: some used up to three depending on the nature of the applications. 61%

companies used prototyping to establish user requirements and 45% companies

followed evolutionary approach [1] to software development. The Waterfall approach

[2] in various guises was used by 51% of the respondents. Only 6% of companies used

the Spiral model [3] for software development. Other methods used by companies

included internally defined methodologies, RAD and DSDM. No major problems were

reported. Refer to Fig. ZM 1.

Session 8 : SPI Surveys

Page 8.31

61%

45%

51%

6%

16%

0%

10%

20%

30%

40%

50%

60%

70%

Prototyping Evolutionary Waterfall Spiral model Other

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

 Fig. ZM1: Use of development methodologies

- CASE Tools

It was interesting to note that 52% of companies did not use such tools to aid the

development process and 6% of companies ignored the question altogether. Of the 42%

of companies, who used such tools for software development, used them for various

phases of the development process as follows:

 design: 100%

 requirements: 66%

 coding: 66%

 testing: 16%.

Various tools mentioned by our respondents included LBMS, MS Project, PMW, S-

Designer, MS Visual Test, Rational Rose, ARIS, JMA, Designer 2000 and Oracle

Case. Fig. ZM2 represents the situation graphically.

28%

42%

28%

7%

52%

0%

10%

20%

30%

40%

50%

60%

Requirements Design phase Coding stage Testing phase Do not use tools

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

Session 8 : SPI Surveys

Page 8.32

 Fig. ZM2: Use of CASE tools

- Documentation

Nearly half the respondents reported that their software was well documented; the

other half were generally happy with their documentation. Two companies were

unhappy about the quality of documentation they produced. Lack of time was cited as

the main problem, however, two organisations out of 35 reported no problems of any

kind whatsoever.

74% companies told us that they produced documentation at regular intervals and 23%

organisations produced it as and when time permitted. Two companies said that they

produced documentation only at the end of development. Major difficulties with

documentation were cited as follows:

 lack of time: 17 organisations

 dislike/unwillingness: 6 organisations

 keeping pace with changes: 7 organisations

90% of the organisations had formal mechanisms in place to ensure the completeness

of their documentation. These included reviews, audits, quality procedures, formal

signing off, project plans, management control, walk throughs and checklists. Refer to

Fig. ZM3.

9

8

6

3

5

4

3

0

1

2

3

4

5

6

7

8

9

10

Reviews/Au

dits

Quality

procedures

Signing off Project

Plans

Managemen

t control

Other No response

!!!

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

Fig. ZM3: Methods to ensure completeness of documentation

-

-

- Group Working

80% of companies agreed that organisation, co-ordination and monitoring of large

teams was generally very difficult. Major problems seemed to be communication

between team members and inexperienced personnel. Other problems highlighted by

35 organisations included friction between team members, lack of information and

Session 8 : SPI Surveys

Page 8.33

support from senior management, inexperienced team leaders, staff leaving,

inappropriate time scales, large groups and communication between teams. Refer to

Fig. ZM4. Solutions, not surprisingly, included more training courses, smaller teams

and more project reviews.

18
17

7 7
6

0

2

4

6

8

10

12

14

16

18

20

Communication Lack of

experience

Friction bet

members

Lack of

management

support

Other

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

Fig. ZM4: Problems with group working

Two third of the companies held group meetings each day and the rest had regular

meetings once a week.

Answering question whether they had any mechanisms in place to resolve team

problems, 42% said yes, 12% answered no and, surprisingly, the rest, nearly half, gave

no response. 7% organisations admitted that the procedures they have to combat any

difficulties were not very effective. Several questions from this section of the

questionnaire remained answered. It seems therefore that no clear answers exist to

several of the usual problems when people work in groups of many. Also, in spite of

increasing number of courses offered by institutions of higher education, lack of

appropriate skills remains a major problem.

- Project Management

Our investigation revealed that MS Project and Project Management Workbench were

the most popular tools used for project management - used by 31 organisations. Of the

other 4 organisations, two did not use any tools to check the progress of projects and

the other two companies used Artemis and Hydra.

No one admitted any weaknesses in the management of projects, personnel or resources

though lack of resources seemed to be a major concern.

- Cost and Time Estimation

Session 8 : SPI Surveys

Page 8.34

26 organisations (out of 33) did not use tools for the estimation of project times or

costs. Three companies used COCOMO [4] and the other four used PMW, Function

Point Analysis or internally defined methods. 72% of the organisations told us that they

used past experience or careful planning to estimate the duration of a software project

- not a very satisfactory state of affairs.

28 companies admitted that their projects often exceeded the allocated budgets. As

shown in Fig. ZM5, our survey revealed that:

 2 organisations exceeded budgets for less than 10% of projects

 14 companies exceeded their budget for 10-20% of all projects

 7 companies exceeded budgets for 20-30% of their projects

 3 companies overran their budgets for 30-40% of all projects

 2 organisations exceeded budgets over 40% of the time.

2

14

7

3
2

5

0

2

4

6

8

10

12

14

16

<10% 10-20% 20-30% 30-40% >40% No response

!!!

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

Fig. ZM5: Budget overruns

Only 7 companies delivered their products on time. Of the other 26 organisations, we

discovered that:

 15 companies had 10-30% of their software systems delivered late. Of these:

 7 companies exceeded delivery times by about a month on average

 5 companies delayed delivery of products by up to 3 months on average

 1 company exceeded targets by up to 6 months on average.

 9 companies had 30-50% of their software products delivered late. Of these:

 3 organisations exceeded delivery times by about a month on average

 2 company exceeded targets by up to 6 months on average.

 2 organisations admitted that they delivered more than half of their software late

by about 6 months each time.

The above situation is summarized in Fig. ZM6.

Session 8 : SPI Surveys

Page 8.35

10

5 5

6

0

2

4

6

8

10

12

< 1 month 1-3 months 3-6 months No response !!!

N
u

m
b

e
r

o
f

C
o

m
p

a
n

ie
s

Fig. ZM6: Schedule overruns

Answering the question what other measures do you take to ensure that projects meet

delivery deadlines?, our respondents provided the following information:

 half of the companies used regular meetings, checks and reviews

 nearly 25% organisations used careful planning or internally defined procedures

 another 25% reported that they would allocate extra resources such as hiring more

staff or getting staff to work overtime

 one company out of 30 said that they would reduce functionality to meet delivery

targets.

- Standards

It was good to know that all organisations had well defined standards and procedures

for its staff to follow. 40% of companies used these standards all the time, 50% of

companies followed standards most of the time and the remaining 10% companies

followed them only occasionally. Nearly half of the respondents regarded such formal

standards as very good and the other half as average.

25% of companies said that there were too many standards at their organisations, 6%

said there were too few and another 6% revealed that their standards were too

complicated to follow.

- Quality Assurance

85% of companies followed recognised quality assurance procedures. Out of a total of

34 companies, BS7570 was followed by 10, Tickit by 14 and ISO 90001-4 by 19

organisations. Some companies were accredited to more than one Quality Standard

Schemes. However, surprisingly, 12% of those surveyed relied only on internally

defined quality assurance procedures.

For the design and code stages of software development, 80% of the companies

surveyed had established quality assurance groups within the organisations. However,

Session 8 : SPI Surveys

Page 8.36

their staff were not entirely happy with the quality procedures. The mechanisms to

ensure that quality was maintained included regular reviews, audits, code inspection

and testing. One company said that it was up to the programming staff to ensure that

all was well.

- Summary of Findings

Numerous surveys of a similar nature have been conducted in the past 20 years. Our

research has shown, yet again, that the process of engineering software is fraught with

difficulties despite huge developments in methods, tools and methodologies. Perhaps,

building software will always be difficult [5]. Our study reveals that major concerns

exist in the following areas:

 group working

 staff expertise

 cost estimation

 time estimation

 CASE tools

 documentation.

Main problems in group working is the lack or break of communication between

personnel. Nearly half the companies regarded communication between members of

the group as the major problem. 7% of the companies who have procedures to deal

with such difficulties admitted that their methods lack effectiveness.

Lack of appropriate knowledge and expertise is another problem highlighted by nearly

half of the respondents.

78% of the organisations do not use any tools to estimate time or cost of software

projects. Managers rely on their experience to determine time scales, costs and

resources required. 28 companies out of 33 admitted that their projects often exceeded

the allocated budgets. No clear suggestions were given to resolve the difficulties.

Delayed delivery of products is another reality. Only 21% of companies said that they

met their delivery deadlines.

CASE tools were used only by 42% of the companies, mainly during design,

requirements and coding phases of development. Only 16% of companies used them

for testing of software.

Documentation is always produced. However, nearly half of the companies reported

that there was often not enough time to produce documentation of sufficiently high

quality. Development teams often avoid this activity in favor of more technical work.

Keeping documentation up to date is also a major concern.

On a positive note, however, it seems the industry has learnt to cope with the

difficulties of the requirements phase, development methods, project management and

quality control.

Session 8 : SPI Surveys

Page 8.37

61% of the organisations we surveyed consult their clients on a regular basis and use

prototyping as a tool to elicit system requirements. 20% of the organisations, however,

lack satisfactory procedures to deal with changing requirements. 45% of those

surveyed use evolutionary approach and 51% the Waterfall approach to develop

software. The software industry is also beginning to use risk-based approaches to build

software and that is encouraging.

MS Project and Project Management Workbench are highly popular tools to control

project management, used by 31 out of 35 companies in our survey.

All organisations have good internally defined standards to ensure quality of work.

90% of them use them either all the time or most of the time. 85% of companies are

using well known accredited quality standards which include BS7570, Tickit and ISO

9000 series standards.

- Conclusions

We have presented the result of a survey that was carried out in 1997 to investigate the

state of software engineering in the UK. Our survey reveals that managers and team

leaders are making good use of management tools for better planning and control and

that the industry is being successful in determining what users really require. So, the

software industry has made some progress in this regard, however, many of the

problems associated with building large systems still remain. Despite development of

numerous methodologies, new tools and courses [6] over the years, there is still a need

for the following:

 better tools to automate the development process

 appropriate training courses to provide the essential up to date knowledge and

expertise including communication and transferable skills

 better estimation techniques so that software products are delivered on time and

within allocated budgets.

We hope the information gathered from the study will prove useful for course designers

as well as those working in the industry.

- References

[1] Gilb T., Principles of Software Engineering Management, Addison-Wesley,

1988.

[2] Royce W.W., Managing the Development of Large Software Systems, in:

Proceedings of IEEE, WESCON, San Francisco CA, 1970

[3] Boehm B.W., A Spiral Model of Software Development and Enhancement,

IEEE Computer, 21, 5, May 1988

Session 8 : SPI Surveys

Page 8.38

[4] Boehm B.W., Software Engineering Economics, Englewood Cliffs NJ,

Prentice-Hall, 1981

[5] Brooks F.P., No Silver Bullet: Essence and Accidents of Software

Engineering, IEEE Computer 20, 4, 1987

[6] Mahmood Z., Core Requirements for a Degree Course in Software

Engineering, in: Proceedings of Software Engineering in Higher Education,

Alicante, Spain, Nov 1995.

Session 8 : SPI Surveys

Page 8.39

Curriculum Vitae

Name: Dr Zaigham Mahmood

Email Address: Z.Mahmood@derby.ac.uk

Position/ Senior Lecturer - Computing

Institution: University Of Derby, UK

Qualifications: BSc, MSc, MSc, Ph D, CEng, MBCS

Publications: Core Requirements for a Degree Course in Software

Engineering, Proc. SEHE’95, Alicante, Spain, November

1995.

 Issues in the Teaching of Software Engineering, Proc.

ISSEU’97, Rovaniemi, Finland, March 1997.

 A Functional Approach to Procedural Paradigm for Teaching

Software Engineering, Proc. INSPIRE’97, Gottenburg,

Sweden, August 1997.

Software Engineering in the UK – A Brief Report, Proc. EuroSPI’99, Pori, Finland,
October 1999.

Experience: Industrial - 17 years

 Educational (Lectureship) - 10 years

Session 8 : SPI Surveys

Page 8.40

An Overview of the SPI Activities in Estonia

Ahto Kalja1 and Jaan Oruaas2

1Institute of Cybernetics

at Tallinn Technical University

Akadeemia 21, 12618, Estonia

ahto@cs.ioc.ee

2Estonian Information Technology Society

Kiriku 6, 10130, Estonia

jaan@eits.ee

Introduction

Estonia among many other nations has seen information technology (IT) as an

important tool to improve the case of extremely fast recovery of Estonian economy.

This paper gives an overview of the development of IT and the SPI activities in

Estonia. After short introduction into Estonian IT history, the IT industry situation is

presented. The state of the art of the SPI activities is given.

History of IT in Estonia

The first computers in Estonia were manufactured and installed at the end of 1950s

and in the beginning of 1960s. The first computer centres were established in

University of Tartu (1959), Institute of Cybernetics (1960) and Tallinn Technical

University (Tallinn Polytechnical Institute). The computers installed in these centres

were the first- and second-generation Soviet-made Ural and Minsk computers that were

used both in scientific research and IT education at universities [1]. The teaching of

programmers and other computer specialists started very soon after the computer

centres were opened. In addition to popular Fortran, Algol and assembler languages,

Estonian researcher groups developed different unique programming languages –

Malgol, Velgol etc. These languages had Algol-based structure and were developed for

special purposes as for teaching programming languages, solving financial problems

etc. In the 80s specialists from Estonia participated in the development of standard

software engineering, CASE tools, etc for different ministries of the Soviet Union [2].

Estonian IT Industry

The independent Estonia started eight years ago in a situation, where every ministry

had its own Computer Centre developing the information infrastructure of the branch.

The first private companies started as soon as it was permitted - at late 80's. At the

beginning there were just small co-operatives. Most of the information processing

projects used Soviet-made IBM 360/370 compatible computers and the corresponding

software. Then the situation changed. At the beginning of Estonian independence (in

1991-1993) a lot of large IT projects in public administration sector were started and a

Session 8 : SPI Surveys

Page 8.41

number of private software and hardware companies were established. It was the time

of intensive invasion of IBM PC clones and FoxBase(Pro) (pirate-copies as a rule)

DBMS into all sizes of software projects. During the next period (1993-1996) a lot of

new software and technical facilities were purchased and updated that brought about a

rise in the quality of information technology (IT). It was the period when the fight

against pirate software was started. Development during last years (1997-1999) has

created a situation where most average and large projects use local area networks,

client-server architecture, support data-warehouse paradigm etc. The percentage of

using licensed software is increasing. All these changes are supported by the new

legislation.

Estonian Software Companies

There is about 250-300 IT companies in Estonia. We can say with satisfaction that

half of them are active in developing original software. The other half of IT firms are

dealers of big western companies, PC producers etc.

A fact worth mentioning is that the two largest Estonian software firms are the

information technology divisions of the two biggest Estonian banks (Hansabank and

Estonian Union Bank). The IT divisions of these two banks employ over 100

programmers. Other software companies are mostly small, comprising 20-50 people. If

we want to compare the software development processes at these companies, we should

emphasise that the banks have the best available technical facilities. The IT divisions

of banks don’t have notable problems with financing. It means that they can purchase

the newest computers (Sun Microsystems server Enterprise 10000 (Starfire) in the

Union Bank and HP equivalent systems in Hansabank) and the latest versions of such

DBMS as Oracle, Sybase etc. It also means that the software development in these

divisions can support all the programming novelties such as component technology,

three level systems, data warehouse paradigm, Internet-banking etc. Last and not

least - the banks employ a lot of Estonian best IT specialists. For example, Tallinn

Technical University has lost dozens of very high-educated employees to the banks. Of

course the software developing processes at bank divisions have their own problems as

well. At one time the technological process seems as endless improving, at other times

as a battle with fire and the project management and documentation tasks are not

always solved the best way.

A group of companies that work on a good level thanks to the technological support

from abroad are the representatives of large Western companies, such as Microsoft,

Oracle, IBM etc. In this case the one who takes care of the software development

technology and the training of people is the mother company.

Another group of companies is of kind that works to develop software for western

clients. The work of these companies depends on the quality. It means that to survive

and preserve clients they have to maintain the same quality level as western software

houses. Regretfully these companies at the same time reduce their expenses, for

example, in the way that they produce the software without project documentation!

Yet another group of companies works only for Estonian market. This group includes

firms, which produce, for example, financial software for Estonian companies,

Estonian language-specific text editors, develop Estonian registers or databases etc.

Some of these companies are working very successfully and their projects’ software

Session 8 : SPI Surveys

Page 8.42

development processes maturity level is often “repeatable”. Sometimes their processes

(training processes, configuration management processes etc.) reach even the “defined”

maturity level.

Unfortunately there are also many companies whose software development activities

take place at the “ad hoc” level. The main reason for their survival is the shortage of

qualified IT people and companies in Estonia.

The SPI Activities

No software process improvement plans have been established in general for IT

companies and for IT departments of big companies (for example for IT divisions of

banks) in Estonia. All the special improvement activities have appeared as ad hoc

events. Such types of events include the participation of Estonian specialist in SPI

courses abroad, western specialists’ lecturing at Estonian universities or at IT

conferences in Estonia, interest of some companies about special improvement

standards etc.

The Software Engineering Institute's Capability Maturity Model (CMM) for software

process assessment, improvement and capability determination was the first

methodology, which was learned and used to improve software processes in Estonia.

The people from TTU’s Institute of Informatics and the Abobase Ltd were the first

users of this technology in Estonia.

The next model, SPICE, as described below, is the next methodology, which has been

introduced to Estonian specialists. Some leading software companies are striving to

preparedness for ISO 9000 certificate. One computer manufacturer has it already for

two years.

Tallinn Technical University has good contacts with Pori School of Technology and

Economics. The delegation (3 people) from TTU visited on December 9-10, 1998 the

Software Process Improvement Center (SPIC). Negotiations showed that there is an

interest and possibility to organise a similar center in TTU and to start the co-operation

in the field.

A centralised activity co-ordinated by governmental organisation is translating IT field

ISO standards into Estonian language. Same standards have been accepted on title

page methods, but the largely used standards, for example ISO/IEC 12207,

Information technology – Software life cycle processes, have been fully translated and

versions in Estonian accepted.

SPICE Courses

The idea to introduce SPI international experiences to Estonian IT specialists and

companies arose at the beginning of 1998 from Finland. On one hand, the Software

Engineering Centre OY and Software Technology Transfer Finland OY with Estonian

company Software Engineering Centre AS decided to organise special SPICE standard

courses for Estonia, but they were not able to find the minimum necessary number of

participants. On the other hand, the Pori School of Technology and Economics is

supervising a special Finnish-Estonian Bilateral development project “Teaching of

Information Technology on the Bachelor, Master and Doctoral Level”. The aim of this

Session 8 : SPI Surveys

Page 8.43

project is to transfer the Finnish experience to improve the role of University research

and education from the point of view of the surrounding society; with the focus on

software engineering but also some related areas were covered [3].

By joining the resources of these two projects it became was possible to organise the

first special course (seminar) on Software Process Improvement and Capability

dEtermination (SPICE) = ISO15504 in Estonia. The lecturer was Risto Nevalainen,

from STTF Oy, Helsinki. This event was organised in Tallinn on April 2nd-3rd, 1998.

Seven participants registered from Tallinn Technical University, 1 from University of

Tartu, and 6 specialists from different companies (Aetec Ltd., Abobase Systems Ltd.,

etc.).

The seminar included the following topics:

- Improvement of software process using different approaches and models

(ISO9001, CMM, Quality Awards, SPICE) overview and comparison of

the models.

- Use and application of SPICE in software process assessment and

improvement planning. Lectures and practical training using real-life case.

- Examples and research results of process improvement activities. Real

examples from Finnish companies SPI plans.

- Different approaches and routemaps in SPI for small companies.

- Support in using SPICE standard in small companies.
This first seminar informed several IT specialists in Estonia on the possibilities and

needs for software process improvement. The next similar seminar on December

17-18, 1998 was already much easier to organise. Again STTF Oy, Finland was in

charge with Estonian Information Technology Society, Institute of Cybernetics at TTU

and SEC Ltd, Estonia acting as co-organisers. The seminar gathered 20 participants:

10 from Tallinn Technical University and the rest (developers, experts, managers)

from different software companies. Many of them work today in Estonia as process

and quality developers and quality consultants. The following companies were

represented: Proekspert Ltd, Aprote Ltd, Datel Ltd, Aetec Finantsvara Ltd. As the

result of these two seminars Proekspert Ltd, who is DBMS Sybase representative in

Estonia, decided to start to use the SPICE standard for software quality improvement.

Proekspert also participated in the next SPI project - the INSPIRE.

The INSPIRE Project

The Estonian Information Technology Society participates in the project: The Initiative

for Software Process Improvement – Regions Exterieures (INSPIRE). The INSPIRE

project is supported by the European Commission as part of COPERNICUS program

within the European Software and Systems Initiative (ESSI). The project was started

on 1997 and has reached now its final stage.

The objectives of the Initiative for Software Process Improvement - Regions

Exterieures (INSPIRE) project are focused upon providing access to the experience

and knowledge of various software process assessment, improvement and certification

Session 8 : SPI Surveys

Page 8.44

methods, currently available in Western Europe, to SME's2 from the Central and

Eastern European regions.

This focusing is caused from rapid political changes in these regions where the

economies are now being committed to migrate to become market driven. As a result,

companies from all industrial sectors must modernise their operational practises in

order to be successful in competing for new tasks.

INSPIRE recognises that information technology, and software, in particular, will be

one of the critical factors impacting upon an organisation's ability to modernise.

INSPIRE will target those organisations in which the development of software is of

key importance to the success of the organisation.

To address this situation INSPIRE will meet the following objectives:

- to increase the current level of awareness in the benefits of the ISO 9000

Quality Standard and Software Process Improvement (SPI);

- to provide a structured series of SPI training events to facilitate the

improvement process;

- to perform a focused series of Process Improvement Experiments (PIE)

promoting the use of SPI and Software Process Assessment (SPA)

techniques;

- to encourage co-operation between the participating organisations to

share both knowledge and experiences;

- to create a basis for permanent links between these organisations leading

to continued mutual benefit;

- to actively participate as a member of the Training Cluster, co-ordinated

through ESSI project No. 24035: RAPID, disseminating information

about the lessons learnt throughout the project's duration.
Consequently INSPIRE will comprise much more than ordinary dissemination - it will

perform SPI Training and PIE's.

INSPIRE operates in Estonia, Hungary, Poland and Romania.

Four companies and mentors for some of them have taken part in the project. The

companies were targeted to find out their critical business or development processes

and make improvement plans. Two of them were software companies, one was a

system integrator with its' own development department and the other a system

integrator oriented on services and training. The following processes were improved:

- software development process for tracking and description in internal

standards within the company with the aim to optimise the process and

make it clear for every participant;

- software development and client services assessment using SPICE

method;

- business process assessment for ISO9000 preparedness.

2
 Small and Middle-sized Enterprises

Session 8 : SPI Surveys

Page 8.45

All the companies found the results of PIE very successful and the used methods'

useful even in cases of very small companies. The PIE made the business processes

(i.e. future of the company) clearer for the managers.

The results of PIE have impact on companies from various sides. The experiment

showing that typical business software development and supporting process could be

easily investigated and assessed could be considered as technical impact. The fact that

the Estonian companies’ software capability level profile reached the ISO15504 level 1

and 2 is even more important.

Measuring the following goals at the end of the project: extensions of business

activities with clients, meaningful reduction in the average production time of the

software in the project etc. have impact on the companies’ business side.

From the organisational side no large changes were made for the experiments. The

companies’ employees did some overtime and participated in a few special courses.

The INSPIRE project had also a cultural impact. It showed in people accepting

positively the concepts, technologies and management changes concerning software

development and more generally in the company production improvement. Anyway all

the software teams, mostly composed from young employees with spirit open to

innovations, accepted the challenge and moved along in introducing changes to the old

software practices.

Last and not least the impact on skills should be mentioned. During the project

members of software teams gained significant and valuable new skills like how to use

software project management tools according to established procedures. Many

engineers involved in the engineering processes received extra training in the software

project management, in using assessment standards etc.

Future Plans

Our activities in the field have lead to a deeper understanding of the SPI methods. At

the same time several successor projects have been planned.

1. Estonian Information Technology Society is intends to join to the new

Software Process Improving plans of EU;

2. Tallinn Technical University is prepared to co-operate more largely with

the Software Process Improvement Centre in Pori;

3. Estonian IT and special software companies are planning to continue

software process assessment and improvement with the help of CMM

and SPICE;

4. Estonian IT standardisation committee has undertaken a task to adapt

different international software quality standards.

Conclusion

Developing and running the quality system has helped our IT companies to control the

development of our software and quality process. For the future a set of several

successor projects have been planned. Inspired by the success obtained during first

Session 8 : SPI Surveys

Page 8.46

experiments, Estonian companies intend to continue its software improvement policy in

the framework of more general quality strategies.

References

[1] H. Jaakkola, A. Kalja. Estonian Information Technology Policy in Government,

Industry and Research. In: Technology Management: Strategies and Appli-

cations, Vol. 3, No. 3, 1997, pp 299 - 307.

[2] A. Kalja, J. Pruuden, B. Tamm, E. Tyugu. Two Families of Knowledge Based

CAD Environments. In: Software for Manufacturing, North-Holland, 1989,

pp 125 - 134.

 [3] H. Jaakkola, A. Kalja. Improving IT Education in Estonian Universities.

In: Portland International Conference on Management of Engineering and

Technology, PICMET'97, Oregon, USA, July 27-31, 1997, pp 276 - 279.

Page 9.1

Session 9

SPI and Establishment

of Processes/Models II

Chairman

Yingxu Wang
IVF, Gothenburg, Sweden

Session 9 : SPI and Establishment of Processes/Models II

Page 9.2

Configuration

Management

Deployment &

Practice Experiment

Silvia Mazzini

Intecs Sistemi, Pisa

Introduction

The CMEXP (Configuration Management Deployment & Practice Experiment) project

is a process improvement experiment (PIE) funded by the European Community (ESSI

Project 27637), conducted by Intecs Sistemi.

The overall objective of the experiment is to improve the practice of Configuration

Management, by the adoption of state of art Configuration Management practices,

based on a sound and ready available technology (ClearCase).

From the point of view of achieving specific measurable objectives, the target is to

enhance the Intecs SPICE CM practices profile, from the current Level 1 (performed

practices, informal process) "Partially Performed" mark to a "Fully Performed" Level

2 (managed process) mark and at least a Level 3 (defined and standardized process)

"Partially Performed" mark.

We expect that the establishment of mature CM practices bring, per se, important

benefits to the effectiveness and predictability of the overall Intecs Sistemi Software

Life Cycle Process and to the quality and maintainability of its products. Furthermore,

the experience gained from the PIE is expected to enhance the company know how and

image, in terms of competence and user satisfaction, so far contributing to strengthen

the Intecs Sistemi offer of Software Engineering consultancy and services.

Starting scenario

Session 9 : SPI and Establishment of Processes/Models II

Page 9.3

Intecs Sistemi have defined advanced software process and product models for

Configuration Management (CM) in the context of a number of R&D and Industrial

studies. However, these were heavily relying on highly evolved Software Engineering

repository facilities provided by the Object Management System (OMS) of PCTE , an

established international standard [1] that has so far failed to translate into adequately

supported commercial implementations.

On the other hand, though Intecs Sistemi have achieved an overall Software Process

maturity rating BOOTSTRAP Level 3.1 (defined and enforced practices) confirmed by

a SPICE Assessment [5], actual deployment of Configuration Management (CM)

practices scores far below that mark for projects not strictly regulated by space or

defense standards.

A thorough investigation for alternatives to PCTE has identified ClearCase as a

sound enabling technology for advanced Configuration Management Practices.

Besides being a world class selling tool, ClearCase features capture most of the basic

concepts of PCTE (attributes, links, schemes) without loosing full compatibility with

Unix and binary Unix tools.

The experiment is an important step from plain Unix directories to more advanced

SE Repositories oriented solutions. Integration and consistency of CM practices

within Intecs Software process and product model are a primary concern.

Intecs Sistemi staff with the involvement, as consultants, of experienced SPICE

(ISO IEC 15504) assessors (QUALITAL) mostly does the experiment. The Intecs

Sistemi persons involved in the PIE are:

 one Project Manager

 one CM Administrator

 two Process Engineers

 three Software Engineers

All persons above are involved part-time over the project time span; the Software

Engineers are qualified computer specialists, members of the baseline project.

Company Context

Intecs main area of business is the development of system applications and the

provision of consultancy services to other organizations operating in advanced

technical domains such as aerospace and telecommunications. Another Intecs business

sector is the development and marketing of CASE software products. The PIE has

particular relevance on this business field, even if a significant degree of transferability

of the experience to other business areas is expected.

Configuration and Version management are the keystone of Application Management

(AM) for software artifacts that have to exist in the different temporal versions and for

different environment configurations; AM has to keep track of many types of product

components (code files, documentation, test procedures, SPRs, etc.) and of complex

relationships (dependency, composition traceability etc.) among them. A further goal

is to provide support for distributed development: Intecs Sistemi has premises in Pisa,

Napoli, Roma, Piombino and Toulouse (F) and software projects may involve co-

operation among teams from different sites.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.4

Intecs have obtained ISO 9001 certification, and their software process maturity has

been assessed according to the SPICE (ISO IEC 15504) and BOOTSTRAP models.

These process assessment exercises have pointed out Intecs current CM practices as

the weakest aspect of the Application Management process. From a qualitative point of

view, an apparently disjoined overall picture has emerged:

 various aspects of the AM process have been formalised as enactable models

and specific experimental capabilities for Software Problem Report and

Change Management have been implemented in the context of an ESSI PIE

project (10189 IPTPM) which has shown the viability of using automatic

enactment techniques on well defined and confined process fragments;

 Actual CM practices mostly rely on manual procedures requiring a deep

knowledge of the applications structure to achieve the necessary process

reliability and effectiveness.

 The use of traditional CM tools (like SCCS and RCS) does not provide a

satisfactory support mainly because of the lack of support to complex product

models as those promised by advanced SE repositories such as PCTE.

 PCTE that was adopted by Intecs as reference technology for CASE repository

has failed to establish itself as a standard for adequately supported commercial

products. This acted as a principal barrier to the actual deployment of CM,

even though it has represented a very valuable conceptualisation and

experimentation. playground

From the quantitative point of view, and because of the above reasons, no reliable

assessment of CM practices has been finalized. A "Level 1" score for CM practices

has been estimated informally, without a proper CM "profile" identification (SPICE

Sup-2 process).

The CMEXP PIE aims to combine Intecs experience and state-of-art technology and

techniques to overcome most of the problems and deficiencies of current CM practices.

In particular, we expect to achieve a fully operational demonstrator of advanced CM

facility suitable to be large scale deployed as standard support for Intecs software

development activities, as well as fully defined and validated CM process, procedures

and guidelines, ready to be integrated into the company ISO 9000 conforming Quality

System.

Baseline project context

The baseline project is the UmlNICE internal product development project.

UmlNICE is an integrated toolset providing support for the Unified Modeling

Language (UML) [6]. It is based on state of art technology (CORBA, Java, UML) and

is planned to be available in various product configurations on a number of platforms -

potentially on all platforms providing support for Java and CORBA. UmlNICE is

composed of a large number of components, tightly integrated among them. It can be

regarded as an open framework for CASE. In addition to traditional requirements for

corrective maintenance, UmlNICE is designed to support continuo product evolution

for extensions, tailoring, and tracking of market demand, evolution of the method and

Session 9 : SPI and Establishment of Processes/Models II

Page 9.5

enabling technology.

The UmlNICE project follows an "iterative and incremental" development process

inspired at the Unified Software Development Process, the process that has been

defined to become the standard process to use UML by the authors of [5]. The project

is presently in its 9th intermediate, though self-contained, iteration, which is expected

to complete by June 1999 and deliver the first commercial release.

The UmlNICE project was started at the end of 1996 and is expected to complete in

the first half of year 2000; the project currently involves a team of ten persons and is

planned to remain constant up to the end.

Experiment description

The CMEXP PIE aims at improving the contents, extent and maturity of Intecs

Configuration Management practices.

The technology introduced by the experiment are the ClearCase configuration

management system [8] and the ClearDDTS change request management system [9].

ClearCase is a world class selling tool, giving support for version control, workspace

management, build management and process control. Integrated with ClearDDTS for

the change control management, it provides a wide configuration management solution.

The ClearCase approach to the multi-version file extends the Unix and the Windows

NT file system to make it a real multi-version project repository, in a transparent way.

It makes it easy for an organization to deploy ClearCase, without forcing changes in

the existing environment, tools, or the way of work.

Based on an intuitive web-based interface, ClearDDTS allows to track and manage

both defect records and enhancement requests, can be integrated with the configuration

management system and is flexible enough to be adapted to different organization

needs. Particular attention has been paid to the modeling of CM processes, products,

and roles and to the definition of procedure and guidelines to ensure that their

implementation can take advantage by the advanced features of ClearCase.

Beside the configuration management support process, the main processes effected

have been the software development, integration and testing and the whole system

integration testing and maintenance, with a slight change of the configuration

management, project management and developer roles.

Phases of the experiment

Beside the more obviously identified work items related to Project management, co-

operation and dissemination, the core CMEXP activities are organized in two phases,

the experiment preparation and execution.

The project has started in June 1998, for the duration of 18 months. At present it is in

the execution phase.

In the experiment preparation the ClearCase Configuration Management System and

the ClearDDTS Defect Tracking System have been acquired and installed at Intecs and

an advanced course has taken place at Intecs premises in Pisa. The purpose of the

course was to train the CMEXP project team, including people from the Baseline

Session 9 : SPI and Establishment of Processes/Models II

Page 9.6

Project UmlNICE, for the use and administration of selected technologies.

In the meanwhile the current Intecs CM Practices have been assessed with the

involvement SPICE assessor consultants, by setting the Initial CM Profile as a baseline

reference for the measurement of the CM process improvement.

The key findings of the initial SPICE assessment have confirmed that the CM process

was not completely performed at Intecs, therefore an improvement action was needed

first in the activities concerning base practices, such as:

i) the development of a general configuration management strategy,

implementation and verification criteria,

ii) the establishing of a configuration management system and

iii) the recording and reporting of the status of configuration items.

As far as the capability dimension is concerned, the low rating at Level 1 was a direct

consequence of the incomplete implementation of the process, while the general

situation at Level 2 was slightly better than expected, due to the existence of

documents modeling the various activities. Everything found at Level 3 was a direct

consequence of the implementation of the ISO-9001 certified quality system at the

company level.

Taking as input the results of the assessment and the current Intecs CM practices, a

generic model of the CM procedures and product entities has been defined, to drive and

support the correct execution of CM activities.

The activities for the experiment execution have started with the analysis of the

Baseline Project UmlNICE and the tailoring of the Configuration Management System

and the Generic Definitions to the baseline project specificity, by instantiating specific

CM process products, procedures and guidelines.

Being composed of a large number of components tightly integrated among them, the

UmlNICE project follows an iterative and incremental development process, where

sometime different development activities run in parallel and the software components

evolve through different versions, integrated at different project milestones.

ClearCase allows maintaining a unique repository where to collect all the software

versions and releases and developing parallel versions that can be easily integrated by

merge facilities; on the other hand the CM procedures become more complicated and

are more demanding for the configuration manager.

As a preliminary for the exercising of CM practices within the baseline project, the

specific CM guidelines and procedures have been tested by carrying out typical

development and maintenance activities, in parallel to the main baseline project

activities.

After the period of parallel running, the database has been reloaded with the latest

UmlNICE code and the baseline project team has started the CM practices. The PIE

team is currently providing guidance and support to the baseline project team and

monitoring the project activities.

At the completion of the experiment feedback and lesson learned will be collected and

processed and a final SPICE assessment will quantify the process improvements

achieved.

Two internal dissemination events have been organized at Intecs, with the participation

of the PIE and the Baseline UmlNICE projects and other internal software practitioners

and managers:

 a presentation of the CMEXP project experiment, as a preliminary of the

ClearCase and ClearDDTS course;

Session 9 : SPI and Establishment of Processes/Models II

Page 9.7

 a workshop to present the defined reference (generic) CM Process and Product

Models in depth, and discuss CM Procedures with ClearCase and ClearDDTS.

Consultancy during the experiment

Consultants from the QUALITAL Consortium conduct CMEXP initial and final

SPICE assessments.

The QUALITAL Consortium is a non profit institution based in Pisa particularly

active in the domain of quality and Quality Systems Certification that participate in the

SPICE initiative.

The training of the CMEXP project team for the use of the selected CMS and the

training of one CMS Administrator for the installation of the software configuration

and for related user support activities has been taught "in house" at Intecs by an

ARTIS consultant; ARTIS were the ClearCase distributors for Italy.

Resulting scenario

Technical impact

Since the initial period, the adoption of the ClearCase configuration management

system and of the tailored configuration management strategy for the baseline project

has resulted in the following short-term improvements:

 resource optimization, by maintaining a centralized source database, with a

reduction of source copies;

 easier set-up of the development environments for separate developments;

 better support for separate testing and easy integration of separate developments;

 shorter release build time;

 easier build of previous releases.

A side effect has been also the increment of the internal problem reports, both enforced

by the process and encouraged by the ClearDDTS web based interface.

Quantitative measurement of the achievement of the PIE objectives encompasses

comparing the results of the initial SPICE assessment of CM practices with a final

assessment planned to take place at the end of the project. The SPICE assessment

results in detailed profiles of practices and allows capturing improvement in contents,

extents and maturity level of CM practice.

Business impact

The business results of the application of a more rigorous CM process and the use of

an advanced CM system in the development process are already visible as a significant

improvement of the quality and efficiency of the development and maintenance

processes.

The extent of the improvements, including the quality of the product and the

Session 9 : SPI and Establishment of Processes/Models II

Page 9.8

predictability of the maintenance process, can not be quantified yet. They will become

more evident when the developed product will be commercially delivered.

Organization impact

The adoption of the ClearCase configuration management system and the defined CM

practices have forced a change in the role of the configuration manager, requiring him

a deeper involvement in the project. The configuration manager becomes a sort of

assistant to the project leader, in a wider range of activities, not only for the

configuration management support process, such as control of the releases and of the

changes, but also for the set-up and maintenance of the ClearCase environment for the

development, integration, and testing processes.

We expect to transfer the PIE experience to other company development projects in the

same or other application domains, therefore resulting in an overall enhancement of the

Intecs Sistemi software process.

We intend to institutionalize the CM practice as part of the company Quality System.

Culture impact

Up to now the old Unix configuration management system SCCS was used in the

baseline project. The development and maintenance are depending on manual and

script procedures. Similar CM practices have been in use for many years and are well

accepted. The change in the working environment has generated some skepticism and

resistance initially.

Skills impact

The staff involved in the project has acquired an improved skill in the field of

configuration management in terms of:

 better understanding of CM concepts and practices,

 experience in the installation, configuration and practice of an advanced CM

system as ClearCase,

• greater awareness, both at the managerial and technical level, of the benefits of

effective CM practices.

Key Lessons learned

Technological point of view

ClearCase is a sophisticated CM system, suitable for large and complex development

activities, such as parallel developments, customizations, availability on multiple

platforms, bug fixing of previous releases.

The drawbacks are that the costs of purchase, training, installation and administration

are high. In particular a project should buy a license for each developer, each license

Session 9 : SPI and Establishment of Processes/Models II

Page 9.9

costing about 4000 ECU’s.

Another weak point is that ClearCase is not yet available for some of the new

development platforms in use within the company, such as PCs running with Windows

or Solaris x86.

To cope with such problems, Intecs Sistemi have investigated other available

commercial tools and have short-listed Visual Source Safe and PVCS, as suitable to be

used as complementary configuration management systems. Visual Source Safe

version 6.0 emerged as the preferred option for small projects based on Microsoft

Technologies.

Business point of view

Configuration Management is essential for a process management and control, and an

optimized development and maintenance process.

The managers tend to underestimate the CM. Dissemination actions are helpful to

make all the company managers and project responsible aware of the add-on and

improvements that the introduction of an advanced CM technology and a more

formalized process can provide.

Moreover the participation of managers is necessary to reduce the initial negative

feeling, easily coming out starting with a new sophisticated CM tool and motivates the

team to change the work environment and accept a more formal process.

Strengths and weaknesses of the experiment

CM is typically a complex issue but projects assign to it just a small percentage of the

overall budget. The PIE gives the chance to analyze the whole problem and to find

proper solutions, applicable also to future projects.

A weakness of the experiment is that the selected CM technology is quite sophisticated,

but also expensive. It may result that many projects, having a moderate degree of

complexity and a small development team, adopt cheaper solutions, such as Visual

Source Safe or PVCS.

Conclusions

We expect to be able to demonstrate the benefits of a more rigorous and formalized

CM process and of the use of an advanced CM tool that allows a better representation

of product characteristics and the enforcement of the integrity constraints. Having

identified the CM process fragment as the weakest point of the overall software

development process, we expect a significant improvement of the software life cycle

process as a whole, in particular with respect to Application Management activities.

However, CASE product development and maintenance, which is the scope of the

baseline project, is among the most demanding class of activities with respect to CM;

experiences and achievements can easily be transferred to other fields. In particular, a

successful demonstration allows transferring the results of CMEXP to most of Intecs

Sistemi software development projects in a number of other application domains.

Achievement of the objectives of the experiment might therefore result in an overall

enhancement of reliability and efficiency of the Intecs Sistemi software process, of the

Session 9 : SPI and Establishment of Processes/Models II

Page 9.10

company know how and of its image (competence and user satisfaction). All these

aspects are important factors affecting the competitiveness of the company.

References

 [1] Baudier G., Gallo F., Minot R., Thomas I., An overview of PCTE and

PCTE+, in: Proceedings of the 3rd ACM Software Engineering Symposium

on Practical Software Development Environments, pp. 107-109, ACM Press,

USA, 1989.

[2] Boehm B. W., Software Engineering, IEEE Transactions on Computing, Vol.

2, pp. 1226-1242, 1976.

[3] Boehm B. W., A Spiral Model of Software Development and Enhancement,

IEEE Computer, Vol. 21, N.5, pp. 61-72, 1988.

[4] IEEE 1042, IEEE Guide to Software Configuration Management Plans

(ANSI), The Institute of Electrical and Electronics Engineers, USA, 1987.

[5] ISO/IEC 15504, SPICE – Software Process Assessment, ISO/IEC Copyright

Office, Switzerland, 1998

[6] Rumbaugh J., Jacobson I., Booch G., The Unified Modeling Language

Reference Manual, Addison-Wesley, USA, 1999.

[7] Rumbaugh J., Jacobson I., Booch G., The Unified Software Development

Process, Addison-Wesley, USA, 1999.

[8] Rational Software Corporation, ClearCase Reference Manual, Version 3.2,

USA, 1998 .

[9] Rational Software Corporation, ClearDDTS User’s Guide, Version 4.1, USA,

1998

Intecs Sistemi

INTECS Sistemi is a Software-House providing leading-edge technological support to

major European organisations in the design and implementation of complex electronic

systems. It operates at the forefront of the software market, where innovation,

complexity and quality aspects are essential to determine the company success.

During almost 25 years of activities, INTECS Sistemi has achieved extensive

experience in the production of software systems as well as software engineering and

quality. Such experience has been acquired through a well-established co-operation

with most of the major Italian and European electronic industries and the development

of proprietary products.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.11

Silvia Mazzini
Silvia Mazzini received her degree in computer science at the Pisa University, Italy, in

1983. From 1983 to 1987 she was with Systems & Management, Pisa, where she was

involved both in industrial software development and research projects. In 1987-1988

she was in Delphi, Lucca, , where she was involved in research projects. In 1988 she

joined Intecs Sistemi, where she is now senior software consultant.

Her research interests are in the field of software engineering, specifically in advanced

software engineering environments, process modeling, and object-oriented technology.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.12

Quality Assurance for

NC-Software with the

support of

Configuration

Management

Roland Beeh

Industrielle Steuerungstechnik GmbH, Stuttgart, Germany

Thomas Bürger

FISW Steuerungstechnik GmbH, Stuttgart, Germany

Introduction

This paper points out, that a CM, that plays a key role in the software development

process, is essentially important for QA purposes. Within the ESSI-funded Process

Improvement Experiment (PIE) InCoMM (Experimental Introduction of a

configuration Management Model) this is demonstrated at the example of an open and

modular control system, used for machine tools and manufacturing units.

QA depends on CM support particularly in quality inspection activities such as tests.

The introduction of a CM system to ISG's software development process was therefore

not only important for the coding phase of the software development but also to the

quality inspection phase in order to execute efficient quality inspection activities more

effectively. Furthermore a well working CM supports QA in quality control and

quality planning in several aspects.

The company Industrielle Steuerungstechnik GmbH (ISG) develops and sells software

elements as components for open and modular control systems. The customers of ISG

are either control vendors or machine tool builders, who use software of ISG (source

code and accompanying documentation) for their own controls.

Software Development through functional extensions

Session 9 : SPI and Establishment of Processes/Models II

Page 9.13

The constantly increasing complexity of machine tools and manufacturing units place a

continuously growing demand on the functionality of Numerical Controls (NC). The

resulting increase of functionality of NCs is mainly realised by functional extensions of

the software of a NC. Due to the large scope of the already existing basic functionality

of a modern NC software (about 200 person-years of development effort), the set-up of

a new NC software version is based on the existing basic functionality of previous

versions. Therefore, the development process of NC software can be described as a

further incremental development of an existing system (Fig. BeBer1).

Analysis
Design

Coding
Integration

Delivery

Analysis
Design

Coding
Integration

Delivery

Fig. BeBer1: Further incremental development of NC software

Change activities occur not only due to functional extensions but also to functional

improvements and bug removal activities. At ISG those activities are executed

parallelly by 22 software developers at one NC software system. In order to enable this

further incremental development there exist several customer specific variants

(branches) of the NC software system.

Configuration Variety of NC Software

Customers, who put ISG in charge to develop new functionalities within the existing

control system, are ready to finance QA activities that relate to this particular

functional extension. Additional efforts and costs that may occur with QA activities of

the basic functionality of the NC software, have to be paid by the NC software

provider. Therefore it is important for the NC software provider to optimise all fields

of QA (quality planning, quality inspection as well as quality control) in terms of costs.

One of the main problems for testing of NC software are the various possibilities to

configure NCs. The resulting large number of configurations illustrates that solely by

providing representative test-configurations with an accompanying selection of test

cases a high test coverage can be achieved.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.14

Communication

Adaptation to the concrete control specific and physical

marginal conditions of the machine by configuration lists.

Machine Tool

Control

Control for Parallel

Strut Machine

Robotic

Control

NC Topology

PLC

Drives

PLC

Drives

NC Topology

PLC

Drives

NC Topology

Modular Control System

Position Control Axis Management

Decoder Path Preparation

Tool Radius
Compensation

Interpolator

Drive Management

Compiling of a machine type specific NC configuration in dependence

on the respective processing technology, the machine kinematics

and the operating system by selection and adaptation of source.

Diagnosis

Fig. BeBer2: Set-up of a modular control system

The sequence of operations to set-up a running NC that is based on a customer specific

variant of a modular control system contains two fundamental configuration steps [1]

as mentioned in Fig. BeBer2. In the first step, a NC configuration is compiled out of

the source code modules, which are available in the respective variant. This

configuration is dependent on the respective processing technology (e.g. milling,

grinding, etc.), the machine kinematics used as well as the applied system software

(operating system). Secondly, the NC is adapted to the concrete control specific (e.g.

PLC-interface) and physical marginal conditions of the machine by a dynamic

configuration (interpretation of ASCII-lists) [2].

Functional Tests with NC Software

To gain a high quality of NC software ongoing quality inspections are indispensable.

Apart from tests with simulation systems [3] and real machines, functional tests, which

can be carried out at an earlier stage in the development process within the software

development environment, are especially important for the verification of functional

Session 9 : SPI and Establishment of Processes/Models II

Page 9.15

completeness [4]. This functional completeness needs to be checked every time a

change at the existing NC software was executed. Examinations within the InCoMM

PIE at ISG [1] pointed out that about 25 % of all registered bugs can be explained by

wrong or incompletely formulated requirements respectively by faults within the

specifications. However 75 % of all registered bugs within the NC software arise

during coding, integration work or maintenance. Each of this activities, which come up

with functional extensions, functional improvements and bug removal activities, imply

changes at the existing NC software. Regression tests are particularly suitable to

discover bugs, which result from changes within functionality of already existing NC

software.

Test Automation for Functional Tests

NC-Kernel

Result

Version X-1 Version X Version X +1

BF

LAG EREG LER

F

B

BF

ANTRI EBE-

VERW ALTUNG

BF

ACHS-

VERW ALTUNG

BF

DI AG NO SE

BF

KO M M UNI KATI O N

BF

BAHN-

VO RBEREI TUNG

BF

KO NFI G URATI O N

BF

DECO DER

BF

W ERKZEUG RAD. -

KO RREKTUR

BF

BAHNACHSEN

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

B BFF

BF

Filter

BF

LAG EREG LER

F

B

BF

ANTRI EBE-

VERW ALTUNG

BF

ACHS-

VERW ALTUNG

BF

DI AG NO SE

BF

KO M M UNI KATI O N

BF

BAHN-

VO RBEREI TUNG

BF

KO NFI G URATI O N

BF

DECO DER

BF

W ERKZEUG RAD. -

KO RREKTUR

BF

BAHNACHSEN

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

B B
FF

BF

Filter

BF

LAG EREG LER

F

B

BF

ANTRI EBE-

VERW ALTUNG

BF

ACHS-

VERW ALTUNG

BF

DI AG NO SE

BF

KO M M UNI KATI O N

BF

BAHN-

VO RBEREI TUNG

BF

KO NFI G URATI O N

BF

DECO DER

BF

W ERKZEUG RAD. -

KO RREKTUR

BF

BAHNACHSEN

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

B BFF

BF

Filter

BF

LAG EREG LER

F

B

BF

ANTRI EBE-

VERW ALTUNG

BF

ACHS-

VERW ALTUNG

BF

DI AG NO SE

BF

KO M M UNI KATI O N

BF

BAHN-

VO RBEREI TUNG

BF

KO NFI G URATI O N

BF

DECO DER

BF

W ERKZEUG RAD. -

KO RREKTUR

BF

BAHNACHSEN

F

F

FF

FF

FF

FF

FF

FF

FF

FF

FF

B BFF

BF

Filter

Reference Test Reference Test

NC-Programs

Protocol

Generation

Protocol

Protocol

Comparison

Configuration

Fig. BeBer3: Sequence of an automatic functional test

At ISG the described sequence of a functional test is carried out by an automated

process (Fig. BeBer3). First the test cases of the respective test run and the respective

test configuration are selected from a test data base and compiled to a test script. The

test cases are formulated as NC programs (e.g. according to DIN 66025) in the same

way they are used in the production with NC machines. In the subsequent test run

those test cases (NC programs) are sequentially processed by the NC. At the same time

the NC also generates function block protocols and test run protocols (logfiles).

Function blocks describe the internal data format (process data and control data) of a

NC and represent the test output of the respective test case within a functional test.

To be able to compare the function block protocols of the test version with reference

protocols of an already tested version, the test version is configured and parameterised

identically to the reference version. Because of that and due to the use of a

standardised protocol routine it can be guaranteed that all differences, which are

identified during the comparison of the actual function block protocols with the

reference protocols, are due to changes within the functionality of the NC software.

Those identified differences can be explained either by planned changes in the source

Session 9 : SPI and Establishment of Processes/Models II

Page 9.16

code or by bugs.

Test Integration in the Software Development Process

At ISG tests are usually executed within the development process of NC software by

the individual software developer while implementing a new functionality for the

verification of the new functionality. At the end of the development of a new

functionality the new functionality is tested with the aid of simulation systems and real

machine tools for validation purposes. Furthermore the above described functional test

represents the main area of quality inspection activities. It is used for the verification of

the existing basic functionality of the NC system after a change (functional extension,

functional improvements or bug removal activity) within this system.

SD QA

PM

Recording Development Results

Provid ing Test Configuration

Provid ing Development

Configurations

Under CM-Tool control

Implementation of Change 1

Implementation of Change 2

Implementation of Change 3

Implementation of Change i

Executing Regression Test

Reference

Fig. BeBer4: Initial Situation at the Beginning of the InCoMM-PIE

At the beginning of the InCoMM PIE this efficient way of testing was established in

ISG’s software development process in an ineffective way. As the administration of the

NC software did not support the access to exactly defined NC configurations the

functional test was restricted to configurations that could not be assigned to individual

implementations (coding and integration) of changes. Several implementations were

centrally recorded and were together provided to the QA. The results of a regression

test run could therefore hardly be allocated to individual implementations and were

badly to interpret due to the large number of differences between actual function block

protocols and reference protocols.

Improvement through introduction of a CM System

During an examination of ISG’s software development process possibilities for an

optimisation have been recognised.

In the field of QA it became obvious, that more administrative support is required in

order to execute the existing functional tests in a more effective way. Beside of this

missing support for quality inspection additional possibilities for an optimisation of

Session 9 : SPI and Establishment of Processes/Models II

Page 9.17

quality control and quality planning could be formulated.

As the number of customer specific NC variants and therefore the number of parallel

developments at one common NC software system are increasing the field of software

development (SD) at ISG needed also additional assistance in administering software

elements of the NC system. Improving this assistance an increase of software elements’

reusability, an avoidance of software elements’ redundancy and faster responses on

support requests from customers shall be achieved.

So the examination pointed out, that an administrative instance for the support of SD

and QA as well as for the interaction between SD and QA is missing at ISG. Therefore

ISG intends to improve the software development process within the ESSI-funded PIE

InCoMM by introducing a CM system to ISG’s software development process, which

is based on the guidelines of the V-Model [5].

Configuration-

Management

(CM)

System-

Development

(SD)

Quality-

Assurance

(QA)

Project Management (PM)

Fig. BeBer5: CM as Interface in the Software Development Process [5]

In accordance with the V-Model CM is considered as an independent field of activity in

the software development process, which is equal to the fields SD, QA and project

management (PM) (Fig. BeBer5). Concerning the responsibility CM can be considered

as centrally placed interface in the software development process.

For the introduction of the CM system ISG follows the CM definition in accordance

with [6] in order to fulfil the mentioned requirements of SD and QA:

The field of activity of configuration management includes technical and

organisational based procedures, with which

 the identity of specified software elements at certain moments in time is

determined and

 the modification of those software elements is a controlled and

reconstructable procedure.

In this context, the term software element describes either the smallest definitely

identifiable part (e.g. a source-module) of a software configuration, or a software-

configuration (e.g. a software product) which is assembled by several software

elements [7].

Session 9 : SPI and Establishment of Processes/Models II

Page 9.18

In summary ISG expects the following improvements by the introduction of a CM

system as central administrative instance into the software development process:

 Improvement of effectiveness of functional tests

 Earlier detection of bugs

 Simplification of bug tracking

 Reduction of effort for bug removal activities

 In-time delivery of software

 Higher customer satisfaction

Effective QA with the Support of CM

Tool application for CM within the NC Software Development

At the beginning of the InCoMM-PIE ISG considered to introduce tools out of the

following tool categories:

 Version oriented tools (e.g. PVCS, MS-SourceSafe),

 Developer oriented tools (e.g. ClearCase, MKS Source Integrity) and

 Process oriented tools (e.g. Continuus, CCC/Harvest, PVCS Process

Manager).

The emphasis of the version oriented tools is on the pure version control of software

elements (uniquely identification of successive versions). In addition to the features

provided by the version oriented tools developer oriented tools support software

development in teams. The definition of so-called views allows to arrange

configurations existing out of software elements with different versions. Furthermore

these tools support good code-merge capabilities as it is frequently necessary for

parallel software development purpose.

As the ISG has not yet defined formal and restrictive processes for software

development, it turned out that process oriented tools are unsuitable for ISG at the

current situation. ISG’s main demands on a tool are the support of parallel

development and the supply of machine type specific NC configurations. With the

assignment of attributes views for individual software developers or whole developer

teams can be defined. Thus, both individuals and groups are enabled to use the same

software elements, which exist in different variants. Due to this facts ISG decided to

evaluate the developer oriented tool ClearCase from Rational for the period of the

InCoMM PIE.

The technical introduction of ClearCase to ISG’s development environment (MS-

Visual C/C++, Win 95, WinNT) involved no remarkable problems. The complexity of

ClearCase requires one main responsible for the tool whose effort for administration

needs to be taken into account and to be planned. This complexity is also reflected in

the great number of possibilities to automate sequences of events by so called triggers.

To implement these possibilities Perl scripts have to be written with considerable

effort.

Within the scope of the InCoMM PIE ISG decided to realise a change management

Session 9 : SPI and Establishment of Processes/Models II

Page 9.19

database within the already used Intranet Lotus Notes for the support of the change

management process. The underlying process corresponds to the change management

process defined within the V-Model [5] as mentioned in Fig BeBer6.

The assignment of ClearCase and the change management database to the individual

CM activities is described in Fig BeBer6. The interaction between ClearCase and the

change management database is not yet realised via software interfaces. This is one of

the goals for further improvements of CM at ISG.

Set-up of CM for NC Software Development

In compliance with the approach of the V-Model [5] the first step of the set-up of CM

was to define, which CM specific activities and products are relevant for the

development of the modular control system of ISG. Subsequent to this so-called

Tailoring an investigation took place to find out, which of these activities and products

are already realised and existing at ISG. The activities of CM (Fig BeBer6) according

to the V-Model are

 CM-Planning,

 Product- and Configuration Administration,

 Change Management and

 CM-Services.

CM-Planning (e.g. the definition of processes and guidelines) and CM-Services (e.g.

back-up of results) are activities, which are once generally defined respectively

installed for all projects of ISG. However Product- and Configuration Administration

as well as Change Management are integral parts of the software development process

and are therefore the essential CM tasks.

Decision about Change

Procedure and Initialization

of Change

CM 1

CM Planning

Project Manual

Project Plan

Product

Change Request /
Problem Report

CM 2

CM 4

CM Services

CM 3

Change Management

Change Report

CM Plan

Change Proposal

Product- and
Configuration Administration

CID

Product
Library

M
a

n
u

a
l

L
o

tu
s
 N

o
te

s

ClearCase

Fig. BeBer6: CM activities according to the V-Model [5]

Establishing the product- and configuration administration to the software

development process improves the customer support. The number of parallel existing

Session 9 : SPI and Establishment of Processes/Models II

Page 9.20

customer specific variants of the NC system (branches) can be increased and therefore

a clear arrangement of developments guaranteed. Using an appropriate numbering and

identification system for versions and variants all customer releases, which are

delivered as source modules, can be reproduced in a fast and reliable way in case of

support requests by the customers. The compilation of customer specific variants can

be accelerated by the use of a suitable CM-tool like ClearCase. ClearCase also

supports the bug tracking in an effective way. Due to the possibility to view changes at

the line-of-code level [8], the time and responsibility of a known bug can be

comfortably evaluated. All this leads to a higher customer satisfaction in the co-

operation with ISG.

As already mentioned the development of NC software can be considered as further

incremental development of an already existing control system. Therefore further

functional extension, functional improvement as well as bug removal activities are

always connected to changes of the existing NC software. For this reason, the change

management is especially important for the development of NC software. With using a

defined process [5; 7] the demand for controlled and reproducible changes can be

sufficed. ISG uses a database, realised within the Intranet Lotus Notes, to support the

change management.

Due to the set-up of the change management to the software development process of

ISG the co-ordination of parallel developments can be improved. Consequently the

described automatic functional tests for the different implementations can be executed

in a more effective way. Problem reports by the customers can be assigned to the

individual changes within the NC system as all changes are registered and administered

separately by the change management database. The resulting reduction of effort for

bug removal activities leads to a faster and more effective customer support. The

improved co-ordination of parallel developments results also in the avoidance of

unnecessary and expensive development of identical changes in different customer

specific variants (branches) by different software developers.

Interaction of QA and CM

In the field of quality inspection the introduction of CM to ISG’s software development

process leads to an improved use of the automatic functional tests. As mentioned in

Fig. BeBer7 the implementations of changes are now considered to be parallelly

executed activities. The results of these individual change activities can be separately

provided to QA for quality inspections such as functional tests. This is possible due to

the administrative support for product- and configuration administration with

ClearCase and due to the change management database.

During the coding work for a particular change the originally provided configuration of

the NC system changes due to the integration of other changes into the common NC

system. To improve the integration of a change CM provides the software developer

with an integration configuration (up-date) to integrate (merge) the new code. In order

to reduce the overall effort for the execution of regression tests for individual changes

ISG intends to subdivide the regression test into two steps. In a first extensive test run

the functional correctness of the changes can be examined whereas in the second test

run the correct integration of the changes into the current version of the NC system can

be proved.

In addition to the support for quality inspection support CM supports QA also in the

fields of quality planning and quality control. As with the introduction of the change

management data base all changes within the NC system become planned activities

Session 9 : SPI and Establishment of Processes/Models II

Page 9.21

also the quality related activities can be planned. Suitable test cases can be selected

from the test data base for regression tests or reviewer for code reviews can be

included in the plan at a determined time. Basing on the results of the quality

inspection activities and on the statistical evaluation of problem reports as part of the

change management database quality control can be done. Software parts of the NC

system with increasing bug rates can be detected or activities, which are susceptible to

mistakes, can be identified. This allows the selective and planned use of appropriate

quality inspection activities.

PM

Under CM-Tool control

CMSD QA

Coding of Change 1

Executing Regression Test

Integration of Change 1

Recording Integration Results

Provid ing Test Configuration

Providing Coding Configuration

Provid ing Test Configuration

Recording Coding Results

Provid ing Test Configuration

Provid ing Integration Config. Executing Regression Test

Fig. BeBer7: Interaction of QA and CM for Quality Inspection

Key Lessons learned and Expected Impacts

The introduction of CM to ISG’s software development process with the involved

interaction of QA and CM led to a quality improvement of the NC software delivered

to customers. This can be proved by the reduction of the percentage of bugs detected

by customers from 26 % to 18 % since the beginning of the PIE in July 1998. This

trend towards a higher delivered quality is expected to be steady in spite of the

continuously increasing number of parallel developments. Among other thing this

earlier detection of bugs can be led back to the increasing effectiveness of functional

tests due to the introduction of CM.

The main business impact of the InCoMM PIE is the possibility to support more

customers faster and in an easier way with NC-software due to the aid of a working

CM. Customer specific developments can be co-ordinated, functionality can be merged

between the variants, bugs can be traced back in a reliable way and responses on

support requests can be accelerated. The number of parallel existing variants

(branches) of the NC increased from 27 to 50 since the introduction of ClearCase

(April 1999). The expected improvements in customer support (e.g. time necessary for

responses on support requests, time necessary for delivery a new NC version) will be

Session 9 : SPI and Establishment of Processes/Models II

Page 9.22

evaluated at the end of the InCoMM PIE (February 2000).

With the introduction of CM to be an independent field of activity the effort for CM

related activities became a calculable part in the software development. A tendency

towards an overall reduction of CM effort is the expected result of a final cost-benefit

analysis at the end of the InCoMM PIE. This will reveal the necessity of CM also from

a business point of view.

Conclusion

A successful and effective QA requires a functioning and practicable CM. CM that is

assisted by an appropriate tool makes not only the SD easier but supports also all

fields of QA (quality planning, quality inspection as well as quality control). This

knowledge led to the decision to introduce the CM tool ClearCase for the complete ISG

as basic CM tool.

The knowledge, which is gained out of the InCoMM project according to CM in

general and CM tools in particular, contributes at ISG in an interlocking system

between QA and CM. This will result in an improvement and a higher automation of

QA activities. Basing on the use of ClearCase and an optimised change management

data base process improvement will be a permanent concern at ISG.

References

[1] Pritschow G., Beeh R., Bürger T., Qualitätssicherung in der CNC-

Steuerungsentwicklung, in: Zeitschrift für wirtschaftlichen Fabrikbetrieb,

pp. 353-356, Carl Hanser Verlag, München, Germany, June 1999

[2] Daniel C., Dynamisches Konfigurieren von Steuerungssoftware für offene

Systeme, Springer Verlag, Berlin, Heidelberg, New York, 1996

[3] Meier H., Kreusch K., CNC-Test an virtuellen Werkzeugmaschinen, in:

Zeitschrift für wirtschaftlichen Fabrikbetrieb, pp. 415-417, Carl Hanser

Verlag, München, Germany, September 1998

[4] Liggesmeyer P., Rothfelder M., Ackermann T., Qualitätssicherung Software-

basierter technischer Systeme - Problembereiche und Lösungsansätze, in:

Informatikspektrum, pp. 249-258, Springer Verlag, Berlin, Heidelberg,

Germany, October 1998

[5] N.N., Entwicklungsstandard für IT-Systeme des Bundes - Vorgehensmodell,

Teil 1: Regelungsteil, Allgemeiner Umdruck Nr. 250/1, Oldenbourg Verlag,

München, Wien, 1998

[6] Frühauf K., Unterlagen zum TAE-Lehrgang Software

Konfigurationsmanagement, Technische Akademie Esslingen, Ostfildern,

Germany, 1998

Session 9 : SPI and Establishment of Processes/Models II

Page 9.23

[7] Scheifele D., Beeh R., Bürger T., Nagel T., Configuration Management for

Open Modular Control Systems, in: Proceedings of the Sixth European

Conference on Software Quality, pp. 526-534, Arbeitsgemeinschaft für

Datenverarbeitung (ADV) Handelsgesellschaft mbH, Wien, Austria, April

1999

[8] Tichy W.F., Configuration Management, John Wiley & Sons, Chichester,

New York, Brisbane, Toronto, Singapore, 1994

Glossary

CID Configuration Identification Document

CM Configuration Management

DIN Deutsche Industrie Norm

ESSI European Systems and Software Initiative

InCoMM Experimental Introduction of a Configuration Management Model for a

Open Control System (ESPRIT IV, EP 27546)

ISG Industrielle Steuerungstechnik GmbH

NC Numerical Control

PIE Process Improvement Experiment

PLC Programmable Logic Controller

PM Project Management

QA Quality Assurance

SD System Development

Appendices

About the Authors

Roland Beeh was born in 1963. He studied electrical engineering at the University of

Stuttgart. Since 1991 he is responsibly working in the fields of software development

and quality assurance at Industrielle Steuerungstechnik GmbH.

Thomas Bürger was born in 1970. He studied mechanical engineering at the University

of Stuttgart. Since 1996 he works as a research assistant at FISW Steuerungstechnik

GmbH in the field of machine-oriented control functions.

About ISG

The company Industrielle Steuerungstechnik GmbH (ISG) develops and sells software

elements as components for open and modular control systems. The customers of ISG

are either control vendors or machine tool builders, who use software of ISG (source

code and accompanying documentation) for their own controls. The software of ISG

can be extended with their own software modules. This openness results in a great

number of software elements such as source code files, documentation, or test patterns.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.24

Being a service provider, ISG places itself at the demands of its customers and

employs 22 engineers in the central business field, which is the development and

maintenance of NC software. It has an annual turnover of about 4 Mio DM.

ISG was founded in 1987 with the aim to support control vendors and machine tool

builders with an open control system in such a way that they can concentrate on their

own innovative strength in their fields of competence. ISG’s NC software is used in a

wide range of technologies. Thus, it is in use for e.g. 3- and 5-axis milling of metal-

working and wood-working, for lathes, for grinding, for a various number of

technologies with parallel strut machines, for high-speed plotter, robots and robotal

devices.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.25

Software Process

Improvements in a

Very Small Company

Ita Richardson

Department of Computer Science and Information Systems and

Small Firms Research Unit,

University of Limerick,

National Technological Park,

Castletroy,

Limerick,

Ireland

Kevin Ryan

College of Informatics and Electronics,

University of Limerick,

National Technological Park,

Castletroy,

Limerick,

Ireland

Introduction

Following any software process assessment, it is important that an organisation

implements a process improvement strategy to produce a well-defined software

process. In theory, this is simple; it is much more difficult in practice.

Authors have recognised that the available models did not provide an improvement

strategy [1], [2]. The IDEAL model for the Capability Maturity Model was presented

in 1995 [3], but as recently as 1998, Debou and Kuntzmann-Combelles note that “due

to lack of documentation on the post-assessment phase, assessments are often being

performed as a one-shot event without connection to any improvement strategy” [4].

For the large company, it may be possible to devise such a strategy by investing in the

Session 9 : SPI and Establishment of Processes/Models II

Page 9.26

development of action plans. However, for the small company, this requires yet

another investment from a much smaller purse.

The authors of this paper have developed a generic method to be used by Small

Software Development companies, allowing them to devise Software Process

Improvement strategies. This method is based on Quality Function Deployment. They

implemented the method – Software Process Matrix - in two small software

development companies in Limerick, Ireland. The paper discusses this implementation

in one of those companies.

What is the Software Process Matrix (SPM)?

The Software Process Matrix is a method used to establish an improvement strategy

based on Quality Function Deployment. Strong, medium and weak relationships

between practices and processes were identified through hypothesis testing of experts’

opinions.

Figure 1

Session 9 : SPI and Establishment of Processes/Models II

Page 9.27

Software Process Matrix

The values given to strong, medium and weak relationships are 9, 3, 1 respectively and

on Quality Function Deployment charts they are normally represented by the symbols:

l or (strong), m (medium), and (weak). To use the Software Process Matrix,

companies carry out a self-assessment of their software process and input the results.

SPM outputs a prioritised action list showing the practices to implement. A sample of

the Software Process Matrix is displayed in Figure 1.

Computer Craft Ltd.

Computer Craft Ltd is a software development company based in the mid-west region

of Ireland. During the initial stages of the research, the company had two software

development groups, one with responsibility for mainframe products, the other for

personal computer products (PC development group). The mainframe group was no

longer in existence at the completion of the research. Computer Craft Ltd. have a large

number of customers, with a larger customer base in the U.K. than in Ireland.

Although Computer Craft started out developing business software itself, in recent

years they partnered with a U.S. company, giving Computer Craft the rights to modify

and install a software package (Data Organizer) developed by this U.S. company.

There are two aspects to the modifications made to this product. Initially, the product

was to be localized. For example, Irish and U.K. legislation had to be accounted for.

It can also be customized for the needs of the user. If major changes are required by

the customer this often becomes a separate module, programmed in Ireland, and

retained as a generic feature. This varies from project to project. About 30% of

customers require extensive customisation. The Computer Craft engineers install

software directly in customer sites.

Research in Computer Craft

This was an action research project in Computer Craft. Employees were interviewed

and observed in their work. Access to complete documentation on two projects was

obtained. One project was developed in the initial stages of the research; the other was

developed towards the latter end of the research. The four processes affected as a

direct result of the SPM implementation are discussed in this paper.

Starting Scenario

Organisation Processes

Prior to the researcher visiting the company, there was no particular emphasis on

software process improvement. There had been some work done on the development of

standards within the software development group, but this was done on a personal level

by the manager of the group rather than it being promoted within the organisation.

The company employed a software quality assurance engineer whose main focus was

Session 9 : SPI and Establishment of Processes/Models II

Page 9.28

on testing.

The fact that both the Group Managing Director and the Software Development

Manager were willing to give employee time to the project is significant in itself.

However, when recruitment difficulties arose, this project was given lower priority.

Customer Management

Customers were dealt with exclusively by the sales representatives in Ireland and the

U.K. It was not normal for developers in the software development group to meet the

customer until installation time. The flow of information between the customer and the

developer was as shown in Figure 2.

Figure 2

Information flow between customer and developer

For customized product, the customer services project manager wrote up a

requirements specification. There was no particular standard in use – “each customer

services project manager identifies the need in their own way”, and complete

information was not always received from the client: “the client may not know how to

address particular issues”. Once completed, this document was signed-off by the

customer and was passed to the software development group. However, there were

cases where “questions were left unanswered” and “information was lacking”.

When the software development group received the requirements specification, a

functional specification was written. This specification was reviewed and accepted by

the customer. Again, this was done through the customer services project manager. In

the opinion of at least one software engineer, they could have “quantified what needed

to be done” earlier in the project if someone from the development group met the

customer. It was not uncommon for work on the functional specification to be stopped

until the customer made decisions about their requirements.

Other difficulties arose with the functional specification, where there “were lots of

things missing”, “it was different to what was tendered”. For example, one problem

arose because the person whom the customer services project manager dealt with at the

customer site was not the final user of the system. On another project, the software

engineer assumed that all the information gathering had been completed for the

requirements specification, but this had not been the case.

Customer requirements often changed as developers proceeded through the design

stages. One developer stated: “There is a huge amount of information from the

customer, but it is changing – moveable goalposts”. When changes came from

customers, there was no formal means of dealing with them. The difficulty faced by

the group was that features not previously included in the requirements and

Custome

r

Sales

Office Project

Manager

Software

Development

Manager

Software

Developer

Session 9 : SPI and Establishment of Processes/Models II

Page 9.29

subsequently the functional specification impacted the final project schedule.

During some projects, developers met customers at prototype stage, but this was more

the exception than the norm, which was that the developer would meet the customer

during installation. Not meeting the customer until late in the project caused problems

in the development group. Developers found that “information useful to the design

and development was gathered from the customer by the developer during the

installation”.

As with requirements specifications, there were neither standards nor templates for

functional specifications within the company. One developer told the researcher that

he wrote a “functional specification based on his own experience”. Consequently,

each engineer had their own format and layouts and sections within specifications

varied considerably. However, when functional specifications were written, the

decisiveness of the engineer was usually prevalent throughout them. For example:

“The user will have the option to approve, reject or hold a transaction”, “after

review the user will have a set of transactions that are approved”.

Developers sometimes found problems at later stages in development, such as system

test and installation, which could have been avoided if requirements had been collected

properly. This was a frustrating situation for the software engineers, particularly as

they had deadlines to meet.

Implementation

Decisions about implementation of software were made by the customer services

project manager. They needed to examine such issues as: could the product be

installed? could it do the critical tasks? were there any show stoppers? or cosmetic

bugs? The final decision was usually based on the answer to “is it a major concern if

the software goes with this bug?” As there was no quality shipment policy defined,

“there have been a few bad blunders”. The quality policy only required that, prior to

shipment, all software was signed off by three people and there was a stamp on

delivery media.

Following test completion, the software was shipped to the customer services project

manager who installed the software for the customer. In some cases the software

development manager or software engineer helped with the implementation. When

there were changes made during implementation the customer compared the product

with the requirements specification, which was unambiguous where they were

concerned. Software installation was done either from diskettes or a laptop computer.

Project Management

In Computer Craft, project deadlines were driven by the customer, giving the software

development group no leeway or contingency on time. At the start of a project, the

software development manager drew up an initial schedule, breaking this into defined

phases and milestones, but these were not always adhered to. The main difficulties

arose when a schedule was set, and then new features, which disrupted the schedule

Session 9 : SPI and Establishment of Processes/Models II

Page 9.30

were added. The manager also drew up a Gannt chart for projects, which were usually

kept up to date until the project was approximately 60% complete.

In the early stages of projects, the software development manager decided what were

the critical tasks from the initial customer requirements, to whom these tasks were

assigned and the time-scales involved. Software developers were often working on

multiple projects and were seen by the manager as “a team working together”. The

software development manager was ultimately responsible for the completion of the

project.

Group meetings were important within Computer Craft, mainly to keep people

informed of progress on development projects. There were two general meetings held

each week. One was a production meeting, attended by the two software development

group managers (mainframe and PC) and customer services. This was followed by the

software development group meeting, at which development tasks were scheduled and

updates from the production meeting passed onto the group. Normally, two project

meetings were also held each week.

Intervention using Software Process Matrix

Questionnaires on current performance were circulated to the software development

group. The software development manager was questioned on current performance,

planned future performance and importance to the company. Average current

performance was calculated from the results received.

The overall importance of each process was calculated and an example is shown in

Tables 1 and 2.

PROCESS Current

Performance

Planned

Future Performance

Improvement

Factor

Software deliveries and installations 3.2 5.0 1.36

Establishment of project teams 2.8 4.0 1.24

Configuration management 3.4 5.0 1.32

Table 1

Rating Customer Requirements

For the process ‘Establishment of project teams’, current performance of 2.8 is the

average score given by the software engineers on the self-assessment questionnaire.

The planned future performance of 4.0 means that the software development manger

wants to see these being established by applying an organisational procedure. The

improvement factor in Table 1 is calculated as: 1 + (Planned Future Performance –

Current Performance) * 0.2, giving, in this case, a value of 1.24.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.31

PROCESS Improvement

Factor

Importance to

the Company

Overall

Importance

Percentage

Importance

Software deliveries and

installations

1.36 5.0 6.8 2.5

Establishment of project

teams

1.24 4.0 4.96 1.8

Configuration management 1.32 4.0 5.28 1.9

Table 2

Calculating Overall Importance

The importance to the company value of 4.0 means that the software development

manager stated that this process was of high importance to the company. As shown in

Table 2, the overall importance was calculated by multiplying the importance to the

company by the improvement factor. Percentage importance of each process is the

overall importance stated as a percentage of the total overall importance in the

Software Process Matrix.

According to the results the following were the top nine processes that were important

to Computer Craft:

1. Preparation and performance of deliveries/installations

2. Systematic planning of project activities

3. Preparation of the customer for new product release

4. Systematic development and documentation of software code

5. Systematic support of correct and efficient software

6. Systematic management of customer needs throughout life-cycle

7. Focus on markets and customer satisfaction

8. Systematic planning of project work flow and estimates

9. Systematic development and documentation of data definitions

To calculate the importance of each practice, the overall process importance was

multiplied by the strength of the relationship between that process and practice, and

these were totaled.

PRACTICE Importance of the Practice Percent Importance

Transform each software component

into software units

175.2 1.0

Assign a person with software quality

assurance responsibilities

252.0 1.4

Use evaluation list of approved

suppliers

24.4 0.1

Table 3

Importance of the Practices

The importance of the practice was also stated in percentage terms, and those with the

highest values were identified as those that would cause the greatest improvement to

the software process within Computer Craft. Examples of practices are in Table 3.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.32

The top ten practices proposed by using the Software Process Matrix as the basis for

an action plan were:

1. Identify this organisation’s product items

2. Establish product baselines for each product supplied

3. Verify all changes to requirements are monitored

4. Specify and document system requirements

5. Collect, identify, record and complete new customer requests

6. Assign a person with SQA responsibilities

7. Identify the initial status of the product

8. Define delivery contents (media, software, documentation, documentation) to

customer from subcontractor / software development group

9. Define quality criteria and metrics for the project deliverables

10. Assign responsibility for software development plan, work products and activities.

The software development group in Computer Craft were not willing to accept the

actions at face value, and, at a group meeting, chaired by the researcher, there was a

discussion as to what should be implemented and how this should be done. All of the

practices identified by the researcher using the self-assessment questionnaire and the

Software Process Matrix were included in the final action list defined by the company.

They felt that some of them should be worked on together, and were not prepared to

work on the actions in the priority given without some discussion. At the end of the

meeting, the group had decided that the company should concentrate on these practices,

combined into action items with the following priority:

Action 1:

 List all the company’s products and their dependencies, based on practice 1 above

– Identify this organisation’s product items. Computer Craft do not have this

currently. While it is in people’s heads, it is not written down, and members of the

group had spent some time that day working on this very issue.

Action 2:

 Set up a procedure to specify and document system requirements, taken directly

from practice 4 above. They wanted to have a template for the specification but

not a procedure as this would inhibit developers too much.

 Set up a procedure to collect, identify, record and complete new customer requests

when new requests come in, prior to development. This was taken directly from

practice 5.

Action 3:

 Set up a procedure to define delivery contents (media, software, documentation)

for the customer from the subcontractor / development group. This was taken

from practice 8.

 Set up a procedure to verify all changes to requirements are monitored once the

requirements specification has been signed off (practice 3).

Action 4:

 Set up a procedure to define quality criteria and metrics for the project deliverables

– this was the 9th practice listed.

 From practice 6, assign a person with SQA responsibilities and also define what

the SQA responsibility is: while individual software engineers must be responsible

for their own quality, the SQA person should have a responsibility of letting people

know the quality criteria. They needed to examine at the job description, define

Session 9 : SPI and Establishment of Processes/Models II

Page 9.33

what software quality means, think about criteria and metrics, and more than just

open, closed, pending bugs.

Action 5:

 Set up a procedure to establish product baselines for each product supplied so that

Computer Craft will know what is the minimum product that they will ship from

development. This action is based on practice 2.

 Set up a procedure to assign responsibility for the software development plan,

work products and activities, based on practice 10.

Action 6:

 Set up a procedure to identify the initial status of the product which could be based

on their current handover document. This is practice 7.

Results

This section of the document discusses the processes in early-1999. Much of the

discussion centres around the Banking Organiser project, the main project being

worked on by Computer Craft in the latter part of 1998, to which updated software

processes were applied. This project consisted of a series of software modules which

extracted data from Data Organiser, outputting it in formats which interfaced with

other software used in the customer company.

Organisation Processes

At the end of the research period, the software development group had reduced in size,

and consisted of the software development manager, two software engineers and the

quality assurance engineer. The emphasis which the company placed on quality

assurance was still evident - when the previous quality assurance engineer had resigned

from the company, he was replaced almost immediately, although the size of the

software development group had decreased. However, the role of the quality assurance

engineer had changed. While she had a responsibility for testing and test plans, she

also was responsible for writing up procedures and for the improvement of the

software process within the company.

Customer Management

The main project worked on by the software development group was Banking

Organizer. In this project, the software development manager dealt directly with the

customer. Initially, the customer produced a document listing their requirements.

Following this, the software development manager spent some time on the customer

site, met their project manager, and attended meetings about their requirements. The

Banking Organizer project manager became the point of contact for the software

development manager, who then passed requirements to the software developers. If the

software development manager could not answer the software developers questions,

then he talked to the project manager. As the project progressed, the developers had

direct contact with the customer, and recognized that their customer was the company

for whom the product was being developed.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.34

Program specifications for this project were written by all members the software

development group, all using the available template. The customer project manager

examined the documents, and signed off on quotations generated from them.

Specifications were passed between developers and all information needed by them was

available in the specifications. The document history was updated on some documents

the researcher examined, although she was told by the project manager that this was

something he did not follow up on and the engineers did this “off their own bat”.

Failure to update specifications with all modifications from the customer caused some

problems during testing.

The existence of guidelines ensured that specifications were consistent, and

correspondence indicated that the customer was satisfied with the documentation she

was receiving. However, one of the engineers stated that:

“the specifications were detailed – much more detailed than I have ever

seen before, in one way this is a good idea, but sometimes you find

problems later because the specification has been taken as gospel”.

One section of the Banking Organizer project suffered from “feature creep”. Because

of this, the engineer working on the software found that changes which “should be

easy but because of this are relatively difficult”.

Implementation

The software development manager implemented the product following procedures

which had been written up and experienced very few problems.

Project Management

At the start of the Banking Organizer project, the software development manager

produced a table of the project phases and the time it would take to complete each

phase. He also considered what personnel were required for the project, taking into

account other projects being worked on within the company. Using an automated

system, he created a project, showing planned project tasks, responsibilities and

duration. Developers were expected to enter actual time spent on the project, allowing

the software project manager to track project progress. One software engineer stated

that “project management has improved” and consequently, the Banking Organizer

project “was a tightly controlled project from the start”. Project progress was

updated on a regular basis, as he was now treating the software development group as

a “business unit”. Therefore, emphasis had to be placed on both income from

customers and the cost of the group to the company.

Software development group meetings were held at the start of each week. At this

meeting, the group reviewed the work done and action items closed during the previous

week, the target for the current week, action items open, daily work done by

individuals within the group for the previous and current weeks, and any off-site visits

to be carried out during the current week. This allowed the group to be updated on the

status of projects, and gave a formal forum for discussion around problems that

Session 9 : SPI and Establishment of Processes/Models II

Page 9.35

existed on any projects.

Lessons Learned

Following the intervention by the researcher at the beginning of this research project,

Computer Craft were to implement six action items based on the top 10 practices

which had been identified from the Software Process Matrix as important for the

company to improve on. Because a number of key personnel left the organisation left

the company soon after these were identified, some of them were not implemented,

including Actions 1 and 6.

The second action identified was a combination of setting up procedures to specify and

document system requirements and to collect, identify, record and complete new

customer requests. This action had been worked on with the development of a

specification which included the requirements, functional and technical specification.

They also improved their method of dealing with customers, meeting them early on in

the development process, updating them on the project and clarifying requests with

them. This ultimately effected the test of the product and its implementation. As this

had such a positive effect on the processes within the company, it is important that this

procedure is maintained for the future, and that the method of dealing with the Banking

Organizer project become accepted by the organisation.

Setting up procedures to define delivery contents and to verify all changes to

requirements are monitored once the requirements specification was signed off was the

third action identified. Two procedures had been written – Installation procedure and

Build Release to Customer Services – which covered the first of these. Using these

procedures, the implementation of the Banking Organizer went smoothly, with very

few problems. While not done formally, changes to the requirements were updated in

the specifications when changes were made. This process would need to be better

controlled in the future.

Action 4 required that Computer Craft assign a person software quality assurance

responsibilities. This had already been done, but their responsibilities were not clear to

them. The newly appointed quality assurance engineer, had taken testing as one of her

responsibilities, consequently she wrote up detailed test plans and based these on the

requirements specification. Her experience was lacking, and it was identified that she

needed training to help her fulfill her role within the organisation. Nonetheless, the

introduction of detailed test plans had helped the testing of Banking Organizer to be

completed efficiently and effectively. A downside to this was that there was little

emphasis placed on code reviews within the organisation, and it would be advisable for

the company to re-consider this situation. Her other responsibility was the writing and

approval of procedures, a number of which were written during the research period.

The other practice to be worked on in Action 4 was to define quality criteria and

metrics for the project deliverables. This had been partially done, but was not accepted

as being an organisation practice.

The fifth action required a procedure to establish product baselines for each product

Session 9 : SPI and Establishment of Processes/Models II

Page 9.36

supplied. This was not worked on. It also required that a procedure be set up to

assign responsibility for the software development plan, work products and activities.

While a procedure was not set up for this, the software development manager took this

responsibility on board, and improved the project management within the organisation.

This is reflected in the improvements evident in many of the project activities.

Of the ten practices identified, three were not completed during the research period.

Another three had been implemented but not formalized with the organisation. It is

important that this be done, as the evidence from the Banking Organizer project was

that they have aided the improvement of the software process within Computer Craft.

Change in Organisation Processes

In Computer Craft, at the end of the research period, a number of procedures,

specifications, guidelines and templates had been written in an effort to streamline the

software processes within the organisation. There was still an emphasis on quality

assurance and testing of the product. There was no interest shown in the attainment of

formal recognition of the process as there was no market requirement for ISO9000 nor

any other measurement such as the Capability Maturity Model or SPICE.

Change in Customer Management

Customer management had changed significantly during the research period in

Computer Craft. Initially, the software development group had little contact with the

customer, and regarded the sales representatives as the customer. In the Banking

Organizer project studied at the end of the research, the software developers in

Computer Craft had direct contact with the customer.. Comments from the software

development group indicated that this way of working contributed to how well the final

installation of the product had gone.

During initial research, there had been no procedures nor guidelines used for the

collection and documentation of customer requirements. Documentation and collection

methods varied between software engineers, even when they were working on the same

project. By the end of the research period, a template for the program specification

had been introduced, containing a section on requirements. This replaced the previous

requirements, functional and technical specifications. Software engineers working on

one project were providing and working from consistent information and the customer

was satisfied with the output.

The existence and use of the specifications did not prevent “feature creep”, but

contributed to its reduction. Unlike the Data Function product, there were no

modifications required after implementation of the Banking Organizer. Also,

developers could code the system knowing that very few changes would be made.

Change in Implementation

Session 9 : SPI and Establishment of Processes/Models II

Page 9.37

In the initial stages of the research project, the customer services manager installed

software within the customer company, at times involving the software development

group. For the project studied at the end of the research period the software

development manager carried out the implementation, and no problems were

experienced. One of the difficulties faced by the company was that they did not

specify what the release criteria for a product was. It had been discussed, and the

feeling of one software development meeting, which this researcher attended, was that

a release criteria stating the minimum amount that should be contained in a released

product was needed. When asked a measure of failures being shipped, the Software

Development Manager suggested that “one failure in every three is bad quality”.

Change in Project Management

The focus of the software development group had changed throughout the research

period. Schedules were set in conjunction with the customer rather than being dictated

by the customer services group. Engineers were expected to give the manager

feedback, and thus, he was able to keep a tighter control on the project.

Analysis of Change in Computer Craft

Overall, there many changes were made in Computer Craft during the research period.

Probably the most significant of these was the manner in which the customer was dealt

with. The software development manager worked closely with the project manager in

the client company, and the group produced specifications which contained the

customer requirements. Changes to these were discussed with the software engineer,

modifications were normally made to specifications and “feature creep” was not

prevalent on the project. This in turn improved both the testing and implementation of

the product.

The implementation of the practices as identified when using the Software Process

Matrix was partially responsible for the improvements in Computer Craft’s software

process. However, without management support for the project, particularly when the

company was going through recruitment difficulties, the identification of the practices

alone was not sufficient. It was important that the exercise was followed through and

the practices were implemented within the organisation. The software development

manager recognized that changes were required and used the Software Process Matrix

as a basis for identification of the most relevant changes.

The company has not identified any market requirement for the implementation of any

particular standards such as ISO9000 or for being assessed using SPICE or the

Capability Maturity Model. It is possible that customers may look for this in the

future, and the company is now better placed for proceeding with such actions.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.38

Authors

Ita Richardson received a B.Sc. in Applied Maths from NIHE, Limerick, in 1983, an

M.Sc. in Maths and Computing from the University of Limerick, in 1993. She has

held the CPIM from the American Production and Inventory Control Society since

1986 and was awarded a Certified Diploma in Accounting and Finance from the

Chartered Association of Certified Accountants in 1993. She is also a member of the

B.C.S and a Chartered Engineer.

She worked with Wang Laboratories, B.V., Limerick for 8 years until 1991, where she

was mainly involved in Programming and Systems Analysis of systems used in the

manufacturing plant production, Materials (including MRP), Distribution, Financial,

and Personnel. In latter years, she also had responsibility for the maintenance of

Systems Standards, and training of Programmers and Analysts.

Her M.Sc. project was a Simulation of the Automatic Storage and Retrieval System

used in the manufacturing plant. Her current research involves the investigation of

Quality Tools, particularly Quality Function Deployment, and how they can be applied

to the software development process.

She was appointed to lecturer in 1998. Her PhD research is in the application of

Manufacturing Quality Techniques to Software Process Improvement in Small

Software Development Companies. She is a founder-member of the Small Firms

Research Unit at the University of Limerick, whose research is specifically concerned

with the growth and development of small firms.

Kevin Ryan received a B.A.I. in Engineering in 1971 and a Ph.D. in Computer Science

in 1978 all from Trinity College Dublin. His Ph.D. was concerned with the simulation

and optimisation of bus scheduling operations. He lectured in Computer Science at

TCD in 1972 before working as programmer training manager for RCM Ltd. Zambia

where he recruited and trained the first Zambian programmers. In 1979 he was on the

faculty of the University of Kansas before rejoining Trinity College Dublin in 1980.

He spent 1985/86 as a guest researcher at Linkoping University. In 1990 he became

Professor and head of the Department of Computer Science and Information Systems

and, since September 1994, has been Dean of the College of Informatics and

Electronics.

He has published papers on simulation, programmer training, software methods, expert

systems, natural language processing and requirements engineering. His current

research interests include systems design methods, knowledge-based software

development is currently involved in the EU funded network of excellence in

Requirements Engineering (RENOIR).

He has acted as Evaluator for the EU and as external examiner for universities in

Ireland and the UK.

He has lectured on Programming Languages, Program Design Methods, Business

Computing, Data Structures, Operating Systems, Social impacts of Computing,

Software Engineering and Artificial Intelligence.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.39

Computer Craft Ltd.

Computer Craft Ltd. was established in April, 1984 to develop software for use in

specific business functions. The original entrepreneur, himself a software engineer, is

the Group Managing Director and is no longer involved in the development of

software. The company, based in the mid-west region of Ireland, employs 16 people in

the Irish office and in a sales office in the U.K. Of these, the software development

group of 4 people is based in Ireland.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.40

References

 [1] Peterson, Bill, Transitioning the CMM into Practice in Proceedings of SPI 95

- The European Conference on Software Process Improvement, The

European Experience in a World Context, 30th Nov-1st Dec, 1995

Barcelona, Spain, pp. 103-123.

[2] Draper, Lee, Kromer, Dana, Moglilensky, Judah, Pandelios, George,

Pettengill, Nate, Sigmund, Gary, Quinn, David Use of the Software

Engineering Institute Capability Maturity Model in Software Process

Appraisals, output from CMM v2 Workshop, February, 1995 Pittsburgh,

Pennsylvania, U.S.A.

[3] Peterson, Bill, Software Engineering Institute, Software Process -

Improvement and Practice, Pilot Issue, August, pp 68-70, 1995.

[4] Debou, Christophe, Kuntzmann-Combelles, Annie, Linking Software Process

Improvement to Business Strategies: Experiences from Industry in

Proceedings of SPI 98, The European Conference on Software Process

Improvement, 1-4th December, 1998, Monte Carlo.

Recommended Reading

Further reading on Quality Function Deployment:

[1] Clausing, Donald, Total Quality Development, ASME Press, U.S.A., 1994.

[2] Cohen, Lou, Quality Function Deployment, How to Make QFD Work for You,

Addison-Wesley, U.S.A., 1995

[3] ReVelle, Jack B., Moran, John W., Cox, Charles A., The QFD Handbook,

John Wiley & Sons Inc., U.S.A., 1998.

Further reading on the Software Process Matrix:

[1] Richardson, Ita, Quality Function Deployment - A Software Process Tool? in

Proceedings of the Third Annual International QFD Symposium, Linkoping

University, 1st-2nd October, 1997, Linkoping, Sweden, pp 39-49, Volume 2.

[2] Richardson, Ita, Using Quality Function Deployment to Develop Action Plans

for Software Process Improvement, Proceedings of the 10th Software Engineering

Process Group Conference (SEPG ’98), 9th-12th March, 1998, Chicago, U.S.A.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.41

Improving an

Evolutionary

Development Process

– A Case Study

Erik Arisholm

Univ. of Oslo, erika@ifi.uio.no

Jon Skandsen

Genera AS, jsk@genera.no

Knut Sagli

Genera AS, ksa@genera.no

Dag I.K. Sjøberg

Univ. of Oslo, dagsj@ifi.uio.no

Abstract

Genera AS is a vendor of a CASE tool called Genova. The work described in this

paper aims to define and evaluate an evolutionary development process (the Genova

process) to complement and support the use of the Genova tool. As a starting point, we

used a lightweight version of the Rational Unified Process in a development project for

one of our customers. This process was instrumented to enable process improvement

activities. An essential question is what to improve – the defined or the actual process?

Based on quantitative and qualitative data, we identified improvements related to the

distribution of test effort throughout the life cycle. Furthermore, we gained useful

experience on the management of evolutionary development projects. Our case study

also provided insight for instrumentation of the process for collecting data related to

the cost of changes.

1 Introduction

Session 9 : SPI and Establishment of Processes/Models II

Page 9.42

Evolutionary development has been proposed as an efficient way to deal with risks

such as new technology and imprecise or changing requirements (Boehm 1988). The

main idea is to resolve risks early by incrementally evolving the system towards

completion instead of relying on the traditional "big-bang" waterfall approach (Royce

1970). Thus, an important objective of evolutionary development is to identify the

"real" needs of the customer as the system evolves. While experience reports show

some success in the application of evolutionary development (Gilb 1988, Zamperoni et

al. 1995), there are unfortunately few empirically based guidelines on how to apply

such processes in different development contexts. The Rational Unified Process is

being adopted by a growing number of small- and medium-sized software development

companies. However, we believe that the number of prescribed deliverables, roles and

activities are perhaps too many to be practical for use in relatively small development

projects.

Genera AS is a vendor of Genova, which is an advanced CASE tool for object-oriented

analysis and design, dialog modeling, and automatic application generation and database

generation (Arisholm et al. 1998). In conjunction with the development of the Genova tool,

we are also developing the Genova process. The goals of the work presented in this paper

are to:

 Define the Genova process as a scaled down version of the Rational Unified

Process. We believe that such a "light-weight" process will increase the likelihood

that the process is followed in smaller development projects.

 Gain practical experience with the Genova process in real development projects.

 Instrument the process to determine a process performance baseline from which

process improvement activities can be performed.

The Genova process was evaluated while it was used in a development project run by

Genera AS for the Norwegian airline, Braathens. In this development project, we were

able to deliver a software system, within the agreed schedule, that matched the

customer needs reasonably well. At present, the system has been operational for seven

months with only minor post-delivery adjustments. Thus, this case study provides one

instance of an evolutionary development project that succeeded. However, our

experience indicates that it may be difficult to provide a defined process that is

followed in real life. In this case study, testing was performed too late in comparison

with the prescribed process. Although it is, in retrospect, uncertain whether this lack of

process conformance could have been avoided by the development team, it is likely that

it contributed to many costly last-minute changes to the software. Our case study has

also provided insights for quantitative evaluation of process improvement activities; a

data collection process for analyzing the cost of implementing changes to the software

is described.

The remainder of this paper is organized as follows. Section 2 elaborates the goals and

criteria for defining the Genova process and gives an overview of the process. Section 3

describes the case study conducted to evaluate the process in an industrial setting.

Empirical results from the case study are provided in Section 4. Section 5 discusses

implications of the case study and suggests process improvements. Section 6 describes on-

going and future work. Section 7 concludes.

2 The Genova Process

Session 9 : SPI and Establishment of Processes/Models II

Page 9.43

The aim of our work is to provide a defined process (the Genova process) for use both

in internal product development and in conjunction with external development projects

of Genera AS. Furthermore, the process is also intended to provide methodical

guidelines with specific support for the Genova tool (Arisholm et al. 1998).

Criteria for Defining the Genova Process

Initially, we considered Gilb's EVO (Gilb 1988), HP Evolutionary Fusion (Cotton

1996), Dynamic Systems Development Method (DSDM) and Rational Unified Process

(RUP) (Kruchten & Royce 1996) as candidates for the Genova process. These

processes differ substantially in their prescribed roles, schedules, activities and

deliverables. However, it is unclear under what circumstances one approach is more

suitable than the alternative approaches. To our knowledge, no empirical studies exist

that compare the strengths and weaknesses of these processes. Without such a

scientific foundation, the decision to base the Genova process on RUP was mainly

motivated by the growing popularity of this process in industry; there is a competitive

need to be compatible with the terminology and the deliverables of this emerging "de-

facto" industry-standard in our market segment.

One advantage of using RUP terminology and deliverables (e.g. "elaboration" and "use

case model") is that this terminology may be more commonly known among developers in

industry. However, we believe the number of prescribed deliverables, roles and activities in

RUP are too many – at least for practical use in small and medium-sized development

projects. Thus, our aim is to define a smaller development process, based on RUP, which is

better suited for small development projects. We believe that such a "light-weight RUP"

will increase the likelihood that the process actually is understood and consequently

followed. This issue is also known as "process conformance", which has been defined as

"The degree of agreement between a process execution and a process model" (Sørumgård

1997).

Process Description

Fig. EAJSKSDS.1 depicts the evolutionary delivery of increments, prescribed by the

Genova process. The process prescribes the delivery of an initial architectural baseline

and a high-level design. Each increment is developed by iteration of all major process

activities, including analysis, design, coding and test.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.44

Fig. EAJSKSDS.1: The Genova evolutionary delivery life cycle

There may be up to three iterations per increment:

Iteration 1: Implement the most important functional requirements of the increment.

Iteration 1 serves as an evaluation of the design of the increment.

Iteration 2: Implement the remaining functional requirements of the increment.

Enhance functionality developed in iteration 1.

Iteration 3: Stabilize increment.

The increment is then delivered to end-users for evaluation. The next increment will

contain enhancements to the previous increments as well as new functionality. The

system delivery is completed when all functionality has been delivered and no further

enhancements are required. Table EAJSKSDS.1 provides an overview of the roles,

activities and resulting artifacts prescribed by the Genova process.

Table EAJSKSDS.1: Roles, Activities and Artifacts of the Genova process

Role Activity Artifact

Project initiator Develop vision Vision statement

System analyst

Project initiator

Find actors and use cases High level use case model

System analyst Detail use cases Detailed use case model

Project leader Plan project evolution Project plan (iterations and increments included)

System analyst

Architect

Project leader

Risk management (prioritize use

cases)

Project plan

System analyst Develop sequence diagram Class candidate/operation list

System analyst Find class candidates Class candidate list

Designer

Architect

Develop domain model Domain model (class model)

Customer

Developer

Visual designer

Dialog modeling Application visual interface

Source code

Class candidate/operation list

Architect Develop architecture Architecture document

Designer Develop design model Design

Developer Generate code Class/operation skeletons

Developer Code Application source code

Build responsible Build code Components, Binaries

Test responsible Develop test plan Test plan

Tester

Customer

Developer

Test Test report

Improved code

3 Industrial Case at Braathens

Analysis Architecture + H.L. Design Plan increments

Analysis, design, coding and test increment

User validation

Deliver increment

System

complete?
no

yes

Complete system

delivery

micro-iteration

Enhance previous increments + add functionality

Session 9 : SPI and Establishment of Processes/Models II

Page 9.45

The Genova process was used in a development project for the Norwegian airline

Braathens. The development team consisted of from 2 to 6 developers and one

experienced project manager. The system being studied implemented an automated

customer service for Braathens' frequent flyer program, "Wings". The system is a

three-tier application consisting of Java/HTML clients, a middle-tier component for

transaction processing and information retrieval, and a mainframe database server. The

middle-tier module was implemented as classes in Visual Basic 6 and bundled in

ActiveX components running on a Microsoft Transaction Server. After week 22, the

system became operational. Three increments were delivered during these 22 weeks: at

week 6, 11 and 22, respectively.

Process Instrumentation

The process was instrumented with a small number of process and product measures.

The purpose of the process instrumentation was to:

1. Establish a quantitative baseline for process improvement activities.

2. Provide a means to assess process conformance.

3. Evaluate the effect of improvement activities.

During the Braathens project, the process instrumentation was used to establish a

quantitative baseline (1) and to assess process conformance (2). Improvement activities

were not performed in conjunction with the Braathens project. Hence, at present, effect

measurements (3) have not yet been conducted.

Weekly effort data in person-hours was recorded by each team member for important

activities (analysis, design, code, test and administration) to implement the system. Coding

effort data was reported individually for each module of the system. In addition, internal

product measures were collected. Using the configuration management tool and a code

parser for Visual Basic, product measures were collected from the middle-tier module

based on weekly versions of the software throughout the 22-week period. The internal

product measures consisted of, among others, module size and class size (in SLOC),

number of classes, number of methods per class and coupling between classes. The internal

product measures connected to the coding effort data enabled us to compute "coding

productivity" for the middle-tier module. The internal product measures were also intended

to provide quantitative indicators for product quality assessment. However, this topic is

beyond the scope of this paper. Further details of the product quality assessment are

described in (Arisholm & Sjøberg 1999a, Arisholm & Sjøberg 1999b).

Session 9 : SPI and Establishment of Processes/Models II

Page 9.46

4 Case Study Results

This section reports the results from the Braathens case study. The summary data in

Table EAJSKSDS.2 indicates that, during the development of the middle-tier module,

there was a significant amount of rework. This rework is indicated by the ratio between

net productivity and gross productivity for implementation of this module. For

example, during the five weeks of the second increment, 3191 source lines of code

(SLOC) were added or deleted from the module but the module grew by only 1128

SLOC. Only about 35% of the total amount of coding on the module contributed to

increased module size (yielding a rework ratio indicator of 65% for the second

increment). Note, however, that the SLOC-based productivity and rework measures

may be of questionable validity (Arisholm and Sjøberg 1999b).

Table EAJSKSDS.2: Summary process data for the middle-tier module

Process/product measure Incr.1

(week 1-6)

Incr.2

(week 7-11)

Incr.3

(week 12-22)

Coding effort per incr. (person-hours) 149 209 517

Changes per incr. (SLOC added + deleted) 1120 3191 5203

Gross productivity (SLOC added + deleted per hour) 7.5 15.3 10.1

Net productivity (SLOC growth per hour) 4.6 5.4 4.8

Rework ratio (% of effort not contributing to code growth) 39% 65% 52%

System size (SLOC) 687 1815 4307

Fig. EAJSKSDS.2 depicts the distribution of effort (in person-hours) for various

process activities (analysis, design, coding1, documentation/test, administration and

installation) during the 22 weeks. While there are some overlap in the process

activities, there is still a somewhat "phased" distribution of activities over time – to

some extent resembling that of the traditional waterfall development process. For

example, formal testing was only conducted in the third increment and not in the first

two increments as prescribed in the Genova process. Informal testing was done by

each developer throughout the coding activity. However, the separate, formal test

activity including, for example, deployment in a dedicated test environment, writing

test cases and applying test-logging tools, was not initiated before towards the end of

the last increment.

1 The coding effort in Fig. EAJSKSDS.2 reports the total coding effort for all modules in the system, and not only for the

middle-tier module as in Table EAJSKSDS.2.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.47

Fig. EAJSKSDS.2: Effort distribution for activities during the Braathens project

5 Discussion

In this section, we discuss the results reported in Section 4, with emphasis on rework

and process conformance aspects.

Rework

Interviews with the development team indicate that the amount of rework experienced

on the development project may in part be explained by uncertainties caused by the

new technology used in the project. In particular, there was a mismatch between the

promised and actual quality of certain development tools and libraries. A significant

amount of coding effort was spent on trying alternative "work-around" solutions to

compensate for flaws in the development tools and libraries. The rework is probably

also a result of the evolutionary and incremental way in which the module was

developed.

A certain amount of rework is a natural part of evolutionary development – it is

necessary in order to produce a good product. However, too much rework may result in

unacceptably low productivity and unnecessary costs. For rework to be a useful and valid

process performance indicator, it should be balanced with product quality indicators, such

as customer satisfaction, the number of change requests from users after system delivery,

etc. This balanced view of initial rework versus customer satisfaction and later change

requests may provide a meaningful baseline for improvement activities in future

evolutionary development projects.

0

50

100

150

200

250

Person-hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Week#

Effort Distribution

Documentation/Test

Administration

Installation

Coding

Design

Analysis

Session 9 : SPI and Establishment of Processes/Models II

Page 9.48

Process Conformance

Ensuring process conformance is important for several reasons (Sørumgård 1997):

 To ensure a stable process execution, that is, achieving a predictable process.

 To ensure the validity of the data, information, experiences and knowledge that are

acquired throughout the development projects.

Without a "reasonable" degree of process conformance, it may be difficult to determine

the effect of process improvement activities. A key question is what to improve – the

defined or the actual process? What are the reasons for reduced process conformance:

is a lack of process conformance due to a flaw in the defined process or is it due to a

flaw in the executed process? What are the implications of process conformance on

software process improvement: does it make sense to "improve" a defined process that

has not been followed?

In the Braathens case study, testing was not performed as prescribed by the defined

process. Interviews with the developers indicate that the delayed testing contributed to

many costly last-minute changes to the software. For example, many of the detailed

requirements of the client-tier of the application were not discovered before during the

detailed write-up of the test cases, resulting in late rework. This provides a partial

explanation of the large volume of coding effort towards the end of the final increment (Fig.

EAJSKSDS.2).

One explanation for this lack of process conformance was that the initiation and

execution of the Genova process at Braathens were quite informal. However, insufficient

guidelines for initiation and execution of the testing activities may also have contributed to

this "flaw". In the Braathens case, one problem was that machine resources for deployment

and load testing were made available very late by the software customer. Thus, it is

uncertain whether the resulting lack of process conformance could have been avoided by

the development team. Both the software vendor and the customer would have benefited if

test facilities had been made available from the outset of the project, allowing early testing

according to the prescribed evolutionary life cycle. This aspect should have been addressed

explicitly in the initial contract between the software vendor and customer. The result of

this experience is thus a suggestion for improvement of one aspect of the defined Genova

process: contractual guidelines regarding test facilities should be incorporated in the

process description.

6 Future Work

Further evaluation and improvement of the Genova process are currently in progress.

A new case study has been initiated in conjunction with an internal product

development project (of the Genova tool itself) in Genera AS. The programming

languages used are C++ and Java. This development project is larger than the

Braathens case, consisting of about nine developers. The project is expected to last for

several years, providing good opportunities for process improvement activities

including effect measurements.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.49

Based on the experiences from the Braathens case study, we have refined the process

instrumentation. The data collection process has been defined to ensure that the

developers

1. classify all changes and assign a change ID,

2. tag each file-level check-in with the correct change ID, and

3. report process data (change effort, subjective change complexity, number of

discovered faults, etc.) per change.

A data logging tool has been implemented to support this process (Fig. EAJSKSDS.3).

At present, 34 changes to the Genova CASE tool have been recorded by the developers

using the Genova change logger tool. The preliminary results are very promising. The

developers have understood the potential long-term benefits of using the tool.

Therefore, they accept the extra overhead incurred for the data reporting, and do

indeed use the logger tool. Each individual change reported in the log can be traced in

the source code using the configuration management database. This traceability allows

us to collect internal product measures related to each change (using C++ and Java

code parsers), coupled to external indicators such as change effort and defect data. We

believe that we now are in a good position to conduct process improvement effect

measurement by analyzing trends in the costs and consequences of implementing

changes to the software. Pending further evaluation, our long-term goal is to implement

this data collection process in all internal product development projects at Genera AS.

Fig. EAJSKSDS.3: User interface of the change logger tool

Session 9 : SPI and Establishment of Processes/Models II

Page 9.50

7 Conclusions

An important objective of evolutionary development is to identify the "real" needs of

the customer early, hence achieving improved customer satisfaction and avoiding

expensive last-minute rework. In this paper we gave an overview of the first version of

the evolutionary Genova process. A preliminary evaluation of the Genova process was

conducted in an industrial development project at Braathens in Norway. The case study

provided one instance of an evolutionary development project that succeeded.

However, based on quantitative and qualitative data, we identified improvements

related to the distribution of test effort: the late initiation of formal testing contributed

to unnecessary rework. We believe that less rework would have been required if formal

testing had been conducted in each increment according to the prescribed process.

Thus, more accurate contractual guidelines will be incorporated in the process

description to ensure better process conformance for the test activity in future

development projects. The effect of the suggested process changes still needs to be

evaluated. Such effect measurement will use a new change logger tool for empirical

assessment of the cost of implementing changes.

Acknowledgements

We acknowledge constructive comments from the anonymous reviewer. We are

grateful for the support from Erik Amundrud, Bjørg Håland and Stein Grimstad from

Genera AS. We thank Kari Juul Wedde and Tor Stålhane from SINTEF for useful

assistance regarding GQM. The research project is funded by The Research Council of

Norway through the industry-project SPIQ (Software Process Improvement for better

Quality).

References

Arisholm, E., Benestad, H.C., Skandsen, J. and Fredhall, H. (1998). “Incorporating

Rapid User Interface Prototyping in Object-Oriented Analysis and Design with

Genova”. In: Proceedings of NWPER'98 Nordic Workshop on Programming

Environment Research, Sweden 1998, pp. 155-161

Arisholm, E. & Sjøberg, D.I.K: (1999a). “Empirical Assessment of Changeability

Decay in Object-Oriented Software”. In: ICSE'99 Workshop on Empirical Studies

of Software Development and Evolution, Los Angeles, CA, pp. 62-69

Arisholm, E. & Sjøberg, D.I.K. (1999b). “Towards a Framework for Empirical

Assessment of Changeability Decay”. Accepted for publication in Journal of

Systems and Software, 1999.

Boehm, B.W. (1988). “A spiral model of software development and enhancement.”.

IEEE Computer, Vol. 21, No. 5, pp. 61-72.

Cotton, T. (1996). “Evolutionary Fusion: A Customer-Oriented Incremental Life cycle

for Fusion”. Hewlett-Packard Journal, Vol. , No. , pp.

Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley.

Kruchten, P. & Royce, W. (1996). “A Rational Development Process”. CrossTalk,

Vol. 9, No. 7, pp. 11-16.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.51

Royce, W. (1970). “Managing the development of large software systems: Concepts

and techniques.”. In: Proceedings of IEEE WESTCON, Los Angeles 1970, pp. 1-

9

Sørumgård, L.S. (1997). Verification of Process Conformance in Empirical Studies of

Software Development. PhD Thesis, NTNU.

Zamperoni, A., Gerritsen, B. and Bril, B. (1995). Evolutionary Software Development:

An experience Report on Technical and Strategic Requirements. Technical Report TR-

95-25, Leiden University, The Netherlands.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.52

Rightsizing versus client

server with an

outsourcing approach: a

case study of a big

public service

organisation

Ing. Francesco Marinuzzi, Ph.D.

C.I.M. Consultancy on Information systems and Methodologies

Via A. Manno, 11 - 00133 Rome Italy

Email: Francesco@Marinuzzi.com

Web: http://www.marinuzzi.com

Key Words

Software Engineering, Rightsizing, Downsizing, Outsourcing, Software Performance

Engineering, Downsizing.

Introduction

This paper presents a case of rightsizing, with an outsourcing approach, of a

mainframe based information system.

A full downsizing process, is a highly complex process due to the following reasons:

 The need to manage, at the same time, the old and the new technology and

environment for the parallel periods;

 The need to migrate in the new platform the millions of LOC (line of code) of

the several applications.

In this paper we describe how that process can be performed in an outsourcing

http://www.marinuzzi.com/

Session 9 : SPI and Establishment of Processes/Models II

Page 9.53

framework. We discuss which are the critical factors that assure an efficient process

and big savings from the cost/benefit and cost/performance point of view.

There are several key factors to be considered in order minimizing the risks of failure

and maximizing the success.

The paper is organized in the following three parts:

 The Rightsizing process;

 The case study and the results obtained;

 The lessons learned from the experiences done.

The rightsizing

Generally we can distinguish two main streams of the Rightsizing process: the

downsizing and upsizing processes.

The downsizing process is characterized by data and process shifting from Mainframe

to desktop connected with LAN and WAN network.

The following steps, instead, characterize the Upsizing process:

 The integration and connection of stand alone workstations or LAN

 The development of distributed applications on this new architecture

The Rightsizing of the applications and systems, that is their Downsizing or Upsizing,

provides a major opportunity for cost savings and improving the flexibility of the

information systems.

In the following figure we see the rightsizing of the case study. It is from a traditional

architecture based on a MVS IBM to a new distributed Client-Server architecture. The

new Client-Server applications are executed on several application servers.

 TERMINALS

MAIN

FRAME
DB

DB

GTW
PC

Gateway

Server DBMS

Server

Client

LAN

Application

Servers

.......

LAN
MAN

DB

GTW WS
LAN

Gateway

Server

Client/Server 1

Client/Server p

Session 9 : SPI and Establishment of Processes/Models II

Page 9.54

Figure 1. Rightsizing of a centralized architecture

Moving to Open and Client-Server System environments allows organizations to take

advantage of several opportunities: the new cost/performance relations for the

hardware components, the ‘easy to use’ graphical interfaces, the portability of the

software, the adoption of faster software life cycles like RAD, the use of the

information highways (for example internet) and so on [4].

Most of the organizations invest in rightsizing processes to build Client/Server

architectures.

Actually, upsizing and downsizing process has become a phenomenon of big

importance for a lot of organizations. It is possible to preview that the next years the

rightsizing tendency will increase very much, and will become a rule.

Anyway we must consider, from the point of view of the architectural structure, that a

rightsizing process is complex and may imply an increase of complexity of the final

system if it is not well planned.

A typical distributed Client-Server architecture is characterized by the presence of

workstations and personal computers acting as clients, by the interconnection of

different groups of these computers through different local and wide networks, by the

presence of several servers including eventually a mainframe as a file server. It is

typical of the local network that there is a local database; the local stations of the

network are able to reach this database instead of the remote database.

In order to lower the complexity of the process, an outsourcing of all the IT activities,

for the rightsizing period, or even more, can prove effective. The IT system after the

outsourcing/rightsizing period (typically from 3 to 5 years) becomes technologically

updated and easier to maintain (especially if the outsourcing/rightsizing contract

provides strict guidelines for the development of the new software and for the Reverse

Engineering projects).

The case study

The starting environment

The company is one big public organization providing services to the Italian citizens.

The environment is characterized by a mainframe with MVS as operating system, DB2

as DBMS and 10 million of Line of Code mainly in Cobol for a total of more then

40.000 FP.

The mainframe provides services to 500 clients connected to a fast Ethernet LAN. The

Clients execute terminal emulation software to execute the MVS applications.

The LAN is in a Windows NT environment with over than 10 servers and a SQL

server as DBMS for stand alone applications developed in visual languages. The LAN

has some parts in optical fiber (ATM 155 Mbs) for a MAN.

The level of integration between the two environments is low and from the

organizational point of view there are two separate teams with different skills and

competences.

The process

Session 9 : SPI and Establishment of Processes/Models II

Page 9.55

The main phases of the process have been the following:

 Feasibility study;

 European bid;

 Start up & Monitoring;

The feasibility study has identified the system and user requirement, and has evaluated

several alternatives for a cost/benefit analysis.

The bid has been awarded using the “more fauvorable” economical offer rule instead

of the minimum price to maximize the quality: the economical starting value was about

50 mm US$.

The start-up lasts a period of 9 month during which the winner mainly had to assure

the essential services.

After the start-up period, for all the types of activity there is a monitoring and service

level measurement activity in line with the contract papers.

The requirements

Activity

The main activities of the bid have been:

 The migration to open system of the ISC (information Service Centre).

 The outsourcing of the most of IT activities.

Service level and Quality

Each participant to the tender had to present several Quality and Project Plans (for

each type of activity as development, maintenance, innovation, conduction, etc.) and

fill several service levels tables with the values they wanted to assure under economical

penalty.

To assure the best software productivity they had, also, to fill a productivity table (in

function point) with 27 cells for all the size, risk category and environments.

Innovations projects

The main requirement was to move to an “open system” not necessarily getting rid of

the host. The new software had to be portable: easy to migrate at least in one other

environment.

Software documentation

To assure the preservation of all the functionalities of the existing software, the

participants had to present a detailed Reverse Engineering Plan for each Application

Area.

Performance

Session 9 : SPI and Establishment of Processes/Models II

Page 9.56

From experience the performance requirements are particularly critical in the

rightsizing processes. For this reason we will first describe the problem and the then

we will present the followed approach.

The problem of the performance requirements

Performance evaluation of a classical concentrated architecture focus mainly on the

data access while in a distributed architecture like a Client-Server system, the main

problems come especially from software bottlenecks, contention on resources, locking

and congestion of the networks (LAN and WAN).

From the modelling point of view a Client/Server model must take into account the

synchronous inter-task communication associated with client/server layered

architecture.

The model must foresee the possibility of a server that can act also as a client requiring

service to another server (active server), and so on: this double behavior renders the

“software bottleneck” possible and a peculiarity of the Client-Server systems [6], [7].

Quantitative performance prediction models are vital in order to obtain efficient

applications and systems without increasing the time or the cost of the projects due to

necessary remaking.

There are several approaches to manage the performance requirements when

downsizing existing applications. The analytical ones is more effective in the first

phases and the simulative one in the last ones of the software life cycle.

The analytical approach has several advantages for its low computational cost and the

richness of the results and predictions that can be obtained since the first phases of the

developments for what-if studies [1], [2].

In the rightsizing processes, at least in the first phases of the system design, a

simulative approach is not effective because it would require the values for many

system parameters that would not be available and would require a great amount of

time to solve the several possible scenarios [3], [5].

Furthermore, it is also very risky to follow a “Fix-It-Later” approach: it consists of the

developing of the applications not caring the performance requirements except at the

end of the realization just before their delivery. The risks are a low service level of the

applications and higher costs and more time for a later remaking.

Another difficulty arises from the fact that in Client/Server systems the performances

and thus throughput and response time are dependent not only on data accesses time

like in classical mainframe oriented applications, but also on communications delays

due to congestion, distributed locking and software layer architecture: this renders a lot

of tool for the performance prediction focused on the data (for example Windtunnel of

Bachman Inc.) or on the hardware obsolete. For further information it can be seen [1],

[6].

The markovian theory is very effective to evaluate several “what if” scenarios before

the downsizing of the applications and their partition between the client and the server

part. The analytical “product form” models based on the markovian queue theory are

much easier to be solved respect the simulation models that often require too many

details and use several hours of CPU time for one scenarios.

The main reason is that the “product form” models are specific analytical models that

do not require the solution of the whole model to compute required performance

Session 9 : SPI and Establishment of Processes/Models II

Page 9.57

indexes. They can be applied to the specific case successfully without any need of

simulation or “not product form” models. In fact their solutions will be used mainly to

support the software architects to decide how to partition, statically or dynamically

(for example with java) the application data and logic in the several software

horizontal (client and servers) and vertical parts (components, middleware): this will

avoid the “software bottlenecks” typical of a lot of client server systems.

In the following figure we can see a typical quantitative queue prediction model; each

PPL and L delay represents a local Client-Server system and is particularly considered

the concurrency between the local and remote elaborations in the derivation of the

Response time

 Modello del Sistema Utente-Servente Livello 0

F J

L

R

PPL

PPL

PL

PL

L R

This model is useful, for example, to see how the performance indexes change with the

internal server application “degree of parallelism”. In the following figures the

throughput, at the user level, for each class of the system for different values of the

internal server application “degree of parallelism”.

Throughput for a “degree of parallelism” of the application software server equal to 1.

As we can see in the figure the throughput saturates with the increase of the number of

users and has low values: that means there is a bottleneck at the user level (software

bottleneck).

Session 9 : SPI and Establishment of Processes/Models II

Page 9.58

.

Throughput for a “degree of parallelism” of the application software server equal to 20.

As we can see in the figure above throughput saturates in a smoother way with the

increase of the number of users and has higher values than before.

Throughput at the hw level of the three user classes for a number of software servers going

from 1 to 20.

Comparing the graph above, it is possible to understand how the software bottleneck

due to a lack of “parallelism” in the application server software became with the

increase of the splitting factor (from 1 to 20) a typical hardware bottleneck.

We hope that the above examples had given a flavor of the possible results of the

markovian “product form” queue models applied to the “rightsizing projects”.

The performance specifications

Session 9 : SPI and Establishment of Processes/Models II

Page 9.59

Besides the performance service levels identified through tables and requirements, the

participants had to present a Performance Assurance Plan detailed with milestones,

related to payments and analytical models delivery under penalty (if in delay).

The SPE (Software Performance Engineering) approach has been set out together with

an analytical one based on the “product form” and the markovian queue theory [8].

The specifications of the Performance Assurance Plan have been done in order to

assure the use of the approaches and techniques seen in the previous section in the

rightsizing project.

Other issues important for the rightsizing process

The following issued proved to be important in the specification of the rightsizing

process:

 A good assessment of all the application software in order to calculate in FP

the complexity;

 Extensive knowledge of all the commercial tools available for reverse and

forward engineering of the software.

 Need to minimize the organizational impacts.

 Careful technical-economical evaluation of the times and cost to calibrate the

bid.

The results

The results of the tender

The winner offer has proposed a degree of innovation and system integration greater

then expected with deadlines shorter then the forecast, also thank you to the extensive

use of workflow techniques.

The levels of productivity offered have been higher then expected, with possible

relevant savings in the software development activities in the mid and long term.

The new architecture will allow increasing the efficiency and quality of the services: it

will be possible to query the workflow database, containing the work status of all the

service processes provided to the clients.

This new architecture will also allow an easy externalization of the data and

applications (extranet) for the development of new services directly connected to

Internet and to the users.

The technological environment proposed

The technological environment proposed is characterized by an extensive use of the

workflow technology that will increase the efficiency. It has several application server

running Windows NT and UNIX as operating systems.

It foresees in less than 3 year the elimination of the mainframe and the full migration of

all the applications in the LAN environment using Oracle as DBMS and Java as the

Session 9 : SPI and Establishment of Processes/Models II

Page 9.60

target language.

The actual state of the project

Actually the start up period is going to finish and within one year the new downsized

applications will start to be released.

Lesson learned

The experience done in this case up to now, has been mainly on the preparation phases

of the tender and on the start up period of the contract.

Anyway from this experience and others done in similar projects we can learn certain

lessons likely to be used by other organisations or companies in the future.

In general we must consider that a classical outsourcing approach (not to do a

rightsizing) allows savings up to 20% thanks to the “economy” produced by the

sharing of expensive hardware and software resources already owned (typically

mainframes). But that saving hides often an hidden cost: the most of the times the IT

environment is not updated over time making the Client more and more less

competitive or able to provide flexible services (for example with an extranet).

This type of outsourcing is usually effective for “stable and repetitive activities” and

not at all for a rightsizing process that, instead, typically changes the system in an

irreversible way and is full of “one shot” activities.

A rightsizing increases cost in the short period but allows saving up to the 50% in the

long term. The rightsizing, moreover, make the Client competitive and able to provide

flexible services; it uses strategically the Information Technology.

We have seen in the several projects done that only a new outsourcing approach can be

effective for rightsizing processes allowing saving in the short and long term bringing

all the benefits of the outsourcing and the rightsizing process above described.

This new outsourcing approach, in order to be successful, must be based on the

“economy” produced especially by the sharing of valuable know-how and professional

experience in similar rightsizing project owned by the Company and his specialists.

Then it becomes essential to select the Company respect the above features.

Session 9 : SPI and Establishment of Processes/Models II

Page 9.61

References

[1] E.D.Lazowska, J.Zahorjan,G.Scott Graham, K.C.Sevcik:. Quantitative

System Performance , Prentice Hall 1984

[2] G.Iazeolla, F.Marinuzzi, Ph.D.: LISPACK: A Methodology and Tool for the

Performance Analysis, IEEE Transactions on Software Engineering,Vol.19,

Num.5, PP 486-502

[3] F.Marinuzzi, Ph.D.: Il Ridimensionamento dei Sistemi Informatici verso i

Sistemi Utente-Servente, II°Università degli studi di Roma Ph.D.Thesis

1992

[4] F.Marinuzzi, Ph.D.: Il Rightsizing verso i Sistemi Client-Server, CMG Italia

Ottobre1994

[5] F.Marinuzzi Ph.D., S.Soliani: A New Symbolic Package for the Definition,

Analysis and Resolution of Markovian Processes: Symbolic and inductive

Techniques, ACM ISSAC 92 Berkeley

[6] C.Smith: Performance Engineering of Software Systems, Addison Wesley

1990.

 [7] G.Franks, A.Hubbard, S.Majumdar, J.Neilson, D.Petriu, J.Rolìa,

M.Woodside: A Toolset for Performance Engineering and Software

Design of Client-Server Systems, Systems and Computer Engineering

 1994 Carleton University.

 [8] J.P.Buzen, Computational algorithms for closed queueing networks with

exponential servers,Commun.ACM. , 16(9):527-531, Sept.1973

Session 9 : SPI and Establishment of Processes/Models II

Page 9.62

Appendix - 9

 The Curriculum of the Author

The author has more then 10 years of experience of consulting in information

technology and strategical planning at international level. For two years he has been

the James Martin responsible for Italy.

He is the consultancy director of C.I.M. an active consultancy Italian firm. He has

authored many papers for national and international conferences and magazines

receiving prizes (for example.. IEEE TSE, ACM ISSAC Berkeley, AICA, CMG). He

has a master in computer science and a Ph.D. with a thesis on Rightsizing versus

Client Server system. For further information see http://www.marinuzzi.com [3].

 The Company C.I.M.

 The company provides outstanding consultancy services in the following

fields: software engineering, capacity planning, feasibility studies, organizational and

strategical consultancy all over Europe. In the past years it has provided training for

several big Italian and multinational companies. It cooperates with market leader

organizations such as Iter, Systech, Duke, (www.duke.it, www.iter.it). C.I.M., has

been involved in several projects for leading private and public organizations (for

example TIM, Procter and Gamble, TELESOFT, Public Institutes and Organizations,

etc). Its mission is “simplify the complexity of the transitions processes due to

technological innovation or organizational change”; it also supports the Clients in the

planning and monitoring of the change projects or tenders.

It is focused in the field of the organizational restructuring, rightsizing and generally

the migration of “legacy systems” to new architectures with special attention to best

software engineering methodologies, approaches and tools. Internally it is a network

organization with a database of more of 400 independent specialists. For each specific

project, the best consultants are chosen from the database depending upon their past

experience, specialization on the topic and independence.

C.I.M. believes firmly that its high competence and full independence from any vendor

are the basis to build with the Client the trust necessary to accomplish the most

difficult roles entrusted.

http://www.marinuzzi.com/
http://www.duke.it/
http://www.iter.it/

Page 9.1

Page 10.1

Session 10

SPI and Measurement I

Chairman

Risto Nevalainen
STTF, Finland

Session 10: SPI and Measurement I

Page 10.2

Applying Gilb’s method
of inspections into

telecommunications
software development

Dimitrios Stasinos

INTRACOM, S.A Peania, Attica, Greece

Georgios Tsoubelis

INTRACOM, S.A Peania, Attica, Greece

Vasilios Zioutopoulos

INTRACOM, S.A Peania, Attica, Greece

Abstract

This paper describes experiences acquired from a Process Improvement Experiment

funded under the European Systems and Software Initiative (ESSI). The experiment,

called GINSENG (Gilb’s Inspections for Software Engineering), introduced Tom
Gilb’s method of inspections at Intracom’s Software Development Centre. Through

this inspections framework, Intracom aims to improve its current practices for

telecommunications and other embedded software development by increasing the
effectiveness of early defect detection and prevention activities. Additionally, suitable

inspections measurements support improvements in the inspection and software

development processes.

Session 10: SPI and Measurement I

Page 10.3

Introduction

This report describes acquired experiences during the execution of the ESSI Process

Improvement Experiment GINSENG (Gilb’s Inspections for Software Engineering).

The objective of this ESSI experiment is to establish at Intracom's Software Design

Centre (SWDC) a systematic framework for software inspections based on Gilb's

Inspection Method.

The initial step of GINSENG consisted of introducing the experiment within a digital

telephone switch baseline project implementing new functionality in an incremental

way. Thus, training in Gilb's Inspection Method was carried out and the inspection

procedures for the baseline project were documented, by adapting Gilb’s method to

the standard development procedures used which ran in parallel with the baseline

projects’ implementation of early increments. Inspections were then executed

throughout the baseline project’s latter stages (increments). PIE results were

evaluated based on appropriate measurements. Finally, the appropriateness of Gilb’s

inspection method for Intracom’s software development environment (mostly

developing embedded systems) was evaluated, contributing to a series of internal and

external dissemination activities.

Gilb’s Inspection broad interest and wide applicability support the transferability of

the GINSENG experiences. Internal dissemination actions address Intracom Group of

companies, while external ones Greek SMEs and Intracom’s European business

partners.

Background Information

Objectives

The objectives of the GINSENG PIE can be grouped as follows:

Establishment and evaluation of a framework for performing software inspections

based on Tom Gilb's inspection method, covering all development phases and work

products

Integration of Gilb’s method with the software development processes currently in

use, addressing technical, administrative and people issues

Increased effectiveness of early defect detection, reducing this way dependency on

testing for product verification and validation

Gradual shifting in emphasis from failure recovery towards prevention of defects

Improved reuse and exchange of technical experience

Increased development process stability, improving control and facilitating further

improvements.

Similarly the main commercial objectives behind the experiment are the following:

Cost reduction of software development

Session 10: SPI and Measurement I

Page 10.4

Increased productivity in software development activities

Reduction of time-to-market through less rework and less testing

Improved reliability of software products when these are in customer use

Dissemination of experience related to the application of Gilb’s inspection method

towards other software producing companies in Greece and internationally

Starting scenario

Intracom S.A. is the leading Greek telecommunications and electronics industry.

Intracom’s main software development activity concerns the development of high

quality, digital telephony software products running on Ericsson’s AXE-10 telephony

exchanges. The SWDC, Intracom’s software development centre, employs over 200

highly qualified and specially trained software engineers. Newly recruited software

engineers undergo an intensive initial 3-month training course on the development

method, the tools, and the application field. Additional training is provided based on

project needs, covering major technological developments and evolving processes in

relation to the application area.

Inspections are carried out using a process integrated with the software development

model in use. These inspection activities are based on Fagan's model and have

provided positive indications, in detecting and removing defects from software

products. In other areas of the company/corporate group, where software

development is carried out, the use of inspections is limited. Based on current

experience, the usefulness and efficiency of inspections seem to vary rather

significantly. Acceptance of inspections by involved personnel, as well as personnel

motivation regarding inspections, differs significantly from project to project.

Training on inspection methods is rather elementary, especially with respect to

adapting inspections for specific needs and optimizing their performance. Particular

weakness is identified in considering human aspects, team co-operation and

management aspects. Efforts are under way to provide better feedback about

problems and attitudes on conducting inspections, improve planning of inspections,

balance available resources and ensure adequate inspections preparation time.

An independent quality assurance function has been established in SWDC, supporting

software development projects, co-ordinating quality system documentation,

performing audits and supporting corrective actions, as well as carrying out

measurements of quality. There is a basic set of metrics that are being used providing

a high-level view of the design process : lead times, effort/cost, as well as product

quality/fault density. These measurements, taken from the literature, are providing

useful overview and a basis for benchmarking. In addition, a more thorough metrics

approach has been introduced to support improvements, based on GQM (Goal-

Question-Metric) and ami methodology (through the ESSI PIE “PITA”).

Intracom’s practices for software development and project management have been

analyzed, using as a basis requirements in ISO 9001/9000-3 and models for software

process maturity (such as Capability Maturity Model - CMM).

Session 10: SPI and Measurement I

Page 10.5

Work-plan

The GINSENG work-plan included an initial set-up stage, 4 main phases

(Introduction, Process Adaptation, Execution and Evaluation), and a final conclusion

stage (more details in section 4.3).

Expected Outcomes

From a software engineering point of view, expected benefits from introducing Gilb’s

inspections include:

Improved quality in products

Facilitating prevention of defects in requirements analysis and subsequent

development phases

Identification and triggering of process improvements

Achieving goals and controlling processes

Personnel training and motivation

Spreading of experiences to other software development areas of Intracom

Technology transfer related to improved inspections

From a commercial point of view, the impact of the PIE has several aspects, related to

improvements in the quality of products and processes, and especially in increased

productivity. By the term “quality of process”, we mean characteristics s.a.

repeatability, effectiveness and efficiency, controllability etc. that pertain to the

development process itself and its stakeholders (mainly managers and developers),

which of course indirectly, impact the product quality as well which is experienced

by the end-customer. More specifically, expected benefits from the implementation of

the proposed PIE include:

Reduction of overall software development cost

Cost reduction of rework, testing and initial maintenance activities

Shortening of the time-to-market for software products

Increased productivity in software development

Increased software product reliability when the system is in customer use

Work Performed

Organization

GINSENG was performed through co-operation of 3 different Intracom departments:

The Development Programmes Department, providing the overall managerial

function as well as the liaison with the CEU.
The SWDC which provided the baseline project activity, had some of its software

engineers receiving the Gillb’s inspections training and was the recipient of direct

internal dissemination of GINSENG experiences.
The Quality Assurance Department, with its Software Quality Assurance section,

which provided technical support to SWDC and acted as a facilitator for introducing

GINSENG smoothly in the context of the baseline project.

Session 10: SPI and Measurement I

Page 10.6

Technical environment

No unusual provisions were made affecting either the everyday work in the technical

environment of the baseline project or the line management operation involved in the

experiment. There is a database available to support collection, analysis and reporting
of measurement data. Beside that, simple forms are provided to members of the

baseline project which enable data analysis.

An infrastructure for publicity and internal dissemination has been implemented as an

Intranet (WWW-like) environment. Moreover all documentation, relevant to Gilb’s

method, and tailored to the needs of the baseline project are available through the

web, to both baseline projects participants as to the rest software design project
members.

Phases of the experiment

In the context of the GINSENG experiment, Gilb’s inspection method has been

appropriately integrated with the selected baseline project. This integration involves

three stages: ‘initial’, ‘main’ and ‘concluding’ stage.

The initial stage involved the establishment of a solid foundation for carrying out the

experiment. More specifically, it consisted of training of the involved personnel,

establishment of an inspections facilitator role (change agent) in Intracom’s SWDC
and handling of co-operation issues with the subcontractor(s). The purpose of training

in this stage was to introduce and promote the inspections philosophy to senior,

middle and project managers.

The main stage of the GINSENG PIE, corresponds to the implementation of Gilb’s

inspection method and involves four phases:

Phase 1. Introduction. This involved intensive training in Gilb’s inspection method

before the baseline project started. This training addressed several roles involved with

inspections in the baseline project, including authors, inspectors/checkers, inspection
leaders, project leader and quality assurance personnel. Additionally, training was

provided to other key personnel, in order to facilitate internal dissemination and

future application of Gilb’s method to other projects.

Phase 2. Inspections process definition. During this phase, the inspection procedures

for the baseline project were documented. Documentation here includes inspection

process descriptions, role definitions, document check-lists and several types of
forms. These documents were reviewed before being issued by both project

participants as well as other key personnel that have attended training in Gilb’s

method. During the documentation of the inspection process, aspects of the standard
development method were taken into account. Additionally, appropriate inspection

measurements such as faults per page, checking rate, estimated remaining defects

after an inspection and defects per page found during test or field use, were defined

(based on the ami method). An inspections database was set-up for subsequent
storage and analysis of inspection measurement data. Finally, other measurments

were adopted in order to help the implementation and monitor the achievement of

technical and business goals (discussed in the Results and Analysis chapter).

Session 10: SPI and Measurement I

Page 10.7

Phase 3. Inspection process execution. In this phase, the inspection process defined in

phase 2, is being used throughout the baseline project. Each time the baseline project

reaches a milestone, a review of GINSENG progress is also performed.

Measurements are collected as planned in phase 2 and measurement results are
included in the relevant measurement reports as these become available.

Phase 4. Inspection process evaluation. This phase corresponds to testing and initial
maintenance activities in the baseline project. During these activities, no more

inspections are performed, but defects not found by inspections are detected and

removed. Data collected during the period the system is tested or is in customer use
enable a thorough analysis concerning product quality and inspections effectiveness.

The concluding stage of the GINSENG PIE includes an evaluation of the

effectiveness and efficiency of Gilb's method. To this purpose, the measurements
taken from the baseline project will be analysed both alone and in association with

similar data from past projects (not using Gilb's method). Based on evaluation results,

the inspection process definition documentation (from phase 2) will be appropriately
updated.

The baseline project started at project month 6 (when Inspection Process Definition is

well under way) and ends in project month 17 (with a shift of up to 10 weeks due to a
prolongation of the baseline project independent from the PIE), to be followed by the

experiment’s ‘concluding stage’. Inspection Process Execution and Inspection

Process Evaluation will take place in parallel to the baseline project.

Results and Analysis

In relation to objectives set forth for the experiment, measurements (derived by the
GQM/ami method) available to date are discussed below:

Regarding the integration of Gilb’s inspection method with the existing development
process there are 2 metrics:
the number of problem reports caused by GINSENG implementation; in this case no
such report has been produced to date. This is considered as a result of the proper
and detailed Gilb adaptation performed for the standard development and (to a small
degree) for the baseline project.
the overhead caused to standard activities (percentage of additional effort). This
overhead is estimated currently at to be just under 8% of the scheduled project effort,
which is well within the 10% expected upper limit for the first (pilot) implementation. A
reduction trend with each future implementation is expected.
There is not yet objective value of the ratio of ‘major defects” in inspections over the
total detected defects (in inspections, testing and 3 months in customer use, related
to objective 3 of the PIE). Measurements are now being collected in the baseline
project and there are no reliable results yet. As an indirect interim measure, we use
the fault density of inspections-detected effects currently being collected, which
shows a significant 147% increase (to a level of 2.37F/KLOC). This is an indication of
significant improvement over the current level of 26% for the aforementioned ratio
(but has to be verified with complete test and field use data).
There is also no accurate and stable value that can be reported yet for person-hours
of development rework per project. There is need to include data from correcting
errors found during testing (being carried out) and field use and ensuing rework, but
on the other hand there was an increase in the density of defects detected(not started

Session 10: SPI and Measurement I

Page 10.8

yet). Some preliminary results indicate a decrease in such late defects during design
and implementation by inspections (147% more than usual), thus there is no clear
trend at the moment. See also charts included later on in section 5.1.
In section 5.1 below there is also a chart for Rework time probably
saved=(#defects*20)-(Total Inspection time) in mhrs per KLOC, averaged for all
inspection items. Another chart is for Rework saving ratio=(rework time probably
saved)/(total inspection time), again averaged for all inspection items. The actual
return-on-investment is even higher, if one accounts for the fact that field-detected
defects cost far more to rework/correct, even not counting customer satisfaction
aspects.
Measurements have started to be taken but no stable value can be reported yet for
fault density (number of faults per 1000 lines of source code) during the testing
activities and during the first 3 months of system field operation (related to objective
10). Preliminary indications show an improvement in test fault density (probably to
below 1/KLOC from 1.3 historical average, but this is premature and no field data are
available yet.
Another measurement to be used for overall evaluation at PIE conclusion is for lead-
time the number of days from baseline project initiation to delivery of products to the
market. This figure is dependent for each individual project on a number of external
events that can occur (e.g. change of requirements, delays in customer review
process etc.), leading usually to a delay in delivery. Thus there is significant variation.
And trends can be followed in the long run. For the baseline project, there was no
delay in normal scheduled time due to inspections. Still, a delay was caused by a
reshuffling of requirements implemented across successive increments impacting
also the duration of testing phases and delivery dates, quite independently from
inspections. This will prolong the baseline project duration for up to 10 weeks
(according to revised schedules) and will delay also similarly the collection of test and
field data for the PIE and the concluding phase.

Further particular results are described below for the respective impact areas:

Technical

Important results which have been acquired (or are in the process of collection) from
the GINSENG experiment include:

tailoring guidelines for adapting the standard software development processes.

forms used on-line for feeding-in detailed data required for each inspection.
A report from both training courses which provide all relevant aspects of both the

method, further issues and applications of the method from what the baseline course

is about and finally feedback from all participants.

Carrying out of Gilb inspections in a seemingly effective manner after some initial
problems were resolved with the help of mentors.

A further result is expected to show up in future projects, i.e. quality gains and

process improvement, taking advantage of results and analysis achieved by Gilb’s
method in the baseline project. Such analysis is already carried out in a short

brainstorming session after each inspection meeting in relation with the inspected

item and defects detected thereof, while an integral analysis will be carried out with
the baseline project conclusion. The analysis performed after each inspection

provides a general categorisation of the type of each defect, as well as a root cause

analysis for defects considered very significant and/or complex is encountered in

order to propose an improvement for the future. A compilation of such analysis
results will be provided at the project conclusion by the technical coordinator for the

benefit of future projects. The following defect classes were defined:

Session 10: SPI and Measurement I

Page 10.9

In “Technical” class: functional/algorithm, data, parameter, interface, signal, other (a
few additional technical categories are also used for particular types of inspected

documents, allowing for more focused improvements).

In “Administrative” class: inadequate experience/training, haste/omission/oversight,
inadequate/erroneous spec (in previous design phase),

inadequate/erroneous_advice/help.

“minor” (not causing failures) class: such defects are only a by-product of the

inspections process (their detection is just registered and not emphasized), are not
included in overall statistics since they are not part of the process under control

(feedback from test and field failures), but are measured separately, as a

secondary/idirect indicator of quality
Such categorization will provide in the end an overall picture in relation to maturity

of planning the design process, technical maturity of human resources and of

planning overall. These are to be compiled only at the general project level (not at

individual designer level) to avoid any misunderstandings and suspicions.
Measurement results are being obtained and analysed, from the baseline project.

Some consolidated charts reflecting measurments as described before, were prepared

by both mentors and the technical coordinator are included below.

Inspection Defect Density

0

0,5

1

1,5

2

2,5

3

Inspect.-

Removed

Defect

Density

Estimated

Remaining

Defects

Density

Actual -

TBD

Remaining

Defects

#
D

e
f/

K
L

O
C

Baseline project

Histor. average

Session 10: SPI and Measurement I

Page 10.10

Inspections Efficiency

0

0,05

0,1

0,15

0,2

0,25

0,3

O
v
e

ra
ll

H
ig

h
-

le
v
e

l

D
e

s
ig

n

L
o

w
-

L
e

v
e

l

D
e

s
ig

n

C
o

d
in

g

Phase

#
D

e
fe

c
ts

/I
n

s
p

_
E

ff
o

rt
(m

h
rs

)

Efficiency

St. Dev

Estim. average time saved per KLOC

0
5

10
15
20
25
30
35
40

Overall High-

level

Design

Low-

Level

Design

Coding

Phase

T
im

e Saving

St. Dev

Time Saving Ratio

0

1

2

3

4

5

6

Overall High-

Level

Design

Low-

Level

Design

Coding

Phase

S
a

v
in

g
 R

a
ti

o

(T
im

e
 _

S
a

v
e

d
/I

n
s

p
e

c
ti

o
n
_

T
im

e
)

Session 10: SPI and Measurement I

Page 10.11

measurement results are collected from other ongoing improvement activities related

to the application of the method of Gilb (like policy deployment actions in relation to

review effectiveness). At the conclusion of the PIE these will help evaluate the

overall improvement capability of Gilb’s inspections.

Business

The impact of the GINSENG experiment to Intracom’s business operation can be
considered as indirect but potentially significant. It is very important, for business

operation, to be able to base the improvement efforts on the individual ‘front line

practitioners’. This will improve the product quality of the products that the customer

will experience, benefit from and appreciate, thus enhancing the competitive position
of the company.

We anticipate gains in productivity (measured in LOC output per effort expended
overall during development cycle (including testing) and time-to-market. The main

factor contributing to such improvements is expected to be less rework (due to less

defects slipping through to later phases where remediation becomes far more

expensive).

A final aspect concerns the enhanced capability, team enforcement and consciousness

of the personnel, gained through GINSENG, which can offer another significant
competitive advantage for Intracom in a business where human capabilities and

knowledge are crucial for success.

Organisation

The organisational changes effected to support GINSENG activities are summarised

in the following points:

A GINSENG team was formed, including: baseline project personnel, two

facilitators (acting as mentors), and a technical co-ordinator that needs to have an

overall view of the work in progress.

Monitoring the Gilb’s Inspections method introduction is a responsibility of the

SEPG already established in the SWDC. This is in line with SEPG’s role as promoter

and co-ordinator of the SPI efforts, in this case focusing on the individual rather than
other organisational entities. In this respect, it is of particular importance that the

Gilb’s Inspections experience augments and complements efforts already undertaken

for SPI. The method of performing inspections via the method of Gilb is fully
compatible with CMM based improvements already under way in the SWDC, as it

has a direct involvement to peer reviews (CMM level 3) and defect prevention (CMM

level 5).

Culture

There is only limited experience to date (only selective/limited application of

APPLYING Gilb’s inspections) for Intracom to assess the cultural impact of the

Session 10: SPI and Measurement I

Page 10.12

GINSENG experiment to the software development personnel (managers and
engineers). Even so, some elements of a cultural shift have been introduced and

favourably accepted by GINSENG participants, while even more significant potential

exists as indicated below:

Gilb’s inspections provides a much needed framework for teamwork in line with

business/unit goals and objectives

Team efficiency and improvement aspects are significantly promoted. As already
mentioned, execution of inspection with Gilb’s method leads to systematic team

process improvement by providing a robust model of team operation and

effectiveness.
A basic reference on SPI is provided for everyone to use and an effective language

for systematic improvement becomes (potentially) everybody’s knowledge in their

standard every day work.

Intracom expects the method of Gilb to be a strong foundation for supporting, in a
bottom-up manner, a universal continuous improvement culture, by providing

specific activities that implement top level goals related to quality and productivity.

Skills

During the initial phases of the GINSENG experiment, significant effort was

expended in training members of the baseline project, as well as key personnel across

the SWDC. The training covered techniques and disciplines useful in implementing
inspections via Gilb’s method. Training involved 20 people to date, in two sites of

INTRACOM where the baseline project is executed, while more people will be

trained in the future.

In addition, line and project managers were offered a overview training (also

delivered by the Ginseng’s technical co-ordinator) exposing them to the inspections

via Gilb’s method basics. A significant number of managers are trained to date and
more will be trained in the future. These people will be trained to understand the

benefits of performing inspections via Gilb’s method and to be supportive of

individuals and teams applying this method.

Finally, the baseline project and other involved personnel has acquired expertise in

introducing Gilb’s method and its consequent metrics. This expertise is disseminated
to other project teams within Intracom.

Key Lessons

Technological point of view

In general, the Method of Gilb shows good value potential for beneficial application
to software development.

At the training stage, the courses provided, initially to Ginseng technical co-ordinator

and then two the two mentors was found to be quite educational as well as definitely
demanding and challenging for every participant.

In relation to actual implementation of the Gilb’s method, after process adaptation

and guidance was provided, no serious problems were encountered to date.

In general, it appears that Gilb’s method is more easy to introduce and may

Session 10: SPI and Measurement I

Page 10.13

demonstrate higher ROI (Return On Investment) in the short term, in software
development areas where short and recurring development cycles are involved, rather

than in environments with long software development cycles. This is due mainly to

the fact that in this (short cycle) case, adjusting and learning of the method should

produce results sooner, e.g. from the second application cycle after the pilot
introduction, while thereafter, results from defect prevention activities (analyses,

guidelines etc.) will accumulate in a much faster pace and be based on a wider

spectrum of development cycle experiences. Intracom intends to introduce Gilb’s
inspections to short cycle development, besides the baseline project experience.

On the other hand such an intensive, thorough and systematic approach to inspections

with particular emphasis in defect prevention can be very powerful when very high
quality standards apply (e.g. military, aerospace, telecom, medical, etc.), normally

associated with long development cycles. This indeed is a strong motivation to adopt

such a method in cases like Intracom’s baseline project as well as other similar areas

(telecom, safety, military or other real-time software), where high reliability is
pursued (even with a higher initial cost). Indeed, ROI even in this case could rise

significantly if one counts the negative business impacts of delivering less than top-

quality software to the customer.

Business point of view

Justification of introduction of Gilb’s inspections. The initial effort expended for

Gilb’s inspections establishment, represented a rather medium overhead. The
overhead from introducing Gilb’s inspections was justifiable only in a wider

organisational context, based on the prospect of introducing Gilb’s inspections

gradually and eventually for every new SWDC project as a standardised suggested
process. For the foreseeable future however, this has to be applied on a volunteer

basis (at project level). The issue of introducing Gilb’s inspections at the SWDC was

under serious consideration prior to GINSENG, but GINSENG itself accelerated the

implementation of Gilb’s inspections.

Spreading the use of Gilb’s inspections. The Gilb’s inspections experiences

acquired through GINSENG, appear to be spreading and considered for reuse and
adaptation in other software development areas as well (new projects both within and

outside AXE-10 development). It is foreseeable that Gilb’s inspections may become

institutionalised first in certain application areas (first of all in the one that the
baseline project belongs) then in others and eventually overall in the SWDC.

Acceptance and support of Gilb’s inspections has to be ensured at each stage before

proceeding further towards an institutionalisation path. Expanded use and acceptance

of Gilb’s inspections enhances the impact on the original application area which will
be viewed as a pioneering effort.

Project overhead. The project overhead caused by the first implementation of Gilb’s
inspections, based on baseline project data, was estimated to be under 8% excluding

initial training. It is expected that this overhead will drop significantly in future

cycles where Gilb’s inspections are to be implemented. Actually, it is expected that

when the method of performing inspections according to Gilb gets institutionalised
(used as a standard inspection process upon the majority of the projects) will remain

low, at a level of around 3 to 4% or even less, if full automation in data collection and

analysis can be provided. This appears to be an acceptable cost with high gain in
quality over the whole software development cycle.

Session 10: SPI and Measurement I

Page 10.14

Outside interest. This has been expressed for Intracom’s GINSENG related

experiences and there is potential for Intracom to provide a pioneer method for

inspections and SPI related services to the Greek market of software developers.

GINSENG related experiences and practices should be carefully and gradually
transferred in the environment of different organisations. This is because of potential

differences in technical and business characteristics, and particularly due to a

software development process which may be less mature than Intracom’s one.

The method of Gilb complements other SPI activities. Being a generic and flexible

approach, the method of performing inspections according to Gilb was found to be
well suited for such a purpose, addressing the bottom line, i.e. the individual software

engineer and software development teams. It is for instance, closely linked and

complementary to CMM based SPI actions (SWDC is already actively involved in

this).

Strengths and weaknesses of the experiment

A number of positive comments can be made on the approach followed by GINSENG, based

on results and experiences up to project midterm. These can be summarised as

follows:

Introduction of the Gilb’s method in performing inspections was introduced to

enhance the effectiveness and efficiency of the existing design review/inspection

process. To this end the existing experience in inspections has been used as a
comparison basis to debate the validity of the Gilb method, but on the other hand it

has been used as a bridge for the better introduction and exploitation of the method,

adopting a stepwise approach.

There is a positive perception by people involved in the experiment that the method

of Gilb can help to improve their efficiency and team consciousness relative to

inspections, also gradually building confidence that the possible faults slipping

through subsequent phases are being reduced.

Introduction of defect analysis with potential of improving the software design

process itself to prevent occurrence of faults in the first place with benefits to be

achieved in future projects.

The nature of the method has made its tailoring to the existing processes of the

organisation relatively straightforward, increasing somewhat the early appraisal and

prevention time but with good prospect of significantly reduced late appraisal as well
as failure/rework time.

Gilb’s method complements other SPI initiatives and programmes already in place

such as CMM (peer reviews at Level-3, and defect prevention at CMM Level-5),

Competence Development, Policy Deployment etc., the approach taken providing
mutual benefits with such efforts.

The method of Gilb has high potential to quickly spread to different software

development areas in the company since the inspections’ outcome ensures more
reliable criteria for approval and acceptance of software design products and promises

enhanced quality of such products.

Session 10: SPI and Measurement I

Page 10.15

The method of Gilb appears to have high potential for effective dissemination and
consulting to other organisations that will be interested.

Adequate and effective management support was achieved and continues to help

perform the experiment.

The method can be adapted for use in other areas of design work besides software; for
example hardware when high and exacting standards are prevalent (this is a very

important prospect, since Intracom is involved in several such areas).

On the other hand, a number of problems and/or limitations were identified in

carrying out the approach followed. These can be summarised as follows:

Introduction of Gilb’s method to a baseline project has to be performed in a

‘discretionary’ way, avoiding any potential disruptions. Introducing Gilb’s method

can be a risky undertaking for a project which is planned and initiated independently

and without a pre-existing infrastructure and culture. In the case of GINSENG, for
instance, there was no possibility to establish a baseline project dedicated to the

GINSENG experiment. Thus, one of the normally scheduled and planned projects

was used. This will be less of a problem in newer projects where adoption of Gilb’s
method will be achieved in a more educated manner and planning can be more

effective, based on GINSENG experiences.

Some hesitation was expressed originally from a few practitioners (software

designers) fearing a bureaucratic overhead on top of their technical work. This was
gradually overcome with the help of mentors and as the practitioners themselves

started to recognise benefits in the method from results to date and the empowerment

that it offers them to perform their work in a better way.

Session 10: SPI and Measurement I

Page 10.16

References

 [1] Fagan M. E. Design and Code Inspections to Reduce Errors in Program

Development, IBM Systems Journal, 15(3), 1976, pp. 182-211

[2] Fagan M. E. Inspecting Software Design and Code, Datamation, 1977, p.

133-144

[3] Fagan M. E. Advances in Software Inspections, IEEE Transactions in

Software Engineering, SE-12(7), 1986, pp. 744-751.

[4] Gilb, T., Graham, D., Software Inspection, Addison-Wesley, Reading, U.K,

1993.

[5] Gilb, T. Advanced Defect Prevention Using Inspection, Testing, and Field

Data as a Base, American Programmer, 1991, pp. 38-45

[6] Gilb, T., Document Quality Control: The case for quality control in written

products and processes. Computer Task Group’s PEOPLEWARE, U.S.A, 1992, pp.

12-15

[7] Grady, Rober B, and Slack, Tom Van, Hewlett-Packard, Key Lessons in

Achieving Widespread Inspection Use, IEEE Software, July 1994 pp.56-58

[8] Humphrey, W.S., Managing the Software Process, Addison-Wesley,

Reading, Mass., 1995.

[9] Marc C. Paulk et al. The Capability Maturity Model, Guidelines for Improving

the Software Process, Addison-Wesley, Reading, Mass., 1995

[10] URL:www.ourworld.compuserve.com/homepages/kaiGilb.

Session 10: SPI and Measurement I

Page 10.17

Appendices

The Companies

INTRACOM S.A:

Founded in 1977, INTRACOM is the largest manufacturer of telecommunication

equipment and information systems in Greece. In 1990, the company is listed on the
Athens Stock Exchange and, by accelerating growth, establishes a strategic position

within the European market. In cooperation with its subsidiaries and affiliates, the

company provides products and services to the Greek public and private sectors,

while developing significant international presence. INTRACOM provides products
as well as integrated services for the design, manufacturing, turn-key project

implementation and support in the following areas:

Public Telecommunication Networks - Telecommunication Systems Software -
Integrated Business Networks - Network Management Systems - Energy

Management Systems - Satellite Applications - Defense Systems - Integrated

Wagering Networks

Authors

Mr. Dimitris Stasinos, M.Sc, is a telecommunications S/W development engineer in
INTRACOM. Mr Stasinos has an experience of 3 years in development of real-time

digital telephony applications, related to the area of ISUP (ISDN User Part). He has

has also acted as Project Manager in process improvement projects. Today he holds a

position as process responsible. Mr Stasinos was trained as an inspection expert by
Tom Gilb and acts as a facilitator for the introduction of Gilb’s inspections in

INTRACOM. He can be contacted at dsta@intranet.gr.

Mr. George Tsoubelis, D.Eng., is a telecommunications S/W development engineer

in INTRACOM S.A. He has a 3 years experience in the development of real-time
digital telephony applications, related to the area of Operation and Maintenance and

ISUP, while for the last 2 years he is acting as project manager in the ISUP area. Mr

Tsoubelis is the project manager of the baseline project. He can be contacted at
gtso@intranet.gr.

Mr. Vasilios Zioutopoulos, B.Sc., is a software quality assurance engineer in
INTRACOM S.A. He has 8 years of experience in quality assurance support of

internal projects and in software process improvement initiatives. He holds an

executive position as responsible for the organisation and management of ESSI

(Ericsson System Software Initiative) deployment within INTRACOM. Before that
he has worked for Cussons International Ltd., a multinational manufacturer of

personal hygiene products, as project manager in production line design and

installation, in U.K. Mr. Zioutopoulos is a software inspections methods expert. He
acts as the overall technical coordinator of Ginseng project. He can be contacted at
bziou@intranet.gr.

mailto:bziou@intranet.gr

Session 10: SPI and Measurement I

Page 10.18

Control your projects
by improved planning

Henry Meutstege

Centraal Beheer, Apeldoorn, The Netherlands

Willem Bos

Centraal Beheer, Apeldoorn, The Netherlands

Introduction

Characteristic for many software development projects is the delay in delivery, the budget

overrun and the delivery of a product which is not according the customer expectations. A

number of the software development projects of insurance company Centraal Beheer

suffer the same problems. The central IT department wanted to deal with these problems

and decided to start a process improvement experiment. This experiment is supported by

the European Commission. The experiment is called Plan-IT and is known by project

number 27784.

In this article we will describe the process improvement experiment, our experiences with

the supporting tools from Quantitative Software Management (QSM) and the lessons we

learned during the experiment.

Centraal Beheer

Centraal Beheer (CB) is a medium size (3300 employees) insurance company with

operations in the Netherlands. Centraal Beheer is an insurance company acting as a direct

writer for life as well as non-life insurance. The company is part of the ACHMEA group

in the Netherlands and the EUREKO group in Europe. EUREKO is a large international

banking and insurance company with over 33000 employees situated in 12 different

European countries.

Centraal Beheer, employs 150 people in its central IT department. Since 1997, it has

adopted the Capability Maturity Model (CMM) as its process improvement model. As a

result of CMM-driven improvement initiatives, the department has reached Level 2 in

many areas of its development process. However, a new assessment showed that project

planning and tracking still needed attention. These area’s of CMM are the focus of the

Process Improvement Experiment Plan-IT.

The central IT department consists of several parts :

Application Services; This department is responsible for maintenance of several large

central IT systems.

Application Component Centre; This department develops or composes new systems

based upon components.

Electronic Banking Applications; This department develops systems based upon web-

Session 10: SPI and Measurement I

Page 10.19

technology.

Support; Supports the prior mentioned departments

Session 10: SPI and Measurement I

Page 10.20

The Process Improvement Experiment

In origin the experiment was initiated because of problems to realise projects within

planned effort and time. This problem was indicated by our internal customers, who

became more and more aware that our software development projects should run better.

Our customers pinpointed weak planning and tracking as the mayor causes of their

dissatisfaction.

With the process improvement experiment we want to improve two Key Process Areas of

CMM level 2:

Project planning

Project tracking and oversight

Because we started our project PLAN-IT in august 1998, we decided to perform another

(smaller) assessment to measure the baseline maturity level at the start of this project.

This showed information about the areas we had to improve for a higher level and

information about the changes in our organisation since the latest assessment in June

1997. This assessment also showed a low maturity on Software Configuration

Management. We decided to postpone actions on the key process area Software

Configuration Management until after this experiment. Our main goal was delivering a

product within planned time, effort and quality.

The main objective of the experiment:

Improving the quality of the planning and tracking process in order to control the

costs, the time to delivery and the quality of our software development projects.

Demands and wishes

In order to improve the areas of project planning and tracking we needed (historic)

baseline information at the start of a new project. This information is necessary to

organise a project, to make a founded offer to the customer, to make a realistic planning

and to manage the project capacity. We wanted to be able to manage the expectations of

our customers.

To realise the main objective we defined several actions:

Improve the current standard guidelines and procedures for project planning

focusing on the appropriate use of historic data from completed projects.

Establish a project monitoring office with the following main tasks:
Supporting project management with planning, tracking and reviewing the software

development projects;
comparing results with documented estimates, commitments, and plans;
providing adequate insight into actual monthly progress of the different developments, so

that management can take effective action when a software project’s performance

deviates significantly from its planning;

The project monitoring office (together with the project managers) will have the

responsibility of quantifying and assessing the risks at each stage of development.

Experiment in a real life planning & development situation with the new approach

and the support of an estimation- and tracking tool.

Create awareness of the importance of the use of effective planning and registration

techniques.

The starting point of the experiment was to improve and test the procedures and

Session 10: SPI and Measurement I

Page 10.21

guidelines and test the selected supporting tools in two real life software development

projects. The first software development project was used to develop new guidelines and

procedures and improve the existing ones. Also the supporting tools were tested during

this software development project. During the second software development project the

guidelines and procedures were fine-tuned and the tools were implemented in the

organisation.

Project monitoring office

During the software development projects the Project Monitoring Office (PMO) had to be

organised. The PMO played a very important role in the experiment. The activities of the

PMO were clearly defined. At the start of a software development project, the PMO

office delivers several services (like function point analysis, review of the project plans

and create several project scenario’s using the QSM tools). An advantage of this approach

is that the PMO is involved in the starting phase of a project. This way it is able to show

the advantages to the project managers in an early stage. The project managers were very

satisfied with the support by the project monitoring office.

The office supports the project in:

Organising the project

Organising quality in the project

Calculating the project

Making a planning

Tracking the project

Collecting metrics

In the past historical data wasn’t used in new projects. During the experiment we started

collecting metrics in order to learn from the past and to estimate new projects, based on

this information. Collecting this information is a major change in our organisation and in

particular to the project managers. People had to get used to this new attitude of collecting

metrics. The attitude slowly changed. Collecting and keeping these metrics is one of the

tasks of the project monitoring office.

We also centralised the use of the QSM tools at the project monitoring office. The people

working at this office are trained in using these tools. Training of other employees is not

necessary. Unambiguous use of this tool is extorted this way.

Supporting tools

In order to support us in the planning and tracking process we needed an estimating tool

and a tool that supported us in tracking a project. We wanted to make a founded offer

towards our customers. We also wanted to spot possible extension of a project in an early

stage, not at the moment it occurred. With these demands and wishes we examined the

possibilities of several supporting tools. Only few seemed useful in supporting our goals.

Among them Knowledge Plan of Software Productivity Research (SPR), Seer Metrics of

Seer, and the SLIM tools of Quantitative Software Management (QSM). Examining these

products resulted in the conclusion that only the Slim (Software LIfecycle Management)

tools of QSM satisfied our needs. Knowledge Plan and SEER Metrics had no facilities to

support the project tracking process.

Historical information of company-own projects can be imported in the QSM SLIM tools.

This way the tools can calculate the Process Productivity of your own organisation. The

Process Productivity is indexed within the SLIM tools by the Productivity Index (PI). The

equation which calculates the process productivity was developed by the founder of

Session 10: SPI and Measurement I

Page 10.22

QSM, Lawrence H. Putnam. It is based on 4000 software development projects. It has the

next formula:

 Quantity of product (in source line of code)

Process Productivity =
 (Effort in person years/Skills factor)¹/³ * (development time in years)³/4

An description of the software equation and the philosophy behind the QSM SLIM tools

is found in “Executive briefing: Controlling software development” by Lawrence H.

Putnam.

The QSM SLIM tools

The QSM SLIM tools is a tool set with :

SLIM Estimate
This part of the SLIM tools generates Estimates of Software projects. One can produce

several different scenarios of a software development project. The necessary input

consists of:

Size of the system (in Lines of code, number of objects or function points)

Application type (business, telecom, production etc.)

Productivity Index (PI, number that reflects the productivity of the department)

The tool generates information on time (person months, milestones and phases), costs and

quality.

SLIM Control

SLIM Control can be filled from SLIM Estimate with an initial plan. During the project,

tracking data must be entered. Every period data like realised hours, realised progress in

functionality and number of errors found during testing are entered. By entering this

information, SLIM Control calculates the progress, compares the progress with the initial

plan and is able to forecast the further development of the project. After only three or four

measurements in the construction phase you can see how the project will develop in the

future.

Slim Metrics

In this tool extra metrics are collected, analysed and transformed into useful

(management) information. This tool isn’t evaluated during the experiment.

Session 10: SPI and Measurement I

Page 10.23

Staffing Profile

0

1

2

3

4

5
1 2 3 4 5 6 7 8 9

S
ta

ff

1 2 3 4 5 6 7 8 9 10 11 12 13 14 *

Jan

'99

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

'00

Feb Mar Apr

FO

BOUW

Maint

1 = PDR

2 = CDR

3 = FCC

4 = SIT

5 = UOST

6 = IOC

7 = FOC

8 = 99R

9 = 99.9R

RISK

Time

Effort

Uinf Cst

Min Pk Staff

Max Pk Staff

FOC MTTD

% 0 10 20 30 40 50 60 70 80 90 100

Time

Effort

Uinf Cst

Pk Staff

MTTD

Start

Months

PHR

DG 1000

People

Days

Date

BOUW

6.36

1839

368

3.00

5.82

23-5-99

Life Cycle

12.39

3126

625

3.00

194.94

1-3-99

Size

288

FP

MBI 2.7

PI 18.3

SLIM Estimate

The tool Slim Estimate uses three parameters: the size of the application, type of the

application and the Productivity Index (PI). The size of the application must be put into

the tool in lines of code or function points. For the type of application you have for

example Business, Process Control, Scientific and some other similar types. At Centraal

Beheer practically all applications are of the Business type. The Productivity Index is

calculated by using information of the QSM history base and the own history. When there

are no further conditions Slim Estimate is capable in presenting a project scenario. An

example of the output of Slim Estimate is presented in figure 1. This is only a small part

of the total available information.

Figure 1. Phaseplan from Slim Estimate

By playing with the basic elements (costs, time and quality) of a software development

project different scenario’s can be produced within little time. These scenario’s can be

used as input during negotiations with the customer. You are able to show the customer

the consequences of his question(s). When the customer changes his demands, you can

show the project changes in:

Time

Effort

Milestones

Phases

Risk

Because of this improvement the communication with our customers has improved. We

are able to manage their expectations.

Session 10: SPI and Measurement I

Page 10.24

Gantt Chart

BOUW

FO

S 7654321
S 765 4321

1 9 17 25 33 41 *

6/3

'99

1/5 26/6 21/8 16/10 11/12

Size

0

20

40

S 7654321
S 765 4321

E
S

L
O

C
 (th

o
u
s
a
n
d
s
)

1 9 17 25 33 41 *

6/3

'99

1/5 26/6 21/8 16/10 11/12

Aggregate Staffing Rate

0

2

4

S 7654321
S 765 4321

P
e
o
p
le

1 9 17 25 33 41 *

6/3

'99

1/5 26/6 21/8 16/10 11/12

Total Defect Rate

0

2

4

6

S 7654321
S 765 4321

D
e
fe

c
ts

1 9 17 25 33 41 *

6/3

'99

1/5 26/6 21/8 16/10 11/12

Total Cum Effort

0

1000

2000

3000

4000

S 7654321
S 765 4321

P
H

R

1 9 17 25 33 41 *

6/3

'99

1/5 26/6 21/8 16/10 11/12

Elapsed Weeks

Size (ESLOC(K))

Agg. Staf f

Total Def ect Rate

Total Cum Ef f ort (PHR)

PI 19.6 15.7 -4.0

MBI 3.2 1.8 -1.3

Date 10-8-99 (23.29 weeks)

Plan

Actual/

Forecast Dif f

23.29 23.29 0.00

16.51 16.91 0.40

2.60 2.96 0.36

4 4 1

1044 1814 770

Current Plan Actual Interpolated Current Forecast Green Control Bound Yellow Control Bound Life Cycle includes FO, BOUW

S = Start, 1 = PDR, 2 = CDR, 3 = FCC, 4 = SIT, 5 = UOST, 6 = IOC, 7 = FOC

SLIM Control

The second tool SLIM Control uses the chosen scenario from SLIM Estimate as base.

Every two weeks the progress has to be put into the tool. The progress in realised hours

and realised functionality is measured. Realised functionality can be measured by

counting realised lines of code, or realised function points. As a result SLIM Control

compares the realised progress with the baseline plan of the project. An example of the

output of SLIM Control is presented in figure 2.

Figure 2. SLIM Control output

SLIM Control warns by traffic lights when one of the basic elements is running out of

plan. A green traffic light indicates a good realisation according to plan. A yellow traffic

light indicates that this element needs attention but still is in the safe zone. And a red

traffic light indicates that the realisation is not according to plan and needs immediate

adapting.

Session 10: SPI and Measurement I

Page 10.25

Implementation of improvements

Create awareness of importance of effective planning and registration techniques
The management initiated this experiment because of problems in projects. The main

problem was that the project manager didn’t have control on the project. At the beginning

people were sceptical towards the experiment but now they see the first results this

attitude changes into a more enthusiastic attitude.

Disseminate results

We disseminate the results of the experiment as much as possible. We have had a lot of

conversations with both management and project managers about how to organise a

project and cope with planning, tracking and registration. We use different media in

which we disseminate e.g.:

Achmea Newsletter

Kick off meeting

Self assessments

Software Process Improvement Newsletter (SPIN)

Measuring report ’98

Conferences (Fesma, EuroSPI, SERC Software Process Metrics)

Article at Software Release Magazine

Software in Focus Newsletter

Reward suggestions
Another way to encourage people is a small present they can win when they have a good

suggestion to improve the process. This way people start thinking about the process.

Project monitoring office

The project monitoring office has a central role within the implementation of

improvements. This office can locate immature areas in the process. The supporting task

of the office helps in implementing improvements. At the beginning the office actively

helps the projects in planning and tracking. When project managers get used to the new

approach they can do the work themselves.

TIP!
Involve people in the improvement experiment

Keep people informed

Reward suggestions for improvement

Experiences

During this experiment we had some useful experiences. These experiences concern

involvement of the management, the project monitoring office and the QSM tools.

The project monitoring office had a central role in the experiment. It took care of

registration of data and feed back to the project manager. This office was also responsible

for the dissemination of the results and awareness within the organisation. The knowledge

about the QSM tools was centralised in the project monitoring office.

The project monitoring office can generate management information out of the project

information. This is important to get management commitment for an improvement

experiment like Plan-IT. If this commitment fails, the experiment has no chance to

survive. The management has to propagate clearly this new course.

Session 10: SPI and Measurement I

Page 10.26

During this experiment the QSM tools were examined. From the beginning SLIM

Estimate proved added value to software development projects. We were able to generate

scenario’s with only few input. These scenario’s were used to negotiate with the customer

and to organise the project. Now we are able to make a founded offer to the customer

based on experiences from the past. A small disadvantage was the fact that the

experiences from the past were not coming from our own organisation but from projects

from other organisations. Therefor it is important to gather own metrics as soon as

possible. An other advantage of organising this tool was the improving of the planning

process. The maturity of this process improved automatically.

The added value of SLIM Control was low during the first pilot project. There were two

reasons for this. First of all the application was rather small (200 function points, 1100

man hours). The project manager was able to track this project ‘by hand’ and didn’t need

to use an advanced tool like SLIM Control. The added value of this tool will probably be

higher with larger and more complex projects. The second reason was the fact that we

were not able to track progress on realised lines of code although this is one of then main

advantages of the tool. During the first pilot project we couldn’t get the right data about

realised functionality. This was caused by failing procedures and absence of tools to

count lines of code.

During the second pilot project the added value of SLIM Control was much higher. The

procedures to track realised functionality were adapted and worked. This project was also

larger then the first one (290 function points, 2500 man hour). There are still some area’s

to improve like using these tools in a maintenance environment.

Lessons learned

You must have management commitment to have a successful improvement experiment.

If you don’t have this, the experiment is doomed to fail.

Using the tools stimulated the improvement of the process. The tools demanded a

structured way of planning, tracking and using metrics. So the tools catalyses the

improvement of the process.

Another important advantage is the generated information. This information is very useful

in negotiating with the customer. You visualise the project and the consequences of

certain decisions. This way you take emotion out of the negotiation.

Projects with an average size like in this experiment are too small to track with an

advanced tool like SLIM Control. We think it is useful to projects larger then 2000 man-

hours. The smaller projects can be tracked ‘by hand’.

Disseminating and informing employees about the results and stimulate them thinking

about improvements of the project can help implementing these improvements.

Employees must see the added value of an activity. Only then it will be accepted.

The tools are based on 4000 business projects. This is useful to start with. It is better to

have your own metric database to work with. This way the information you get from the

tools will be more accurate.

TIP!
Start organising the software process for a solid environment to use the tools in

Get management commitment

Start collecting metrics right now!

Project monitoring office support projects actively to get commitment

Negotiate and communicate with the customer about concrete SLIM information

Session 10: SPI and Measurement I

Page 10.27

Result

As a result of this experiment Centraal Beheer now implemented and uses a metric

program. The project monitoring office is operational and has added value in supporting

the software development projects. The tool SLIM Estimate has to be used in making an

offer to the customer. SLIM Control is an effective tool to track progress and to forecast a

project. Projects must be at least above 2000 man hour to prove it’s added value.

Thanks to the subsidy of the European Commission we were able to improve the area’s of

projectplanning and projecttracking to level 2 of CMM!

Session 10: SPI and Measurement I

Page 10.28

CV author Willem Bos

Willem Bos (willem.a.bos@achmea.nl) is process manager at Centraal Beheer. He is 28

years old. He graduated from a business school of informatics at 1996. During the first

period he worked as quality manager in several projects. One of the most important

projects was getting all information systems of Centraal Beheer 2000-compliënt. After

this project he was involved in this experiment Plan-IT as process manager, responsible

for the quality of the software process. His main focus was getting the project monitoring

office started. He encouraged the use of metrics in the planning and tracking process. The

metric program is implemented and growing. He is operationally involved in projects,

doing function point analysis, supporting in planning and tracking a project. Within Plan-

IT he is also responsible for disseminating the experiment results.

CV author Henry Meutstege

Henry Meutstege (henry.meutstege@achmea.nl) is project manager at Centraal Beheer.

Henry is 34 years old, married and has two sons. He graduated from a business school of

economics at 1988, where he followed a specialisation in business informatics. He

worked in the Information Technology as programmer, systems analyst, information

analyst and the last few years as a project leader. He worked for two software houses in

the Netherlands, and started working at Centraal Beheer in 1996. Starting in June of 1998

he became responsible for the software improvement in the software development

department he was working in. Having a large experience in software development he is

considered the ideal person to create the bridge between the large amount of available

theory, and getting it really done in practice.

He is the project manager in charge of Plan-IT. He made the management aware of the

importance of a good metrics program and did a lot of good work in creating more

understanding between the customers of the software development department and the

developers.

Address

Centraal Beheer
PO Box 9130

7300HS Apeldoorn

References

M. Imai; Kaizen : The key to Japan’s competitive success; McGraw-Hill, 1986.

M. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis; Capability Maturity Model for Software,

version 1.1, Software Engineering Institute; CMU/SEI-93-TR-24, February 1993.

Lawrence H. Putnam, Ware Myers; Executive briefing : Controlling software
development; IEEE Computer Society Press

Lawrence H. Putnam, Ware Myers; Industrial Strength Software, effective management

using measurement; IEEE Computer Society Press

Eliyahy M. Goldrath, Jeff Cox; Het doel, een process van voortdurende verbetering; Het

Spectrum

Robert B. Grady; Practical software metrics for project management and process
improvement; Hewlett-Packard professional books.

mailto:willem.a.bos@achmea.nl
mailto:henry.meutstege@achmea.nl

Session 10: SPI and Measurement I

Page 10.29

METRANET:

An extranet for the
improvement of the

Outsourcing of
Software Maintenance

projects using Function
Points Analysis

Miguel Angel Martínez

Atos ODS S.A. Departamento Ingeniería y Servicios

Isabel Fernández

Atos ODS S.A. Departamento Ingeniería y Servicios

Session 10: SPI and Measurement I

Page 10.30

Introduction

This article relates the results of a Processes Improvement Experiment carried out by the

Spanish software house Atos ODS within the 4th Framework Programme of the European

Commission. The main objective of the experiment was the drawing up of a metric model

based on Function Points Analysis for the management of the Outsourcing of Software

Maintenance projects. ATOS´s Outsourcing Unit was made up at the start of this

experiment of around 70 people. At this moment, more than 130 people are working in it.

The Bank of Spain, as well as two of the main Spanish private banking groups,

Argentaria and Banco de Santander, are among Atos´clients in Outsourcing projects.

Besides banking, we have Outsourcing clients in the public administration, and in the

health and telecommunication sectors.

In that experiment, Internet technology has been applied in such a way that the metrics

system is in a web-database accessible by different players with different degrees of

visibility: the Atos´s quality department, the Atos's technical team, and the client. To do

that , the metrics tool SPI-Web, marketed by the Spanish firm MIT, was used during this

experiment. The underlying idea is that of the extended company, as is found in the

philosophy of Extranets.

Session 10: SPI and Measurement I

Page 10.31

Starting Scenario

The origin of this experiment must be found in the results of a quality assessment carried

out during 1996. This assessment of the software development process, which was funded

also by the ESSI program of the European Commission, was performed using the

BOOTSTRAP methodology.

The service provided by Atos ODS rests on a Service Level Agreement basis. To verify

these agreements we had to collect basic metrics such as response time, number of errors,

lines of code -LOC, etc., but BOOTSTRAP assessment revealed deficiencies in process

measurement and in the project management and quality assurance processes. The

processes to collect metrics were poorly standardised, deviation between estimated and

real data was high, and metrics results were exclusively used to review the project status

with the client, not as a way of improvement.

During the contract definition phase Atos takes the compromise of maintaining a portfolio

of applications guaranteeing a fixed level of quality. The maximum time accepted to

solve possible errors is also fixed. The client assures a minimum level of service

engagement.

Therefore it is essential that ATOS may collect data regarding the Service Levels fixed in

the contract to review periodically the project results with the client. Data are also needed

to decide when the contract agreements should be modified due to volume changes in the

project .

Projects are mainly carried out at the client's offices by Atos' project team. The team is

formed by the project leader, the analysts and the programmers. The client designs a

Project Manager who has the responsibility of defining new tasks; the effort approval;

and monitoring the project. The users are also involved requiring improvements of the

systems.

This organisation is reinforced by the managers of both partners who monthly perform

the monitoring of the service.

To assure the quality of the service, Atos has an specific Quality Department that looks

after the use of standards. This team also measure the Agreement Service Levels

established in the contract.

As a result of the BOOSTRAP Assessment, Atos has started this experiment with the

following objectives:

The selection of a technical infrastructure to solve the problem that metrics must be

recorded in the client’s facilities but should be visible from ATOS. The objective was to

create a valid infrastructure so that the data were visible from ATOS and also available to

the clients, so that every ATOS Director (and even the clients) can access the metrics

from everywhere. This will allow them to know the project’s data as well as the set of

projects and customers, and this will allow project benchmarking so that not only the

Technical Department can initiate improvement actions (with regard to methods and

tools), but also the Marketing Department can take its own marketing decisions.

Session 10: SPI and Measurement I

Page 10.32

The definition and the introduction of a Metrics Model for Management based on

Function Points, aiming to increase the visibility of the Directors of the Technology,

Marketing and Quality departments with regards to the Productivity and Quality levels of

the projects.

From the start of the experiment we were conscious that to attain these objectives was

difficult for different reasons:

The big size of the Information Systems: more than the 80% of the technical staff of our

clients is employed in Maintenance activities.

The criticality of the service: the time solving errors is essential because most of

applications are in use.

The Roles diversity: we know that the use of the new metric model and its acceptation at

all staff levels could be a task for the medium term (1 year) because of the existence of

different profiles with different needs and point of views. Then a lot of intensive training

and awareness is needed to be able to introduce such models.

Session 10: SPI and Measurement I

Page 10.33

Plans and expected outcome

The initial step was the definition of the metric model, with the intention of checking,

and evaluating cost, effort and quality of service. SIP, a Spanish consultancy firm highly

experienced in quality issues, has been acting as a subcontractor, helping us to define and

operate the standard set of metrics defined.

The first task was the Study of ATOS needs. Closely related to this study, an status study
was performed. The current status of ATOS was analysed taking the baseline project as a

reference, identifying the currently available information and the processes followed for

gathering data. This work had a positive result confirming that it will be possible to gather

all the model basic metrics in a short time. During the model definition phases,

participation of directors was essential because they are the end users of those metrics,

together with the clients, the project or service leaders, and the maintenance team..

Finally the metric tree was organised in two sets of metrics shown below according to the

maintenance activities classification given by IEEE 1219 1993 : Corrective, Adaptive,

Perfective and Preventive. See IEEE 1993 [1]. The first set of metrics is the Corrective /

Preventive metrics set. The second refers to Perfective / Adaptive maintenance. This two

set of metrics fits with the two main kind of activities performed and measured in our

service level agreements:

Elimination of blocked situations (errors) – first set of metrics

Improvement of the system (new requirements) – second set of metrics.

Corrective-Preventive Metrics

Name Metric Formula Frequency of

Reporting

Audience

Level *

Scope

PRODUCTIVITY

Maintenance
Coefficient

IMA = Maintenance
Effort (in hours) /

Application Size (in FP's

)

Variable CMM,
ARM,

CML, APL

Portfolio

Maintenance

Productivity

PMA = Application Size

(in FP) / Maintenance

Effort (in hours)

Variable CMM,

ARM,

CML, APL

Portfolio /

Application

Application
Support Trend

TAS = Support effort (in
hours)/ Portfolio size (in

PFs)

Annually CMM,
CML, CPL,

ARM,

AMM

Portfolio

Assignment
Scope

AA = Application Size
(in FP) / Number of

maintenance staff (in

persons)

Quarterly ACM,
AMM, APL,

T

Portfolio /
Application

Session 10: SPI and Measurement I

Page 10.34

QUALITY

Reliability IE = Errors number / Size

of the application in
Function Points

Monthly All levels of

the
organisation

Application

Mean Repairing

Time

Repairing Time

Deviation

TMRC = Time spent in

correcting errors during
maintenance / number of

corrected errors

DRPC =

 = (TRCi -TRC) / N

Monthly

CMM,

CML, CPL,
ARM,

AMM, APL

Application

FINANCIAL

FP Maintenance

Cost

CM = [(Maintenance

Effort in hours * cost) +

other costs)] /

Application Size in PFs

Annually CMM,

CML, CPL,

APL

Portfolio

Corrective Total

Cost

CR = (Maintenance

Effort in hours * cost) /

FP's

Half-yearly CML, CPL,

ACM,

CML, APL

Portfolio /

Application

Fig: Martin 1: Corrective Preventive Metrics

* Acronymes of the different roles played by clients and Atos' technical team and staff

in Outsourcing projects: CMM Client´s Maintenance Manager; GML Client´s

Maintenance Leader ; CPL Client´s Project Leader , ACM, Atos´s Commercial Manager

AQM Atos´s Quality Manager, AMM Atos´s Metrics Responsible , APL Atos´s Project

Leader, T Technician, ...

Session 10: SPI and Measurement I

Page 10.35

Adaptive-Precfective Metrics

Name Metric Formula Frequency

of

Reporting

Audience

Level

Scope

PRODUCTIVITY

Enhancement

Productivity

PM = Total size of

the application

portfolio after the
enhancement / Total

enhancement effort

(in hours)

After

delivery and

acceptance
by the client

of the

improvemen

t project

CMM,

CML, CPL,

ACM

For a

portfolio or

for an
individual

application

Enhancement

Delivery Rate

RM = Total size of

the application

portfolio after the
enhancement /

Enhancement

Elapsed time (in

hours)

At the end

of each

improvemen
t project

CML,

ARM,

AMM, APL

For an

application

QUALITY

Stability

Coefficient

IEA = (number of

changes/ FP of the

Enhancement)

Weekly for

the 90 days

after the
installation

of the

application

CMM,

CML, CPL,

ACM,
ARM,

AMM

For an

individual

application

Error detection

index *

IDE = (Nr. of errors

in phase / Nr. of total

errors) / FP's project

or application

At least

annually

CMM,

CML, CPL,

ACM, APL,

T

For an

individual

application

Reliability FA = 1 - (Application

failures/ FP's)

Monthly or

quarterly

CML, ARM,

AMM

For an

individual

application

Testing
Efficiency *

IHT = Nr. Of errors
detected in tests/

Total Nr. Of errors

One month
after

operation

CMM,
ARM,

AMM, APL

For a
portfolio or

for an

individual
application

FINANCIAL

Improvement

Total Cost

CP = [(Effort used in

the project * cost) +
others)] / FP's

At the end

of the
project

CMM,

CML, CPL,
ARM

For a

portfolio

Fig: Martin2. Adaptive, Perfective Metrics

* These metrics where not recorded during the project but keeping in the model .

Session 10: SPI and Measurement I

Page 10.36

In a second step, all the staff in the management level received several courses. Courses

introducing FP helped them to understand a new way of talking about the size of a

problem. The stress was put on the idea of talking the same language as our clients:

Functionality. The courses also had several hands-on sessions where the participants

learned how to count function points. Another set of courses, more focussed on the use of

metrics for SW management, took place during this period.

The third step was the counting of the FP. The baseline project was an Outsourcing

project running from 1995 for one of the main Spanish banking groups in a technical
platform of COBOL-CICS DB2. This project deals with financial transactions that

amount to around 180 million Euros daily and has a large number of interfaces with

the rest of the bank’s applications, so a serious error can have fatal consequences for

the Bank’s IT.

At it is known, FP counting relies on functional specifications but often legacy

systems are not very well documented and specifications are out of date. During the
experiment we had to face problems arising from lacks on documentation availability

and its update level. We instrumented a set of directives to overcome them:

Systematic documentation and changes history checking.

The establishment of an efficient protocol for acquiring knowledge from the analysts of

the applications to identify the key questions for the count.

Code diving, specially for the batch part of the applications.

The use of proprietary tools for static code analysis. The output of these tools provides

information like database tables accessed, output reports, maps (screen forms) and allows

us to draw a rough cross references schema. Cost derived from code diving was reduced

in this way.

The baseline project includes 10 applications being maintained by the same team. The

total size in lines of code -LOC- is near 2,000,000. LOC are counted using the well

known definition of Hewlett-Packard: every program sentence, except comments and

white lines. Among the project portfolios, the Banking Transfer application was selected

to perform the initial FP counting. This application has a size of 464.000 lines of code and

it is formed by 460 programs. The following table summarizes the main counting results:

Final results where 749.07 adjusted FP for 464 KLOC of Cobol and DB2 code.

ILF’s EIF’s EI’s EO’s EQ’s Unadjusted Total FP

290 180 136 113 142 861

To benchmark the Banking transfer application with the rest of the portfolio applications

we used the backfiring technique. Backfiring suggests rough measures of FP based on

Lines of Code amount (105/107 LOC per FP in COBOL Language), see Jones [2].

Finally the Gathering of metrics using the SPI- Web Tool has started. As explained, the

metrics Data Base is updated through the Internet from the client’s premises. The data are

visible on-line both by the client and by the management of Atos's Outsourcing

Department.

With the SPI Web we are able to:

Capture the basic metrics of effort, cost, errors and number of changes used to derive

quality and productivity metrics.

Session 10: SPI and Measurement I

Page 10.37

Automate the mathematical computing of Function Points from the basic Function Types.

Produce different presentations of the resulting metrics using a variety of histograms.

Define different user profiles with selective permissions to visualize the project data.

A web demo of this tool is accessible at http://Metranet.atos-ods.com

http://metranet.atos-ods.com/

Session 10: SPI and Measurement I

Page 10.38

The implementation of the Improvement actions

By means of these metrics, trends in the reliability and maintainability of the applications

and their cost and productivity ranges were analyzed and improvement measures took

place. For trend analysis, we followed an iterative approach. The first results review

shown below covers the january-april period. Below we shows the most significative

results and improvement actions:

Maintenance Coeficient. (hour/PF)

Fig. Martin3: Maintenance Coefficient Average. January-April period

Studying the Maintenance Coefficient (IMA) we analysed the effort spent in each

maintenance category. The IMA for Help-Desk was bigger than for any other category.

For Banking Transfer this metric was 10 times bigger than the average of the application

portfolio. We think that this is due to a lack of user training in the use of the transfer

application. The data confirm the general appreciation mentioned at the beginning: the

application has a high degree of complexity.

The proposed improvement actions were:

Suggesting to the client specific user training courses

Orienting the responses given by the technical personnel not only to the immediate

elimination of blocking situations raised in the consultancy by the user, but to

understanding and familiarisation of the user with the use of the application.

This was the most critical situation detected because its impact on productivity is high.

Unfortunately on the second period there where not substantial changes in the trend of

this metric. Suggested courses doesn’t fit in the client’s training plans for this year. They

will be included in the next year training schedule.

0,00855
0,00280595

0,2181

0,018643

0,005275 0,00326675

0

0,05

0,1

0,15

0,2

0,25

Banking Transfers Applications portfolio

IM
A

 (
H

o
u

rs
/F

P
)

Corrective

Help-Desk

Preventive

Session 10: SPI and Measurement I

Page 10.39

Alternative proposition about giving elaborated and formative responses to users due to

Atos ODS has not produced appreciable improvements. We think it is too soon to

appreciate better results in this trend.

Maintenance Productivity (PF/hours).

Fig: Martin4. Maintenance Productivity Jan April period

In the first period Mean Maintenance Productivity for the Transfers application was far

below the overall productivity of the applications portfolio. As we saw, factors implied in

this metric are closely related to Maintenance Coefficient metric. This fact explains that

there are not significant changes in IMA behaviour either on the second period.

Reliability.(Nr.Errors/PF)

4,209265

40,8036211

0

5

10

15

20

25

30

35

40

45

Banking Transfers Applications portfolio

P
M

A
 (

F
P

/H
o

u
rs

)

0

0,001

0,002

0,003

0,004

0,005

0,006

January February March April May June

IE
 (

N
r.

 E
rr

o
rs

/
F

P
)

Banking Transfers

Applications portfolio

Session 10: SPI and Measurement I

Page 10.40

Fig Martin5: Reliability. Jan-June period

Studying the Reliability results we stated that the number of errors per FP that arise in the

application of Transfers was greater than that in the rest of the applications. The

immediate conclusion is the need to reduce this number of errors. In order to be able to

take measures in this direction, it was considered necessary to collect additional

information so that the errors could be classified by type and origin because initially

errors where exclusively classified in terms of severity: severe errors are those that have

direct impact in client’s business & image. This was the objective set for the second

review of results.

The collected Typology of Errors are shown below for the whole applications portfolio

and for isolated Banking Transfers application:

Fig: Martin 6. Typology of Errors Analysis for Banking Transfer

Fig: Martin 7. Typology of Errors Analysis for the whole project portfolio

This information has been essential to understand the evolution of Reliability metric.

60% of errors are due to bad Input Data. Data came from internal and external (between

banks) operations. A first sight solution would be filtering data, rejecting erroneous

registers. Nevertheless, this solution is not applicable by the following reason : external

operations not processed means money loss (interests, breach of terms). Solution to this

Errors by Tipology

(Banking Transfers)

Input Data

60%

Wrong Scheduling

30%

Program Errors

10%

Errors by Tipology

(Applications portfolio)

Wrong Scheduling

24%

Program Errors

10%

System Failures

4% User Mistakes

2%

Input Data

60%

Session 10: SPI and Measurement I

Page 10.41

typology fall out of the scope field of Atos ODS.

30% of errors are due to Wrong Scheduling of installation processes once the software

enhancements has been finished and the customer has received the system. This situation

has been reported to the client. Solution to this typology fall out of the scope field of Atos

ODS.

10% of errors are due to Program Failures. Atos ODS was developing improvement

actions at this scope. This failures could be a consequence of the new code added to the

application. Nevertheless, the low influence of this typology in the overall number of

errors makes this actions insufficient to appreciate visible improvements.

The lower April values for IE are due to the less number of maintenance enhancements

developed. This fact are related to Holy Week vacational period. That’s why the number

of Wrong Schedulling errors has decreased. The same applies to Input Data errors: Minor

number of enhancements has been developed by other applications, so few number of

changes are done and few new interfaces with Banking Transfers has been added or

modified. Collected data verifies those facts: April had only one error and its typology

was “Input Data”.

Session 10: SPI and Measurement I

Page 10.42

Mean Reparation Time.

0:00

0 :14

0 :28

0 :43

0 :57

1 :12

1 :26

1 :40

January February M arch A pril M ay June

T
M

R
C

 (
h

o
r
a

s
/e

r
r
o

r
)

Transfe renc ias

P royecto

Fig. Martin8. Mean Reparation Time . Jan - June period

The Mean Repair Time to Critical anomalies (TMRC) for all applications under

outsourcing is a metric used by the client to evaluate the service quality offered by Atos

ODS. This graph shows that the MRTC of the Transfer Application is, in general,

considerably greater than that of the other applications of the portfolio. The conclusion,

then, is that the TMRCs of the overall application portfolio are clearly influenced by those

of the Transfer Application, and that control and reduction of these can lead to

considerable overall improvement

The reduction in the number of errors could be a way to improve repair times (greater

number of available human resources and possibility of optimisation of tasks). Moreover,

the possibility of a database with different search criteria of a historic portfolio of errors

with information on the actions performed to solve them could reduce efforts in the work

of analysis, above all in the case of similar or repetitive errors.

Although Banking Transfers TMRC is higher than the portfolio TMRC as a whole, Mean

Repair Time is less than the maximum expected response time set by the client for

solving severe errors.

The proposed improvement action where:

To create an historic data base of errors with information on actions to solve them.

To perform a SLA agreement review, reducing the maximum expected response time for

severe and non-severe errors. This way, we expect to increased the client satisfaction and

we to acquired a better status as services provider in the client organisation.

Session 10: SPI and Measurement I

Page 10.43

0

2

4

6

8

10

12

14

16

18

20

enero febrero marzo abril mayo junio

P
F/

H
or

a

Transferencias

Proyecto

Fig. Martin9.Improvement Productivity. Jan - June period

Improvement Productivity

The results of the Improvement Productivity metrics were also worst than the rest of the

portfolio applications. Nevertheless Banking Transfer analysts are experimented and have

a good knowledge of the application, then we have considered it was due to the

complexity of the new improvements and we do not propose any improvement action,

looking forward the next review.

Nevertheless the analysis of the second period results help us to understand the real

source of the problem. In June there was more than a 100% of effort increase for only a

functionality increase of seven Function Points. In this month many effort was spent in

adaptive improvements.

Fiability of the Improvement

Fig. Martin10. Improvement Fiability . Jan - June period

To improve this result the proposed improvement action were the same than those

explained in the Corrective Fiability.

0 ,9 9 2

0 ,9 9 3

0 ,9 9 4

0 ,9 9 5

0 ,9 9 6

0 ,9 9 7

0 ,9 9 8

0 ,9 9 9

1

E n e ro F e b re ro M a rz o A b r i l M a y o J u n io

F
a

ll
o

s
/P

F

T ra n s fe re n c ia s

P ro y e c to

Session 10: SPI and Measurement I

Page 10.44

The measured results and the lessons learned

The incorporation of Function Points (FP) as one of the basic metrics of the metric model

was carried out with the following aims:

Standardisation: To check the quality of the applications and the productivity of the teams

using a common language based on an international standard.

Quality Improvement: To improve the quality of the service, benchmarking projects and

allowing management to undertake improvement actions.

Management Cost Reduction: To reduce the time and effort employed in management of

outsourcing.

Taking into account previous results we estimate that at the end of the PIE, the majority

of those objectives had being attained .

Standarization: The FP counting is quite unambiguous in such a way that -despite the

interpretability of the technique in some aspects- finally the same number of FP are

obtained when the counting are performed simultanesly by diferent persons (external

consultants or Atos technicians).

Quality Improvement: The trend analysis is too short to evaluate significant

improvements (we estimate that more than a year is needed to obtain significant results).

But benchmarking of applications has been proved as an useful technique and many

improvement actions have been launched as a consequence.

Management Cost Reduction: The availability of the Internet and the use of the SPI-

web meant a significant decrease of management effort by highly simplifying the

elaboration of reports and the preparation of the review meetings with the client where the

client receives a report with the most relevant figures of SLA (number of errors solved,

number of enhancements implemented, cost/effort spent ...). The production of the

quaterly reports takes betwen 20-25 man days. With SPI-web we could prepare a

complete dossier in less than 7 man days.

Session 10: SPI and Measurement I

Page 10.45

Metric First Review Final Review Positive
trend

Trend
In the

period

Corrective

Maintenance
Coefficient

0.008

0.21

0.005

0.09

0.22

0.005

Lower

values

=

Maintenance
Productivity

4.2 4.2 Higher
values

=

Application

Support Trend

0.226 0.233 Lower

values

-

Assignment
Scope

192.12 194.62 Higher
values

+

Reliability 0.002 0.003 Lower

values

-

Mean Repair
Time

Repairing
Time

Deviations

(Critical

Errors)

1.30

-3.95

1.07

-3.86

Lower
values

Lower
values

+

+

FP

Maintenance

Cost

2018.5 2178.4 Lower

Values

-

Corrective
Total Cost

(Repairing

cost)

6034.4 9146,4 Lower
Values

-

Improvement

Enhancement

Productivity

2.3 0.9 Higher

values

-

Enhancement

Delivery Rate

8 9,5 Higher

values

+

Stability

Coefficient

0.1515 0.2413 Lower

Values

-

Reliability 0.998 0.995 Higher
values

-

Improvement

Total Cost

3316,6 7370,4 Lower

values

-

Fig: Martin 11. Final Results

Session 10: SPI and Measurement I

Page 10.46

Lessons Learned

Impact of the state of the documentation in the quality of FP counting. When Functional

specifications are low quality, or not well updated, then the FP counting process is very

hard and time consuming. Alternative solutions must be applied in this situations (we

think it must evolve in the style of automated assisting counting process). A future

measure to improve the service is to suggest and negotiate with our clients in the very

earlier phases of the projects the minimal documentation set to be maintained to allow the

FP counting.

Difficulties interpreting the IFPUG rules. Function Points is a well accepted size measure

for SW applications, but the IFPUG counting rules are not always easy to apply. Different

people could obtain different results measuring the same applications. Our goal is to

apply FP always in a consistent manner inside the organisation and the best way to

achieve this is to create a group specialised in the counting process with clear norms and

procedures that be always the responsible for the counting.

We realised that adopting Function Points Analysis as the standard for the Outsourcing of

SW Maintenance Service means, from Atos’ point of view, important changes in

procedures and management of projects. From the customer’s point of view, important

changes will have to be carried out in their own organisations’ processes for undertaking

an outsourcing project. Besides, they have to add the cost of familiarising themselves

with the essential concepts involved in Function Points Analysis. Providers should

explain to the client that the additional effort needed to work with metrics is largely

justified because they are an excellent way to obatin a better service.

The greatest benefits from the use of Function Points for the Outsourcing of Maintenance

should be expected not so much in the estimation of maintenance activities (only a small

subset involves change in functionality) but in its capacity for clear contractual

identification of the service commitments acquired and in its potential to allow

benchmarking of projects as an instrument to undertake improvement actions.

When FP are applied to Software maintenance there is a risk of obtaining flat results.

Perfective actions are suddenly very small, then it could be very difficult to distinguish

one from another in terms of FP (we have obtained the same results in the 80% of the 20

perfective requests evaluated in Metranet: 5 FP). FP variants as Micro Función Points

with a high granularity level could be very useful to avoid this issue.

Improvement through metrics is a long term project. In this sense, Atos has the purpose to

keep in use the metric model with the following aims:

To improve the way we work with the client through the use of metrics. Even if that

implies an awareness effort, we think it is the only way of obtaining the total confidence

of the client that we need to evolve through Total Outsourcing.

To perform a depth analysis of the productivity and quality deviations obtained for every

application considering new improvement actions based in the use of new tools and the

start of specific training courses.

To improve the management of resources and projects using internet technology. The on-

line analysis of the project data will allow to react immediately putting in place the

needed actions.

Session 10: SPI and Measurement I

Page 10.47

Session 10: SPI and Measurement I

Page 10.48

Appendix 1: Authors

Miguel Angel Martínez Jimeno

Graduated in Physical Chemistry from the Universidad Autónoma de Madrid (1989)

where he worked as an Associate Professor in the Department of Physical Chemistry (90-

91).

Teacher of the doctorate course “Applied computing for topographers” (April 1994) -

Colegio Profesional de Topógrafos de Madrid. In the field of Software Maintenance, he

has directed the development of the CONDUCT tool for the management of maintenance

projects and is co-author of the book: Piattini et al. “Mantenimiento del Software

Conceptos, métodos, herramientas y outsourcing” (Software Maintenance, Concepts,

Methods, Tools and Outsourcing). Pub. Ra-ma. Madrid. 1998. At the present time he is

responsible for the implantation of quality plans in the projects of software maintenance.

Isabel Fernández Peñuelas.

EDUCATION 1983: B.A. in Philosophy from the Universidad Complutense (“UCM”),

Madrid, Spain. 1984: Masters in Philosophy of Natural Language. 1985-1986: Doctorate

Courses at the Department of Logic and Philosophy of Sciences. 1985-1987: Scholarship

from the Spanish Ministry of Education at the UCM. 1986: Assistant Professor in the

Department of Philosophy, UCM. Practical training in PROLOG II Language.

R&D PROJECTS 1985-1987: “Computatio Orteguiana” Computerized Lexical
study of the Ortega y Gasset Corpus. 1988-1992: Knowledge Engineer of the

Metapedia Project; Expert System using Object Oriented technologies for the design,

storage, and edition of the ESPASA-CALPE Encyclopaedia. 1992-1993: PONTIFEX
Project; Objective: Object-Oriented decision support framework for handling routing

and scheduling problems (ESPRIT II n. 2111). 1995: Chief of the project SPAS;

Assessment of the Software Process Development of the Mainframe Unit of Sligos

S.I. using BOOSTRAP methodology (ESPRIT IV n. 21.374). 1996: MANTEMA
Definition of a Software Maintenance Methodology (R&D) project sponsored by the

Spanish Ministry of Industry & Energy).

Session 10: SPI and Measurement I

Page 10.49

Appendix 2: Organisation Description

Atos Group is one of the main participants in the world of European services companies

with more than 9,500 employees and a turnover for the 1997-1998 financial year of 957.4

million Euros. The implantation by sectors is shown in the following division of

activities: 43% in banking, finances and insurance; 21% in industry, automotive,

aerospace and transport; 16% in telecommunications and media; 13% in distribution; 7%

in other sectors.

Atos ODS S.A. is the company within the Group that carries out its activity on the Iberian

Peninsula. The territorial implantation on the Iberian Peninsula includes the following

centres: Barcelona, Madrid, Lisbon, Valencia, Valladolid, Zaragoza and Andorra. During

the 1997-1998 financial year, it achieved an invoicing of 6,864 million Pesetas, for

activities with 550 clients and a human team of 950 persons.

Since its creation, Atos ODS has been characterised by being a company that bases its

service on the application of technological, functional and business knowledge in areas

that require a high degree of specialisation. The use of a strongly technological

component in its projects, together with the functional component, make the natural

market for Atos ODS the one where specialisation is indispensable.

Atos ODS has a wide offer of products and activities : Engineering Services

(Outsourcing, Systems reengineering, Consulting, and systems development using

advanced technology).

Products for Real Time environments (real time operative systems; ADA compilers,

development kits to embedded software appliances); Telecommunications

(telecommunications management network, intelligent networks, GSM ..); Industry

(products and services in the CAD/CAE market: aeronautics / aerospace, automotive,

machinery, transport; consultancy and implementation of SAP systems for enterprise

management, business process reengineering service , ERP Solutions); and Technology

(workflow , network and systems management tools, middleware and distribution,

software for connectivity and communications).

Session 10: SPI and Measurement I

Page 10.50

References

[1] IEEE, std 1219: Standard for Software Maintenance. IEEE Computer Society

Press. USA, 1993.

[2] Jones, C. Applied Software Measurement. McGraw-Hill, 1991 (ver si es 1991

1996)

Bibliography

Sorrentino, M. De Gregori, G., La Manutenzione del Software Applicativo. Ed. Franco

Ageli , Italy, 1995.

Pigoski, Thomas M., Practical Software Maintenance. Best Practices for Managing Your

Software Investment. John Wiley & Sons, 1997.

Piattini M., Villaba J., Ruiz F, Fernández I, Polo M, Bastanchury T., Martínez

M.A.,Mantenimiento del Software. Conceptos, métodos, herramientas y outsourcing,

Editorial RA-MA, Madrid, Julio 1998

Kuvaja P., Smila J. Krzanilk L., Bicego A., Saukkonen S., Koch G., Software Process

Assessment & Improvement. The Boostrap Approach. Blackwell Publisher, 1994

Abran, A. Nguyenkim, H., "Analysis of Maintenance Work Categories through

Measurement". Proceedings of the International Conference on Software Maintenance.

IEEE Computer Society, 1991

Fenton N.E., Pfleeger S.L., Software Metrics. A rigorous & practical approach,

International Thomson Computer Press, 1997

Albrecht , A.J., Measuring application development productivity. Proceedings of the IBM

application development symposium, Proceedings of the Joint SHARE/GUIDE

,Monterrey, Canada, oct. 1979 pp. 83-92

IFPUG, Function Point Counting Practices Manual Release 4.0, IFPUG Standards , 1994

IFPUG, Guidelines to Software Measurement Release 1.0, IFPUG Standards, 1994

IFPUG, Function Points as Asset - Reporting to Management, IFPUG Standards , 1992

Abran A., Maya M., A Sizing Mesure for Adaptative Maintenance Work Products

International Conference on Software Maintenance, ICSM-95, Opio, France, 1995

St-Pierre D., Maya M., Abran A., Desharnais J-M., Bourque P., Full Function Points:

Function Points Extension for Real-Time Software- Counting Practices Manual,

Université du Québec à Montréal, Montréal, Technical Report no. 1997-04, September.

Jones C., A Short History of Function Points and Feature Points, Software Productivity

Research Incorporated, mimeo version, 2.0, Feb. 20, 1988

Session 10: SPI and Measurement I

Page 10.51

Software Metrics for
Process Improvement

Experiments
Terttu Orci

Royal Institute of Technology

Stockholm University

SISU

Stockholm, Sweden

Introduction

Software process improvement (SPI) seems to be a commonly agreed silver bullet to

solve the software crisis. The underlying assumption is that a good software process

results in a high quality product, delivered in time and within budget. All SPI actions

have one or several of the goals: to maximise the product quality, and to minimise the

time and the cost. An organisation initiating SPI work can choose among publicly

available models for the purpose, e.g. CMM [15], Bootstrap [12] and SPICE [18], or

locally designed actions can be initiated in areas where improvement is needed. Success

stories and implementations of SPI are published, e.g. in [1], [8], sometimes with

impressing figures in financial terms of the return on investment. More and more

organisations initiate some kind of SPI actions.

The European Commission supports a particular programme called ESSI - European

Systems and Software Initiative, to encourage the European software organisations to

Session 10: SPI and Measurement I

Page 10.52

undertake process improvement experiments (PIEs) [3]. An obvious value of the ESSI

programme for the European software market is the sum of the values for the

participating organisations. However, an additional value should be obtained through so

called dissemination actions, spreading the experiences and lessons learnt, and preventing

other organisations to invest in reinventing the wheel, or repeating the mistakes done by

others.

The project EUREX, European Experience Exchange (No 24478) [2] is one of those

dissemination actions. The objectives of EUREX are to collect, systematise, and

disseminate the experiences and lessons learnt in the process improvement experiments.

Naturally, there is a wide variety of PIEs along the dimensions of the subject domain,

organisation type, working methodology, objectives of the experiment, to mention a few.

The data collection in EUREX is by workshops, discussions in the context of the

workshops and otherwise, and studies of the final reports.

The partner SISU (Swedish Institute for Systems Development) is responsible for the

subject domain Software Metrics in the EUREX project work. In a way, all the PIEs

should be classified into the subject domain software metrics, as every PIE should include

measurement to determine the magnitude of the improvement. However, although

software metrics is an established field of software engineering in theory and research, its

industrial applications are behind. The PIEs are not any exception, as was pointed out in

the study at EuroSPI98 [13]. Although the study was very limited, there was a clear

indication of a major potential for the metrics maturity improvement in European

software industry.

Measurement is the vehicle for control. Without that control, software engineering will

not reach the status of sound engineering discipline, but remains a craft. There is a need to

point out the importance of measurement, to discuss how it should be conducted and how

it should not.

The Objectives of the Study

The objectives of this study are to increase the awareness of sound software metrics in

general, and in particular to point out how a number of PIEs have handled the metrics

related issues.

The framework for the study is software metrics theory and ESSI guidelines [4],

described in Section 4 more in detail.

Outline

In Section 2, software process improvement including ESSI programme. Section 3

presents the basic issues of software metrics, both from theory and practical point of

view. Section 4 presents the framework for the study and the results are presented in

Section 5. Section 6 contains concluding remarks.

Software Process Improvement

Software process improvement is commonly agreed being the silver bullet to solve the

Session 10: SPI and Measurement I

Page 10.53

software crisis of the organisations. It is argued that technology and people in an

organisation change, whether we want it or not, but the processes, i.e. the way we do

things, should be stable. The stability should not imply stagnation, but controlled change.

An organisation with stable processes should regard software process improvement as a

continuous, never ending activity.

Software process improvement can be studied from different aspects, e.g. the model for

improvement used. In this paper, the context is process improvement experiments within

ESSI programme, i.e. organisation wide processes, limiting out e.g. individual efforts

undertaken by software engineers like PSP [9], [10].

SPI in the Context of ESSI

Some of the large software companies in USA have published their long term process

improvement programs including introduction of metrics, e.g. [8],[16]. We are not aware

of any corresponding publications from large European companies concerning

organisation wide improvement or metrics programs. The closest we come in Europé is

the ESSI programme and its publications. The PIEs with approved final reports are

intended to be available on the world wide web [4]. The dissemination actions publishing

aggregations and summing up of the experiences and lessons learnt are also publicly

available as EC project results.

The PIE projects are normally short term, 12-18 months in duration, and intended to

improve the software process of an organisation in some respect. If a project is successful,

and welcomed by the staff, it may very well generate further improvement actions. If it is

a failure, or if the staff does not see the gain for their working situation or business as a

whole, further improvement actions may be hard to propose and to get accepted.

Model for Improvement

Software process improvement may be undertaken based on a general, publicly available

model, e.g. CMM [15], SPICE [18], Bootstrap [12], PSP [9], [10], ISO9001 [14], or it can

be performed using a local model designed by the organisation for the purpose. The

general models usually require a long-term investment and duration, longer than 18

months, which is the normal duration for a PIE. Therefore, the PIEs usually have a locally

designed model, described in the work packages. The local model should ideally be

extended by measurement, along the guidelines of ESSI.

The software process – whether new or changed - must be defined and documented.

CMM or any other model can be used as a meta model, to show the way what should be

in place. Every process on an adequate level of detail, should include the following:

goals

a commitment in terms of policy statements and leadership

abilities in terms of resources and training

a set of activities which may be plans, procedures, tasks, reviews

measurement of the status and variability from the plan

verification by management and software quality assurance (SQA) of implementation and

institutionalising.

In addition to the processes, standards for the different work products may be defined,

e.g. coding and document standards.

Session 10: SPI and Measurement I

Page 10.54

Within the PIE projects, there is naturally a management commitment for the activities, as

ESSI programme only supports the half of the costs. The abilities in terms of resources is

relevant within PIEs as well as in other software process improvement efforts. Experts

can be used to cover a lack of competence in the organisation, for defining the process

and in training the employees in the new process or in measurement related issues.

Measurement and analysis intends to determine the status of the new process, whether it

is followed and is functioning as intended. Verification is the same type of control from

the management perspective.

Software Metrics

Software metrics, presented in various textbooks, e.g. [6],[7],[10],[15] and conferences

and workshops [7], has a long tradition in theory, while considerably shorter in terms of

industrial applications. Software metrics relies on the underlying theory, called

representational measurement theory, posing some requirements on a correct definition,

validation, and use of software metrics. From practical point of view, there are several

further questions of importance, e.g. how to identify the right metrics to use, how to

introduce a metrics programme, and how to keep it alive.

Software measurement is an activity assigning a number or a symbol to an entity in order

to characterise a property of the entity according to given rules. The informal definition,

even though giving an idea, must be more precisely defined. The message of the

definition is that there should be an entity, a property, a measurement mapping and rules

for the mapping. The measurement mapping and the rules is usually called metric. An

example of an entity is code. An attribute characterizing the code is size, and one possible

metric for measuring size of code is the number of lines of code (LOC).

Initially, there must be an intuitive understanding of the property of the entity of interest,

otherwise there is no way to define an adequate metric. For example, for the entity

person, we can intuitively understand the property length, which can be measured in

inches or centimetres. If observing two persons, we usually get an understanding who is

taller, i.e. whose length would get a larger value if measured. The intuitive understanding

can be represented in an empirical relation system, a pair consisting of the set of entities,

and a set of relations, e.g. “taller than”. For the measurement, there must be a

corresponding numerical relation system, a pair, with symbols representing the entities

and numerical relations corresponding to the empirical relations. For the relation “taller

than”, an adequate numerical relation would be >. There is also a so called representation

condition requiring that a measurement mapping must map the entities into numbers and

empirical relations into numerical relations in such a way that the empirical relations

preserve and are preserved by the numerical relations. In practice, this means that if we

have an intuitive understanding that A is taller than B, then also the measurement

mapping M must give that M(A) > M(B). The other way around, if M(A) > M(B), then it

must be that A is intuitively understood be taller than B.

The measurement mapping, the empirical and numerical relations are usually called the

scale of the measurement. There are five different scales: nominal, ordinal, interval, ratio,

and absolute scales. It is important to establish the scale of the measurement in that

different scales allow different manipulations with the measurement data.

Session 10: SPI and Measurement I

Page 10.55

What is the thing being measured?

There are three main classes of entities of interest for measurement in software

engineering, namely product, process, and resource. Product is an output from a process,

e.g. code, a document, a script. A process is one or several activities. Resource is an input

to a process, e.g. staff, tool, method. Sometimes, we need to measure attributes for a

global entity, namely the entire organisation, e.g. average delivery delays in all the

projects undertaken during a certain period of time, or the maturity of the organisation in

software development on a CMM scale.

Unless there is a clear statement of the entity, attribute, and metric, it does not make much

sense to talk about measurement. For example, the statement “the size is 20 measured in

LOC” does not make sense unless we know the entity in question. Unless the attribute is

defined, we do not know what property of the entity is supposed to be characterized by

the metric. For example “The code has FOG number 50” does not make any sense unless

we know what attribute we are measuring by the FOG number. Unless the metric is

defined, we do not know even the scale of the measurement, nor can we get an

understanding of the relative value of the measurement. For example, the statement “The

code size is 70000” does not make sense unless we know if size has been measured in

LOC or bytes, or something else.

The Study

The framework of the study is software metrics theory and ESSI guidelines for mid-term

and final reports [4]. Below, those parts of the guidelines in some sense indicating

measurement are given:

Objectives

Explain the method and specific metrics used to measure the impact on the business goals and

to verify to what extent the problem has been solved.

Phases of experiment

Explain any specific training undertaken as part of the experiment as well as other internal

dissemination activities.

Consultancy during the experiment

Explain the role of internal and external consultants, if any, on the project and the reasons why

they were needed as well as the effort expended.

Resulting scenario

This section should detail the actual results obtained from the experiment and your analysis of

them compared to the original objectives of the experiment. Include any qualitative and

quantitative results and how they were measured. Provide details of any final assessment and,

as far as possible, give real figures.

Key lessons learnt

This section should summarise the key lessons, positive and negative that you have leant to

date from undertaking the experiment. It should identify clearly your key lessons leant, from

the technological and business point of view.

Session 10: SPI and Measurement I

Page 10.56

The interpretation of the ESSI intentions we have made is that the expected impact on the

business goals should be indicated in quantitative terms and the obtained impact should

be measured and compared to the expected, and the metrics used should be reported.

Further, specific training if applicable, should be indicated. The specific training may be

training is software metrics. Consultants are sometimes needed in a PIE, they may be

partners with the required skills and competence, or their services can be bought from an

external organisation. In that case, it is interesting to investigate to what extent the

universities have participated in the role of metrics expert. Key lessons learnt are

important messages to other organisations planning process improvement experiments.

The following questions will be studied:

Have the objectives been described in quantitative terms?

Have any quantitative results been reported?

Has metrics specific training been conducted?

Has measurement related consultancy been needed?

What are the metrics related lessons learnt?

In addition to the above questions, we also investigate the distribution concerning the

entity measured, i.e. process, product, resource, or global. Further, we present a set of

measurements, which are well defined, and another set, which is unclear. The unclear

measurements are discussed to some extent. Further, we also cover the question how large

a percentage of the total number of measurements are well defined in the sense that all

three of entity, attribute, and metric are defined or can be understood from the context.

In the following, we give the motivations for the different aspects under study.

Have the objectives been described in quantitative terms?

This aspect is directly related to the guidelines heading “Objectives”, which recommends

to explain the method and specific metrics used to measure the impact. Although the

objectives of the PIEs are widely varying, there is a common denominator, an

improvement of a process.

If the objectives are expressed in quantitative terms, it indicates that measurement has

been understood as a vehicle for determining the magnitude of the improvement already

at the project proposal time.

Have any quantitative results been reported?

This aspect is directly related to the guidelines heading “Result”, stating that the results

should be compared to the original objectives of the experiment. If the objectives have not

been quantified, the results may or may not be quantified. It is possible that the good

intention – formulated at the time of the application - to measure the results and check the

fulfilment of the quantified goals may not been possible to fulfil. On the other hand, if the

goals have not been quantified, but the results are expressed in quantitative terms, the

project staff might have learnt the lesson during the project that quantification and

measurement are important for various reasons, not least for the management to keep the

commitment and to report to the EC.

Session 10: SPI and Measurement I

Page 10.57

Has metrics specific training been conducted?

The guidelines recommend to describe the specific training activities needed to conduct

the improvement action, for example metrics training. If such a training has taken place, it

witnesses of a policy to increase the metrics maturity in the organisation in the long run,

not merely within the PIE project. Otherwise, external consultants may have been used

for the sake of the project. A positive answer to the metrics training gives a better picture

of the metrics awareness, indicating an investment in a long-term improvement.

Has measurement related consultancy been needed?

The guidelines include the heading “Role of consultants”. It is interesting to investigate to

which degree the companies have needed expert guidance for measurement related issues.

If experts have been used, it is interesting to investigate the type of the expert

organisation, university, or consulting company.

Metrics related lessons learnt

The intention is that the lessons learnt should carry over from a PIE to other organisations

planning software process improvement. However, the wide variety of PIEs along

dimensions like organisation type and size, ways of work, maturity, subject domains, type

of products or services provided, makes it difficult to utilise the experiences on any

detailed level. However, there are some general lessons learnt, applicable to any

organisation, that deserve repeating over and over again. Only lessons learnt, specific to

measurement, will be considered here.

Are the measurements well defined?

A well-defined metrics is first of all characterised by the presence of all three of entity,

attribute, and metric. If any of these is missing, there is no much point for measuring.

Metrics must also be valid, which means that the representation condition is satisfied, i.e.

the empirical relations preserve and are preserved by the numerical relations. That is,

however, difficult to determine from the final reports, and therefore omitted from the

study. We only consider if all of entity, attribute, and metric have been clearly stated or

implicit in the context.

Results

We have studied ten PIEs along the aspects described in the previous section. The PIEs

have been randomly selected from a larger population, and thereby may represent small

and large organisations, different subject domains, and the like.

Have the objectives been described in quantitative terms?

Only one of the PIES (10%) has expressed the objectives in quantitative terms, giving

exact figures: 10% reduction of error reports for software products, and 5% shorter time

to market.

Session 10: SPI and Measurement I

Page 10.58

All the other PIEs indicate the improvement in general terms. Below, a few examples of

the objectives are presented, slightly syntactically edited without changing the semantics:

To improve the specifications

To increase the maturity level of a process

To improve the maintenance process

To establish a quality model for the full life cycle process

To improve software quality by testing

To improve design and development process

To experiment a methodology

To demonstrate the applicability of a method

The objectives are quite general, some indicating improvement, e.g. to increase the
maturity level of a process, some only indicating to do something, to introduce object-
oriented technology.

Session 10: SPI and Measurement I

Page 10.59

Have any quantitative results been reported?

80% of the PIEs have presented quantitative results. The rest of the PIEs have not

measured anything at all. However, it is interesting to match the quantification of the

results, i.e. how the results have been measured, to the objectives stated. It should be

noted that only one of those eight PIEs presenting quantitative results, did express the

objectives in quantitative terms.

In the following, we discuss a few examples of the measurements compared to the

objectives stated.

To improve the specifications

There is no measurement at all in the PIE. It is easy to understand that it is difficult to

measure the quality of the specifications. One way of measuring improvement of

specifications would be to measure the number of specification errors discovered in the

product, during development or after delivery. That requires logging of faults per

development phase. Such data collection and analysis has not been reported.

To increase the maturity level of a process

The maturity level has been measured in terms of a maturity level according to a

particular maturity model. In addition to that, several other measurements, not indicated

in the objectives, have been used, e.g. time spent resolving problems related to the

process, efficiency of the new process in terms of producing its deliveries. All the

attributes describe the new process.

To improve the maintenance process

The improvement objectives are described in terms a number of subgoals, e.g. to track the

problems and actions efficiently, to introduce defect prevention activities, to provide

quality metrics, and to improve the effectiveness. The measurements undertaken are

distribution of the efforts of maintenance in different activities, the distribution of the

causes of problems per development phase, size and complexity metrics assessment. The

real challenge is of course the introduction of defect prevention activities, which in fact

has not been introduced, but prepared for by tracking the distribution of the causes of

problems per development phase. The size and complexity metrics are LOC and McCabe.

To establish a quality model for the full life cycle process

The PIE indicating such ambitious objectives introduces a number of measurements in the

organisation, concerning the attributes productivity, cost, and quality of a number of

specific processes. Productivity is measured using function points in development

process, and the productivity of processes is measured in terms of accomplishment of the

process specific tasks. Quality of development is measured in terms of deviations from

time and cost estimates, and the number of errors per function point. The quality of the

other processes is measured in process specific terms.

To introduce a specific technology

Session 10: SPI and Measurement I

Page 10.60

The improvement of introducing a specific technology has been measured in number of

workdays to produce a version of a product using the old and the new technology. The

improvement is measured only in terms of process efficiency, which is an important

measure. However, if also the quality of the product had been measured, e.g. the number

of error reports, it would balance the measurement of the improvement to some extent.

Has metrics specific training been conducted?

20% of the PIEs report metrics training. There are of course several possible reasons for

not training in metrics, e.g. the organisation considers the staff possessing enough metrics

skills, or that there is no need for long-term investment in metrics, but only within the

PIE.

Has measurement related consultancy been needed?

60% of the PIEs have used consultant for metrics purposes. In 50% of the cases, the

consultant was a university. It is difficult to interpret anything into the figure 50%

university consultants in metrics.

Metrics related lessons learnt

There are a large number of statements concerning measurement experiences. We present

all the unique statements.

Reliable data was missing

Some results are subjective

Metrics to be collected should be simple

Only data that will be used, should be collected

Metrics should be collected at accurate frequencies

There should be clear currency/time limits

Administrative overhead should be reduced

Educate people to why data is needed

Automate collection of measurement data

Determine goals of the metrics program

Inform that metrics are collected

Provide feedback to those who collect

Measurement data is useful to know if you are going to right direction

Data collection is demanding

Results are useful for the commitments of the management and developers

Measurement required more time than planned

Existing data was not good

Data collection should be an integrated part of the work process

Data collection and analysis are time consuming

All the statements are common knowledge, there are no big surprises. It is obvious that

data collection and analysis is time consuming, and should be automated as much as

possible. Data collection must also be an integrated part of the work process, otherwise it

is easy to forget or neglect it, as soon as the development activities are pressing. An

Session 10: SPI and Measurement I

Page 10.61

important aspect is the quality of the data collected. Obviously, there has been some

problems with quality as there is the statement of the importance of reliability, and

observation that existing data was not good. A related issue is the currency/time limits,

and accurate frequency. All the products measured should be under configuration control,

otherwise the data is misleading and erroneous. It is important to motivate those who

collect the data, by informing about the reasons, and by giving feedback from the analysis

results. For some attributes, the best we can do is subjective judgements, e.g. the working

satisfaction of the employees. The most important aspect of subjective estimates is to

remember that they are subjective estimates, and not hard measurement data.

Are the measurements well defined?

There are totally 47 measurements reported. The distribution of the measurements is 45%

process, 26% product, 11% resource, 6% global, and 13% with an unclear entity type.

In only 12 of 47 measurements, corresponding to 26%, all of entity, attribute, and metric

were either defined, or clear from the context. The attribute was unclear or not stated at

all in 55% of the measurements. In 21% of the measurements, metric was unclear or

missing..

In the following, we give examples of measurements, which are well defined and

examples of unclear measurements, and discuss the weaknesses and possible

interpretations.

Examples of well defined measurements

Document management effort is a measurement of the attribute effort of the entity

document management process. Effort is measured in person time of some granularity.

Productivity of development in FP/PM measures the entity development process and the

metric is calculated as the ratio of output in functions points and person months. Cost of
FP measures the entity type product for some particular product, or it could be an average

for the whole organisation. The attribute is cost, and the metric may be person hours, or it

could be money. The number of faults in code measures the entity type product, for a

specific code, the attribute is quality, and the metric is the number of occurrences, i.e.

absolute scale measurement. The measurement is well defined in that it includes all the

components of entity, attribute, and metric implicit or explicit. However, a more fair

attribute would be defect density, calculated as ratio of the number of defects and the size

of the product.

Examples of unclear measurements

Size is a usual attribute for the entity type product, e.g. code. The metric may be LOC if

measuring code, or the number of pages of A4 format if the product is a document.

However, even the seemingly simple metric LOC must be well defined, in terms of what

lines are included and excluded, respectively. Unless such a precise definition is

formulated and followed when measuring, the measurement is waste of time and

Session 10: SPI and Measurement I

Page 10.62

comparisons misleading.

Test time delay requires some kind of interpretation. Possibly there are several. It may be

a measurement with the entity type resource, which can be a person acting as an estimator

of the test time. Test time delay would then be the difference in duration between the

estimate and the actual, indicating the prediction capability of the estimator.

Test process efficiency is a measurement, obviously measuring the attribute efficiency of

a specific test process. The metric is not given, however. Efficiency could be measured in

the number of tests performed during a certain amount of time, or by the number of

defects found during a certain period of time. In order to make any use of it, it should be

an average of the test efficiency of a number of tests.

Professional awareness concerns an entity person of type resource, and should probably

be an average of the professional people concerned. The metric is, however, missing. To

our knowledge, there is no obvious metrics for awareness, but only subjective judgement.

The same goes for employee satisfaction, working motivation, which have been stated by

some of the PIEs.

Maintenance effort probably indicates some attribute of a product, for example simplicity,

flexibility, maintenance friendliness, or an aggregated attribute involving them all.

Without stating the attribute explicitly, it is unclear whether the metric is a valid metric at

all, as the intuitive understanding of the attribute is not obvious.

Distribution of problems/product is a product measurement. It is probably intended to

give an indication of which products require more effort than others, for the purpose to

allocate more resources to future maintenance for an extremely demanding product.

Problems must, however, be clearly defined, and also the handling of same problem

occurring several times should be clearly separated from unique problem occurrences.

Conclusions

We have analysed ten PIEs with the focus on how the improvement has been measured.

The basis for the analysis consists of a number of aspects, originating from both theory

and ESSI guidelines and intentions forwarded to the PIE projects.

It is important that measurement data is collected and analysed properly. First prerequisite

for that is a precise definition of the entity, attribute, and metric used. Although this issue

has its origin in theory, it is not only an academic issue to be discussed between software

metrics researchers. It is an essential issue for the practical applications. Without a well

defined metrics, measurement data has no value to the organisation, and the measurement

effort is a waste of resources. Even worse, the measurement data may be misleading as

without precise definitions, all interpretations become possible. Without precise metrics,

comparing measurement data from different organisations does not make sense either.

From this point of view, the PIEs studied appear weak. Naturally there is always bias in

this kind of studies, and so may be even here: the reality might in some cases been better

than it seems from the final report, especially as there is a lize limits for them. Inspite of

that, it is surprising that EC has not required more precise objectives and results,

expressed in measurable terms and measurement data. With such limited requirements on

Session 10: SPI and Measurement I

Page 10.63

the PIEs, the added value of ESSI for the European market as a whole is considerably

weak. It is not possible to determine whether the lessons learnt can be carried over to a

candidate organisation using the same approach to improvement as there is clearly some

ambiguity concerning how the measurements have been defined and metrics data

collected and analysed.

To obtain an improvement in the software metrics maturity, software metrics and

software process improvement should be included in the software engineering curricula,

to train the top management and engineers of tomorrow to undertake improvement efforts

and determine the magnitude of the improvement in a precise and comparable way.

References

[1] Caputo K: CMM Implementation Guide, Addison Wesley, 1998.

[2] EUREX – European Experience Exchange, Project Number 24478, ESSI
Dissemination Action, Annex I, Project Programme.

[3] European Software Institute, http://www.esi.es.

[4] http://www.esi.es/VASIE/

[5] Fenton, N.E., Pfleeger, S.L., Software Metrics – A Rigorous & Practical
Approach, International Thomsom Publishing Inc., 1996.

[6] Fenton, N. Whitty, R., Iizuka, Y., Software Quality – Assurance and
Measurement. A Worldwide Perspective. International Thomson Computer Press,

1995.

[7] Fenton N: Software Metrics for SPI, Workshop on Process Improvement,
Eurex, London, January 1999

[8] Grady, R.B., Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, 1992.

[9] Humphrey W: A Discipline for Software Engineering, Addison-Wesley
Publishing Company 1995

[10] Humphrey W: A Discipline for Software Engineering, Addison-Wesley

Publishing Company 1997

[11] Kan, S.H., Metrics and Models in Software Quality Engineering. Addison-

Wesley, 1995.

[12] Kuvaja P, Bicego A: BOOTSTRAP - a European assessment methodology,

Software Quality Journal, 3, 117-27, 1994.

[13] Orci T: Software Metrics in a European Perspective, EuroSPI98, Gothenburg,

Sweden, 1998.

http://www.esi.es./

Session 10: SPI and Measurement I

Page 10.64

[14] Oskarsson, Ö., Glass, R.L., ISO9000 i programutveckling – att konstruera
kvalitetsprodukter, Studentlitteratur, 1995.

[15] Paulk, M.C. et al, The Capability Maturity Model – Guidelines for Improving

the Software Process, Addison-Wesley, 1995.

[16] SEI, Managing Software Development with Metrics, Course material, 1996.

[17] Shepperd, M. Foundations of Software Measurement. Prentice Hall, 1995.

[18] SPICE - ISO/IEC, Working Draft V1.00.

Page 11.1

Session 11

SPI and

Measurement II

Chairman

Timo Varkoi
Pori School of Technology, Pori, Finland

Session 11: SPI and Measurement II

Page 11.1

SUPREME – a Statistical

Approach to Support Project Estimation

and Management

Rikke Sunde

Event AS, Oslo, Norway

Tor Vidvei

Event AS, Oslo, Norway

1. Introduction

In project planning, a core issue is to get the best estimates possible on duration,

resource usage and overall costs of the project. The objective of the SUPREME project

is to improve planning, estimation, monitoring and measurement of software projects

by applying a statistical approach in project estimation and measuring.

2. Executive summary

Introduction

To improve the planning, estimation, monitoring and measurement of software

projects, Event AS has integrated a project planning system with routines for collecting

reliable data from the project activities and established routines for analysing the

project data.

What is being achieved

SUPREME aims at integrating the collection functions for planning and accounting

data, so that the actual development of the project in question can be compared to the

project plan at any chosen time, and that the data and experiences gained can be

utilised systematically to improve the planning process. Much of this may be achieved

by informal methods; i.e. by collecting historical data and establishing appropriate

descriptive reports. Some issues, however, call for statistical methods, especially the

development and calibration of estimation models.

Session 11: SPI and Measurement II

Page 11.2

3. Business motivation

Introduction

The overall objective of the SUPREME project is to improve the planning, estimation,

monitoring and measurement of software projects.

The motivation

Most small-scale project management tools lack effective mechanisms to support the

learning from project experiences, in particular functions for collecting reliable data

and to do statistical analysis directed toward the improvement of project planning and

estimation. Project or man-hours accounting systems, on the other hand, often contain

data that are distorted from a statistical point of view. This will probably be the case if

e.g. the reported man-hours are the basis for calculating the customers’ payments or

subject to budget limitations, or if incentives or other “disturbing” considerations

significantly influence the reported figures. Even if the project planning and accounting

systems are linked together with data exchange etc, much relevant information about

the project histories are lost - with poor learning as a consequence. This is the problem

that is addressed in the SUPREME projects.

4. The project model

Introduction

A statistical method analysing long-term and short-term historical project data stored

in a project database is applied to achieve the project goal. This method is supported

by a configurable software tool, which allows continuos data collection and production

of reports with status information and statistical results at any time during the project.

Thus revised estimates for projects with highly uncertain and numerous milestones and

deliverables will be produced at regular time intervals to achieve better control and

management of projects. Emphasis is placed upon achieving results that are easy to use

and interpret, rather than on sophisticated statistical methods.

The project model

The project plan is made up of two types of entities, each organized hierarchically, i.e.

in a tree-like structure:

- Activities. The tasks of a project. The activities are aggregated in two separate

hierarchies or dimensions, representing the "physical" organisation (program

modules, functions etc), and the "accounting" organisation reflecting how the

Session 11: SPI and Measurement II

Page 11.3

various activities are attributed to clients, contracts or subtasks within a contract.

- Resources. Actual persons, which are the only significant resource in our projects.

The aggregation hierarchy reflects the organisational hierarchy, i.e. workgroups,

departments etc.

When a project is planned, all its activities will be estimated with respect to resource

usage as well as time schedules, before the project starts. This baseline- or reference-

plan plays an important role both in the monitoring of the project and in the analysis

after the completion of the project.

As a project is developing, resource usage, status changes and revisions of the

estimates are registered daily or at certain other time intervals so that the current status

and the latest forecasts can be displayed at any time. This registering is done for the

elementary activities and resources, and automatically aggregated to higher levels. The

history of all variables is saved, possibly with annotations, so that the entire history of

the project may be analysed at later stages. All persons involved in a project are

encouraged to add comments to their registrations, especially when estimates or status

variables are changed.

Activities

A project is represented as a set of activities organised in a tree-like structure or work

breakdown structures (WBS). "Activities" represent the various tasks in a project from

a "physical" point of view. In the context of software development the activity- tree

mirrors the organisation of the code in modules, classes, methods etc.

Various aggregation rules are defined for the variables describing an activity. The

resource usage of an aggregate activity is calculated as the sum of the resource usage

in all of its sub-activities, the starting date is found as the first starting date among the

sub-activities etc.

To be registered as an activity, the task has to be of a certain size, at least one working

day. Activities, which could be defined as rather small, will also be registered, but only

containing actual closing dates and with no estimates for resource usage. This will

typically be an activity lasting less than one day.

The activities are also organised in a tree-like structure representing the various

external and internal projects from a financial point of view, reflecting how the

resources spent on the activity will be accounted for. Aggregates within this hierarchy

are called accounts. An account may represent a particular contract while the sub-

accounts may represent various sub tasks within this contract. The accounts are used

for budgeting and reporting to the clients. Together with the activity hierarchy, the

accounting hierarchy represents a two-dimensional WBS of the activities. This is

especially important within an object-oriented framework where code is written for

reuse, possibly across various external projects. For projects that are to be accounted

for on a per hour basis, the accounting will not be in accordance with the physical

organisation of the activities.

Session 11: SPI and Measurement II

Page 11.4

Resources

In most software projects in Event AS the only significant resource type is persons or

man-hours. Most machinery can be considered a fixed cost. Each employee is

represented as a resource entity in the project model.

5. Data collection routines

Introduction

Data collection routines should be established to ensure that the collected data are of

good quality from a statistical point of view. This means the ties between data

collection and accounting, influence from budget considerations and incentive systems

etc, must be minimised or at least brought down to an acceptable level. The reporting

of resource usage, progress, estimates and forecasts should reflect the actual

development and real expectations.

Routines

Data will be collected daily or periodically for activities, accounts and resources. The

variables we collect data for fall into two categories:

- Static: Data that describes an activity or resource, and that are constant throughout

their lifetime of the entity. Examples: Name and description of the entity,

registration date,

- Dynamic: Data that describes the development and current state of an activity or

resource. These variables may be updated continuously as the project evolves, or

at certain intervals, when the project status and estimates are reassessed, e.g. at

project meetings. Examples: Status, Estimated resource usage or completion date.

For the dynamic variables, the history of the variables will be saved, i.e. a pair of date

and value each time the variable is changed. These historical data will be analysed

periodically with certain statistical methods (event history analysis).

For each registration (data item), it is also possible to add annotations. Annotations

should be added when they may be significant to the analysis of the project in later

phases. (New variables can be added at later stages. If the annotations contain

information that is needed in the statistical analysis, it is possible to create new

variables and code the information.)

The variables may be aggregated following the tree-structure that the various activities

or resources are organised within. The user controls the aggregation rules.

It is possible (and normal) to add new activities or resources during a project period.

Such changes do not create any problem for the estimation and accounting routines in

Session 11: SPI and Measurement II

Page 11.5

most cases. It is also possible to move and even delete an activity, but one should be

aware of the following:

When an activity is moved from one place to another within a tree, its entire data

history (even the data that are collected before the move) will follow and be aggregated

within the new tree-structure, and consequently removed from the old tree-structure.

The aggregates will display a history of its variables as if the activity has always been

placed in its new structure.

When an activity is deleted, the user will have the opportunity to move its content to

another activity. Despite the problems just mentioned this could be useful, e.g. in cases

when a project plan appears to be too detailed as the project evolves. Then the activity

tree can be “Cleaned" even after the project has started.

6. The methods

Introduction

Experience proves that a qualified and experienced person may be able to come up

with good "guesstimates", which implies that there is some kind of recognition or

“Repetitiveness" involved, although it may be very difficult to establish quantitative

measures. To support this ability of reasonable "guesstimates", feedback is very

important. If one never gets information about how reality compares to ones estimates,

(or if the estimates become messed up by a lot of interfering changes in circumstances

that are never accounted for), it will be very difficult to learn anything from

experience.

Say, one is told that over a period of time one systematically underestimates projects

with about 20%, and that most of these mistakes are caused by tasks added during the

project period. On the other hand, one could at the same time hit fairly well with the

estimates for programming and documentation efforts. One may be helped significantly

in performing corrective actions and improving future estimates by this feedback, even

without a formal estimation model.

The need for status reports and statistics with focus on the comparison of estimates

made and results achieved is enforced by the common experience of most software

projects: the early estimates tend to contain a significant amount of "guesstimates",

usually more than in other types of projects e.g. within construction. This element of

guessing is more prevalent the more “Creative" or the less routinised the project is.

Estimation relies on quantitative measures for the outcome of the project or its

activities at some level (e.g. code lines, modules, reports, pages of documentation),

assuming some kind of repetitiveness.

COCOMO, Function Point Analysis and Work Breakdown Structure [3],

[4], [5]:

Session 11: SPI and Measurement II

Page 11.6

The codelines or reports must be assumed to be of comparable degree of difficulty,

implying that one must at some level be able to say "We have done something like this

before". This is true both in the COCOMO and the WBS-based methods. But one of

the main objectives of the advance of software development methods, not to mention

software by itself, is to remove the need for repetitive or routine operations, so that

most efforts may be directed toward creative tasks. One of the main perspectives of the

introduction of object orientations is to provide e.g. mechanisms and language

constructs that will ease the reuse of software, in order to avoid repetitive work. The

various technologies for software integration (OLE, COM, CORBA etc) may be

viewed from the same perspective. Most software projects, therefore, usually contain a

significant element of creativity, which complicates the estimation and planning

process.

It should also be emphasised that even quantitative estimation models like the

COCOMO model relies heavily on judgement or qualified guessing. Although the

expected costs in man hours are calculated from the relation between lines of code and

the expected resource usage, which is the result of statistical research, one does not

really know the number of codelines in advance when one is going to estimate a new

project. The element of guessing is not eliminated from the estimation process; it is

rather isolated to some parts of the estimation procedure, in this case to the assessment

of how many codelines that is required to fulfil a certain task. After all this procedure

might in many cases prove better than relying entirely on qualified guessing, probably

because predicting the number of codelines is simpler than predicting the costs directly.

But you may also have cases where the opposite is true, namely that it is better to

assess the costs directly rather than first trying to assess the number of codelines, then

to select an appropriate estimation model and finally calculate the costs.

Event history analysis [1], [2]:

In order to compare the estimates with actual resource usage, and thus give us a sort of

feedback on the estimates, an approach based on event history analysis is used.

The method itself will usually be applied on historical data and not to perform the

estimates (prediction) during the planning phase. This will make it possible to use the

method to compare the estimates with actual recourse usage etc and thus give us a sort

of feedback on the estimates.

This event history analysis is relevant while analysing event history data, i.e. data

describing sequences of dated discrete events. A typical field of application for this

method is demographical analysis, with the analysis of fertility and mortality depending

on age and other factors as one of the core issues. Demographic data typically consists

of individual "event histories" of birth, marriage, death, changes in health status etc.

Another typical application of this method - which is also known as "failure time

analysis" - is the analysis of the duration of products until a failure (or some other

interesting event) occurs. The method focuses both on the analysis of which events or

transitions that takes place, and on the duration between the various events, according

to some timescale or any other variable that grows as time passes.

The "history" of a project can be described in similar terms as sequences of dated

Session 11: SPI and Measurement II

Page 11.7

events associated with the individual activities within the project: registration, decision,

start, completion, cancellation etc. We are interested in the transitions that takes place

(what is the probability for an activity that has actually started, also to be completed?),

and the duration according to various timescales and resource usage (how is actual

resource usage and duration of activities distributed, compared to the original

estimates?). We think that event history analysis is well suited to perform the analysis

necessary to answer this type of questions.

In SUPREME we observe all events of interest for each activity, and aggregate them

as individual event histories. A set of event histories is called event data. When

aggregating the stories for a group of activities or a project, one will have a summery

of the transition between several states. On the contrary the cross section data will only

give information about how many activities that is in the state at any point of time.

An event history model is a schematic way of showing possible courses of events. The

model used in SUPREME is containing 5 states: registered, approved, in progress,

completed or rejected.

Suppose one is observing the events in a group of activities. The phenomenon that is of

interest is “Completed”. The event history for two activities may be as follows:

Activity 1 Activity 2

02.04.1999 Registered 15.04.1999 Registered

15.05.1999 Approved 01.07.1999 Approved

17.05.1999 In progress 17.08.1999 Rejected

15.10.1999 Completed

Fig. RSU.1: Example of event histories containing 5 events.

By registering these events we will have an exact registration for the time each event

occurs.

A set of states as described above are characterised as a case where there exist more

than one transition from one state (competing risks of e.g. being “Completed” or

“Rejected”). There are several entrances to some states (all activities are under risk of

being “Rejected” at any point of time). In addition it is likely to assume that the

intensities are depending on more than one time scale e.g. calendar time (date), time in

state (for example time from “Approved” to “In progress”) or time in “Approved” and

cumulative time in state (aggregated time an activity has been exposed to e.g. being

rejected).

The possible states and transitions can be illustrated as follows:

Session 11: SPI and Measurement II

Page 11.8

Fig. RSU.2: Transitions and states

The boxes represent the possible states each activity can be in. An activity can not be

in all of them simultaneously, as an activity can not be “In progress” and “Completed”

simultaneously. The transition between the states is marked with arrows.

To illustrate what is happening in the transition, we can regard a group of activities in

a project. As time goes by, all activities will be completed or rejected. At the start

none of the activities will be in the state “Completed” or “Rejected”, but as times go by

an ever-increasing number of activities in the project will be in the state “Completed”

or “Rejected”. But after some time, all activities will reach these final states. In our

terminology all activity that enter the registered-state will be the same activities which

are entering the completed or the rejected-state.

The transitions between the states can be illustrated as a survivor function. An

example of this is shown in figure 4. For a given number of activities, the graph shows

the estimated probability for an activity still being ongoing at each point of time.

In progress

RejectedCompleted

Approved

Registered

Planned

Started

Completed Completed

Session 11: SPI and Measurement II

Page 11.9

Fig. RSU.3: The survivor function

In this example an activity has a probability of 90% of still being ongoing after 7

months. After 10 months the probability of still being ongoing has fallen to 15 percent.

When an activity leaves for example the state “In progress”, it will either reach the

state “Completed" or “Rejected", which make it necessary to define the intensities for

each of these events. At any point of time the activity in progress is being exposed to

the risk of getting completed and to the risk of being rejected. In the terminology of

event history analysis, there are competing risks for a transition to either “Completed”

or “Rejected”.

The use of event history analysis can be illustrated by one of the baseline projects -

PETRA. We want to investigate how the resource usage in the project compares to

our original estimates. In terms of the state diagram (fig RSU.2) we are going to

investigate the transition from “In progress" to “Completed" or “Rejected". As the

project is still running, we will use our last estimates for the resource usage and

assume that all activities will be completed. (Obviously, when the project is completed,

the final accounts on resource usage and status for each activity should be used instead

of these revised estimates.) As we want to look at the actual resource usage compared

to the estimates, we divide the resource-usage (actual or last estimate) by the original

estimate – and use this as our "timescale". (See the last column in the table RSU.6) As

the size of each activity varies, the data for each activity should also be weighted with

the original estimates (taken as a measure of the "size" of each activity).

Time

0 2 4 6 8 10

S

0.00

0.20

0.40

0.60

0.80

1.00

Session 11: SPI and Measurement II

Page 11.10

No Activity

2.1 Planning 30 30 30 30 1,000 1,000

2.2 Documentation 330 475 1,439

2.2.1 User doc Event 120 185 1,542

2.2.2 User doc Petra 90 120 1,333

2.3 User assistance 120 170 1,417

2.4 Debugging, improvement etc 640 650 1,016

2.4.1 Debugging and error corr 90 160 1,778

2.4.2 Access contr & prot of data 60 65 1,083

2.4.3 GUI, various improvements 90 110 1,222

2.4.4 Multilevel undo functions 90 65 0,722

2.4.5 Improved error reporting 30 25 0,833

2.4.6 Functions for tracing changes 75 40 0,533

2.4.7 3D Spreadseet functions 45 30 0,667

2.4.8 Optization 120 120 1,000

2.4.9 .. 40 35 0,875

Total 1 000 1 000 1 155 1 155 1,155 1,155

Orig estim Rev estim Rev/orig

Table. RSU.4: The PETRA project

Weight tE Occ

30 1.000 1

120 1.542 1

90 1.333 1

120 1.417 1

90 1.778 1

60 1.083 1

90 1.222 1

90 0.722 1

30 0.833 1

75 0.533 1

45 0.667 1

120 1.000 1

40 0.875 1

Table RSU.5: The Event history data for the transition from

“In progress" to “Completed"

In the RSU.5 the “Weight” column is containing the original estimates for each

activity. The tE column shows the resource-usage relative to the original estimates. In

the Occ column a 1 or 0 indicates that the activity was- or was not completed.

The event history data derived from this is displayed in table RSU.5. Data for the

Session 11: SPI and Measurement II

Page 11.11

aggregates are excludes in order to avoid counting the same activity multiple times. A

hazard function and an associated "survivor function" expressing the probability

distribution for the resource usage relative to the estimates, can be estimated from

these data. The survivor function is displayed in figure RSU.6:

Fig RSU.6: Survivor function for the transition from “In progress" to “Completed"

The figure indicates that the project is somewhat underestimated (the survivor curve is

"skewed" to the right in the figure - the area above the survivor curve to the left of t=1

is less that he area below the curve to the right of t=1. (The average resource usage is

15% higher than the estimates.) Further, the resource usage compared to estimates

varies between 0.40 and 1.75.

This type of figure gives in a glance a summary of the performance of the project. The

figure RSU.7 contains some other stylised examples of "survivor functions".

t

0.00 0.50 1.00 1.50 2.00 2.50

S

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

1
2

3

4

t

0.00 0.50 1.00 1.50 2.00 2.50

S

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

Session 11: SPI and Measurement II

Page 11.12

Fig RSU.7 Examples of survivor functions

Graph 1 and 2 both indicates that estimates are unbiased, as the average time to

complete an activity is equal to the estimated time. But graph 2 indicates less

uncertainty: the curve is closer to the t=1 line on both sides. Graph 3 indicates that

estimates are biased: for most activities and on average the time to completion is longer

than estimated in advance. Graph 4 also indicates that the average time to completion

is longer that the estimates, but in this case most activities are completed within the

estimated time.

As mentioned above each activity that is “In progress” will be under risk of being

“Rejected” or “Completed” at any point of time. On this basis one can estimate a

hazard rate for each of these risks to illustrate the probability of an activity being

“Rejected” vs. “Completed”.

One can obviously assume that an activity’s progress depends on several explanatory

variables. This could be e.g. the activity-size and -type. Being aware of this may help

to identify critical activity types or other states, which are sources of uncertainty (or

risk).

Meanwhile one has to consider what will happen if one is facing major deviations from

the original schedule. When an activity is running out of time, does that means that one

will use all available (and not available) resources on that particularly activity,

forgetting the other activities. And what if an activity is doing more than just fine, so it

will be completed “too early”? Will one still use all the planned resources just to get

oneself a well-deserved breathing space?

7. The expected impact.

A well designed framework for the estimation of software projects will have potential

positive impacts on the business in several ways:

- Timing of delivery can be done more precisely, with less uncertainty.

- Potential bottlenecks, in time and volume; e.g. problems which can only be

resolved by a particular person, will be identified more easily.

- Diversions from plans will be explained to customers more easily.

- The management of the company will be simplified because corrective actions can

be undertaken at an early stage of a problem.

- More effective resource allocation and usage will be possible, especially when it

comes to long-term development of the software.

- Communication between all members of the development team will improve.

- Development time will be saved through well-documented costs and estimates

when negotiating contracts.

8. References

Session 11: SPI and Measurement II

Page 11.13

[1] T.Bragstad, M.Nielsen, T.Vidvei, J.Østervold: Forløpsmodellen MOTIPE,

presentasjon og analyse (the event history model MOTIPE, presentation and

analyses), The National Insurance Administration, 9/94.

[2] H-P. Blossfeld, G. Rohwer: Techniques of Event History Modeling, LEA,

Mahwah, New Jersey, 1995.

[3] J. E. Matson, B. E. Barrett, J. M. Mellichamp: Software Development Cost

Estimation Using Function Points, IEEE transactions on software engineering,

Vol. 20 no 4, April 1994.

[4] C. A. Behrens: Measuring the productivity of computer systems development

activities with function points, IEEE transactions on software engineering,

Vol. SE-9, no 6, November 1983.

[5] Breien, Andersen, Jonassen, Stålhane, Urstad: Estimering- og

fremdriftsmålemetoder for utvilkingsprosjekter, ITUF R-29, 1992.

Session 11: SPI and Measurement II

Page 11.14

Appendix 1: COCOMO and Function Point Analysis
[3], [4], [5]:

The COCOMO method is based on inputs relating to the size of the resulting systems

and a number of “Cost drivers” that affect the productivity. The cost function in

COCOMO can be written:

Cost = a • LOC
b
• ∏fi,

where “Cost” is the total project cost, ”a” and ”b” are constants and dependent on the

development modus only, ”LOC” is the size of system, measured by Lines Of Code

and ” fi” are the cost drivers. The COCOMO model does estimate the cost of

production from the system size (measured by lines of code (LOC)), the type of

development modus (organic, semidetached and embedded) and the cost drivers.

Examples of cost drivers that affect the productivity are product attributes (data base

size), computer attributes (execution time constraints) and personnel attributes

(programmer capability)

Unfortunately the COCOMO model does not provide an opportunity to balance the

interests of total cost and the time of realisation in a project. The uncertainty of the

estimate will be enlarged as a result of implementing the cost drivers.) ….til hit!

As method to be used to make proper estimates the function point analysis seems to be

the most relevant. This method which is quantifying the size and complexity of a

software system in terms of the functions that the system delivers to the users, is

unrelated to the language or tools used to develop a software project. As for projects,

which are based on object orientations, this is of great importance

To measure productivity, a product and a cost is defined and measured. The product is

the function value delivered to a user. The number of inputs, inquires, outputs, master

files and interfaces delivered are counted, weighted, summed and adjusted for

complexity. The collection of function point data has two primary motivations. One is

the desire to monitor levels of productivity, for example number of function points

achieved per work hour expended. Another use is in the estimation of software

development cost.

Session 11: SPI and Measurement II

Page 11.15

Appendix 2: Presentation of the authors

Rikke Sunde: Cand Polit (Master of Science degree in economy), born 1969

Education:

- Economics

- Demography

- Business administration

Experience:

- Event AS, from September 1998

- Ministry of Finance, 1997-1998.

- NORAD (Norwegian Agency for Development Cooperation), 1995-1997.

Reports:

- "An empirical analyses of the two-sex problem – to be used in projecting

population sizes", 1995.

- "The use of Norwegian resources in the Norwegian development aid 1994"

Tor Vidvei: Cand oecon (profession oriented degree in economics), born 1955

Education:

- Economics

- Informatics

Experience:

- Event AS (leading manager) from 1992

- Norwegian Computing Center1990 - 92

- Gruppen for Ressurstudier (NTNF) 1989-1990

- University of Oslo, Department of Economics 1983 - 1989

Reports:

- H. Brunborg, T. Vidvei: "Parity Specific Population Projections Using

Stochastic Micro Simulation". (Scandinavian Population Studies, p 273-91,

Oslo, 1989

- T. Bragstad, M. Nielsen, T. Vidvei, J.Østervold: "Forløpsmodellen MOTIPE,

presentasjon og analyse (the event history model MOTIPE, presentation and

analyses). (Rapport 9/94 The National Insurance Administration)

Session 11: SPI and Measurement II

Page 11.16

Appendix 2: Presentation of the company

Event AS is a small enterprise developing software systems for statistical modelling.

The applications are tailor made for each customer, while the development process

relies heavily on the use of a software library called EVENT, which is being developed

continuously as part of each of the application projects. This approach communicates

the management of the development processes in many ways, especially due to the ties

and dependencies between the different application projects that are crated through the

use of the software library.

The company presently has three employees.

Among our major projects are:

- EVENT: An event history modelling program (for statistical analyses and

prognoses based on event history analyses). The program forms the software

library do be used in all other projects.

- TRYGD: A forecasting model for the Norwegian social security system

(Client: The National Insurance Administration)

- PETRA: A short-term forecasting model for the Norwegian oil activity

(Client: The Ministry of Petroleum and Energy)

- PROGNOSE: A forecasting model for pension arrangements in companies and

institutions.

(Client: DnB/Vital - A major Norwegian Bank and insurance company).

- PROMAN: A project management tool (Only used internally so far. May become

a product for sale later.)

Session 11: SPI and Measurement II

Page 11.17

Introducing professional project management in an
SME

Carlo Giordani

Cortis Lentini s.p.a.

Via Daste e Spalenga 16

24020 Gorle (Bergamo) – Italy

fax: + 39 035 304611

e-mail: carlo_giordani@cortislentini.it

Esprit project n. 27370 PRO3

Abstract

This paper presents the initial results, a few moths before conclusion, of the PRO3

Process Improvement Experiment, ESSI project n. 27370.

Projects are difficult to manage because project plans are not precise. They are not

precise because the estimation of size and duration is empirical, and because detail in

planned activities is not sufficient. As plans are not precise, project tracking is difficult

to make, and cost/effort monitoring is made too late.

The goal of PRO3 is to solve these problems by:

 introducing the use of Function Points to estimate size and duration of project

 introducing project planning tools and methods (Gantt charts, Pert charts, deliverables

and milestones), and a decomposition of the project into finer grained activities to improve

project planning

 introducing project tracking tools and methods to regularly compare planned and current

state of the project

Introduction

In the following we describe the context of the PRO3 PIE: the company in which it

is performed, the software process before the experiment, and the phases planned for

the experiment.

The company

PRO3 is proposed by Cortis Lentini (shortly C/L), a SME incorporated in

Bergamo, Italy, in 1978, offering standard software products for information systems,

and their customisation to specific needs. The products, used as basis for a large

mailto:carlo_giordani@cortislentini.it

Session 11: SPI and Measurement II

Page 11.18

number of projects, are: UNISMART, general purpose information system, mainly

used for administration and management; SICO, strategical analysis system;

OPENPROD, object oriented platform for the development of production management

systems; GOLD, suite of CAD applications that improves the design productivity;

SAXTECH, industrial automation control system.

Furthermore Cortis Lentini offers consulting on: organization and management;

object oriented analysis; information systems design and implementation; development

of ad hoc interfaces between existing I.S. and new solutions; tuning of existing

systems.

The numbers of Cortis Lentini: 6 productive centers, about 150 employees and a

turn-over of 13 million euro in 1996.

Since 1978 Cortis Lentini main mission was customer satisfaction: a strict quality

policy was rewarded in 1994 with the ISO 9001 certificate.

Given these high level goals, the company identifies the project management area as

essential to achieve them:

 customer satisfaction is increased if projects are delivered on time, at estimated cost and

quality level

 profitability is controlled and possibly increased if the ability of forecasting precisely

effort and duration of projects is increased

 competitiveness is increased if managers can, for each project, control and decide the

level of profit

 the above is possible if suitable techniques are used for project management, in particular

project estimation and tracking, and measurement of quality of the product/process

 the same holds if larger and more complex projects are to be managed.

The software process

All projects have a project manager (PM) who is responsible for the entire project

management (and success) and provides feed-back between the technicians and the

customer. All projects (both development of products and ad hoc customisations for

clients) are based on a classic waterfall life cycle with a lot of feed-back points. This is

mainly due to the new customer oriented approach: each customer has a particular

point of view and deserves its specific information system.

So after collecting the user requirements, the project manager (PM) writes the

requirements specification document, that is submitted for approval to the customer. If

the document is approved, the PM, with the aid of a system architect if necessary,

builds a functional definition document, a system description with emphasis on the

system main components and the various software interfaces and hardware devices.

The next step is the design document, a collection of information necessary to the

programmers to adapt the information system from the standard product, or to build a

new one.

This step is vital for the project, so the PM needs to validate the solution with the

customer because at this point the information system is detailed (on the paper) at the

maximum possible level.

Then the design document is internally validated and the PM prepares the quality

and development planning (PQS) and the verification planning (PDV): PQS details all

development phases, PDV only the test phases and is completed with checklists. These

Session 11: SPI and Measurement II

Page 11.19

documents are submitted to the customer for approval.

Now we can build the system and check with the customer each subsystem as it is

completed. When the software passes all the test phases, it is released to the customer

for the ultimate approval.

Quality Assurance

In addition to the PM , Quality Assurance roles are appointed at the beginning of

each project:

 the Test Responsible, that executes the tests planned in PDV and listed in CHL

(checklists);

 the Validity Responsible, a person chosen from the customer staff that approves the

various phases of the project;

 the Quality Manager, a technician from Cortis Lentini that controls the correspondence

between the documentation and the product, and warranties that the project is correctly,

completely and well described.

Tools

Usually all the systems are built with the standard tools in use in C/L.

As hardware platform we use Hewlett Packard machines, both for servers and for

clients: Cortis Lentini is the major italian VAR of HP for servers.

The operating system used on the the servers is HP*UX on the PA RISC based

machines and MS NT on the Intel based machines.

The preferred RDBMS platform is Oracle, a very robust and scalable engine that

we can apply from a little workgroup server to a large enterprise server.

The applications are built (and run) on the client site using several tools, according

to the customer necessity and project tipology: for small new applications MS Visual

Basic; for more complicated applications Uniface is the preferred tool; also we have

built objects library for Gupta and Centura, and for particular projects we have used

Delphi.

Evolution of the Quality System

The software process described above is the result of the definition of the quality

system and its ISO9001 certification (a 42 person month project started in 1994 with

18 months duration), and of a continuous update of the quality system (4 person

involved with an effort of 12 person months per year).

The 1994 version of the quality system was adapted for large projects, but too

cumbersome for small projects. Since often projects in C/L are small ones, soon after

certification the quality system was revised.

The second release of the quality system divided projects in two classes, micro

projects and macro projects, but this solution was not so useful as we expected to be.

The third (and current) release of the quality systems returned to a single class of

projects, but introduced a lot of optional documents that the quality manager can

decide to use or not, in function of the size of the project.

The PIE phases

The PIE has the following main phases:

Session 11: SPI and Measurement II

Page 11.20

1. Preparation. An assessment of the current process is made to understand, both

qualitatively and quantitatively, the current state. Measures are taken a posteriori on past

projects for comparison with the results from the baseline project. Project management

processes (estimation, planning, tracking) are designed, starting from state of the practice

techniques and adapting them to the context of C/L. Then they are integrated into the quality

system and quality procedures are updated. In parallel supporting tools are chosen and

purchased. The measurement system (procedures, database for measures, tools and methods

to collect data and compute measures) is set up.

2. Training. The staff working on the baseline project are briefed on the motivations of the

PIE, on the main design decisions, and are trained on the techniques and tools introduced.

3. Experimentation. The new software process is experimented on the baseline project.

Given the nature of the processes introduced, all phases of the baseline project are involved.

Modifications to the process will be compared with similar past projects to understand if the

weaknesses have been solved.

Project management

Before the PIE

We describe here the project management practices as performed in Cortis Lentini

before the PIE.

Estimation of effort and duration for a project is made using the best judgement of

the project manager in charge of it. Of course this method does not easily allow

managers to resist pressures for faster delivery from clients and especially marketing

staff.

Scheduling is made on the high level phases introduced in a previous section. In

practice, only the delivery date for the client is recorded and monitored.

Tracking is informal, basically the issue of a document prescribed by the quality

system (requirements, functional specification, etc) is used to track the state of a

project. However, this approach becomes weak when coding and testing start. Given

the number of functions and modules in a project, and the lack of tools, tracking their

status is very difficult for the project manager.

A tool records effort spent per person per project. Effort data is not used by

managers, but for accounting to clients. Sometimes effort data is used to verify if a

project is profitable or not.

In short, project management before the PIE is made mostly informally, with little

support from tools and procedures. Estimation, scheduling, tracking and post mortem

analysis are not identified precisely nor clearly described in the quality manual. While

this approach is still reasonable for small projects, it is definitely not suitable for

medium and large projects. Project managers are aware of this problem and ask for

improved project management practices in Cortis Lentini.

After the PIE

We describe here how project management activities have been changed by the PIE.

Session 11: SPI and Measurement II

Page 11.21

Overall, changes were guided by [3,4].

We describe them in terms of project management activities, project phases defined,

tools used. Measures are used extensively as a quantitative base for project

management, so they will be treated under all the following sections. A final section

summarizes them and presents measures from past projects.

Project management activities

Project management consists of the following activities:

 Estimation: the size of the application to be built is estimated. The Function points

measure [1,2], and the Function Points Analysis method are used here.

 Planning: using the number of function points estimated in the previous phase,

considering the phases prescribed by the quality system, and past productivity figures, a

schedule (in the form of a Gantt chart) is produced. The schedule defines phases, milestones

and deliverables.

 Effort tracking: project members log the time spent per project and per phase. This

allows to track the effort spent per phase, and to compare it with the plan. The completion of

milestones and deliverables is tracked too. Measures such as estimation accuracy and earned

value analysis are computed.

 Defect tracking: project members, and clients, log defects found on the product. Each

defect is tracked until fixed. Measures such as delay to fix a failure, effort to fix a failure,

failure density, failures found before and after product release are computed.

It should be noted that the activities are listed in a logical order. Initially, estimation

is accomplished before planning, which comes before tracking and measurement. As

the project proceeds, tracking is done continuously, while estimation and planning can

be repeated if needed.

Project phases and project types

Estimation, planning and effort tracking require a clear definition of the phases in

which a project is organized. Also defect tracking uses phases, for instance to log in

which phase a defect was introduced and removed.

The phases defined are listed in the table below. Projects are classified in small and

large. In function of their size some phases are dropped.

 Small to

medium project

Medium to

large project
Requirements Yes Yes

Functional analysis Yes

Size estimation and

planning

Yes Yes

Design Yes Yes

Detailed estimation,

replanning

 Yes

Coding, unit testing Yes Yes

Integration, integration Yes

Session 11: SPI and Measurement II

Page 11.22

testing

Documentation Yes Yes

Figure 1 - phases and project types

The project management toolkit

Project management can be considered an overhead, if it is not suitably supported.

We have assembled a project management toolkit to automate its essential functions. In

general the approach is to use existing tools, with special care to allow their

integration. Integration has been accomplished by making them communicate only

through the measurement database.

The measurement database is designed to be company wide, and to collect data for

all projects. Also, it is assumed that tools can change, while the measurement database

is a company asset that has to last. This is another reason why tools communicate only

through the measurement database.

The tools selected are:

 Knowledge Plan. This tool automates estimation activities, basically it produces a

function point estimate starting from a description of project characteristics and

functionalities.

 MS project. It supports the planning activities.

 Comm98. This tool is an evolution of a tool built inside Cortis Lentini to describe

projects and log effort spent on them. Each project staff member has a copy of the tool to log

his effort.

 Fault98. Also this tool was built inside Cortis Lentini to track defects, and was partially

modified.

 QARun. This tool supports testing activities, and provides testing coverage

measures.

A standard spreadsheet is then used for analysis of measures starting from the

measurement database.

Knowledge plan

MS Project
Comm9

8

Fault98

Estimated

FP, effort

per phase

Phases, effort

per phase,

milestones,

temporal relations

Actual

effort per

phase

Session 11: SPI and Measurement II

Page 11.23

Figure 1 - tools and data exchanged among them.

A typical usage scenario is the following.
1. The project manager describes the project in Knowledge Plan. The tool, using past

productivity figures, the phases to be used for that type of project, computes an FP estimate,

and the effort per phase.

2. MS project reads from the database phases and effort per phases. The project manager

defines temporal relations between phases, and knowing other possible constraints, defines a

Gantt for the project, including milestones and deliverables. The Gantt is stored into the

database.

3. As the project continues, the staff records the effort spent per phase using Comm98,

milestones achieved and deliverables produced.

4. MS project reads this information and displays it on the Gantt. The project manager can

visually understand the current state of the project, and replan if needed.

Project management measures

Measures used for management have been informally introduced in the previous sections. We

summarize them here. The two main entities considered are project and defect.

Each project is characterized by.

 Development type (ex novo, customization, evolutive maintenance)

 Process type (small to medium, medium to large)

 Size type (small <=50 Function Points, medium (50 to 300FP, large > 300 FP)

 Estimated Function Points

 Actual Function Points

 Estimated Duration

 Actual Duration

 Total estimated effort

 Total actual effort

 Actual effort per phase

The thresholds for size type have been defined by clustering past projects (this issue

will be discussed later). The process types are only two, and not three, as many as the

size types, because at the current level of granularity for processes, no meaningful

process for medium projects can be defined. Therefore, medium projects are allocated

Measure

ment

database

Phases

per project,

past

productivit

y

Fault id,

type, effort

to fix, open

and close

date

Session 11: SPI and Measurement II

Page 11.24

to the small or large process, using the judgement of the project manager.

Each defect is characterized by

 Date when found

 Date when fixing started

 Date when fixing finished

 Effort to fix

A number of projects closed have been measured a posteriori, using data collected

and interviews to compute or estimate the measures. The goal is to define a baseline of

measures, both for estimation purposes, and for internal benchmarking. We present

here some results.

The chart below presents a scatterplot Function Points vs. effort for the whole set

of projects assessed. Most projects are small, a large project can be considered as an

outlier and has been removed from the chart.

0

50

100

150

0 200 400 600

Effort (hours)

F
P

Two clusters appear. Small projects (less than 200 hours) and medium projects

(300 to 600). Although very few data points are available, two linear relationships can

be envisaged, for small projects and medium projects. As expected, the productivity for

small projects is higher than for medium ones. Other attributes of projects (ex-novo vs

customization vs evolutive maintenance) does not appear to have influence. On the

other hand, small projects are always performed by one person, while medium projects

involve at least two person teams, what could explain the productivity change. Only

one project is available for the large category, so we cannot state anything on them.

Session 11: SPI and Measurement II

Page 11.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150

FP

P
ro

du
ct

iv
ity

Finally, we plot productivity vs. size. Now the clusters already observed in the plots

effort vs size appear in great clarity. The small projects (1-50 FP) have productivity

around 0.30. Then medium projects (50 to 150 FP) decrease productivity by one third

to around 0.20. Finally the only large project (600+ FP, not in the chart) has a further

drop in productivity. We exclude from this analysis as an outlier the project with

productivity 0.45. We can also observe that the variation in productivity for small

projects is much larger than for medium projects. This could depend on varying

performance of individuals, and on their greater effect on single person teams than on

larger teams.

Although few data points are available, these numbers confirm intuitive

observations from project managers and suggest that both management practices and

improvement actions have to be targeted in function of the size of projects.

The next chart reports the distribution of effort per phase. This information is used

to calibrate the allocation of effort per phase during the scheduling phase. Moreover,

some investigations have been started, to understand why the effort allocated for

requirement specification is so low in nearly all projects, why design effort is

sometimes absent, what the ‘other’ category actually contains when it is above 20%,

why the other category is completely absent in some projects.

Session 11: SPI and Measurement II

Page 11.26

0%
20%
40%
60%
80%

100%

U
n

ifi
n

 2

S
io

B
e
lla

vi
st

a

C
o

n
tr

a
ct

Effort per phase

Other

Test

Prod

Design

Req/Spec

Conclusion

Work performed

Project management activities have been clearly identified and described. Measures

are used as a support for all of them. As a starting point, a small set of measures has

been defined and collected a posteriori from past projects to build a measurement

baseline.

The main management activities defined are estimation, scheduling, tracking and

post mortem analysis. Projects are classified in small and large, small projects perform

a limited number of development and quality assurance activities. Clearly this has an

impact on scheduling and tracking.

An integrated toolkit has been selected to support management activities. It is

composed of tools to support estimation of size and effort, scheduling and tracking of

activities, effort spent on and faults found on projects. A relational database acts as a

repository of data from projects at the company level. A spreadsheet is used to

compute and analyze measures.

Lessons learnt

The PRO3 project is now a few months before conclusion, and experimentation of

the project management infrastructure is on going. Although it is too early to derive the

final conclusions on the effectiveness of the new management infrastructure, a number

of observations can already be listed.

 Measures change the point of view on what it is analyzed, offer more insight and

oblige to more precision. This is well known, but remains abstract theory

especially in software. However, during the project a couple of cases convinced

everybody that the theory was applying in concrete to our particular case. For

Session 11: SPI and Measurement II

Page 11.27

instance the size of projects was traditionally measured by effort. But the analysis

on the charts presented in this paper (two projects with same FP but 100%

variation in effort) demonstrated that effort was misleading as an indicator, and FP

should be used instead.

 The definition of phases in function of types of projects is delicate. The current

definition in PRO3 is the third iteration if we consider the whole history of the

Cortis Lentini quality system. The availability of a tool infrastructure can change

the context, allowing some more overhead for smaller projects. We have to wait

for the completion of the experimentation to evaluate fully the effectiveness of our

choices.

 Project staff is collaborating positively, enthusiastically in some cases. Initially we

expected some resistance or skepticism. On the other hand the growing size of

projects, and the related growing impact of problems, has made everybody aware

that sound project management is essential to survive. Also, PRO3 can count on

solid backing from top management, and tries to involve Cortis Lentini staff with

continuous communication about the project. Again, measures help a lot to focus

discussion and ideas: managers were in first line in finding and discussing

hypothesis to explain trends and outliers in analysis of measures.

 The integration of tools is sometimes tricky and requires a lot of effort to

understand the intricacies of each tool vendor. Sometimes we were not able to

obtain the exchange of information requested, and this resulted in missing the

information, or requesting it more than once to the user.

 Some tools require a considerable effort to be learnt and used effectively. Initially

we were planning to let each project manager use each tool. Now we have

restricted the use of the estimation tool to a couple of ‘experts’ that can use them

effectively.

Acknowledgements

This work was supported by the European Commission, under contract Esprit/ESSI PRO3 n.

27370.

References

[1] Albrecht, A.J. and Gaffney, J.E. 1983. Software function, source lines of code, and

development effort prediction: a software science validation. IEEE Trans. 6: 639-648.

[2] Jones, C. Applied Software Measurement. Mc Graw Hill, 1996.

[3] Fenton, N.E., Pfleeger, S.L., Software Metrics – A Rigorous and Practical

Approach, International Thomson Press, Boston, 1997.

[4] Grady R., Practical Software Metrics for Project Management and Process

Improvement, Prentice Hall, 1992.

Session 11: SPI and Measurement II

Page 11.28

Experience from
process improvement

in a SME

Hans Jørgen Lied, M.Sc.

Telenor Geomatikk AS, Trondheim, Norway

Tor Stålhane, Ph.D.

SINTEF, Trondheim, Norway

Introduction

This paper describes a case study that was carried out in 1997-1998 and

supported by the Norwegian national research program SPIQ. The company

involved wanted to find a way to identify problem areas in the software

development and to reduce the amount of rework caused by the introduction

of errors during software development. The case study was motivated by the

challenge of finding a way to identify problem areas by introducing the

process improvement framework offered by SPIQ.

Our opinion is that the best way for a company to improve is through

learning from their own data and experiences. In order to perform data

analyses, we therefore have to combine collected data with experiences that

are available in the organisation. We need to decide what to measure and

how, how to make sense of the data and how to use the knowledge. From

SPIQ we got the idea to use a combination of three methods:

 Goal Question Metrics (GQM), to decide on what and how to measure.

 Pareto analyses, combined with a robustness analysis to analyse the

collected data and to assess the confidence we should have in them.

 Root Cause Analyses (RCA) [8], augmented by use of the Ishikawa

diagram [7], to identify the root causes of our problems.

The results from these analyses identified the main problem areas. The

feedback sessions in the GQM method were used to combine data, prior

Session 11: SPI and Measurement II

Page 11.29

knowledge and experience during data analysis. Our approach and results

will be useful for other organisations facing a similar challenge.

The collected data open for several interesting analyses such as how the

differences in the projects influenced the types of errors, their corrections

cost and time to discovery. We will in this paper, however, only focus on how

to improve the development process so that we get fewer errors in the

future. The rest will have to wait.

The rest of this paper is organised as follows. The first section describes

the SPIQ program. The next section describes the organisation and projects

on which this case study was performed. After this we describe the approach

we chose. Next we describe the analyses we did and the results we

obtained. Finally we present some conclusions.

Software Process Improvement for better Quality
(SPIQ)

The SPIQ program was started in April 1997 and is sponsored by the

Norwegian Research Council (NFR). Its main goal is to “increase the

competitiveness and profitability of Norwegian IT-industry through systematic

and continuous process improvement”. The SPIQ program is based on the

process improvement principles of Total Quality Management, [1], [3], GQM

and the experience factory [5]. See http://www.geomatikk.no/spiq for more

information about SPIQ. The process improvement offered by SPIQ builds

on three pillars:

 The PDCA – Plan, Do, Check, Act – cycle.

 All decisions should be based on facts – observations and experience

 Developer participation is an essential part of all process improvement

activities.

The work described in this paper has benefited from SPIQ in several

ways:

 SPIQ has provided valuable method support

 SPIQ has motivated and partly financed the internal work of introducing

process improvement methods to the company

 The methods, experience and changes were discussed at the SPIQ meetings

Environment

The company where we did this case study is a medium sized Norwegian

company. It has a total of 270 employees with offices in Trondheim, Oslo,

Tønsberg and Kristiansund. In addition they have offices in Sweden. At

present the software development division employs 14 persons.

http://www.geomatikk.no/spiq

Session 11: SPI and Measurement II

Page 11.30

The software development division is of a size that makes it possible to

easily adapt to changing market demands. At present the market wants

tailor-made systems and special changes performed on already existing

software products. There is a large amount of companies that deliver

solutions in the same area and the competition is fierce.

Projects are often undertaken, based on a fixed price, which demands a

streamlined development process and little room for rework caused by the

introduction of errors. Systems with few or no errors are also important as a

way of selling stability and reassurance to customers who invest money into

software development. A happy customer is likely to return.

The two development projects were chosen because they were quite

different and, at the same time, representative for projects this company is

involved in. The only parts that were identical in the two projects was the

project team and that they used the same development process model. The

differences are much more prominent. The most important ones are:

 Different methods of development; Project 1 had its structure given right

from the start, while Project 2 depended on prototyping.

 The customer defined quality assurance requirements for Project 1.

 Project 1 started with a readily made requirements specification from the

customer, while Project 2 started with an idea from the customer and the

requirements specification was a co-production between the customer and

the developers.

The role of GQM in Root Cause Analysis

Why we chose the GQM method

Our first problem when starting to use RCA was the lack of a method for

collecting data to be used. There was no direct support for this in the SPIQ

framework but we found a way of combining parts of GQM – mainly the

GQM abstraction sheet - with the Pareto analyses that proved to be efficient.

In addition to the abstraction sheet, another important reason for using GQM

was its strong focus on developer participation. We dropped the lower part

of the GQM abstraction sheet – the part that contains the hypotheses

concerning values of the focus parameters and the hypotheses concerning

the impact the variation factors had on the focus parameters. To fill in these

two quadrants would have been interesting, but was dropped since the data

later should be used in an RCA setting.

The GQM abstraction sheet was used to manage and structure the

brainstorming sessions and to identify the causes we would like to analyse in

the later RCA. By getting a strong participation, we hoped to obtain two

things:

Session 11: SPI and Measurement II

Page 11.31

 More reliable data. The developers should presumably be more

interested in obtaining correct data if they felt that they had ownership to

the goal and purpose of the data collection.

 More interest in the results. One of the factors that can really kill an SPI

initiative is lack of interest from the participants. By involving the

developers from day one, we hoped to create this interest and thus keep

the improvement program alive.

In addition, we would get a better set of basic root causes to analyse if we

tapped the large amount of experience that is available from the developers.

Without this knowledge, we would have been forced to collect data on many

more possible causes, thus creating a large and possibly unwieldy model.

This would have cost extra resources without adding anything to the value of

the final results.

The GQM process

Since none of the project participants had any prior knowledge of GQM,

we started with a two hours GQM workshop. This was done with the help of

research scientists from the SPIQ program. As in earlier cases, it turned out

that GQM was easy to understand and use. During the two hours session we

were able to describe the method and work through the goal that the

company had defined. We use this as a standard approach, as opposed to

start with a toy example. One of the strong points with GQM is that it tries to

maximise the use of expert knowledge. A toy example will thus not help the

users to understand why GQM is a good idea.

In order to get a practical set of failure causes categories, we started with

the following GQM goal: Analyse the reported failures in order to

understand causes for failures seen from the developers in the X project.

The GQM process produced a GQM abstraction sheet, which was converted

to a data collection form. The questions were converted to entries in the

form. This process was straightforward and gave a practical data collection

form. The data form represents the metrics in GQM.

After the initial process only small adjustments were needed. This was

done in the first feedback session, where component complexity was added

as a failure cause. The collection form had the following categories for

reporting a failure:

Focus – main cause

1. Incorrect use of cut-and-paste from old code

2. Incorrect reuse of old code

3. Incorrect use of language features

4. Incorrect use of library components

5. Incorrect attempts to make the code general - prepare it for later reuse

6. Attempted reuse by introducing global variables

7. High component complexity

8. Large, unanticipated variation in input data

Session 11: SPI and Measurement II

Page 11.32

9. Incomplete or bad test data

10. Too large code components

11. Missing or incomplete configuration management

12. Incorrect component integration

13. Insufficiently detailed requirements specification

14. Wrong code logic

15. Errors in hardware – software communication

Variation factors – secondary causes:

1. Time pressure during development

2. Missing competence in use of programming language or development tools

3. Uncontrollable, external disturbances – for instance fire fighting old systems

4. Errors in development tools

5. Errors in libraries and subsystems supplied by subcontractors

6. Lack of user interaction, which caused lack of understanding of user needs

7. Lacking or missing motivation among the developers

8. Incomplete project model, for instance too few check points in the project

The item numbers used in the lists above are the same as the once used

in data collection form shown in Figure 1 below.

In order to get a more detailed picture of the reported failures; some of

the categories were split up into subcategories. It turned out, however, that

this did not add important information, and these subcategories were

dropped from the later Pareto analyses. They were, however, useful during

the RCA process when filling in the Ishikawa diagram.

In addition to the possible causes, we registered for each reported failure;

its degree of seriousness, consequence and resources needed to correct it.

The seriousness was scored on a five point scale, the resources needed for

correction was registered in person-hours, while the failure consequences

were registered in free text format. The final form – in Norwegian – is shown

below.

Session 11: SPI and Measurement II

Page 11.33

Figure 1: Data collection form – in Norwegian

What is our experience

The use of GQM worked as intended and we were able to create interest

and ownership for an improvement initiative. The failure cause categories

that came out of the GQM process were practical and useful. A good

indicator of its success is that only one failure cause was added later and

none of the original failure causes were removed.

Data analyses

Pareto analyses

Vilfredo Pareto, an Italian Bachelor of Commerce who lived in the

nineteenth century, did research on poverty in Italy. He discovered, from

extensive statistical material, that approximately 20% of the people in Italy

owned or controlled 80% of the country’s total resources. This 20/80

distribution has proved to be applicable in many different environments,

among them sources of failures in software development, and is known as

Pareto’s Law.

The Pareto analysis is a deceptively simple, yet powerful, way of looking

at data to help find the root-cause of a problem. We used a Pareto analysis

on our collection of data to identify areas of improvement rather than direct

problem removal. Our goal was to identify the main problem areas so that

they could serve as a basis for a root cause analysis applying Ishikawa

diagrams in combination with a brainstorming session.

The Pareto diagrams are informative in the way that they visualise the

main problem areas. The diagram also fits in nicely with our experience that

plotting is the best way to start any data analysis process [6]. Below we

show the diagrams for the two projects in the case study. This shows us

which main causes are prominent in this study. The cause numbers along

the x-axis in each Pareto plot refer to Figure 1.

Figure 2: Pareto diagrams for the two projects. Project 1 to the left.

Rework

0

5

10

15

20

25

30

3 4 14 7 2 1 6 13

Focus cause

T
im

e
v
e
rk

A

Rework

0

2

4

6

8

10

12

14

16

13 15 14 1

Focus cause

T
im

e
v

e
rk

A

Session 11: SPI and Measurement II

Page 11.34

We found combining Pareto analyses, brainstorming sessions and

Ishikawa diagrams in a root cause analysis to be an efficient method for

identifying problems and analysing problem areas.

Robustness analyses

The amounts of data collected in this case study is small. The reason for

this is that the company is small and with only a few projects running at the

same time. We can not collect data over a long period of time, because

collected data will soon be outdated or irrelevant due to changes in the

company’s environment. We therefore chose to extract information from the

collection of data and convert it into improvement actions without collecting

large amounts of data needed for a traditional statistical improvement

approach.

Since we had few observations, each data point can be critical for the

conclusion. We thus introduced robustness analysis to assess the

confidence we should have in the data – and thus in the conclusions.

Broadly speaking, a robustness analyses is done by checking whether the

conclusion changes when one of the observations was removed from the

data set. To do this we created new data sets consisting of one observation

less than the total data set. The amount of new data sets is equal to the total

amount of reports. They are all different because there is a different

observation missing in each of the new data sets. In the first new data set,

we removed the first observation. In the second new data set, we put the

first observation back and removed the second observation and so on. In

figure 3, the letters B, C, D and so on mark these data sets.

By plotting all the new data sets into the same Pareto diagram, we can

validate our conclusion. If all the columns are identical and they are identical

to the original Pareto diagram based on the total data set, we have a robust

conclusion. The total set of data gave us the Pareto solutions presented in

figure 2. Combining all the sets from each project for the focus cause gave

us the following two Pareto diagrams:

Rework

0

5

10

15

20

25

30

3 4 14 2 7 1 6 13

Focus cause

Pe
rs

on
 ho

ur
s

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

Rework

0

2

4

6

8

10

12

14

16

13 15 14 1

Focus cause

Pe
rs

on
 h

ou
r

B

C

D

E

F

G

H

I

J

K

L

Session 11: SPI and Measurement II

Page 11.35

Figure 3: All data sets presented in one Pareto diagram for each project to

see if it is robust. Project 1on top, Project 2 at the

bottom.

In our case several of the new data sets indicated a different conclusion.

The observations removed from these data sets are to be considered critical

to the conclusion because of their ability to change the conclusion. An

example from the graphs above are set K – indicated by an arrow - from

Project 2 which show causes 13, 14 as a result instead of causes 13, 15, 14.

The number of new data sets giving us different results can tell us how

much confidence we should have in our conclusions:

(Total amount of observations – amount of critical observations)/(Total

amount of observations)) which gave us 81% in both projects.

The critical observations should be checked one extra time. We did this

by going back to the person who filled out the error report asking him to

check it. This check fortunately confirmed all the critical data.

After analysing both projects as described above, we ended up with the

following main problem areas:

Project 1:

 Incorrect use of language features

 Incorrect use of library components

 Wrong code logic

Project 2:

 Incomplete or insufficiently detailed requirements specification

 Incorrect component integration

 Wrong code logic

All the identified main problem areas were then analyzed by using an

Ishikawa diagram.

Root cause analysis

We had two main requirements for our choice of method for data

analyses in this project. It should be simple to use with no - or almost no -

training needed in advance and it should encourage and facilitate developer

participation.

The result was a two pronged approach. We decided to use the Ishikawa

diagram for documentation and visualisation. The use of the Ishikawa

diagram should take the results from the Pareto analysis as its starting point

and then be combined with general brainstorming techniques.

The Ishikawa diagram

Session 11: SPI and Measurement II

Page 11.36

The data analysis in the improvement project was done by using the

Ishikawa diagram. There were two reasons for this: First and foremost, this

method is well known in industrial activities. It is easy to understand and

apply and it is possible to identify improvement possibilities once the diagram

is finished. Secondly, the method is well suited for developers’ participation,

which we consider to be an important feature in any SPI activity.

The Ishikawa diagram has been used for many years in improvement

activities in a wide variety of industrial settings. It is part of the seven old

TQM tools and there is a large amount of literature that covers how the

technique can be used in an efficient manner. The method is application

area independent and could thus be used without any modifications or

adaptations.

An example of an Ishikawa diagram is shown below. The horizontal line –

the trunk - is the problem that we want to analyse. In this case it is

“incomplete requirements”. The main branches are filled in with the main

causes as the participants see them. The next level horizontal lines

represent possible causes for the main causes and so on. When the

brainstorming session is completed and the Ishikawa diagram is finished, we

go through all the identified causes and move or delete causes as

necessary. As a last activity, the most important main causes should be

identified and put up as candidates for improvement activities.

Figure 4: Cause and Effect Diagram from one of the brainstorming

sessions

Brainstorming sessions

Brainstorming sessions are well organised, structured meetings

integrating the project team and the measurement team. The collected data

Incomplete
requirements

Incomplete
environment
description

Incomplete QA
activities

Incomplete functional
requirements

Too complex
description

Incomplete
non-functiona
lrequirement
s

Other

misunderstandings

Incomplete

understanding of

customer needs

Insufficient

customer contact

Missing

routines

Time pressure

Routines not

followed

Lack of

knowledge

Lack of

overview

Session 11: SPI and Measurement II

Page 11.37

are presented to and interpreted by the project team members. Combining

the knowledge of the team members with available data, we hoped to

identify the root cause.

Since none of the project participants had any prior knowledge of RCA,

we started with a half-hour RCA introduction. As we have observed in earlier

cases, it turned out that RCA itself was easy to understand and use. During

this first half-hour session we were able to describe the method and work

through a simple example. One of the strong points of a brainstorming

session is that it maximises the use of expert knowledge in combination with

the collected data.

After this short introduction to the project team on what we expected and

what we had found, we started the brainstorming session. The results from

this two hours plus session were summed up in a report that was used as

input to the post-mortem analyses at the end of the two development

projects.

Results

The splitting up of the possible causes into focus and environment, forced

upon us by GQM was of great help in setting up the Ishikawa diagram. The

secondary causes identified during data collection was used as a starting

point when identifying the second level horizontal lines representing possible

causes for the main causes.

When we felt confident that the right root causes had been identified, we

started to work on the improvement steps. This last step proved to be the

easiest one. The discussion among the participants in the feedback session

was already going high on what to do to improve the situation in the

company.

One of the first things that came up was sharing of competence and

experience within the company. Many employees with seniority have a lot of

experience that can be shared with the rest if the employees. By shearing

this information through courses, lectures or written reports, valuable

information will be spread in the organisation. Another thing that came up

was availability of information, templates and routines. The lack of an

Intranet was also mentioned, and this was one of the points discussed where

everybody agreed. Other improvement actions from this session are

presented in the list below:

 Sharing of competence internally

 Checklist on Intranet

 Common routines/solutions for standard tasks (best practice experience)

 Common dynamic document templates

 Start the planning, design and development of an experience database

The next activity will be to look at cost and risk in implementing one or

more of the identified improvement activities. This is beyond the scope of

this case study but work is in progress in the company.

Session 11: SPI and Measurement II

Page 11.38

The success of new improvement activities will depend on the

participation of all the developers in the company. Our experience is that this

method of introducing process improvement to all the involved parts in an

organisation increases the probability of success.

Conclusions

We started on this case study with an idea that we could do magic for the

company by just waving our magic wand – the improvement framework

originally proposed by the TQM fathers. It was not that simple, in fact it was

not simple at all. There is a lot of “trial and error” behind this case study, but

the important part is that we learned, and that the company learned.

It is important that those who shall collect the data participate in the

improvement process right from the start. Introducing the participants to the

necessary parts of GQM, and involving them in defining what to measure

and how to measure it, motivated the participants and thereby increased our

confidence in the collected data. The concrete focus on improvement we set

in this session had a positive impact on the improvement culture in the

organisation.

Is seems clear that we seldom or never will get enough material for solid

statistical analyses in a company of this size. By introducing robustness

analysis as an enhancement to the Pareto analysis, we found a way to

assess the confidence we could have in the data and thereby the

conclusions.

In order to identify the main causes in the development process, we held

a brainstorming session supported by Ishikawa diagrams. This gave us a

new opportunity to involve the project teams in a discussion on what were

the main causes and what the possible causes to these main causes could

be. In addition to giving us the root causes it also gave us a lot of

suggestions as to what to do about it.

As a result of this case study the work started on creating an Intranet site.

It was decided that a set of pages on this site should be dedicated to points

on the list shown above. One person was also dedicated to keep the site

alive. All together we can summon up what the company learned from this

case study into:

 Individual experiences for the team members

 Measurements gave knowledge of how things really are in the company

 Common understanding of what we learned from this knowledge

 Explicit shared knowledge about the process that the company can reuse

The most important experience, however, is that it is possible to improve

the process through data analyses and the use of simple problem solving

techniques.

Session 11: SPI and Measurement II

Page 11.39

References

[1] Aune A., Kvalitetsstyrte Bedrifter, Ad Notam Gyldendal, Norway, 1993. ISBN
82-417-0516-6 (in Norwegian)

[2] Conradi, R., Juul Wedde, K., Stålhane, T. Sørumgård, S. m.fl., The SPIQ
Handbook - V 1.1 05.01.1998 (in Norwegian)

[3] Lillestøl, J., Kvalitet: Idéer og metoder – offensiv kvalitetsutvikling.
Fagbokforlaget, Norway, 1994. ISBN 82-7674-032-2 (in Norwegian)

[4] Damele, G., Bazzana, G., Andreis, F., Aquilio, F., Arnoldi, S., Pessi, E.:
Process Improvement through Root Cause Analysis. Italtel SIT BUCT Linea
UT, 1997

[5] Basili, Victor R., Software Modelling and Measurement: The
Goal/Question/Metric Paradigm. University of Maryland Technical Report
UNIACS-TR-92-96, 1992

[6] Juul Wedde, K., Analyse og presentasjon av måledata. SPIQ technical paper
(in Norwegian)

[7] Straker, D., A Toolbook for Quality Improvement and Problem Solving,
Prentice Hall, 1995, ISBN 0-13-746892-X

[8] Stålhane, T., Forbedring gjennom årsaksanalyse (RCA). SPIQ technical
paper (in Norwegian)

Session 11: SPI and Measurement II

Page 11.40

Error Trending
Why and How

Niels Bruun Svendsen

B-K Medical A/S, Denmark

nbs@bkmed.dk

Introduction

How do you waste your money? Do you make the perfect error free product and loose the

market while doing so or do you get your product out "first thing" and drown in error

corrections, patches and possibly field updates?

When developing systems and software an inevitable management question is: "When is the

system ready for release?". On the bottom line the answer on when to release a new product

for production and sales is a matter of being able to estimate the cost of releasing, as well as

the cost of postponing the release.

In calculation of the cost of releasing a product the number of remaining unknown errors is a

major factor. Therefore error detection trends during the system-testing phase have been

introduced as means of estimating the number of remaining unknown errors.

This paper will share the experiences gained and the lessons learned from introducing error

trending as an estimation tool and highlight the benefits found as well as the problems

encountered.

The results includes not only experiences with the precision of the estimates but also, and not

less interesting, the impact of error trending on the organisation. It was found that the error

trend had a great value during all of the system-testing phase, and for all groups involved:

 Top-management get a more objective estimate on remaining unknown errors

 Project managers gets a management and planning tool and arguments (against sales

and top-management) for not being able to release "tomorrow"

 System test staff gets a planning tool and the arguments for extra resources

 The developers get the argument for not being able to start on another project

"tomorrow", i.e.: “When this many errors are suspected to be found, we need time to fix

them!”

In short this means that one simple curve gives input and insight for top-management,

project management, QA function and developers, i.e. becomes the common reference on

system state.

Company Context

B-K Medical develops, produces and markets ultrasound

Session 11: SPI and Measurement II

Page 11.41

systems for medical diagnostic imaging. The systems are sold throughout the world

with the major markets being Europe, USA and Asia. B-K Medical has 250 employees

with 166 located in Denmark. The development department consists of 60 employees

where 20 are involved in software development. B-K Medical is ISO 9001 certified

and most of the products have FDA market clearance and are CE-Medical Device

certified. Therefore external audits are performed accordingly. No formal assessment

against a model has been performed, but an informal self-assessment using the

BootCheck tool from ESI has been performed. This assessment gave maturity ratings

between 2.5 and 3.25, indicating some areas in need of improvement to get to the

Defined (3) level, and a general lack of metrics as required in the Managed (4) level.

Project Initiation

The introduction of error trending at B-K was initiated by a management request for an

improved basis for making the release decision, i.e. to decide whether or not to release

a new product for production and sales. As part of the initiatives taken in order to

pursue this goal, Error Trending was introduced. By using Error Trending to estimate

the number of remaining unknown errors rather than using pure intuition, the

objectivity of the basis for the release decision is increased.

Although aiming primarily on an estimate of remaining errors at the time of the release

decision, error trending was introduced in the system-testing group as a tool to be used

from the beginning of system test execution until the product is released. Beginning

error trending early in the system-testing phase gave a lot of good experiences as

described later on.

The initial steps with error trending were done on error data from a scanner that had

been on the market for a year and therefore the number of reported error after release

was known. Error reports from the last part of the system-testing phase were used and

plotted as seen in fig.1. The y-axis shows the accumulated number of errors reported,

and the x-axis shows the number of test days. A test day is equal to a calendar day

except that only calendar days where test were performed are included.

Session 11: SPI and Measurement II

Page 11.42

Fig.NBS.1 : Accumulated no. of errors for released product

Despite the fact that the test effort pr. test day was not known in any detail, the plotted

error data gave a quite clear trend with a distinct convergence in the last part of the

trend. To start off with, very simple functions were tried out, using the trending

functions in the MS Excel spreadsheet. None of the experiments using all data gave

any trustworthy results. Our criteria for a result to be trustworthy, were that the

estimated trend had a good correlation with the last converging part of the data, and

that it gave an estimated total number of errors higher than the number of errors

already found.

Finally it was decided to focus only on the latter part of the error data, and using the

exponential function on those data as shown on fig. 2. It gave a perfect match with the

number of errors actually found after release.

Although this was very well affected by the fact that we knew the result we should get,

it did give some confidence in that here was something useful. Fig. 2 was used for

raising internal interest in error trending, with the argument that:

Based on data with a great deal of uncertainty you can apparently still draw

and extrapolate a trend using the data from the final stage of system test and

get a very good estimate on remaining errors.

The conclusions on the work with the data from the released product was that although

limited in amount and precision it gave a good initial interest in error trending and was

a kick-off for going further into the subject.

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

Test Days

N
o

.
o

f
e

rr
o

rs

R
e
le

a
s

e

Session 11: SPI and Measurement II

Page 11.43

Fig.NBS.2 : Exponential Error Trend for released product

The Model

When searching for experiences on error trending the name of SATC (Software

Assurance Technology Center) at NASA is very likely to pop up. SATC has published

articles that mentioning their work on an Error Trending Model, ref.[1] & ref.[2]. The

Error Trending model was also mentioned by Linda Rosenberg, SATC at a QWE’98

tutorial. As we did not find any further description of this model, Linda Rosenberg was

contacted. We got a very quick response saying that work was still in progress on the

model and they were working on a tool to support the model. We were also invited to

send our data to SATC to have them analysed.

We decided to send data from the first part of system testing on a new scanner.

Unfortunately our data did not give any valid results when analysed by the SATC

Software Error Trending Tool. Instead they returned a spreadsheet with our data

analysed by a Weibull variate. It differed from the Weibull function in relation to the

manpower utilisation, but as this did not influence the estimate on the number of

remaining errors, we decided to proceed with the Weibull function itself. The Weibull

function has the form:

max

exp1
t

t
Ktf

p

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

Test Days

N
o

.
o

f
e

rr
o

rs Fitted Trend

Actual

Estimated Remaining Errors: 16

R
e
le

a
s

e

Session 11: SPI and Measurement II

Page 11.44

With p = 1, we have the exponential function and with p = 2, we have the Rayleigh

curve. When used for trending, the parameters k, tmax and p are optimised to get the

minimum sum-of-difference-squared. The spreadsheet included set-up for using the

MS Excel solver to analyse additional data, and has formed the basis of our further

work with error trending. We are therefore very thankful for this valuable input from

SATC.

The Weibull function and the alternative models that could be used are described

further in reference [3], [4] and [5].

In fig. 3 the use of the Weibull function on the data from the released scanner is shown.

The estimated number of errors remaining is 5. A total of 15 error reports have been

made since release, including also change requests.

Fig.NBS.3 : Weibull Error Trend for released product

Multiple reasons for the difference can be and has been discussed, e.g. was the system test as

thorough as the “test” performed by having customer using the system, did we have sufficient

data to make a reliable estimate etc. In this case the found errors were not corrected,

otherwise errors introduced while making corrections could have been a reason.

The conclusion drawn on the estimate was that although a bit low, it is still a good

estimate, especially when taking into account the uncertainty and limited amount of

data. The estimate indicates a system ready for release and the errors found after

release was also within acceptable level.

Error Trending during System Test

As mentioned earlier, data from the first part of system test on a new scanner were

Error Trend

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40

Test Days

N
o

.
o

f
e

rr
o

rs Fitted Trend

Actual

Estimated Remaining Errors: 5

Session 11: SPI and Measurement II

Page 11.45

analysed by SATC, NASA. The results, based on the Weibull function, gave a very

high estimate on the number of remaining errors, as well as a high number of days to

find the remaining errors.

When presented for the project manager we had the first direct impact on the project:

With that many test days left, we need more test objects

The presented error trend and estimates were the direct cause for additional test objects

to be arranged for. The fact that the calculations on our data were made by NASA was

used to increase confidence in the estimate.

A good reference gives confidence

From this point in the system test phase, daily updates of the trend and estimates were

made, i.e. yesterdays reported errors were entered and new parameters for the Weibull

function were calculated. The test days are here counted as test man-days, e.g. 3 testers

working one day, results in 3 test days. This way we account for the changes in test

effort.

Fig.NBS.4 : Weibull Error Trend for new product

The new trend and estimates were presented on the “project wall”, and on the Intranet,

see fig. 4. A lot of internal interest were gained and although not all understood that the

error trend curve were optimised every day, it gave opportunities to discuss the state of

system under test as well as error trending in general.

During the last part of the system test phase the project manager had a demonstration

of the system for the top-management. A full functioning scanner was demonstrated

and as often in these situations the comment that the project manager receives is: “This

scanner looks complete. Why don’t we release tomorrow or at least at the end of the

week?”. The standard answer to this question is that “we still need a little optimisation

on the quality of the image” and “we haven’t got all parts in production quantities”.

Error Trend

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

Test Days

N
o

.
o

f
e
rr

o
rs

Fitted Trend

Actual

Estimated Remaining Errors: 94

Estimated Remaining Days: 100

F
u

n
c

ti
o

n
a

l
te

s
t

s
ta

rt

B
u

il
d

 5

B
u

il
d

 6

B
u

il
d

 7

B
u

il
d

 8

Session 11: SPI and Measurement II

Page 11.46

But this time the project manager had another argument, i.e. the error trend and the

estimate of remaining errors and test days. So he showed the error trend saying: “See

we estimate the need for another 100 test days. With the number of scanners and

testers we have, that means we’re finished in 30 days, and that is exactly the planned

release date. That was very convincing and made the end of that discussion. Of cause

the input from SATC at NASA again played a role in the creation of confidence in the

estimate.

The product is finished. Why not release “tomorrow”?

The Error Trend holds the answer

This time it was the top-management, but next time it will be the sales staff asking for

a release “tomorrow”. The visualisation of the Error Trend makes it easy to

communicate the probability for further errors to all types of staff in the company.

Not only the project manager, but also the developers can make use of the Error Trend

in this stage of the project. Typically another project is crying out for development

resources as soon as they have finished their work on the current project. And there is a

strong tendency for developers to be almost finished, i.e. “I have only a few more

(known) errors to correct, then I’m finished. A few errors might pop up but we’ll fix

them in-between the other work”. Here the Error Trend is a great help too as it is easy

to take the number of estimated remaining errors and divide by the number of

developers and you have an estimate on how many more errors there are to correct for

each developer. In our case and probably for many others, this will mean a

considerable amount of time to be planned for before the resources are ready for the

next project.

You have implemented it all. Why can’t you start on a new project “tomorrow”?

The Error Trend holds the answer

The value of the Error Trend and the estimates in the mentioned situations naturally

depends on the precision of the estimates. However we find that the normal

expectations are that far from any reality, that almost any estimate is better than none.

The benefit is there if just you can show that there is “a lot” of errors left and not just

“a few”.

Fluctuations of the Error Trend

Fluctuations in the trend was expected, as new builds, new test techniques and the start

of test in previously untested areas are very likely to initially increase the number of

errors found. And when you test on the same build with the same test technique fewer

and fewer errors will be found. This phenomenon is seen in fig. 4, where the first 24

test days constitutes its own “S” curve and a large increase in error detection rate is

seen as we enter what is referred to as functional test.

So fluctuations are seen:

 When test of new features is started

Session 11: SPI and Measurement II

Page 11.47

 When changing test techniques

 When new builds are introduced

In our case the largest fluctuations were seen when entering test of new feature and the

smallest fluctuation seen when introducing new builds.

Fig.NBS.5 : Evolvement of estimated total no. of errors

As the estimated total number of errors were calculated every day these fluctuations

had an impact on the estimated total number of errors. Therefore there was a need for

visualisation of the evolvement of this estimate. A trend for the estimated total number

of errors was added as seen in fig. 5. The first estimate of 530 errors in total was the

estimate received from SATC’s analysis of our data and the figure used to get

additional test objects. As seen the estimate was reduced somewhat during the first

period where Error Trending was used and we saw the estimate stabilise around

approx. 350 errors. But then around the 65th test day suddenly the estimates of the

total number of errors increased drastically. This was caused by the fact that we had

entered test of 2 previously untested areas that were found to have a much higher error

density than what had been tested so far.

This increase in the estimated number of errors in the system naturally imposed a

problem on the project, both in getting development resources to correct the errors and

the extra time needed for both the correction and the verification of the corrections.

When discussing the situation we could see that this was not a new problem, but a

problem we have had “always”. It is a result of the way we plan the system test, where

we execute the test sequentially, function by function. The problem is visualised in

fig.6. The illustration shows a set of functionalities, where

0

100

200

300

400

500

600

30 40 50 60 70 80 90

Test Days

E
s

ti
m

a
te

d
 T

o
ta

l
N

o
.

o
f

E
rr

o
rs

Estimated Total Errors

Found Errors

Session 11: SPI and Measurement II

Page 11.48

the “F” functionality is significantly more error prone than the others. The first case

Fig.NBS.6 : Test Sequences

is how we traditionally have covered the test of such a system with test suites for

each functionality and executing the test suites sequentially. This means that we will

not have any knowledge of the, in this case, high error density of “F” until late in the

system test execution phase.

Therefore we have changed the strategy for test planning slightly, making a test suite

that covers all functionalities. This test suite will not cover any functionality in depth,

but just enough to get an impression of the error density of the functionality. Use Cases

will be used for designing this test suite. By executing the Use Case based test suite as

the first test suite, we will get valuable data for planning the execution of the remaining

test suites. We will also get the possibility to reject functionalities early in the test

process, limiting the time spend on system testing features that are not ready for system

test. This way of planning the execution of the system test will be applied in two

projects during autumn 1999.

Common Sense has to be triggered

This change in the system test execution is not directly connected to the Error

Trending. But the visualisation of the problem that the Error Trend caused was the

trigger needed to realise it and to have a broader group of people discussing the

problem and possible solutions.

A B C D E F G H

Funtionality

C D E F G

Funtionality

A B H

Test

Suite

1

Test

Suite

2

Test

Suite

3

Test

Suite

4

Test

Suite

5

Test

Suite

7

Test

Suite

8

Test

Suite

2

Test

Suite

3

Test

Suite

4

Test

Suite

5

Test

Suite

6

Test

Suite

8

Test

Suite

9

Test Suite 1

Problem !

Solution ?

Test

Suite

6

Test

Suite

7

Session 11: SPI and Measurement II

Page 11.49

In the final stage of the system test it was found that the estimated total number of

errors remained at a very high level, even with many test days having no or very few

errors found. When looking at the trend curve it was apparent that it was not following

the actual error findings in the final stage of the system test very well. Therefore the

initial part of the system test, where new features were still added to the system, was

omitted from the trend calculations in the final stage of the system test. So just as there

were valuable impact of starting Error Trending early in the system test, even though

not all of the system was ready, it was found that the estimates to be used in the latter

part of system test had to be based solely on data starting at the time where the total

system is available.

Summary

The experiences with the work performed with Error Trending can be summarised in

the following Why’s and How’s:

Why:

 It triggers the use of common sense

 It highlights the need for process improvements

 It’s a valuable tool implemented by simple means

 It works as a common reference on system state

 Managers gets valuable knowledge

 Developers gets valuable knowledge

 Testers gets valuable knowledge

 It improves the release decision support

How:

 Find and plot available data

 Select an error trend approach

 Ideas can e.g. be found in literature by SATC, J.D.Musa, Grove Consultants

and S.H.Kan

 Apply it during system test

 Make it visible to all involved in the project

 Monitor the trend and learn from the questions and discussions it generates

 Do not initially expect high-precision estimates

 Increase accuracy by process improvement actions

Session 11: SPI and Measurement II

Page 11.50

Conclusions

We started off aiming at a technique to estimate the number of remaining errors at the

time of possible release. What we found was a technique that apart from doing that

were able to trigger common sense in several processes related to the system test phase.

Improvement was triggered in relation to:

 Being realistic about when development resources are ready for the next project

 Getting an easily communicable argument for not releasing “tomorrow”

 Planning the system test for early error density overview

So far we have limited data on the precision we can obtain, but we have found that

even with a limited precision there’s a lot of benefit in collecting and presenting data

which in many cases are fairly easy to get hold of.

Apart from the mentioned models we also tried using 3rd order polynomial

approximation as suggested by Grove, but had some problems getting estimates we

believe in. And the trust in the model is a key issue when the idea is to be “sold”

internally. Also a good reference play a key role in that respect. But whatever model

you choose, don’t trust it blindly. Keep your common sense and professional

knowledge, but let Error Trending help you stay objective and use it as a mean of

communicating between personnel groups.

Get your Error Trending started – You won’t regret it

References

[1] Robert E. Waterman, Lawrence E. Hyatt : ”Testing - When Do I Stop?”

International Testing and Evaluation Conference, Washington, DC - October,

1994

[2] Dr. Linda Rosenberg, Ted Hammer, Jack Shaw: “Software Metrics and

Reliability”

9th International Symposium on Software Reliability Engineering Germany -

Nov 1998

[3] Stephen H. Kan: “Metrics and Models in Software Quality Engineering”,

Addison Wesley, ISBN 0-201-63339-6

[4] J.D.Musa, A.Iannino, K.Okumoto: “Software Reliability: Measurement,

Prediction, Application, ISBN 0-07-044093-X

[5] J.D.Musa: “Software Reliability Engineering, More Reliable Software, Faster
Development and Testing, ISBN 0-07-913271-5

Page 12.1

Session 12

SPI and People

Chairman

Tor Stalhane
Sintef, Trondheim, Norway

Session 12: SPI and People Management

Page 12.2

TEI R&D-GPC

People Management and Development
Process

to motivate, develop and

retain the best resources

G.Evangelisti
Ericsson

Telecomunicazioni SpA,
Roma, Italy

E. Peciola,
Ericsson

Telecomunicazioni
SpA,

Roma, Italy

C.Zotti

Ericsson
Telecomunicazioni

 SpA,
Roma, Italy

Session 12: SPI and People Management

3

Abstract

“The only rule I have in management is to ensure that I have good people-real good
people-and that I grow good people, and that I provide an environment where good
people can produce”

 Software vice president quoted in (Curtis88)

In this paper we report about the results of a program run in Ericsson Telecomunicazioni Italia,
Research & Development – Global Product Center Division (TEI R&D-GPC) aiming to the
definition of a process for People Management.

The process describes an innovative way to handle human resources in order to:

have motivated people

realise an effective job staffing

prepare the organisation for the future.

The process was launched in May 98 and we report preliminary feedback on its application
based on data collected from a questionnaire measuring people satisfaction distributed to all
the staff in December 98.

Introduction

In the last 20 years Software organisations have been concentrated in the improvement of their
capability working actively on processes and technologies.

But this is not enough to run ahead of the continuous change: the software systems are more
complex, the competition between companies is stronger and the customer demands develop
much faster, aiming at lower costs and efforts and at an higher quality.

In the 90’s many organisations discovered that, in the frame of software improvement,
processes and technologies are not enough and that also a third component, the people, plays
an important role, as depicted in Fig. 1.

Fig. 1: Three Component of Improvement Focus

Session 12: SPI and People Management

4

The demand is to focus on methods for improve the way people-related issues are addressed,
in order to attract, develop, motivate, organise, and retain the talents needed by the
organisation.

This paper wants to stress the importance of paying attention to people management, not by
giving more money to some individuals, but rather by spending more in the organisational
issues that the personnel show to be sensitive to.

The personnel wants to build a specific development path, to have access to interfaces to ask
questions, to be supported in changing job, to have opportunities to speak with the managers,
to receive more information, to improve the quality of their life during working hours (while the
free time hours decrease and will decrease even more).

And they expect that attention is not paid only to managerial roles, but to each role, as each
individual, independently from his/her role wants to feel that the working place can offer
him/her the best development conditions.

To answer these demands an action program was started in TEI R&D-GPC during 1998, whose
goals were to define a process for handling Human Resources in an innovative way, where
competence is not just a matter for the individuals, but an issue for the organisation.

Goals of the Action Program

Before running this action program, People Management practices were not sufficiently
formalised and the only processes regularly executed were Competence Development and
Potential Evaluation.

Managers were not supported enough by the organisation in their inter-work with their people.

Carrier development of technical persons was not cared enough and their changes of job were
often tied only to events rather than also to plans.

In this context, the level of services provided by the organisation was perceived by the
personnel as quite low.

If we refer to a scale of layers in caring people management services:

physical environment

regulatory environment

processes and services

relations environment

we scarcely reached the second level as even the knowledge of many existing rules was not
spread enough.

The goals of the action program were mainly two:

to establish practices able to give more care to the main expectations of individuals in their
inter-work with the organisation

to focus on technical roles and to ensure them equal dignity as the managerial ones

In the beginning of 1998, the design of the “People Management and Development Process”
(PMDP) was the way locally chosen to attract, develop, motivate, organise and retain the
talents that were needed in TEI R&D-GPC.

To achieve the second goal, in the last part of 1998, a new method for the classification of
people competence through roles was introduced.

Roles were classified into 3 ladders,

 Professional

 Solution manager

Session 12: SPI and People Management

5

 Organisation manager

each aiming at a different organisational goal: competence, improvement, asset management.

Equal development possibilities and recognition were assured to roles independently from the
ladder where they appear. The structure in levels of the three ladders allows to compare roles
with different professional content and aiming at different organisational goals.

The classification in ladders does not prevent transitions between ladders, but rather facilitates
the identification of competencies and attitudes that are crucial in changing role, along the
individual career path.

This action program was started on the basis of the results of the questionnaire measuring
people satisfaction distributed in beginning of 1996. The main reasons of people
dissatisfactions were related to:

 lacks in the planning of development programs

 low level of feedback on the performed activities

 training programs partially defined

 no possibility for job rotation

 unclear criteria for development opportunities and rewarding

Competence model and roles classification

The competence model used in TEI R&D-GPC for competence management activity is shown
in Fig. 2.

The activities of the company are modelled in "company processes" (e.g. Product Management
Process, Provisioning Process, Marketing Process, Sales Process, Accounting Process,
Human resources Process, etc.)

The "company processes " are composed of "job families", and "job families" of "roles".

At any time, each person of TEI R&D-GPC has a single role associated to him/her.

The roles are characterised by:

 a list of tasks and responsibilities

 a "reference competence radar" (competence chart).

 a "competence group"

Session 12: SPI and People Management

6

Company process

1

m

Job family

Role

1

n

m

Competence reference radar

(competence chart)

Competence Group

Fig. 2: The competence Model

Roles are classified into 3 ladders:

PROFESSIONAL
The responsibility consists in the provision of professional performance.

SOLUTION MANAGER
The responsibility consists in taking decisions, in negotiating, in exploiting resources, pursuing
short/mid term objectives.

ORGANIZATION MANAGER
The responsibility mainly consists in managing any type of resources as company assets,
pursuing also strategic objectives

 Classification of the roles within the ladders is shown in the table below:

 To note that it is possible to reach the highest level of recognition (level 5) from each of
the three levels.

Session 12: SPI and People Management

7

Level 5

Expert Senior
(except System)

Communication Manager Master
Change Manager Master

Innovation Leader Master
System Expert Senior

Deputy Site Manager
Deputy Assistant Manager

Product Unit (PU)/Sub PU Manager Senior
Design House Manager

DIR

Expert (except System)

Communication Manager Senior
Change Manager Senior
Innovation Leader Senior

System Expert
Product Manager Principal

Product MKT Manager Principal
 Sys Manager Master

Project Manager Principal
Operation & Business Control Mgr

Product Prov. Area Manager Master
Mentor Master

Line Manager Senior
Product Mgt Line Manager Senior

Product Unit(PU)/Sub PU Manager

Level 4

QS

Controller Master

MKT Specialist Principal
Specialist Master (except

System)

Communication Manager
Change Manager
Innovation Leader

System Specialist Master
Personnel Officer Master
Product Manager Master

Product MKT Manager Master
Sys Manager Senior

Tech. Coordinator Master
Mentor Senior

Project Manager Master
 Product Prov. Area Manager Senior

Line Manager
Product Mgt Line Manager

Level 3

Q

Controller Senior
MKT Specialist Master
Specialist Senior (except

System)

System Specialist Senior
Personnel Officer Senior
Product Manager Senior

Product MKT Manager Senior
Sys Manager

Tech. Coordinator Senior
Mentor

Proj. Manager Senior
Product Prov. Area Manager

Design Team Leader Master

Level 3

7

Controller
MKT Specialist Senior

Specialist(except System)
Adm. Specialist Master

Personnel Officer
Product Manager

Product MKT Manager
System Specialist
Tech. Coordinator
Proj. Manager

Design Team Leader Senior
Adm.Team Leader Senior

Level 1

Controller Assistant
Team engineer senior

MKT Specialist
Adm. Specialist Senior

Design Team Leader
Adm.Team Leader

<=6

Team engineer
Adm. Specialist

Adm.Support/Secretary

 PROFESSIONAL SOLUTION MGR. ORGANIZATION MGR.

 LADDER 1 LADDER 2 LADDER 3

Session 12: SPI and People Management

8

PMDP Description

The process is organised in eight sub-processes (Fig. 3) :

Competence Planning (CPL)

Individual Competence Assessment, first run (ICA1);

Role Path Management (RPM);

Individual Competence Assessment, second run (ICA2);

Individual Development (IDV);

People Potential Evaluation (PPE);

Rewarding (RWD);

Performance Evaluation (PER).

Fig. 3: PMDP Workflow

The key issues of each sub-process are listed below:

Competence Planning

The Competence Planning sub-process aims at :

having a clear picture of the "company processes", "job families", "competence groups", and
"roles" requested by the Division for the next year (definition of a human resources plan);

Session 12: SPI and People Management

9

defining the reference competence radar for each role;

 providing an indication of the competence gap (role numerical gap) existing within TEI
R&D-GPC between current year's end role staffing and next year's role numerical needs.

 The management team of TEI R&D-GPC needs this picture in order to perform the
activities requested to close the competence gap.

Individual Competence Assessment (phase 1)

The Individual Competence Assessment sub-process is devoted to the assessment of the
competence level of the people working at TEI R&D-GPC in order to create a reference frame
for the effective management of these competencies. The Individual Competence Assessment
aims at:

having a clear picture of the competencies of each person within TEI R&D-GPC;

identifying candidates for open positions so as to improve people motivation and effective
staffing;

identifying candidates for people potential evaluation in order to manage them appropriately;

evaluating the competence growth of each person with the purpose of recognising his/her
professional effort during the last year.

Role Path Management

The competence growth of TEI R&D-GPC personnel is supported by job rotation activities
defined in this process. The Role Path Management sub-process aims at:

 defining the possible paths from each role within T division.

 providing job rotation proposals that are based both on the needs coming from
Competence Planning and the candidates outcoming from Individual Competence
Assessment (first run);

Individual Competence Assessment (phase 2)

In order to secure TEI R&D-GPC with critical and strategic competencies, each role in the
Organisation needs to be covered by personnel with an adequate competence profile. The
Individual Competence Assessment (phase 2) sub-process is devoted to the evaluation and
selection of the candidates for job rotation identified in the RPM sub-process. ICA2 aims at:

 assessing the competence level of candidates for job rotation in order to select the most
suitable people for the target jobs to be staffed;

 Identifying the people willing to move to other sites/divisions for overstaffed roles.

Individual Development

In order to secure that all people have the competence required to perform their assignment,
each level of the Organisation needs to identify the competence required to perform critical
tasks and the training needs within each line. The purpose is to ensure that needed training is
received by each person. The Individual Development sub-process aims at:

 identifying an adequate competence development plan for each person;

 identifying a consistent training program for each person;

 defining performance goals for T Division first and second level managers.

Session 12: SPI and People Management

10

People Potential Evaluation

The Organisation intends to identify and value those people that are suitable to assume key
roles in the future so as to improve its. The first step, in order to achieve this goal, is the
identification of people whose potential has some unexpressed dimensions. The People
Potential Evaluation sub-process aims at:

 evaluating the technical and managerial potential of the candidates proposed in the list
coming from the Individual Competence Assessment (first run);

 identifying which candidates can be considered potentially suitable to assume, in the short
and medium term, key roles within TEI R&D-GPC, TEI and Ericsson Corporate.

Performance Evaluation

In order to grant TEI R&D-GPC first and second level managers with rewards based on their
contribution to results and values, it is necessary to provide objective performance evaluation
results. The purpose of PER is to produce these objective results as input to RWD. The
Performance Evaluation sub-process aims at:

 assessing the performances of first and second level managers;

 summarising the evaluation of first and second level managers performances in a
performance evaluation result.

Rewarding

The purpose of the Rewarding sub-process is to provide all people with rewards based on their
contribution to results and values for the organisation. The Rewarding sub-process aims at

 compensating people with pay raises and level promotions;

 compensating teams with bonuses.

Description of process-time relationship

This paragraph is devoted to the relationship between PMDP sub-processes and the time. The
relationship is illustrated by means of Fig. 4, “PMDP sub-processes - time relationship”. The
figure considers a time window of three years: the current year - in which the processes are
activated - the previous year and the next year. Time intervals pertinent to different process
activities are represented by arrows.

Session 12: SPI and People Management

11

"PEOPLE" PROJECT Rev. PA3 01/06/98

IDV

RPM

NEXT YEARCURRENT YEARPREVIOUS YEAR

CPL

Assigns competencies for next

year (to be developed in the current

year)

Evaluates competence growth

Proposes individuals for next year’s

job rotation

Performs potential scouting

Plans competencies for next year

Reviews role path guideline map for

next year

ICA1

ICA2

Proposes candidates to cover next year’s

opportunities

Selects candidates to cover next year’s

opportunities

Defines the individual development plan

Defines the individual training plan

Defines current year’s performance

goals for managers

Updates training plans as a

consequence of job rotation

and potential evaluation

PPE

Identifies high-potential individuals

for Corporate

Evaluates previous year performances

for managers

Performs potential assessment

Assigns pay raises and level

promotions

PER

RWD Rewards patents and golden blocks

Rewards team performances

Fig. 4: PMDP sub-processes – time relationship

At the end of January, the CPL process is able to produce the first rough estimation of the next
year's competence needs (i.e. the role numerical needs for the next year). This information is
composed of two different data: new possible roles that should be introduced in TEI R&D-GPC
and numeric gap information for each role. The first estimation of the competence needs allows
the activation of the “core step” for the achievement of overall PMDP goals: the individual
interview.

In February and in March, Line Managers perform individual interviews with their staff. In the
same period, second level managers are interviewed by first level managers and these are
interviewed by the Director of TEI R&D-GPC. The individual interviews activate different PMDP
sub-processes: ICA1, IDV and PER. First of all, the ICA1 deals with the competence
assessment and competence growth evaluation of each person. In addition, the ICA1 performs
potential scouting (i.e. identifies people suitable for potential evaluation) and identifies possible
proposals for job rotation.

Session 12: SPI and People Management

12

The individual interview activates also the IDV in which the development plan and the training
plan for each person are produced. The IDV identifies individual performance goals for first and
second level managers. It is worthwhile noticing that the IDV also includes some work Line
Manager do after the completion of the individual interviews (e.g. final training definition) and
therefore this sub-process is supposed to end later than ICA1 which terminates with the end of
the interviews. The scope of the PER is limited to first and second level managers. It is
activated during the individual interview and has the objective of evaluating managers’
performances by assessing the achievement of the individual goals defined in the previous
year’s IDV.

In April, PPE starts. It aims at evaluating the potential of the candidates proposed by the ICA1.
The potential assessment allows the identification of people that are suitable to assume key
roles within the Organisation, also at Corporate level. The output of the PPE is formalised in a
"potential report".

In July, CPL is able to produce a new and elaborate version of the Human Resource Plan. This
document contains information which is relevant for the RPM.

From June to August RPM performs two kind of activity. The first one is the periodic review of
the guideline that defines the possible role paths in the T Division. The second one is related to
the job rotation. In case the gap for a specific role is positive, the RPM identifies the most
suitable people, among those individuated by ICA1, for that specific role and forwards to ICA2
a list of job rotation proposals, i.e. an ordered list of people that should be interviewed in order
to verify their suitability for the new job. In case the gap for a specific role is negative, i.e.
indicates a reduction for a specific role, the RPM, after exploiting all the possibilities to apply
job rotation for the involved people, forwards to ICA2 only a numeric indication of the people to
be moved to other Divisions/sites. Once RPM has completed the compilation of the job rotation
proposals (respectively, in case of lay off, the numeric indications) for the Lines, the Line
Managers start a new cycle of interviews.

In September, the new cycle of interviews activates ICA2 and IDV. ICA2 aims at assessing the
competence level of candidates for job rotation in order to select the most suitable people for
the unstaffed roles. It is worthwhile noticing that IDV is activated during the second cycle of
interviews in order to redefine, if necessary, the training and the development plan of the
people that are going to rotate their job. Another reason for the activation of IDV in September
is the completion of PPE. The indications of the potential report may determine some changes
in the training and in the development plan of the people involved in the potential evaluation.

The RWD aims at compensating people with pay raises and level promotions and teams with
bonuses. As far as it concerns pay raises and level promotions, the sub-process is activated
twice a year: in June and in December. Bonuses (e.g. patent and “golden block” awards, team
rewards) are processed all along the year.

Process Application and preliminary results

The process was launched in May 98 and presented to all the staff of the organisation. A copy
was also stored in the web. All sub-processes have been applied to 343 individuals in TEI R&D-
GPC and good feedback has been received by most of employees during the interviews as well
as some improvement proposals.

30 employees have been assessed to evaluate their potential out of 68 candidates.

During December 98 the survey to measure the people satisfaction has been distributed and
the results are considered very promising. In fact, comparing them with the results obtained in
1996, the general index increased of 24%.

Session 12: SPI and People Management

13

Detailed results pertaining to some of the survey’s modules are listed below:

SURVEY MODULES % of increasing

Work Task 10%

Development opportunities 51%

Information 21%

Culture and climate 33%

Another important parameter to be reported regards the turn over registered in the last 6
months. In fact just 2% of the staff left the company and another 2% asked to be rotated to
other divisions.

Conclusions

The actions concerning people management performed during 1998 in TEI R&D-GPC
(Ericsson Italy) were of 2 types:

Through the PMDP, people were let to know that more attention was going to be devoted to
them, in particular by improving services (in terms of processes) that concerned their inter-work
with the company (competence development, carrier path, potential evaluation, etc.).

More importance was given to technical roles and the same dignity as to managerial roles was
recognised to them.

These quite long term actions were chosen rather than more direct actions on salaries or
bonuses of some individuals because the dissatisfaction was not acute and the turnover was
normal (<5%).

The dissatisfaction seemed to stem from the type of inter-work between the individuals and the
company rather than from specific claims about the salary.

In the beginning of 1999 a project to implement People-CMM model in TEI R&D-GPC was
started and a revision of PMDP was necessary so as to align the process to the new model.

At the end of the revision work some minor changes were introduced, but the overall PMDP
structure could stand.

PMDP proved to be a strong infrastructure, robust enough to incorporate the new requirements.

References

[1] B.Curtis, W.E.Hefley, S.Miller People Capability Maturity Model, Software Engineering
Institute; September 1995

Session 12: SPI and People Management

14

A Learning Organisation
Approach for Process

Improvement in the
Service Sector

Richard Messnarz, ISCN, Dublin, Ireland

Christine Stöckler, Bernhard Posch, APS, Austria

Gonzalo Velasco, Fueva, Spain

Gearoid O’Suilleabhain, CIT, Ireland

Miklos Biro & Tibor Remszö, Sztaki, Hungary

Introduction
This paper is based on the results from the EU Leonardo da Vinci project Bestregit. Bestregit focussed

on general service organizations (general public services, European Union regional information nodes,

and regional governmental divisions) which are non-profit, mostly state-funded, non-software and very

human centered organizations.

In Bestregit the principles of process improvement were analyzed and tailored for the use in non-

software general service industry, and tried out in three half-governmental institutions in Spain,

Austria, and Ireland to improve their service capabilities.

The outcome is a framework for process improvement that could be beneficially applied in the

general/public service sector to put a structure in place, with goals, and teamwork based processes,

aiming at a learning organization architecture.

The paper describes characteristics of general service organizations, the Bestregit methodology, and

presents parts of three case studies from the set of experiments tried out in the different countries.

The Approach
The target group in the first place were the technology transfer units (later they called
themselves innovation transfer units) which are financed by the regional governments and the
EU, and which are responsible for dissemination of programmes, support in the creation of

Session 12: SPI and People Management

15

transnational teams, and the multiplication of know how from the EU into the region and vice
versa (see Figure 1).

At the beginning of Bestregit there were two different possible approaches to start with:

Trying to invent an ideal architecture of technology transfer and map each technology transfer
unit onto this ideal model. (note: the typical assessment and benchmarking approach)
Trying to create a framework of process improvement steps through which each regional
technology transfer unit runs and improves their knowledge multiplication ability.

The group for (a) was so ambitious to plan to establish a new technology transfer principle
which could be sold to Brussels.
The group for (b) thought much more on a realistic level because:
A small team like Bestregit with regional representatives from a small subset of regions of
Europe could not be in the power to influence the European Union level. Regional politics
would create troubles, because even if we could manage 1. above, e.g. a regional Austrian unit
cannot agree models with Brussels which influence the Austrian state, they would first have to
agree on a state level.
There was an expectation of cultural differences so that work models for the same goal might
look different in different regions.
Unlike in areas like software industry, electronics industry, etc. there is no international
standard which describes the ideal architecture of innovation transfer organisations. There is
the ISO 9000 standard with a guideline 9000-4 for service organisations, but this still is a quite
general description.

European Programs

European Knowledge

European TT Principles

Regional

Transfer

Units

SMEs

Figure 1 : The Regional Multiplication Nodes

This formed the reason to follow the approach (b) and focus on an improvement of the
dissemination and multiplication ability of regional transfer units, thus increasing the
multiplication of EU strategies into the regions of Europe.
The project therefore aimed at a synergy between all involved parties. The Eu will have their
information and results better promoted, the regional units increase their capability, ad the
SMEs will receive a better service through defined teamwork, interfaces, and infrastructure.

What are the Characteristics of a General Service Organisation
The integrated business oriented approach followed in this section was first presented by Dr.
Biro in chapter 1 of the book [1] edited by Messnarz, R., Tully, C, 1999, entitled Better Software
Practice for Business Benefit – Principles and Experience written in the framework of the EU
supported Leonardo PICO (Process Improvement Combined Approach) project.

Special characteristics of the addressed organizations and the

BESTREGIT process improvement initiative
The organization we are addressing has the following special characteristics. It is:

 non-profit,

Session 12: SPI and People Management

16

 service oriented,

 its customers are profit oriented enterprises,

 it is sponsored by both public and business organizations.
All of the above characteristics have deep implications for the motivations and approaches of
managers in performing and improving their activities.
Service orientation as opposed to manufacturing means that direct contact with the customer is
not restricted to the specially trained sales and marketing staff, but is the natural duty of the
majority of the personnel. By consequent, technical knowledge is necessary but not sufficient.
Special emphasis has to be put on human relationship skills especially when dealing with profit
oriented enterprises which are keen on the most efficient use of their resources. This issue is
directly addressed by the role based team work approach described in the process
improvement guidelines.
‘Non-profit’ in our case means that the costs of the organization are covered by public sponsors
in addition to private ones, which makes the requirement for both high level and impartial
service quality of utmost importance.

Advantages and disadvantages of process improvement in non-profit

service oriented organizations
One of the most pertinent questions the manager of a non-profit service organization can ask is
the following “How can I best satisfy and allow to enhance my customers’ and sponsors’
expectations using and possibly increasing my available resources?” Managers with financial,
operating, production, marketing, human behavioural, or other orientations will give a variety of
answers to this question and will arduously argue for their valuable ideas. Here, we will outline
a framework integrating and structuring several orientations.
The key concept of the approach is the notion of lever. Levers are means used by a firm to
increase its resource generating ability, just as a mechanical lever is used for increasing the
force applied to an object. The analogy goes even further. Just as a force can be applied in
many different ways to the object resulting in a similar displacement, the use of the different
levers can increase the resource generating ability of the firm resulting in similar benefits.
Finally, the resources of a non-profit organization are used to increase the assets of the firm
and to reward employees.
Let us analyse the ways process improvement can provide leverage to a non-profit service
organization from the financial, operating, production, marketing, and human behavioural
perspectives.

Financial leverage

Financial leverage means borrowing funds and investing them with a return higher than the
cost of the debt. If a company is able to exploit financial leverage, it can make money on funds
it does not own. This is by definition a type of leverage a non-profit organization can never
exploit. This issue is nonetheless very relevant in our case.
The type of non-profit service organization we are addressing is partly sponsored from public
funds which means that there is in fact a public investment whose return can only be accounted
for indirectly. This means that the return on investment (ROI) must be realized partly by the
public through the intermediary of both the non-profit organization and its client profit oriented
organization.
It goes without saying that an exact quantitative return is usually not identifiable in such cases,
but a qualitative return statement confirmed by the profit oriented customers and possibly
public representatives serves clearly the interests of the non-profit service organization.
We claim that process improvement results in a return definitely making the necessary
investment worthwhile only if the addressed organization is fully committed and able to
immediately exploit its benefits. Everybody must be aware however that process improvement
is not a silver bullet. Commitment and hard work is necessary to obtain the expected results so
that the leverages discussed in this section can be taken advantage of.

Session 12: SPI and People Management

17

Operating Leverage

Operating leverage is related to the cost structure, that is the repartition between the fixed
costs and variable costs.
Process improvement clearly means an increase in fixed costs, which include training,
consulting fees, equipment, improvements in office conditions, etc... However, the question is
whether the company is really able to use it for decreasing its variable costs. Measuring the
variable costs of a non-profit service organization is not a straightforward issue.
If, due to process improvement, the firm is able to deliver the same quantity and better quality
of service using less person months than earlier, then it will have the potential to take
advantage of operating leverage.

Learning Leverage

It is an empirical fact that unit costs decline exponentially when experiences are accumulated
and the steady reuse of these experiences is well managed by the firm. This is called
production leverage in the manufacturing industry, while learning leverage is a better
expression in the service sector.
The graph of the unit costs in function of the cumulative quantity of service provided or product
produced is called the experience or learning curve which is exponentially decreasing. Its
existence is essentially due to economies of scale, learning, improvements, and reuse.
Learning, the accumulation of experiences and the management of their steady reuse is clearly
one of the primary objectives of process improvement and it is in the primary focus of the
BESTREGIT methodology.

Marketing Leverage

Process improvement, maturity achievement, ISO 9000 certification have an important impact
on the perceived capability of the company and on the perceived value of its products or
services, which contributes to improved customer satisfaction.
Quality and process improvement are part of a differentiation strategy in which the company
delivers and is perceived to deliver a superior product or service. Taking advantage of this
marketing leverage towards the public and its customers is clearly the interest of a non-profit
service organization.

Human Leverage

It is widely known that employee motivation (empowerment) can be significantly influenced by
immaterial means like management styles and organizational structures. Huge individual
energies can be released for example in an appropriate teamwork environment where team
members are simply given the responsibility to do their jobs as well as they can, instead of
exerting close surveillance over them. This means that the same employees can perform more
work and even in better quality than otherwise. Nevertheless, attention must be paid at the
differences in the collective mental programming of people in different national cultures [57].
The exploitation of human leverage is particularly important in service organizations since they
are directly dependent on the enthusiasm of their employees. This issue is largely addressed by
the BESTREGIT methodology.

An Overview of the Methodology
The methodology has been adapted from a set of methodologies from the information
technology industry and has been field tested in innovation transfer organizations in Austria,
Ireland, and Spain.

The methodology works in the following major phases :

Start and First Investment of Resources

Analysis of Current Situation

Goal Analysis

Teamwork Analysis

Session 12: SPI and People Management

18

Experimentation and Measurement

Selection of Experiment

Initiation of Experiment

Experiment Performance

Multiplication of Lessons Learned

The methodology itself helps general service organizations to

 structure the business

 set the goals right

 improve team-work and infrastructure

 build a quantitative feedback loop to learn and change for the future in an objective way.

Goal Analysis:

Step 2: Mission, Business Field

 Goals, Work Goals

Step 3: Setting Priorities

Initiation:

Step 1: Select and Allocate PI

 Manager

Teamwork Analysis:

Step 4: Role Model Design

Step 5: Workflow Design

Step 6: Result Design and Standardisation

Step 7: infrastructure Analysis

Experimentation:

Step 8: Assign Personnel to Roles

Step 9: Select and Prioritise Experiments

Step 10: Measure (Define, Collect, Evaluate Data)

Step 11: Learn and Disseminate
Figure 2 : The Building Blocks of the Methodology

Human Leverage

Every Cycle Includes

• Goal Analysis (L1)

• Teamwork Analysis (L2)

• Experimentation (L3) and

 Dissemination

–any system, process, human being etc. underlies a continuous

 evolution as a natural principle

–only those stay competitive who are able to adapat

 themselves ongoingly to the changes caused by the evolution

–this requires continuously learning to manage new situations

 and change

0

12

3

Learning Leverage

Operating

Leverage

Marketing

Leverage

Figure 3 : The Learning Framework of the Methodology

From a people point of view (as mentioned before people are the most important resource in
service organisations) the following levels of learning are run through:

Session 12: SPI and People Management

19

Level 0 : Initiation (see Figure 3)

At the start:

Our processes are that complex that we do not believe that they can be modelled and shared ?

It is just the skills of some heroes fighting for innovation transfer success.
Later: A continuous restart to work on further needs.

Level 1 : Awareness (see Figure 3)

A goal analysis helps to put a structure (with goals) in place for the organisation and makes a

common understanding possible.

At this level the visions, goals, and structures can be shared and understood. It is the first time
that the hero culture changes into a team with a shared vision. Please note that through a
structure (documented and understandable for all) all can contribute and share the goals from
that point onwards.

Level 2 : A Team View (see Figure 3)

An information flow and process analysis helps to identify team roles, information flows, work
results, and required resources for different work scenarios in the organisation.

At this level people who work in a team start to separate responsibilities, make information
flows clear, and agree on work results. This leads to defined team-work structures for different
business cases of the service enterprise.
From that point onwards people know their roles, know how to work in a team and how to
exchange information to jointly reach a certain service goal.

This level usually ends with an enthusiastic feeling of the people involved. But ….

Level 3 : The Level of Criticism/Feedback (see Figure 3)

No learning environment works without criticism and feedback loops to further build on the
goals and the team-work scenarios.

An experiment and try-out shows if the models and goals are right or have to be adapted. This
has to be based on measurement of data (objective evaluation).

This usually leads first to a pessimistic phase (after the enthusiastic one) until people realise
that the continuous industrial change will always require adaptation and further refinement of
the models and goals.

Level 4 : A Change Driven Learning Organisation (see Figure 3)

People understand that change is a natural requirement and that change can be managed
(avoiding level 0) as long as there is a structure in place which allows to share goals, work
processes, and knowledge.

Change is not a single-person activity it is a change of the shared goal, vision and work force of
the entire team following an adapted structure for the organization into the future.

Session 12: SPI and People Management

20

Experiences Gathered per Step

The project created a guideline based on the feedback from practical case studies in regional
innovation transfer organisations in Spain, Ireland, and Austria. The guideline is too big to
present all underlying work procedures and support tools here.

Below you only find a short list of lessons learned per step

Step 1 : Installation of a Process Improvement Manager (Team)

This improvement manager is responsible for

 performing the improvement steps outlined in this guide-line

 organizing and performing the goal analysis workshop and preparation of a consistent goal
tree

 organizing and performing the workshops for team analysis and preparation of consistent
team communication, role, and work-scenario models

 presenting and comparing the results with all other partners, units, departments and
innovation transfer organizations

 organizing and conducting experiments to try out the improved practices and measure the
impact

 evaluating if the goals have been achieved and initiating further changes and refinements

Goal Analysis

Mission. A mission is a strategic goal of the organization. It is usually defined by the director
and the board of owners, has a long term view, and is defined in a way that it clearly represents
the organization and allows that all current business fields fit into it. Especially in innovation
transfer it is usually aligned with some technology transfer political visions.

You can see that a mission is right if (in spite of the rapidly changing requirements) it had to be
changed only every 4-5 years.

Business Field Goals. This is a goal that is important to be achieved to satisfy the mission. To
reach such a business field goal it is required to create a work force whose task it is to perform
projects which contribute to the achievement of that business goal. Such goals usually are
defined in cooperation between the director and the department heads (managers) of the
organization.

A goal for a certain business field is right if (in spite of the rapidly changing requirements) it had
to be changed only every 2-3 years.

Work Specific Goals. This is the most concrete level of a goal. Work specific goals contribute
to the achievement of business field goals. Here concrete work performance indicators can be
measured and conclusions are made if the project was successful or not.

Such goals usually are defined in cooperation between the department heads (managers) and
project leaders of the organisation.

Session 12: SPI and People Management

21

A goal for a certain project is right if it clearly contributes to the business field goal and if it is
short term (maximum 1.5 years) and can be measured to have an objective basis to decide
about success, failure, and required adaptations.

Goal Tree. A goal tree defines an architecture in which the mission, the business field goals,
and the work specific goals are represented. A goal tree (in its ideal structure) should provide
forward and backward trace-ability. Forward trace-ability means that it is clear which business
fields belong to the mission, and which work specific goals contribute to which business field
goal. Backward trace-ability means that quantitative performance indicators are used for
measuring the achievement of the work specific goals, and that these indicators help to
evaluate a business field indicator, which in turn can be used to measure the mission’s
success. Backward trace-ability builds the feedback loop into the goal structure, and usually it
requires data collection and evaluation.

Step 2: Identification of the Mission, Business Field Goals, and Project Goals

Lessons Learned

 A goal tree with no backward trace-ability is a nice picture but cannot be verified in its
operation. Be aware of that. Backward trace-ability means that quantitative performance
indicators are used for measuring the achievement of the work specific goals, and that
these indicators help to evaluate a business field indicator, which in turn can be used to
measure the mission’s success.

 Goal trees are a translation of perspectives of different staff levels in an organisation. In
fact the process improvement manager helps to create a structure which translates the top
manager’s view to become understandable for the business field managers, and translates
the business field manager’s view to become understandable for the staff and project
managers. Often it highlights that people work without specific goals that could be tracked.
Be aware of this translator role and potential human communication conflicts.

 Use simple metrics and measures as quantitative indicators which can be easily collected
and evaluated. Do no invent new types of data for which the organisation must make big
efforts to collect and measure.

 Step 3: Setting Priorities Before Further Effort Investment

While in Bestregit the three organizations got funding to model all work scenarios, in a real
business case this approach would not be applicable. Business and service demands lead to
Limited time
Limited resources
Priorities of the organization.

It means significant effort to run at least one improvement, and to achieve return on
investment you have to invest your improvement resources properly and carefully.

Therefore

 Select the business field which is most promising at the moment

Session 12: SPI and People Management

22

 Select within that business field a typical work scenario which highly contributes to the
success of the business field

 Give a quantitative rationale for the selection (why, which impact has it now and which is
expected)

Lessons Learned

 If you select a business field with a typical work scenario, do not forget the “re-use factor”.
If you model a work scenario that is just used once, it is not worth the effort. Only a
modeling of those scenarios is most fruitful which can be many times re-used (are used for
a long time again and again), shared and multiplied amongst a group of people.

 If you want to select more than one business field and scenario, do not try more than 3 at
the same time. Experience showed, that even in big organizations with larger resources
more than 3 experiments in parallel got critical.

 If you have a clear organigram usually each department represents a business field.
However, experience shows that goal analysis leads to refinements in the organigram.

Teamwork Analysis
Work Scenario. Each organization consists of a set of work scenarios. E.g. Customer
handling, service delivery, workshop organization, etc. A work scenario is therefore a
description of the best way to conduct a certain business case in the organization.

Work scenarios in Betregit are described with two complementary views:

Role Models. Role centered models base on roles which are played by individuals. One person
can play many roles as well as many persons could play just one role. Roles exchange
information and work results. This information flow between the roles forms the role model.

Work Flow Models. Work flow models consist of a network of work steps. Work steps produce
results that can be used by other work steps. Each work step requires resources (e.g. a certain
effort, tools to be used, etc.).

Bestregit uses an integration of both these views:

First role models are analysed and designed. Secondly the role models are transformed into
work-flow views. Thirdly, both models are integrated so that a work scenario according to
Bestregit can be defined as follows:

A Work Scenario According to Bestregit. People are assigned to roles, roles are assigned to
activities, activities are part of a network of work-steps, activities produce results, and roles use
resources to perform the activities. These relationships are then defined for a certain business
case of the organization to have a description of the best way to perform the business case.

Step 4: Identify the Roles and Design a Role Model

Lessons Learned:

 One person can play many roles. One role can be played by many persons. There is no
one to one relationship between people and roles !

 One role could be part of different work scenarios.

 Each team-work scenario should not have more than 5 – 7 roles as a maximum.

Session 12: SPI and People Management

23

 Not all information flows between roles should be modelled, otherwise there would be
hundreds of arrows. Only those arrows should be included which carry a result (e.g.
document, report, etc.) to be exchanged

 Relate to a control specific flow (review and / or test and / or acceptance inputs)

 Typical roles are director, manager (of a business field), team co-ordinator, designer,
consultant, customer, partner, etc.

 Step 5: Identify the work-steps and create a work-flow

Lessons Learned:

Step 5 can result in the identification of a number of inconsistencies, such as

 A work step to be carried out by a role, although the responsibilities/activities of that role
(as a result of workshop 1) do not include this work step. Refine the role description.

 A work step to be carried out by a role, which failed to be identified in workshop 1.
Include the new role in the role models, and describe it.

 A responsibility/activity defined for a role which should be a work step, but this work step
failed to be identified in step 5 Include the additional work step in the corresponding
work flow.

An elegant approach for ensuring consistency is to transform role models into work-flow views.
The Bestregit guideline contains a procedure for how to manage this.

Step 6: Identify the Results Produced by the Work-Steps

After performing the previous steps 1 – 5 the organization is understood as a defined network
of work steps, performed by roles, with a number of results to be produced in a team. However,
so far the results are just a graphical element in a work-flow chart or the name of an arrow in a
role model.

The question is “how can we evaluate if a work-flow model or a role model is right”? Here the
Bestregit methodology takes into account different perspectives:

Quality. The degree to which a system, component, process, or service meets customer or
user needs or expectations. [IEEE-Software Engineering Standards]

Customer´s Quality Perception. A customer would not look into how the processes were used
to develop a service or product, he would just evaluate the quality of the delivery. (how his/her
expectations are met).

Manager’s Quality Perception. A manager who coordinates work and delivers products or
services to a customer evaluates the quality of his work on how well structured his work
processes are to ensure that he can deliver quality to customers.

Bestregit’s Perception of Quality. Quality of an end product / service (on which the customer
perception bases) is the sum of the quality of the intermediate results of the work steps in the
work flow (what the manager can review and control).

Therefore the Bestregit methodology assumes that

 Those results (documents, reports, administrative storages, leaflets, products, etc.) which
contribute to the quality of the end product / service and have been identified in the role
and work – flow models should be analyzed and a “best-to-contain” structure proposed with
a template.

Session 12: SPI and People Management

24

 A review mechanism (check if the reviewer, quality manager, and improvement manager
roles are there !) is to be installed to ensure that the intermediate products are reviewed
and compared with the “best-to-contain” structure (if and how they used the template).

Experimentation
Metric. A quantitative measure of the degree to which a system, component, process, or
service possesses a given attribute. [IEEE-Software Engineering Standards]

Measurement. The activity of assigning numbers using a defined counting or evaluation
process (a metric) on the characteristics of a product or activities.

Experiment. An experiment is a practical try-out of the previously established models and
results. It must be based on a feedback mechanism that allows to measure the impact of the
experiment at the start and after performance of it. Both measures are then used to make
conclusions about success/failure of the experiment and required refinements.
An experiment is the first step to create a learning/feedback loop around ideal models
established by the managers’ quality perceptions.

Three types of experiments were tried out in Bestregit –

Type 1 - Work Scenario Optimisation

One selected work-flow is chosen for a try-out. The required duration times and efforts for the
roles are set at the beginning either based on previous experience or assumptions (if no past
data are there). People are assigned to the roles and the work-flow is initiated.
Deviations, problems, and improvement wishes are documented throughout the experiment
controlled by the process improvement manager.

This includes

 Longer duration times than expected

 More or less effort than expected

 Work steps not required and additional required work steps

 Buffer times needed (when a work step is long in an wait-status due to inputs from outside)

The experiment results in a refined work model, with adapted duration and effort times. This is
like running through a set of learning cycles, and the more cycles you run, the more realistic
and professional the processes become.

Type 2 – Infrastructure and Work Process Optimisation

The Bestregit methodology analyzed all required ingredients to build a computer supported
work environment (Intranet) in the steps 4 to 6.

Session 12: SPI and People Management

25

Customers

Employees

Intranet Access

to Guidelines

Products

Services

Trainings

Best Practice

Work Scenarios

Visibility of

Quality

Policies

to Customers

Intranet Access

to Templates

Online

Feedback

Figure 4 : Intranet Work Environment Using Bestregit Like Results

Role and work flow models as “best practice work scenarios” can be made visible to all staff
Result templates can be accessed and ensure a common quality in design and documentation
throughout the projects. An “index” attribute of the results helps to find the template within the
Intranet.
The goal architecture can be made accessible to customers increasing the customer trust in the
organization’s vision.
For each project (following certain work scenarios) project archives are created producing and
archiving results (based on the result templates)
On-line feedback should be installed from the staff to the improvement manager to keep the
feedback/learning cycle alive.

A typical measurement at the start would be different satisfaction evaluations:
Evaluation of the staff satisfaction with the work environment and procedures.
Evaluation of the customer satisfaction with the products/services delivered.

With the assumption that after implementation of the infrastructure, and the computer support
of best practices, work can be better done, is more complete, traceable and will deliver as
promised.

Type 3 - Human Resource Capability Optimisation

In the past skills were largely defined on a single-person level. However, the systems
and services in industry become that complex, that sometimes one person would work
for her/his life-time or more to complete the task. So team work is growing in its
importance and in the new education and skills white paper of the European Union
inter-personal and communication skills are emphasised. This is also the focus of the
Bestregit methodology which creates frameworks (role models) that allow people to
identify themselves with roles, know their interfaces to other team members, and
through a feedback cycle can build on the team work structure.

Session 12: SPI and People Management

26

The assumption is that if you try out a Bestregit role model in staff training and
integration that the time to be integrated and effective for organisations decreases.
The staff integration time is reflected by the effort of the person which introduces the
person to the environment. The less additional effort is needed to become a new
effective employee, the smoother the integration works. This tutoring effort can be
used as an indicator.

Lessons Learned

Step 8: Assign your Personnel to the Roles

Step 9: Select and Prioritise Experiments

Step 10: Measure (Define, Collect, Evaluate Data)

Step 11: Learn and Disseminate

Here we describe some example results from the field test organisations. Each field test report
is prepared as a case study and comprises about 60 pages. Thus we only can extract small
parts for this paper.

Example E: Spanish Organisation – Sample Types 2 & 3 Experiments

The Spanish filed test partner is a non for making profit organisation created by the Valladolid
Chamber of Commerce and Valladolid University in 1986 in order to link interests coming from
both institutions.
They have a large background in the management of Regional, National and European
projects. They are mainly specialised in Training and Human Resources Projects, and in
Innovation projects and Technology Transfer.

Título del organigrama

Own Projects

Own Projects Information & Advice Dissemination

Projects

Social, Cultural &

Leonardo Programmes

Awareness Contact Assistance

RTD Programmes Participation in

EU-RTD projects

Writing of proposals

RTP Programmes

Awareness Contact Assistance &

Information

Technology Transfer

Programmes

Managing Director

PATRONAGE

Figure 5 : The Spanish Partner Structure and Identified Work scenarios

Session 12: SPI and People Management

27

GOALS - R&D

DEPARTMENT

G2: To involve, inform in R&D

Programmes, enhancing the self-

financial contribution.

GOALS - R&D

DEPARTMENT

G1: To keep up-to date new

technologies on the market and

promote technology transfer

among EU regions and supply a

fast service.

Goals Technology Transfer

Programmes

G1.1 To enhance the co-operation

with Technological institutions

G1.2 To strengthen the co-

operation with Regional Companies

G1.3 To train faster and better staff

Goals RTD Programmes

G2.1 To participate in as much programmes as it

would be possible involving Valladolid companies.

G.2.2 To successfully bring to the end the activities

within the4th framework

G2.2 To train faster staff and better

Figure 6 : The Spanish Partner Top level Goals

Figure 7 : Goals and Measurements

GOALS- RTD PROGRAMMES

G.2.2 To successfully bring to the end the activities within the4th framework

G.2.2.1 To manage IRC Gallaecia (Innovation Programme) in Castilla y León and

Cantabria region

A.2.2.1.1 To detect technological needs (10/month)

A.2.2.1.2 To disseminate research results(2/year) to Castilla y Leon

and Cantabria region.

A.2.2.1.3 To transfer Castilla and Leon and Cantabria technology

to other regions. (2/year)

A.2.2.1.4 To supply direct information to companies about

European Programmes (50 contacts/year).

A.2.2.1.5 To advice about research exploitation results (15/month)

A.2.2.1.6 To supply audit services , technological visits, etc

(15/month)

 G.2.2.2 PTT- Medical Technology transfer (Cambridge University and France)

 G.2.2.1 Agro-Food technology transfer

Session 12: SPI and People Management

28

EU, National and Regional

programmes

(EU Officers)

EU, National and Regional

Programmes,

Docs and Templates and

call for proposals

Screening and controlling

information and creation of

FUEVA documents

(Information System

Unit)

FUEVA Aids Programmes

Templates

1.- Requesting: Information Packages and call for proposals

2.- Supplying requested information

Control

document

template

Advising about screening programmes

(external auditors)

3.- Controlling input

information

4

4.- Advising about screening programmes

FUEVA DATABASE

4
.-

 C
re

at
io

n
 o

f
F

U
E

V
A

A
id

s
P

ro
g
ra

m
m

es

T
em

p
la

te
s

5.- Introducing into the

Database

EU Oficcers

Information System Unit

External Auditors

R&D Manager

Project Staff Assistance

Marketing Unit

Figure 7 : A Small Part A of the The R&D Management Role Model

The experiment focussed on the design, development and implementation of a documentation
system, which allows everybody to manage information/documentation of the rest of colleagues
from the same department without having problems to find any document.
To measure, in quantitative and qualitative way, all improvements made through the
comparison between the current and future situation.

FUEVA

Companies

Templates

FUEVA

Programmes

Templates

WEB PAGE

HOT LINE

CLIENTS

5.- Introducing into the

Database

9.-Requesting

FUEVA Service,

giving basic

information about

the company

6.- Looking for clients

7.- Asking for

information

7.- A
sking fo

r

inform
ation

8.- G
iving in

form
atio

n

8.- G
iving inform

ation

6.- Looking for

clients

FUEVA

Company

Template

FUEVA DATABASE

List of Possible

Programmes

10.- I
ntro

ducing into the

Database

11.- Extracting the matched

requisites

List of Possible

Programmes

12.-G
iv

in
g a

fir
st

lis
t o

f

poss
ib

le
 p

ro
gra

m
m

es
12.-Giving a first list of

possible programmes

Searching clients &Supplying

information services and open call

for proposals (Marketing Unit)

a
List of possible

programmes
First selection of

programmes

13.- Giving the first

selection

A
sk

in
g
 i

n
fo

rm
at

io
n
 a

n
d
 g

iv
en

 i
n
fo

rm
at

io
n
 a

b
o
u
t

th
e

o
n
-g

o
in

g
 c

al
l

fo
r

p
ro

p
o
sa

l

Figure 8 : A Small Part B of the The R&D Management Role Model

The Bestregit analysis results included all ingredients to build such a system

 Clear goals

 Clear roles

 Clear work flows

 Agreed structure and content of materials and results (including templates)

So the Spanish partner built up an indexing system through a database which stores
information and resource allocators of project results.

Session 12: SPI and People Management

29

Results:

 A questionnaire analysis was done with all staff before and after the experiment and the
results showed that while before it above 50% said that they cannot find materials if the
responsible person is not available, after the experiment all confirmed that they can find
now the materials.

 The role models (clear responsibility and team interfaces) led to a large reduction of the
required tutoring effort for new staff to be integrated.

References

[1] Messnarz R. Tully C., Better Software Practice for Business Benefit – Principles and
Experience, IEEE Computer Society Press, Brussels, Washington, Tokio, 1999, ISBN : 0-7695-
0049-8.

Goal Analysis

[2] Basili, V., Rombach, H.: The TAME Project: Towards Improvement-Oriented Software
Environments, IEEE Transactions on Software Engineering, Vol 14, Number 6, June 1988.

[3] Card D.: Understanding process improvement, IEEE software, July 1991.

[4] Debou C.: ami a new paradigm for software process improvement, In: Proceedings of
the first ISCN Seminar, Dublin, May 1994

[5] Debou C., M. Kuntzmann-Combelles A: From Business Goals to Improvement
Planning,: Practical Use of ami In: Proceedings of the SPI96/ISCN96 conference, Brighton,
December 1996

[6] Debou C., Stainer S.: Improving the maintenance process: a quantitative approach, In:
Proceedings of the 6th international conference on software engineering and its application,
Paris, Nov 1993.

[7] Debou C., Fuchs N., Haux M.: ami: a Taylorable Framework for Software Process
Improvement, In: Proceedings of the second ISCN Seminar, Vienna, September 1995

[8] Debou C., Kuntzmann-Combelles A., Rowe A.: A quantitative approach to software
process, In: Proceedings of the 2nd international symposium on software metrics, London, Oct
1994.

[9] Dion R.: Process Improvement and the corporate balance sheet, IEEE Software, July
1993.

[10] Debou C., Lipták J., Shippers H.: Decision making for software process improvement:
a quantitative approach, In: Proceedings of the 2nd international conference on "achieving
quality in software" ACQUIS 93, Venice (Italy), pp 363-377, Oct 1993.

 Also In: The Journal of Systems and Software, 1994; 26:43-52, Elsevier Science Inc.

[11] Esprit II 5494 ami:ami Handbook, Published version, March 1992.

Session 12: SPI and People Management

30

[12] Mc Garry F. and al.: Software process Improvement in the NASA Software Engineering
Laboratory, CMU/SEI-94-TR22, December 1994.

[13] Kuntzmann-Combelles A., from assessment to improvement actions: compared
experiences with CMM and SPICE, In: Proceedings of the 5th European conference on
software quality, Dublin, Sept 1996.

[14] Perez I., P. Ferrer, A. Fernandez: Application of Metrics in Industry In: Proceedings of
the 3rd European conference on software quality, Madrid, November 1992.

[15] Pulford K., Kuntzmann-Combelles A., Shirlaw S.: A Quantitative Approach to Software
management, ISBN 0201877465, Addison Wesley, 1995

[16] Rombach, D.: New Institute for Applied Software Engineering Research, In: Software
Process Newsletter, No 7, IEEE Computer Society TCSE, Fall 1996

[17] SEL, NASA Goddard Space Flight Center, Software Engineering Laboratory
Relationships, models and management rules, SEL-91-001, February 1991

Process Definition and Teamwork Analysis

[18] Chroust G., Computer Integrated Work Management, in (ed.) Mittermeir R., Shifting
Paradigms in Software Engineering, pp. 4 -13, Springer Verlag, Wien, New York, Sept. 1992

[19] Curtis B., M. Kellner, J. Over: Process modelling, In: Communication of the ACM,
September 92, vol 35, No 9.

[20] ESA Board for Standardisation and Control, ESA PSS 05 Software Engineering
Standards, European Space Agency, Paris, 1991

[21] German Interior Ministry, German V-Model, Bonn, August 1992

[22] Haase V., Messnarz R., Koch G., Kugler H., Decrinis P: Bootstrap: Fine-Tuning
Process Assessment, In: IEEE Software pp25-35, July 1994

[23] Haase V., Messnarz R., Cachia R.M., Software Process Improvement by
Measurement, in (ed.) Mittermeir R., Shifting Paradigms in Software Engineering, pp. 32 - 41,
Springer Verlag, Wien, New York, Sept. 1992

[24] Haase V., Messnarz R., A Survey Study on Approaches in Technology Transfer,
Software Management and Organisation, Report 305, Institutes for Information Processing
Graz, June 1991

[25] J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and D. Zubrow: „Benefits of CMM- based
Software Process Improvement: Initial Results“. Technical Report, CMU-SEI-94-TR-13,
Software Engineering Institute, 1994.

[26] Humphrey W.: Managing the Software Process, Addison-Wesley, Reading, Mass.,
1989.

[27] Humphrey W.S., Sweet W.L.: A Method for Assessing the Software Engineering
Capability of Contractors, Software Engineering Institute, Sept 1987

Session 12: SPI and People Management

31

[28] ISO 9000-3. Quality management and quality assurance standards. International
Standard. Part 3: Guidelines for the Application of ISO 9001 to the Development, Supply and
Maintenance of Software. ISO (1990).

[29] ISO 9001. Quality Systems. Model for Quality Assurance in Design/Development,
Production, Installation and Servicing. International Organisation for Standardisation, Geneva
(1987)

[30] ISO 9126, Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for Their Use, 1991

[31] ISO/IEC 12207, Information technology - Software life cycle processes, first edition

Aug. 95.

[32] Messnarz R., Kugler H.J., BOOTSTRAP and ISO 9000: From the Software Process to
Software Quality, in: Proceedings of the APSEC´94 Conference, Comput. Soc. Press of the
IEEE, Tokyo, Japan 1994

[33] Messnarz R., Practical Experience with the Establishment of Improvement Plans, in:
Proceedings of the ISCN´96/SP’96 Conference on Practical Improvement of Software
Processes and Products, ISCN LTD, Brighton, UK, 1996

[34] Messnarz R., Scherzer H., The Evolution of a Quantitative Process Analysis - the
BOOTSTRAP - Approach, in: (eds.) G. Chroust, P. Doucek, Interdisciplinary Informational
Management Talks, Oldenbourg, Vienna, Munich, 1995

[35] Messnarz R., Stubenrauch R., Melcher M., Bernhard R., Network based teamwork and
Quality Assurance (NQA), in: Proceedings of the 6th European Conference on Software Quality,
Vienna, April 1999

[36] Paulk M. C., Curtis B., Chrissis M. B.: Capability Maturity Model for Software, version
1.1, CMU/SEI-93-TR-24, February 1993.

[37] Paulk M. C., Weber C. V., Garcia S. M., Chrissis M : Key practices of the Capability
Maturity Model, version 1.1, CMU/SEI-93-TR-25, February 1993.

[38] Axel Völker, Sortware Process Assessments at Siemens as a Basis for Process Improvement

in Industry, Proceedings of the ISCN'94 Conference, ISCN Ltd., Dublin, Ireland

Measurement and Experimentation

[39] Boegh J., SCOPE - A Guide for Software Product Quality Evaluation, in: Proceedings
of the ISCN´94 Conference on Practical Improvement of Software Processes and Products,
ISCN Ltd., Dublin, Ireland, 1994

[40] Briand L., El Eman K., Melo W.: AINSI: an Inductive Method for Software Process
Improvement: concrete Steps and Guidelines, In: Proceedings of the second ISCN Seminar,
Vienna, September 1995

[41] Briand L., Differding C., Rombach D.: Practical Guidelines for Measurement-based
Process Improvement, Technical Report of the International Software Engineering Network,
ISERN-96-05, 1996

Session 12: SPI and People Management

32

[42] L.C. Briand, C.M. Differding, H.D. Rombach, Practical guidelines for Measurement
Based Process Improvement, Proceeding of SP-ISCN 96 Conference, Brighton, December
1996

[43] Brooks F.P., The Mythical Man-Month, in: Datamation, Addison Wesley Publishing
Company, Massachusetts, December 1973

[44] DeMarco T., Controlling Software Projects, Yourdon Press Computing Series, Prentice
Hall, Englewood Cliffs, London, Sydney, Tokyo 1982

[45] R.B. Grady, D.L. Caswell, Software metrics: establishing a company-wide program,
Prentice-Hall, 1987

[46] R.B. Grady, Practical software metrics for project management and process
improvement, Prentice-Hall, 1992

[47] G. Bazzana, P. Caliman, D. Gandini, R. Lancellotti, P. Marino, Software management-
by-metrics: experiences in Italy, Invited paper - Proceedings of CSR 10th Annual Conference,
Amsterdam, October 1993.

[48] G. Bazzana, R. Brigliadori, O. Andersen, T. Jokela, ISO 9000 and ISO 9126: friends or
foes, Proceedings of IEEE Software Engineering Standards Symposium, Brighton, September
1993

[49] B. Hetzel , The sorry state of the art of software measurement, in: N. Fenton, R.
Whitty, Y. Iizuka, Software Quality Assurance and Measurement - A worldwide perspective,
Thomson Computer Press, 1995

[50] Mehner T., Siemens Process Improvement Approach. In Practical improvement of
software processes and products: Proceedings of the ESI–ISCN 95 Conference on
Measurement and Training Based Process Improvement, Vienna, September 1995.

[51] METKIT Consortium and BRAMEUR Ltd., METKIT Industrial Package, 1994

[52] Pyramid Consortium, Quantitative management: get a grip on software!, Technical
Reference: EP-5425 Y 91100-4, December 1991

[53] E. Trodd, A Minimum Set of Metrics for Effective Process Management, Proceeding of
SP-ISCN 96 Conference, Brighton, December 1996

[54] E.F. Weller, Using Metrics to manage Software Projects, IEEE Computer, Vol. 27, No.
9, September 1994

[55] G. Stark, R.C. Durst, C.W. Vowell, Using metrics in management decision making,
IEEE Computer, Vol. 27, No. 9, September 1994

Business and Leveraging Models

[56] Capers Jones, The Pragmatics of Software Process Improvement. Software Process
Newsletter. No.5, Winter 1996, pp.1-4.

Session 12: SPI and People Management

33

[57] Geert Hofstede, Motivation, Leadership, and Organization: Do American Theories
Apply Abroad? Organizational Dynamics. Summer 1980, pp.42-63.

[58] Herbsleb,J; Carleton,A; Rozum,J; Siegel,J; Zubrow,D. Benefits of CMM-Based
Software Process Improvement: Initial Results. Software Engineering Institute, Carnegie Mellon
University, Technical Report CMU/SEI-94-TR-13.

Session 12: SPI and People Management

34

Process Improvement: The Societal Iceberg

Kerstin V. Siakas 2,1 and Elli Georgiadou1

1 University of North London

School of Informatics and Multimedia Technology

2-16 Eden Grove, London, N7 8DB

Tel.: + 44 171 753 3142, Fax: + 44 171 753 7009

E-mail: k.siakas@unl.ac.uk, e.georgiadou@unl.ac.uk

2 Technological Educational Institution of Thessaloniki,

Department of Informatics,

P.O. Box 14561 ,GR-54101 Thessaloniki, Greece

Tel.: +30 31 791296, Fax: +30 31 799152

E-mail:siaka@it.teithe.gr

Abstract

Information Systems (IS) are integrated systems for providing information to support

operations, processes, management analysis and decision-making functions in an

organisation [1]. The IS area is characterised by rapid technical change and innovation.

In recent years there has been a shift in IS from technological to managerial and

organisational issues. This shift has led to increased interest in how environment and

innovation interact. In software quality improvement efforts there has also been a shift

from technical to managerial, organisational and people issues concentrating on the

process rather than on the product. It is widely accepted that emphasis has to be placed

on process quality as a means of achieving product quality. In this paper, we investigate

the characteristics of IS from the managerial and social viewpoint identifying the

societal elements, their interacting and their effects on information.

1. Introduction

IS are socio-technical systems [2] of which information technology is one aspect. They can be thought of

as integrating an infrastructure and the various systems, which make use of that infrastructure [3]. IS are

meaningful only when they are considered within a context. The distinction between a software system

and an information system is that software is limited to the development process of a software system,

while an information system is seen to be the organisational context in which software is used [4]. If we

accept this distinction software quality means development process quality leaving out the usage of

software, while IS quality will stress product quality assessed by the usage of software in an

organisational context. Due to the multidisciplinary character of IS a discussion about the necessity of a

societal viewpoint in these days of globalisation of the software market, virtual global enterprises and

cross-cultural teams follows with emphasis on software quality and process improvement.

2. The Societal Perspective

The globalization of industries has caused the contextual boundaries of IS research and practices to

include the societal context. IS departments face many challenges in today's rapidly changing and highly

competitive global environment. The need for compatible standards and procedures within the global

network is obvious. Greater attention to national factors, like national culture, economic structure,

Session 12: SPI and People Management

35

political and legal environment and nations' infrastructures, is being given in recent years. The study of

societal context enables researchers and practitioners to improve their understanding of the impact

information technology on society as well as the influence society has on the development and use of

information technology. Aspects of societal environment have been found to be important especially in

transnational context [5, 6]. Understanding these aspects enables IT managers at multinational

organisations to operate more appropriately in countries other than their own. In figure 1 the IS

Research Domain is shown.

 Organisational

 Societal Environment Societal

Environment Environment

 Information System

 Social Technical

 System System

Figure 1. The IS Research Domain adapted from Traut et al.

There are two views on managing information technology (IT) in a global context. One view proposes

that managing IT in a global context is largely the same as managing IT in a domestic context. The

other view proposes that there are differences depending on cultural aspects, different business and legal

environments, different languages and varying technology availability [7]. Some researchers have found

that in professions like software engineering the professionals will converge and become more similar to

one another because of the universal technology and the consequent creation of jobs, education and

training influencing not only skills but also attitudes [8,9,10,11]. On the other hand the successful

information system, the evaluation and the maintenance are dependent on user acceptance. There is

evidence of national cultural differences and the influence of national culture on organisational culture

should be taken seriously. Different researchers have identified how cultures vary. The most notable is

Hofstede [12]. Culture is according to Hofstede's definition: "the collective programming of human mind

that distinguishes the members of one human group from those of another". His research was carried out

in 50 different countries and resulted in a position on four dimensions for each country. The

consideration of cultural differences and their effects on IS construction and use is an extremely

important issue in the research of international IS. The authors believe that an information system can

be successful only when organisational culture is taken into consideration and, if the information system

is developed or used in a global context then, the national culture has to be taken into consideration as

well.

3. Quality of IS

Session 12: SPI and People Management

36

IS Quality includes the requirement of the business organisation, the users and the IT
personnel [13]. IS quality is divided into Business Quality, IS Use Quality and IS Work
Quality. Business Quality measures the profitability of software investments from the
whole organisation’s point of view. IS Use Quality is in the interest of all system users,
who can be on managerial or operational level, internal or external. IS Work Quality
covers the performance level of managing, developing, maintaining and operating IS.
Software Quality is usually limited to the development of Software System, while
Informations System Quality is seen in the organisational context, where the use of
Software is stressed [4].

Because of the underachievement of IS, the over-emphasis on technology has in recent years shifted to

take human, organisational and social contexts more into consideration [14]. The quality of IS in

general, and software systems in particular, derives from the Total Quality Management (TQM)

philosophy, which emphasises customer satisfaction, organisational change and continuous process

improvement. Different process oriented quality models, like ISO9001 and process maturity evaluation

models also called process capability models, like CMM, Bootstrap and SPICE (ISO-15504) have been

developed. Process capability is defined as ability of a process to achieve a required goal [15]. It

measures how well a process is managed to achieve its purpose and the organisation's objectives. These

models emphasise the implementation of a managed and controlled development process, as well as a

process for services necessary to support both the development and use of software. The focus in all these

models is on the assessment of the overall technical capability of an organisation. [15]. In 1998 SPICE

became the ISO software process assessment standard called ISO15504. The ISO15504-standard

combines different methodologies and it is linked with the ISO12207 standard, which provides a

framework for software processes. People Capability Maturity Model (P-CMM) [16,17] is an attempt to

consider people-issues. P-CMM focuses on three interrelated components namely people, process and

technology. The motivation for P-CMM is to improve the ability of software organisations to attract,

develop, motivate, organise and retain the talent needed to continuously improve software development

capability.

Software is in the heart of most modern businesses. Business success depends on the quality, the cost

and the timeliness of the software they use. In order to have a systematic approach to software quality, a

software quality management system should be introduced according to the needs of the organisation,

and knowledge should be effectively and explicitly managed. The Total Quality movement emphasises

that better knowledge of the process will lead to increased productivity as well as higher product quality.

Total quality is necessary but not sufficient in today’s global economy. New organisations, which go

beyond total quality and focus on world competitiveness and future success, are beginning to emerge.

These are referred to as learning organisations. They use a knowledge-based approach that focuses on

predicting and creatively solving problems by analysing the root causes of problems the first time they

appear. The problems are prevented from recurrence by learning how to learn [18].

4. Organisational change

The market driven reason for implementing a software quality management system will require an

organisational and cultural change in the organisation. The iceberg metaphor shown in figure 2 can be

used to depict the contrasting aspects of organisational life.

 Formal Organisation

Session 12: SPI and People Management

37

 Goals and strategy

 Structure, standards and procedures

 Products and services

 Management and Financial resources

 Informal Organisation

 Values, attitudes and beliefs

 Leadership style and behaviour

 Organisational culture and norms of behaviour

 Power, politics and conflicts

 Informal groupings

Figure 2. The organisational iceberg [20]

The visible part of the iceberg, shows the formal aspects of an organisation while the informal aspects of

an organisation hide under water. The informal part is the greater part of the organisational iceberg and

will act to help or hinder an organisational process of change. It often leads to resistance to the change

process.

The view of organisations existing as systems of interrelated elements operating in multi-dimensional

environments is becoming widely accepted. The mnemonics PEST [21] and STEP [22] for example refer

both to the Political, Economic, Technological and Socio-cultural factors that influence organisations in

their structures, strategies, management process and means of operating including technology and

individuals [23].

Figure 3 shows the relationships of the different factors that have to be taken into consideration when

implementing a change strategy.

External External

Political/legal Technology Environment

 Environment

External

Socio-cultural External

Structure

Management

process

Individual

roles&

culture

Strategy Technology

Session 12: SPI and People Management

38

Environment Economic

 Environment

Figure 3 Adapting to change [24]

In order to overcome resistance to process change the software process, the business process,

organisational culture and the technology must be understood and managed. The Organisational

Development (OD) approach, which is an umbrella term for a set of values and assumptions about

organisations and the people within them, together with concepts and techniques, is thought to be useful

for long-term organisation-wide change [22]. The OD approach cares about people and believes that

people at all levels throughout an organisation are individually and collectively both drivers and engines

of change. OD is a process by which behavioural knowledge and practices are used to help

organisations achieve greater effectiveness, productivity, and improved product and service quality. The

focus is on the process and on improving the organisation's ability to assess and to solve its own

problems. It aims to improve the total system, the organisation and its parts in the context of the larger

environment that impacts upon them [24]. The success of an OD approach lies in the capabilities of

those who act as change agents or champions. A characteristic of an OD process is that it has

recognisable phases with activities that help the organisation to move through these phases. In figure 4

basic assumptions of OD as a model for change are shown.

Company Problem Ongoing Planned Climate

 solving long for change change

Decision making term agents

GOALS TOTAL MANAGEMENT

 ORGANISATION COMMITMENT

 USER GROUPS/TEAMS VALUE

 BEHAVIOUR SYSTEM

 Inter-

Change Attitudes dependence Humanistic

 Experimental

Action Learning Group Process Open

Research Techniques Relationships

Figure 4 Basic assumptions of OD adapted from Senior [22]

The OD approach to change is entirely in line with the Total Quality Management approach, according

to the entire organisation, management commitment and the long-term perspective, extending the

approach by regarding people in general as social beings, who form formal and informal groupings as a

part of the organisation's functioning. For a group to be effective, all members should share in problem

solving and working to satisfy both the task and group members' needs [22].

4. Attitudes for changes in process improvement

To enable the improvement of the software process more attention should be given to individuals in the

organisation. The success or the failure of organisational change depends to a high degree on executive

open-mindedness toward change and understanding of how individuals and groups function [25]. This is

especially important in the increasing globalisation of markets and businesses. Many lessons have to be

learned from social and management sciences. Social Science Research involves investigating all aspects

Session 12: SPI and People Management

39

of human activity and inter-activity Contemporary Social Research is according to Orlikowski [26] a

large range of research perspectives that operates concurrently. Such perspectives are the disciplines

concerned with human phenomena such as anthropology, psychology, sociology and their applied fields

of administrative science, education, industrial psychology and industrial sociology. Land [27] argues

that IS essentially are social systems of which information technology is one aspect and that the study of

IS is a multidisciplinary effort.

4.1 Cultural values and Software Quality Management

The globalising trend in recent years has resulted in more cross-national studies. Being a global

organisation implies having a universal culture. For the past few decades there has been an important

debate about convergence or divergence of work values. International organisations have tried to

understand the diverse value system of their multinational structure. The objectives of the multinational

organisations is to create a universal culture in the whole organisation and to integrate multi-domestic

operations with individuals who hold opposed work related values [28].

The authors are investigating how culture influences the implementation of Software Quality

Management Systems, aiming to develop a model, which will take culture into consideration for

successful implementation of Software Quality Management Systems. There is evidence that national

culture influences management practices and multinational enterprises need to adapt to the national

cultures in which they operate in order to achieve high business performance [12,31]. If a multinational

organisation is going to be a truly global organisation the diverse individual work values must converge

and be integrated into common set of values to create a universal corporate culture [28].

Results from a pilot study carried out in a large Scandinavian multinational organisation, developing

software for own use was reported in the Software Quality Management Conference (SQM) in Seville in

1995 [28]. Another study was carried out in three Greek software organisations. The results were

reported in the 5th Software Quality Conference in Dundee 1996 [29].

The insights gained from these initial studies helped in reformulating the main hypothesis in this

research.

The hypothesis is: 'Cultural factors intervene in the successful application of Software Quality

Management Systems'.

Two cultural variables are identified, namely national and organisational culture. Two variables of

successful application of Quality Management Systems are identified, namely:

1. The existence of quality oriented management procedures, similar to the procedures identified in

Capability Models;

2. The awareness of quality issues amongst the workforce.

Session 12: SPI and People Management

40

The main hypothesis can thus be broken down into four sub-hypothesis:

1. National Culture affects take up of Software Quality Management;

2. National Culture influences awareness of quality issues;

3. Organisational Culture affects take up of Software Quality Management;

4. Organisational Culture influences awareness of quality issues.

In these two pilot studies the CMM self assessment was used to assess the maturity level of the

organisations instead of the awareness of quality issues amongst the workforce. Cultural issues were

measured and the result was analysed. As a result of these two pilot studies the authors realized that in

terms of cultural issues the take up of Software Quality Mangement instead of the quality maturity level

is crucial for successful implementation. All proceduers for getting a high score can be in place, but if

the workforce does not support them the implementation will not be successful. National Culture will be

measured using Hofstede's four dimensions [22]:

1. Power Distance :Power Distance Index (PDI) indicates the extent to which a society accepts the fact

that power in institutions and organisations is distributed unequally among individuals. In small

PDI countries subordinates and superiors consider each other as existentially equal and

decentralisation is popular, while large PDI countries subscribe to authority of bosses and

centralisation.

2. Collectivism / Individualism:Individualism indicates the extent to which a society is a loose social

framework in which people are supposed to take care only of themselves and their immediate

families. Collectivism is a tight social framework in which people distinguish between in-groups

and out-groups and expect their in-group to look after them. In individualist countries people are

supposed to take care of themselves and remain emotionally independent from the group. The

dominant motivation is self-interest. In collective societies the concern is for the group. Individuals

define their identity by relationships to others and group belonging.

3. Femininity / Masculinity: Masculinity indicates the extent to which the dominant values in a society

tend toward assertiveness and the acquisition of things. In masculine cultures importance is placed

on assertiveness, competitiveness and materialism in the form of earnings and advancement,

promotions and big bonuses. Femininity indicates the concern for people and the quality of life. In

feminine cultures the concern is for quality of relationships and the work of life, nurturing and

social well being.

4. Uncertainty Avoidance: Uncertainty Avoidance indicates the extent to which a society feels

threatened by ambiguous situations and tries to avoid them by providing rules, believing in absolute

truths, and refusing to tolerate deviance. In weak uncertainty avoidance countries anxiety levels are

relatively low. Aggression and emotions are not supposed to be shown and people seem to be quiet,

easy-going, indolent, controlled and lazy while in high uncertainty countries people seems to be

busy, fidgety, emotional, aggressive and active.

All the four dimensions are a continuum between two extremes and only very few national cultures, if

any, are wholly at one or the other extreme.

Session 12: SPI and People Management

41

The Research Method in the research is a contemporary comparative multimethod using both

quantitative and qualitative research methods. The quantitative investigation will be a survey collecting

hard data by using a postal questionnaire. The results from the questionnaire will be analysed using

sophisticated statistical methods. Subsequently, a qualitative method in the form of case studies will be

performed in order to address different aspects of the research problem, to confirm the findings from the

questionnaire and to test the hypothesis.

Depending on the findings a conceptual framework will be developed, which is likely to optimise quality

and management initiatives in different cultural and organisational settings. This model will couple

cultural and organisational aspects with technical requirements of Software Quality Management

Systems to ensure successful implementation.

6. Conclusion

By using the Iceberg metaphor we explored the role of informal aspects on the formal aspects of

organisations. The globalisation of the software market, virtual global enterprises and cross-cultural

teams has caused the contextual boundaries of IS research and practices to include the societal context.

We believe that the underachievement of IS depends mainly on the over-emphasis on technology. In

recent years emphasis has shifted to take into consideration human, organisational and social-cultural

contexts. Quality issues and resistance to change, in particular the degree of resistance influenced by

culture were discussed. Many lessons have still to be learned from other sciences due to the great range

of research perspectives and the rapid changes in the field. Organisational Development was proposed as

an alternative way of empowering capabilities of those who act as change agents or champions.

The research about how culture influences the implementation of Software Quality Management

Systems was described. A number of hypotheses have been derived. Using Hofstede’s four dimensions of

national culture as an underlying discriminator, a revised questionnaire has been designed in order to

determine the adoption of quality-oriented software processes and the awareness of them within the

workforce. Fieldwork is currently in progress in Greece, Finland and UK.

References

1 Alavi M., Carlson P.: A review of MIS Research and Disciplinary Development, Journal of Management Information
Systems, 8 (4) pp. 45-62

 2 Mumford E., Hirschheim R., Fitzgerald G., Wood-Harper A.T (Ed.): Research Methods in Information Systems, Elsevier
Science Publishers

 3 Galliers Robert Ed.: Information Systems Research, Issues, Methods and Practical Guidelines, Blackwell Scientific
Publications

4 Von Hellens L.A: Information systems quality versus software quality. A discussion from a managerial, an organisational and an
engineering viewpoint. Information and Software Technology, 39, 1997, pp. 801-808

5 Ives B., Järvenpää S.: Applications of Global Information Technology: Key Issues for Management, MIS Quarterly, Vol 15 March
1991, pp. 33-49

 6 Keen P.W.: Planning Globally: Practical Strategies for Information Technology in the Transnational Firm in Palvia S.,
Palvia R., Zigli R. (Eds) The Global Issues of Information Technology Management, Harrisburg Pennsylvania: Idea Group
Publishing, 1992, pp. 575-607

Session 12: SPI and People Management

42

 7 Tractinsky Noam, Järvenpää: Information Systems Design Decision in a Global versus Domestic Context, MIS Quarterly/
December 1995, pp. 507-529

 8 Hunter M. Gordon, Beck John E.: A cross-cultural comparison of "excellent' system analysts, Information Systems Journal,
1996, 6, pp. 261-281

 9 Couger, J.D. Adelsberger H. (1988): Comparing motivation of programmers

and analysts in different socio/political environments: Austria compared to the United States, Computer Personnel, 11(4), pp. 13-17

10 Couger J.D., Borovitz I., Zviran M.: Comparison of motivating environments for programmer/analysts and programmers in
the US, Israel and Singapore In Sprague, R/H. Jr (eds) Proceedings of the 22nd annual Hawaii International Conference on
Systems Sciences, IEE Computer Society Press, Washington, DC, 1989, pp. 316-323

11 Ein-Dor P., Segev E., (1993): The effect of national culture on IS: implications for international information systems. Journal
of Global Information Management, 1, pp. 33-44

12 Hofstede Geert: Cultures and Organisations, Intercultural co-operation and its importance for survival, Software of the mind,
McGraw-Hill UK, 1994

13 Eriksson Inger, Törn Aimo: Introduction to IST Special Issue on Information System Quality, Information and Software
Technology, 39, 1997, pp.797-799

14 Kendall Julie E., Avison David: Emancipatory research themes in information systems development: Human, organisational
and social aspects in Human, Organisational. And Social Dimensions of Information Systems development (A-24) edited by
Avison D., Kendall J.E., DeGross J.I., Elseviers Science Publishers, IFIP, North-Holland, 1993, pp. 1-11

15 Sanders Marty (Ed): The SPIRE Handbook, Better, Faster, Cheaper Software

Development in Small Organisations, The SPIRE project, European Community 1998

16 Curtis Bill, Heflleey William E, Miller Sally. Overview of the People

 Capability Maturity Model, CMU/SEI_95-MM-01, 1995

17 Jack, Rickard. Personal Issues in SoftwareCost Estimation,

5th Software Quality Conference, 9-11 July, Dundee, 1997

18 Hodge B.J., Anthony W.P. Organisational Theory, Allyn and Bacon, Boston, 1988

19 French W.L., Bell C.H.: Organisation Development: Behavioural Science

 Interventions for Organisation Improvement, Englewood Cliffs, NJ, Prentice-

 Hall International, 1990

20 Johnson G., Scholes K.: Exploring corporate Strategy, 3rd edn, Hemel Hempstead, Prentice Hall, 1993

21 Goodman M.,: Creative Management, Hemel Hempstead, Prentice Hall , 1995

22 Senior Barbara: Organisational Change, Financial Times Management, Pitman

 Publishing, 1997

23 Benjamin Robert: Managing Information Technology enabled Change

In Human, Organisational. And Social Dimensions of Information Systems development (A-24) edited by Avison D.,
Kendall J.E., DeGross J.I., Elseviers Science Publishers, IFIP, North-Holland, 1993 pp. 381-398

24 Cummings T.G., Worley C.G. (1993), Organisation Development and Change

 (5th edn) St Paul, MN, West Publishing Company

25 Geletkanycz Marta A.: The salience of 'Culture's consequences': The

Effect of Cultural Values on Top Executive Commitment to the Status Quo

Session 12: SPI and People Management

43

Strategic Management Journal, 1997, Vol.18:18, pp. 615-634

26 Orlikowski Wand J., Baroudi Jack J. Studying Information Technology in Organisations: Research Approaches and
Assumptions, Information Systems Research 1991,2:1, 1-28

27 Land Frank ,The Information Systems Domain in Information Systems

Research, Issues, Methods and Practical Guidelines ed. Galliers Robert

28 Ralston David A., Holt David H., Terpstra Robert H., Kai-Cheng You

The Impact of National Culture and Economic Ideology on Managerial

Work Values: A Study of the United States, Russia, Japan and China

Journal of International Business Studies, 1st Quart. 1997, pp.177-205

29 Mohamed Walaa Eldeen and Siakas Kerstin V. (1995): Assessing Software Quality Management Maturity (SQMM): A new
model incorporating technical as well as cultural factors, the 3rd International Conference on Software Quality Management
SQM95, 3-5 April, 95, Seville, pp. 325-336

30 Siakas Kerstin V. The Effect of Cultural Factors on the Implementation of Software Quality Management Systems, 5th
Software Quality Conference, Dundee, 9-10 July, -96

31 Newman Karen I., Nollen Stanley D: Culture and congruence: The Fit between

Management Practices and National Culture, Journal of International Business

Studies, 4th Quarter 1996, pp.753-777

Session 12: SPI and People Management

44

IPSSI: A European Methodology on PSP

Yingxu Wang, Howard Duncan*, Minna Kaartinen, Hasse Sjöström and Paula Kökeritz

Centre for Software Engineering

Dept. of IT Systems, IVF

Argongatan 30, SE-431 53 Mölndal, Sweden

Tel: (031) 706 6174, Fax: (031) 27 61 30
E-amil: {ywg, mka, hs, pk}@ivf.se

* School of Computer Applications

Dublin City University, Dublin 9, Ireland

E-mail: Howard@compapp.dcu.ie

Abstract

It is a recent trend in adapting existing software process models at the personal
process level. The Personal Software Process (PSPSM) is a typical personal process
model derived from CMMSM and related work. A European project on Improving
Professional Software Skills in Industry (IPSSI) has been founded. The project is
aimed at developing a European process model for individual software engineers in
small and medium sized enterprises (SMEs).

This paper describes the architecture of the IPSSI project and its intermediate outcomes. Requirements

of European software industry for the IPSSI personal process framework are analysed. The IPSSI process

framework, data capture methodology, measurement attributes, and an IPSSI support tool are explored.

A mapping between the frameworks of IPSSI and PSP is provided.

Key Words: Software engineering, software process improvement, personal process,

 PSP, IPSSI

Introduction

Software process technologies can be classified into three levels: the organisational
[1,2], project’s [3], and personal [4-6] processes. The personal process of software
development is a new technology that encourages individual software engineers to
adopt the best practices in software engineering. The personal software process
(PSPSM) [4-6]

Session 12: SPI and People Management

45

is the first and typical approach to disciplined personal software process modelling.
In his book, Watts Humphrey said: "The PSP's sole purpose is to help you be a
better software engineer [4]."

The European Commission has founded a project IPSSI (Improving Professional
Software Skills in Industry) [7-11] within the ESSI programme in the framework of
ESPRIT. The project aims to provide a process improvement framework for use of
tailored and adapted PSP technology by individual software engineers in small and
medium sized enterprises (SMEs).

Data gathered from software engineers who have practised the PSP method show
the following benefits:

 Improved size and time estimating accuracy

 Lower defect densities

 Dramatic reduction of defects during compiling and testing

 Improved productivity

However, software process improvement in Europe has been focused on
organisational level. There is an absence of support for process improvement at
the individual level. As a result, the following problems have been identified in the
European software industry:

 There is a gap for providing individual’s process framework and technology

in software process improvement;

 The SMEs need a suitable method to improve their software engineers

capability for developing software with higher quality and productivity;

 The SMEs need a set of personal process training materials that is suitable

to the European software industry;

 The SMEs need a computer-aided tool to support the personal process

training with efficiency.

The focus of the IPSSI project is on improving individual software engineers’ skills
thus enabling bottom-up process improvement. The IPSSI project aims at:

 Provide a process improvement framework for use by individual software

engineers;

 Develop a set of materials which can be used to train software developers

to use personal processes;

 Create a body of trainers who are capable of couching the widespread

applications of this disciplines;

Session 12: SPI and People Management

46

 Develop a tool to enable developers to record data of their performance

while using IPSSI methodologies;

 Carry out case studies to gain experience in personal process

improvement;

 Learn how software development activities can be improved by using the

personal processes;

 Learn how the personal processes can be used to improve the management of engineers and

projects.

In the following sections, the architecture of the IPSSI process model and the IPSSI support tool will

be described. Industry requirements for the IPSSI framework are reported.

2. Architecture of IPSSI

This section describes the structure of the IPSSI personal process framework. The IPSSI data capture

methodology, measurement attributes, and support tool are explored. A mapping between the

frameworks of IPSSI and PSP is provided.

2.1 IPSSI Project Structure

IPSSI is aimed to develop a personal process model that is suitable for the European software

industry, based on the experience gained and lessons learned in applying the PSP. An overall

structure of IPSSI is shown in Figure 1.

The kernel of IPSSI is its process model, and data capture and measurement methodology. Based on

the IPSSI personal process model, a set of training materials is developed for assistant software

engineers, programmers and project managers to apply the IPSSI processes and methodologies. An

IPSSI software tool has been developed to support the training and application of IPSSI methodology

in the software industry.

2.2 IPSSI Process and Data Capture Methodology

A structure of the IPSSI process model is shown in Table 1. IPSSI has defined three process levels,

with level 0 as the baseline. IPSSI focuses on the planing and quality management processes. A set

of measurement is designed for showing what personal software process data will be captured and

analysed.

Session 12: SPI and People Management

47

Adoption
problems in

industry in Europe

Course scheme.

Design of IPSSI.

IPSSI philosophy

IPSSI technical

framework

(process def.,
measures)

1

2

4

Tool requirements

6

Design of the
measurement

database

5

Training materials

7

3

Figure 1. The structure of IPSSI framework

 Table 1. IPSSI processes and data capture requirements

Level Process Measurement

0 (Introduction) Baseline

 - Current processes

- Time records

- Defect/KLOC before compile

- Defect/KLOC in unit test

- Defect/KLOC in system test

 - Coding style conformance

1 (Basic) Planning

 - Estimated size

- Real size

 - Effort estimation

- Size estimation

- Schedule estimation

2 (Advanced) Quality
management

 - Defects found in review

 - Design errors found

Session 12: SPI and People Management

48

 - Productivity

- Design quality

A mapping between the personal process models of IPSSI and PSP is shown in Table 2. Table 2

indicates that IPSSI is a tailored PSP for adapting to the needs of European software industry. IPSSI

puts emphases on three processes, such as planing, estimating and quality management; and three

measurable attributes, such as size, effort, and defects. This approach allows SMEs and software

engineers focus on important personal processes with well-defined measurement.

 Table 2. Mapping between the IPSSI and PSP process models

Level IPSSI Processes PSP Processes

0 Baseline Baseline

 - Description of current

 processes

PSP0 – Current process

 - Time records

- Defect records

- Coding style

PSP0.1- Process improvement

1 Planning, scheduling and estimating Planning

 Size: estimated/real PSP1 – Size estimating and test report

 Estimation: - size

- effort

- schedule

PSP1.1 – Task and schedule planning

2 Quality management Quality management

 - Design review PSP2 – Code and design review

 - Design quality PSP2.1 – Design templates

 - Productivity PSP3 – Cyclic development

2.3 IPSSI Measurement Attributes

The main measurement attributes adopted in IPSSI are size, effort, and

defects of software projects.

 Size. Line of code (LOC) of a developed product.

 Effort. The time a software engineer spends in a personal project.

 Defects. The errors and bugs appeared in the developed product, and during

development phases.

The main measurement attributes and their relationships with the IPSSI processes are shown in

Figure 2.

Session 12: SPI and People Management

49

2.4 Design of an IPSSI Support Tool

The IPSSI support tool is designed to support the following functions:

 IPSSI process introduction

 - Processes

 - Explanations

Effort

Defect Size

Definition of phases

Defects injected per phase

Defects removed per phase

Effort to fix defect

Delta size per phase

Defects found in delta size

Personal

software

project

Definition of a

"quantum" of personal

work

Definition of size

measure

Figure 2. IPSSI processes and measurement attributes

 Data capture for each process

 Data analysis for each process

 - Current vs. average

 - Current vs. history

 - Strengths

 - Weaknesses

 Help (to show how to use the tool)

A structure of the IPSSI tool is shown in Figure 3. The main idea is to keep data gathering and data

storage/analysis separate. For doing so, the IPSSI tool suite consists of a data gathering tool, a data

submission tool, and a data analysis tool. In such a configuration, a light on-line data gathering tool

can be implemented and activated during individual’s programming process, and the privacy of

personal data can be guaranteed.

A number of existing PSP tools have been analysed and evaluated [11-12]. The
functions of the IPSSI tool are described below:

Data gathering. The IPSSI data gathering tool supports the following operations:

 Easy to use on the desktop;

Session 12: SPI and People Management

50

 Allow users to work in various personal processes;

 Measure all data necessary to be derived, such as:

the effort per process phase;

the size of the developed product;

the number of defects found per phase;

(1)

data gathering

tool

(2)

submit data

tool

IPSSI user 1

database
DB#2.

Personal

Projects

IPSSI database

DB#1.

Measures:

effort, size,

defects

Log data
Submit data

Finished

project data

(not mandatory)

DB#2.

Personal

Projects

(3)

alanlysis and

plannig tool

Plann & analys is

Personal

workstation

IPSSI or

organisation's

server

IPSSI user 2 IPSSI user n

. . .

Figure 3. The structure of the IPSSI tool

 Allow data logging with as few user interactions as possible;

 Accept events from the operating system. For example a compilation event, or the defect

found data.

Data submission. The IPSSI data submission tool supports the following operations:

 Isolate properly the two database structures, making each one as much independent of the

other as possible;

 Allow users decide if personal data will be sent to the public IPSSI database;

 Automatically update the personal project database on the local workstation.

Data analysis. The IPSSI data analysis tool supports both data analysis and project planing

functions. For data analysis, the IPSSI tool enables the personal process performance be analysed

and reported, including plotting the following parameters:

Session 12: SPI and People Management

51

 Effort per phase

 Defects injected per phase

 Defects removed per phase

 Total size

 Planning accuracy

 Productivity

 Phase yield

 Defect densities

 Defect removal efficiency per phase

For the planning functions, the tool supports store, compare and reporting estimated and real data in

project planing. Facilities for plan and schedule tracking are also provided.

3. Analysis of IPSSI Regional User Needs

A questionnaire of the European IPSSI project on PSP has been developed [8], and a survey of

regional user needs has been conducted in Sweden [10]. The objectives of this survey are to identify

the needs on PSP in Swedish software industry, and to develop a personal process methodology that

is suitable to the industry.

This section summarises the regional requirements towards IPSSI methodology and training

methods based on the IVF surveys.

3.1 Awareness and Interest in Personal Process

The PSP is well aware in Swedish software industry. Some training organisations have been running

PSP courses for a certain time. A number of universities have established PSP causes in their

computing or information systems curricula.

According to the distribution of profession among the software engineering occupations as below:

 Software engineer and/or programmer

 Testing engineer

 Quality assurance engineer

 Project manager

 System analyst

 Chief executive

Session 12: SPI and People Management

52

The largest group, who has expressed interest in IPSSI and PSP methods, is the project managers,

followed by software engineers. This data indicates that personal process is usually required by the

professional they would directly use it in everyday work.

3.2 Organisations’ Priority in Process Improvement

For answering "What is your organisation's priority in software process improvement - at

organisational, project's or individual's process levels?" The feedback was mainly at project level, but

was less emphasised on individual level. This would be a negative factor on promotion of the

personal processes; while on the other hand, it can be seen as an opportunity for an IPSSI personal

process model that focuses on personal processes.

3.3 Popular PSP Processes

Concerning the usefulness and effectiveness of PSP processes, the top five PSP processes that were

thought most useful in practice were:

 Design review

 Schedule estimation

 Process improvement proposal

 Personal planning in software development

 Program size estimation

3.4 Requirements for Adding Features to PSP

On commenting what the industry need to extending PSP processes, a number of potential areas

have been identified as follows, by listing in descending importance as shown in the survey:

 Requirement analysis process;

 Reuse process;

 A defined capability scale for show programmers’ current levels and future improvement;

 Tailorability of generic IPSSI training materials;

 An IPSSI tool enable self-learning;

 Tool functions for reporting metrics as well as programmers’ capability levels and

improvement history.

3.5 Expectations on IPSSI

Session 12: SPI and People Management

53

On questioning "what are your expectations on an IPSSI training", answers weighted in a

descending order are:

 Design template

 Coding standard

 Design review

 Defect type standards

 Time recording

 Program size measurement

 Defect recording

 Personal planning

 Code review

 Process improvement proposal

 Program size estimation

 Test reporting

 Schedule estimation

According to the survey it is also found that the team processes [3] are largely required by software

project managers.

3.6 Open Issues on IPSSI/PSP

Along with the very positive support in the survey for the IPSSI project, there are a number of open

issues found from the software industry. The main open issues are summarised below as important

research topics in developing personal process models.

 In a software development organisation, when a software engineer is only responsible for

limited roles and specific processes on a project, the one-dimensional PSP-like model would not be

suitable. Therefore we need a two-dimensional IPSSI model that consists of a process dimension and

a capability dimension. By using the 2-D model, each process can be assigned to any of the software

engineers in a project team, and each process has to be evaluated against another dimension of

capability levels. This is a more generic and flexible model framework for personal processes;

 Adoption of the personal process is very much dependent on project level processes and

project leaders' agreement. The organisational and cultural changes would be one of the barrels for

implementing the personal processes in the industry;

 The current personal process models, such as PSP and IPSSI, have been focused on

measurement. An argument was that whether only enhanced measurement of the personal processes

without any improvement and adaptation can solve software engineering problems at the individual

level?

Session 12: SPI and People Management

54

 How do we interface personal processes with team and organisation processes? How do we

solve possible problems of conflict and keep consistency between IPSSI/PSP and the organisational

process models such as ISO/IEC TR 15504 and CMM?

5. Conclusions

The main deliverables of the IPSSI project are:

 An IPSSI personal process framework, which is suitable for the European

software industry;

 A set of materials which can be used to train software engineers for the

personal software process disciplines;

 A computer-aided IPSSI tool for supporting applications and training;

 A series of training seminars, on site training and case studies, by these a

repository of the best personal processes for software engineering will be

established.

This paper has presented the architecture of IPSSI, and its orientation to the European software

industry. Regional software industry requirements have been surveyed and analysed. Based on these,

the IPSSI personal process model, its measurement, and a supporting tool are developed. In addition

to the progresses of IPSSI in personal process modelling, a number of open issues has been discussed

and is under investigation.

Acknowledgements

This project is founded by European Commission through the ESSI

programme No. 27453. The authors would like to thank colleagues

Gerry Coleman, Rory O'Connor, Stefan Schuster, Maurizio Morisio,

David Escala, and Géraldine Pichon for their work. We would like to

acknowledge the following partner organisations for their invaluable

support:

 Dublin City University, Ireland (project co-ordinator);

 IVF - The Swedish Institute for Production Engineering Research;

 ESI - The European Software Institute, Spain;

 Université Thomson, France;

 Politecnico di Torino, Italy.

Session 12: SPI and People Management

55

References

[1] Paulk, M.C., Curtis, B. and Chrissis, B. (1993), Capability
Maturity Model, Version 1.1, IEEE Software, July, pp.18-27.

[2] ISO/IEC TR 15504-2 (1998), Information Technology – Software Process

Assessment - Part 2: A Reference Model for Processes and Process Capability, ISO/IEC ISO,

Geneve, pp. 1 - 39.

[3] Humphrey, W.S. (1999), The Team Software Process, Proceedings

of International Conference on Production Focused Software Process

Improvement, VTT, Finland, pp.11-12.

[4] Humphrey, W. S. (1995), A Discipline for Software Engineering, SEI Series

in Software Engineering, Addison-Wesley Publishing Company, Inc., USA.

[5] Humphrey, W.S. (1997), Introduction to the Personal Software

Process, Addison Wesley.

[6] Humphrey, W.S. (1996), Using a Defined and Measured Personal

Software Process, IEEE Software, May, pp.77-88.

[7] IPSSI project (1999), Introduction to IPSSI -- One-Day Programme,

IPSSI Technical Report, ESPRIT Project No. 27453, pp.1-5.

[8] IPSSI Project (1999), IPSSI Questionnaire V.2.0 - Improving

Professional Software Skills in Industry, ESPRIT Project No. 27453, pp.1-14.

[9] Wang, Y. (1999), IPSSI Support Tool Requirement Definitions,

IPSSI Project Technical Report D.2.2.2, IVF, pp. 1 - 3.

[10] IVF (1999), Survey on Regional User Needs, IPSSI Project Technical

Report, D.3.1, pp. 1 - 3.

[11] Geraldine Pichon (1999), Existing PSP Tools Evaluation, IPSSI Project

Technical Report, ESPRIT Project No. 27453, pp. 1 - 6.

[12] East Tennessee State University (1997), Personal Software Process Studio

User's Manual: Computer-Aided Software Engineering for the Personal Software

Process, pp. 1-37.

[13] O’Beirne, P. &Sanders, J. (1997), Does the PSP Deliver Its Promise? Proc. Inspire
II, SGES Publications, Gothenburg, 1997.

Page 13.1

Session 13

SPI and Object

Orientation

Chairman

Pekka Forselius
STTF, Finland

Session 13 : SPI and Object Orientation

Page 13.2

Improvement of the Quality in the Software

Development Process by the Introduction of UML

Arthur Görges, Minsheng Liu

 Hüngsberg AG,

 Linienthalsraße 2

 D-85399 Hallbergmoos, Germany

 E-mail: {apg, mil}@daxware.de

ABSTRACT: This paper presents the result of the experience acquired from the

ESSI project called OFTPIVE.PIE. In this project the object-oriented methods with

UML and a new paradigm have been introduced to the application environment of

the software development process and to improving the software development

process. By executing the project, the weakness in the process of our software

development have been recognized, so that the process of software development has

been redefined and improved. The use of the forward, reverse and round trip

engineering can reduce the development time of the software product. It is shown

that the introduction of UML, CASE tool and a new paradigm is beneficial to the

software development process.

1. Introduction

Huengsberg AG is an international company in the field of information and

communication technology in automotive industry, based on the Organisation for Data

Exchange for Tele-Transmission in Europe (ODETTE). In the past the company has

developed, manufactured and marketed a wide range of hardware and software

products in the ISDN for automotive industry. We developed and provided a variety of

software products for our customers, and emphasised the importance of servicing for

the customers and meeting customer's requirement. However we did not pay much

attention to developing the methodology of our software product development. With

increasing complexity of our products resulting from customer's requirements, we

found that a permanent improvement of the software development process is urgent, if

we want to provide our customers with better service and high quality products.

The goals of this project, which was funded by the European Systems and Software

Initiative(ESSI), are to improve the software development process and to reduce the

errors of analysis, design and implementation in software development by using object-

oriented methods with UML in our application environment. So we are able to make

our customers more satisfied with high quality and with the best cost-to-benefit ratio.

In this paper the project is firstly described in brief, then we report the results and

experience obtained by executing the PIE project .

2. Description of the Project

Session 13 : SPI and Object Orientation

Page 13.3

Baseline Project:

In the European automotive industry file transfer based on ODETTE File Transfer

protocol uses simple point to point links, today. There is a number of file exchange

systems between different manufactures and suppliers. As the CAD transfer volumes

is increasing, these systems can not match the customer’s needs. On the other hand the

use of these systems is also expensive, e.g. a company has to pay in full for 24 hours,

even if the company uses only the system a few hours in a day. The application of

electronic communication for file transfer is necessary and important for the

automotive industry.

 Fig.1: File transfer through TCP/IP in the baseline project.

On the basis of the international networks and Corporate Networks the baseline project [3]

has been developed for the file transfer in the automotive industry. The ODETTE file

Transfer Protocol takes an interface function for a standardized and efficient

communication over the network as shown in Fig. 1.

The software product of the baseline project is based on logical connections between

product providers and manufactures, so the software product provides our customers

with much efficient service. In the experiment two server modules were designed in the

conventional way using Microsoft C++ and Micro FoxPro as programming language.

One transmission protocol is subject to the test-wise re-implementation by making use

of object-oriented modelling and programming.

Definition of the PIE Project:

The PIE project is proposed to evaluate a new software development method, namely,

object-oriented method by using UML (Unified Modelling Language) [5] and CASE

Data exchange with ODETTE on the basis of TCP/IP

Layer Model OFTP/ANX

Session 13 : SPI and Object Orientation

Page 13.4

Tool for software development process in the automotive industry. The programming

language JAVA is chosen for the support environment [4].

In order to evaluate the object-oriented method with UML, we applied it to re-

implement modules of the baseline project. tool. The experiment consists of the

following components: Definition of experiment, Sending and receiving process,

Logging activities, Interprocess communication and Investigation of data security as

shown in Fig. 2.

Fig.2: Composition of the PIE experiment: Definition of experiment, Sending- and

receiving process, Logging activities, Interprocess communication and

Investigation of data security

3. Implementation of the Improvement Actions

In order to achieve the goals of the project the following main activities have been

taken for implementing the experiment:

 Analysis and definition of the software development process:

In the project program a process of software development, which consists of four

phases, was planned for the PIE project. Afterwards we realized that

the process is not fit to the environment of our software development. With the aid

of the consulting company 3 SOFT the current application environment of

development process is firstly analysed by using the new method kit [1, 2]. Some

weak areas in the software development process have been discovered.

Session 13 : SPI and Object Orientation

Page 13.5

Combining the existing environment with object-oriented development methods,

the new process of the software development has been defined carefully again and

completed in detail.

The Fig. 3 shows the improved process of the software development as an example.

The improved process consists of 8 phases such as Analysis, design, implementation,

Integration test and so on. By using the improved process the software development

can be easily implemented by the iterative and incremental method.

 Fig. 3: The improved process of the software development.

Roles in the software development process are defined as a set of related tasks of one

person, each roles has the responsibility to achieve the predefined objectives.

Moreover the documents and its plan of the project, the methods used in the project

have been defined.

 Selection of a CASE Tool:

There are different CASE tools existing in European market. For selecting a

suitable CASE tool, we reviewed firstly them, then after considering the

requirements of the PIE project, two CASE tools: Rational Rose and Together,

were chosen for further test by using the modules of the PIE project.

When checking the CASE Tool the following factors are considered:

User-Interface: A CASE tool is designed to assist in software development, and it

should be logical and easy to use by designers without long training periods. A tool

should support familiar GUI elements and UML, and integrate other applications

such as Microsoft word, etc.

Workflow: Because of the weakness in the process of the analysis and the design

Session 13 : SPI and Object Orientation

Page 13.6

phase, we regarded workflow as an important factor. A CASE Tool is able to

model workflow of a new system in the field of the new system and to represent the

software development process.

Code generation: On the basis of logical diagram a CASE tool must generate

proper code in an appropriate format which implements the product model.

 Reverse Engineering: Reverse engineering is the process of creating a model by

analysing source code. As a software supplier, we offer our customers various

products. It is often that we are asked to satisfy some special requirements by

customers. A CASE tool has to allow to modify easily from analysis to design and

to implement, and back to analysis again. The iterative style of development allows

designers to begin with a set of known requirements, then evolve as project

parameters change or new requirements are added and the project modelling is

modified. The reverse Engineering and forward engineering are very important

features for the dynamic development process, so that we alter the implement,

assess the changes and incorporate them in the design.

The result of the studies indicate that the general functionality of these tools is similar.

The CASE tool Rational Rose has more functions than the CASE tool Together. So

Rational Rose is chosen as the suitable tool for the demands of the PIE project and is

the choice for object-oriented software development in our company. Such a CASE

tool provides us significant benefits in the speed of our developing new applications

and also facilitates maintenance of the application throughout their life cycle.

 Training Activities:

Software developers took part in the seminars about the object-oriented software

development, unified modelling language, design patterns and OO-programming

and software metrics. They gained a lot of knowledge in the object-oriented

analysis, design, implementing and metrics.

 Experiment:

The UML consists of different diagrams [5]. In this project the Use Case

diagram, Class and package diagrams, Sequence diagrams, Activity diagrams and

Component diagrams have been used for managing the project and for the process

of the analysis, design and implementation. The following examples illustrate the

application of the UML for the analysis, design and implementation.

Documenting the behaviour and requirements with UML: The first step in the

development of a software products is to achieve a understanding of the problems

and define the behaviour of the products. This begins with the assessment and

documentation of the product requirements. In this project the use case model is

used in documenting the behaviour and requirements of the project. The use case

model illustrates the system’s intended functions (use case), its surroundings

(actors) and relationships between the use case and actors (use case diagrams). It

provides a view of the system structure and one starting point for design. Fig. 4

Session 13 : SPI and Object Orientation

Page 13.7

shows the actors in the project and the use case diagram of the PIE project. It

provides a detailed view of the project for the communication between the

development team members and customers.

Fig. 4: The actors in the project and the use case diagram of the sender and

receiver process, Logging activities and interprocess communication. This

presents a view of the functions of the TCP/IP subsystem.

Software design with UML: A good software design must support the below

abilities: Comprehensibility, maintainability and extensibility. In this project we

employed the class and package diagram, sequence diagram, activity diagram and

component diagram for the software design. The Fig.5 and Fig.6 as instances

display the class diagram and the sequence diagram.

 The class diagram of three components in the project is shown in Fig. 5. The

class diagram provides a view of the classes in the logical view of the design ,

which illustrate how the classes relate. The class diagrams are also the foundation

for code generation.

Class diagram and package diagrams are static. They are not adequate to

determine whether the design is adequate to meet the requirements. From the class

diagrams we cannot learn about the behaviours of the system. Sequence diagram

can meet this need. The elements of sequence diagrams are objects and messages.

The Fig. 6 shows the sequence diagram of the project DAX 2000 as example,

where the boxes with underlying dashed line indicate objects.

Sender

Odette

Receiver

establishingConnection

writingLogBook

sendingToMore

receivingFromMore

closingConnection

TCP_IP System

Session 13 : SPI and Object Orientation

Page 13.8

Fig. 5: Class diagram of the project components: sender and receiver process, logging

activities and interprocess communication. It presents the view of the classes in the

model and the interactions among them.

Fig. 6: Sequence diagram of process of the incoming file in DaxENGdat of the

project DAX 2000. It shows the object interactions arranged in time sequence.

Sequence diagrams are derived from the development of use cases; they present the

objects, messages and object interactions arranged in time sequence.

beginning :

checking_engin

looking_engin :

checking_engin

copyingRoutingDir :

copyingFile1

writingSe_protoc :

copyingFile1

getting_engin :

processingAnalysed

copy_file :

processingAnalysed

prot_rout :

processingAnalysed

deleting_engin :

processingAnalysed

1: checking in eng_in

2: copyingRoutingDir

3: writing in se_protoc

6: copy_file()

5: gettingParameters

7: prot_routing()

8: deletingSentences in eng_in

9: return(no), all usefuleFile

Session 13 : SPI and Object Orientation

Page 13.9

In the development process of each component the above phases have been used

repeatedly. The iterative and incremental method has been easily realised by using the

round trip engineering. The Fig. 4 shows the user interface of the sender.

Fig. 7: The user interface of the sender.

4. Result and Conc1usion

By executing the PIE project we have introduced the new method to the process of our

software development. The process of the software development has been improved

and complemented. A standardised software development process has been established.

The software developers have realised that how-know becomes very quickly out-of

date in the IT sector. They should keep on learning in lifelong and now are more

motived for new technology.

The Fig.8 illustrates the application of the UML and the CASE Tool for the

development phases. It shows how the requirements of customer’s are realized through

the phases: analysis, design, implementation and code test by using the CASE tool. The

impact of the UML on the each phase of the software development process is

represented by the colour. The darker colour presents the greater impact of UML on

the phase. It indicates that the UML is suitable to the analysis and design phase. It has

also influence on implementation and code test phase.

By the execution of the experiment, we gathered the following information:

 The UML is a very useful language for modelling a software development process

and enables developers easy to communicate with users of products and members

in a development team. With the aid of UML and proper CASE tool, the software

development process can flexibly and quickly be modified according to the new

Session 13 : SPI and Object Orientation

Page 13.10

requirements of customers.

 By using the UML each step in the software development process can be

represented in detail, so the quality of the development process can be easily

examined and controlled.

 The object-oriented thinking is a foundation for a developer to use a UML

properly and smoothly.

Fig. 8: The impact degree of the UML on the software development process: the

darker colour presents the greater impact.

 After introducing the UML and CASE tool, the code of class level can be

generated by class diagrams, the development period of modules in the project

can be reduced

 The CASE Tool „Rational Rose“ is especially suitable for modelling software

development process. The generation of source code works properly and the
reverse engineering has good functions. The iteration and increment development

process can be more easily implemented by using the round-trip engineering

 Combining UML with the new paradigm used to manage the software

development, the software development process can be analysed and administered

in a proper and efficient manner. Especially the weak areas of the software

process in our company have been recognised, this is a basis for further

 Source code
module

Analysis Phase

Use Case Diagram
Class Diagram
Sequence Diagram
Activity Diagram

…

Class Diagram
Sequence Diagram
Activity Diagram
component Diagram

Design Phase

Implementation

Code unit test

Original Requirements

Derived Requirements:1

Derived Requirements: 2

Derived Requirements:3

Class Diagram

SW-system
 design

Source code
module

PureCoverage

SW design
component

Reverse EngineeringSW design
component

Source code
modul test

Session 13 : SPI and Object Orientation

Page 13.11

improvement

 The generated code consists of the class definitions. It is not the complete

executable code. This must be implemented by hand, and so it is necessary to

generate clear and concise code type for further programming.

 All of the diagrams in the UML presents the same model in varied views on the

basis of different detailed aspects. The connection and dependence among

diagrams have been neglected.

Conclusion:

In this report we present the result of the OFTPIVE.PIE project. It is indicated that the

introduction of UML and CASE Tool results in positive impacts on software

development process. Especially the UML is suitable to apply for modelling the

software development process and for documenting the software analysis and software

design. The development period of the product can be reduced by the forward, reverse

and round trip engineering. This method has been used in modelling the project DAX

2000 in the process of our software development. We will continue applying this

method for the process of other software product developments.

5. References

1. H. Balzert: ”Lehrbuch der Software-Technik”, Spektrum Akademischer Verlag

Heidelberg, Berlin Berlin, 1988.

2. A. Barthel, B. Hindel:“The Method Kit: A new Paradigm for Process Definition”,

CONQUEST’ 98, pp.192-200, Sept. 1998 in Nuernberg, Germany.

3. W. Huengsberg: ”Ein Extranet in Internet für die Unternehmenskommunikationn

in der Automobilindustrie”, Sonderdruck des Beuth Verlags aus edi-change, No. 2

1997.

4. R. Gema: ”Gruppenbild, Java-Entwicklungsumgebungen im Praxisvergleich”,

Magazin für computer technik, pp. 180-189, No. 5 1999.

5. B. Oestereich: “Objekt-orientierte Softwareentwicklung”, R. Oldenbourg Verlag

münchen Wien, 4. Auflage, 1998.

6. A. Goerges, M. Liu: “Tool Selection Review Report”, the report of the ESSI

 project, July 1999.

Authors:
Arthur Görges is Chief Operating Officer Research & Development at Huengsberg

AG. Since 1983 he has been working on computer technology, networking and

electronic communication. His main areas of interest: project management of software

development and the application of ISDN, internet technology for electronic

communication in the automotive industry.

Minsheng Liu received the PhD in applied Physics at the University of Frankfurt am Main

in 1998. He is working as a software developer at Hungsberg AG. His main interests are:

object-oriented programming with JAVA; UML, CASE Tool, TCP/IP and the application

for software development process.

Session 13 : SPI and Object Orientation

Page 13.12

Improvement of

Extendibility and

Modifiability of

Embedded Software

Through Application

of Object-Oriented

Design EMESO

Dr. Manfred Dresselhaus

Reis Robotics, Obernburg

Abstract

REIS ROBOTICS is forced to permanently improve its products in order to maintain

its competitiveness. Continuous introduction of innovative solutions as well as

fulfillment of customer reeds require, that the robot control system can be efficiently

extended and modified. To achieve this, REIS has started the EMESO project to

improve its software engineering (SE) process. The main objective of this project is the

introduction of a new SE methodology in the software development process of the

robot control software. Object oriented (OO) methods are promising approaches to

achieve these requirements. The experiment is carried out to ensure that an OO

approach is appropriate. This paper describes the structure of the EMESO project and

Session 13 : SPI and Object Orientation

Page 13.13

the main activities carried out. The presentation of the results mainly focuses on the

lessons learnt. These didn’t only concern technical aspects such as improvements in the

code structure and the introduction of new SE tools but also organizational and people

related aspects.

Introduction

The EMESO project is carried out as a process improvement experiment (PIE) and is

funded by the European Commission in the frame of the European Systems and

Software Initiative (ESSI).

Such a PIE is principally built up as shown in fig. Dr.1. The experiment is carried out

according to a so called baseline project that in the actual case is the development of a

new extended version of the existing REIS robot control. The baseline project itself is

not part of the PIE. The PIE only covers a relative small part of the development

process in which the experimentation is carried out. Before starting the PIE, a detailed

analysis of the starting scenario, i. e. the situation before starting the experiment, is

carried out. During the experimentation phase a permanent information exchange

between the baseline project and the PIE happens. After finishing the experimentation

phase a detailed analysis of the resulting scenario, i. e. the situation after finishing the

experiment, is performed. The results are after that disseminated in order to make them

available to a wider public.

Experimentation

Phase

Analysis of

resulting

scenario

Analysis of

starting

scenario

Baseline Project

PIE
Dissemination

Fig. Dr.1. Basic structure of a process improvement experiment (PIE)

The introduction of an OO approach concerns all sectors of the software development

process and comprises technological, organizational, human related aspects. In the

scope of EMESO it is not possible to address all of these aspects. Based on the current

status of SE practice at REIS, the most critical sector for improving the extendibility

and modifiability of software is design and implementation.

EMESO tests OO design and implementation of software in the scope of the baseline

project. Since the baseline project is of high importance for REIS, a parallel

development of certain software modules has to be made in the scope of EMESO.

Therefore, the following approach is carried out:

The OO methods and tools applicable for real-time embedded software are analyzed in

order to identify the most appropriate ones.

In the scope of EMESO an experimental system with a small OO control kernel is

Session 13 : SPI and Object Orientation

Page 13.14

built. This kernel is defined in order to identify a minimum amount of software which

has to be re-developed. This kernel has to include some critical and also some typical

modules with reference to computation time, memory resources and use of system

interfaces.

The efforts needed for the extension in the experimental control are compared to the

efforts needed for the extensions in the new control software.

Since the quality of the software for the control system is one of the main competitive

aspects for REIS, careful testing of the implemented experimental system must be

done.

The project EMESO is one single step in the planned long-term improvement process.

However, this step is the most critical for successful carrying out of the required

corrective action plan, since it has to provide clear answers on effectiveness of the OO

methodology in the REIS SE practice.

The structure of this paper follows the structure of the PIE. After a short presentation

of REIS ROBOTICS and its business and products in chapt. 2, in chapt. 3 follows a

description of the analysis of the starting scenario at the beginning of the

experimentation phase. Chapt. 4 contains the implementation and improvement actions

during the experimentation phase and chapt. 5 deals with the analysis of the resulting

scenario and specially focuses on the lessons learnt from the experimentation phase.

REIS ROBOTICS – Business and products

REIS ROBOTICS is one of the leading suppliers of robot manipulators and control

systems on the European market and is present also in the USA, Asia and South

America. Under the main customers of REIS are the automotive supply industries. The

research and development departments for mechanical and electrical hardware and

control software are located with production and the central application, sales and

marketing divisions in Obernburg (Germany). The latter are supported by

representation offices in several countries.

REIS faces a tough competition within and especially outside Europe. In addition to

the already existing competitors from Japan, other Asian countries are starting to offer

cheaper products with comparable quality. Therefore, the robot suppliers are forced to

develop innovative products and system solutions to set up successful market

strategies. Robots are mainly positioned in the market by three factors: (1) economics

(price, costs etc.), (2) performance with reference to the specific applications

(technology, quality etc.), (3) after sales (service etc.). The European enterprises have

put a lot of effort to influence these factors in a positive way. Many of these efforts

lead to successful implementations by the set-up of a proprietary know-how basis, or

the ability to fulfil the customer needs in an optimal way.

The main business field of REIS is the development and production of robots and

robotic automation systems. The product spectrum of the robots includes standard

robot units with vertically articulated, horizontally articulated and linear kinematics

with a load capacity in the range between 6 kg and 300 kg. Furthermore REIS provides

a complete set of standard peripheral units for the its customers: rotary tables,

rotary/tilting tables, linear traversing units, tailstock turning devices and orbital

positioners with load capacities in the range between 200 kg and 6300 kg.

In addition to the robotic products REIS also produces trim presses and mould spotting

Session 13 : SPI and Object Orientation

Page 13.15

and try-out presses, that can be delivered in several variants and sizes.

The standard robots and standard peripheral units are put together for many

application purposes to complete automation systems. The most important ones are

such as: welding, gluing, coating, assembling, handling, interlinking, cutting,

palletizing and trimming. The complexity of the installations reaches from simple

production cells with e. g. only one robot and a positioning unit for welding

applications up to complete production lines with several robots and the necessary

peripheral devices for interlinking the robots.

The control of the robots and also of the peripheral devices is achieved by the

ROBOTstar V, the in-house developed robot control, that is actually introduced to the

market in its 5th generation. The control software that is the subject of the project

carried out was originally completely written in assembler and has been ported to the

high-level language C in the meantime.

The starting scenario

Experiment context

One of the main business goals of REIS is to maintain and increase its competitiveness

on the market by providing the robots with control systems that can be cost- and time-

efficiently extended and modified. An improved extendibility and modifiability of the

control system has also to enable REIS to follow the newest trends in control

technology promptly and provide up-to-date control systems. OO SE methods and

tools are promising approaches to achieve these requirements.

Technical objectives

Based on the above considerations the following technical objectives of EMESO were

defined:

 investigate and select an appropriate OO design approach for software for

embedded systems,

 select an appropriate toolset supporting OO design,

 test the selected method and toolset for the design and implementation of a

restricted number of software modules in the robot control,

 test extendibility and modifiability of the OO modules and compare the results

with the same features of the modules developed based on classical approaches.

People related objectives

One of the objectives of EMESO is to enable that the people in REIS get trained in the

application of the OO methods and tools and get confidence in these methods and tools

and to eliminate reluctance towards the application of OO approaches. The objective is

also to define an optimal organizational structure for OO design and implementation at

REIS.

Long-term objectives

The objective of EMESO is to provide clear assessment and judgement on efficiency

and both technical and commercial benefits of the selected OO methods and tools for

REIS. This will serve as a basis for defining the detailed migration path to establish the

OO methodology in the whole company.

Session 13 : SPI and Object Orientation

Page 13.16

Relation to the business goals

The stated technical and people related objectives will directly contribute to the

achievement of the following business goals:

 reduce the efforts for extensions, modifications and maintenance of software for

the REIS robot control,

 reduce the time required for extensions and modifications of software modules

(reduction of time-to-market),

 ensure quality of the extensions and modifications of software modules and to

reduce the number of errors identified in the integration tests.

Company Context

Currents Strengths and Weaknesses

The main strengths of the current status of the SE practice at REIS are:

 REIS is strong in the requirements analysis of customer needs due to its good

understanding of the customer’s processes as a system vendor,

 organization is appropriate (e. g. clear definition of responsibilities etc.),

 project management is well performed.

 In reference to the stated company business objectives, the main weak points of

the present SE process are:

 the SE process is based on classical functional approaches that constrain strongly

extendibility and modifiability of the software; thus, the work for extensions and

modifications is very time consuming,

 maintenance is asking for a lot of efforts,

 tests and integration are not sufficiently controllable,

 the application of metrics is not satisfactory (only efforts and time spent are

normally measured).

Technical environment

The software of the REIS robot control is implemented in C, and some core elements

are still written in assembler. The robot control is VME based using cross compiler

tools on UNIX platforms. Tools for automatic generation of code are only used in rare

cases.

People related aspects

REIS staff members in software development are highly experienced in the

development of software for robot control systems as well as in the modification of

such systems to accommodate specific customer requirements. There is, however, little

experience with the application of modern SE methods and tools. This is leading to a

certain reluctance towards the application of OO methods and tools. The main fear is

that such methods may require too high computation time and memory resources and

the given real-time requirements might not be reachable with the actual hardware

configuration.

Quality assurance aspects

The quality of software, being one of the main competitive feature of the REIS

products, is achieved by intensive testing the system in the integration phase. However,

the efforts for these tests are very high since the number of errors discovered in this

phase is rather high and not well controllable. This seems to be a consequence of the

way how extensions and modifications are performed.

Session 13 : SPI and Object Orientation

Page 13.17

Required corrective actions

Based on the above analysis, it can be concluded that the main corrective actions

required at REIS are:

 improvement of the design and implementation phase by more appropriate

methodologies which enable easier extensions and modifications,

 improvements in the technical environment which will enable a more efficient

development in the design and implementation phase,

 the methodology should enable REIS to ensure the high quality standards in a more

efficient way than presently,

 improvement of the skills and experience of the staff with reference to modern SE

methods and tools,

 improvement in the configuration management system,

 introduction of appropriate metrics to control the software process better.

Baseline project context

The baseline project for EMESO is the development of a new extended version of the

existing REIS robot control. The control is implemented in C (85 %), but some core

elements are still written in assembler (15 %). The robot control is VME based using

cross compiler tools on UNIX platforms.

The baseline project essential for the success of REIS in the near future. The baseline

project has been started in June 1998 and will according to the plans last about 14

months. The new version of the robot control is scheduled to be ready in the end of

1999 in order to meet requirements of certain important customers.

Since this baseline project addresses extensions and modifications of the existing

software modules, it is very appropriate to test advantages with reference to

extendibility and modifiability of software. EMESO started in June 1998 and fits well

into the schedule of the baseline project. Since this has a high relevance for REIS, the

successful application of the OO methodology provides a good basis for the decision

on the investment in such an advanced methodology.

Implementation and improvement actions

Phases of the experiment

In order to achieve the planned objectives and in reference to the identified ”weak

points” of the REIS software development process, a detailed analysis of the SE

process at REIS was performed. The main tasks were to analyze the existing SE

process in detail, to check the new SE methodologies for the REIS software develop-

ment process and to select and test OO methods and tools for design and

implementation of the software modules for the robot control system.

Thus, the technical work of EMESO was divided into 3 main phases: Phase 1 covers

the analysis of the state-of-the-art and the preparation of methods and tools for the

experiment. Phase 2 contains the work of the experimentation phase, i. e. the design,

the prototypical implementation of selected parts and the testing of the results of the

modifications. The following phase 3 contains the tasks that use the results of the

experiments for planning the future activities to introduce the OO methods to the REIS

control software. Additional work concerns documentation and dissemination activities

Session 13 : SPI and Object Orientation

Page 13.18

of project results. In detail the phases of the project contain the following tasks:

Phase 1

Different OO methods and tools concerning the specific requirements and constraints

of real-time software development are evaluated. They have to support all relevant

design views for real-time systems. Therefore, the features of different software tools

that support the software development process for real-time embedded systems are

assessed with regard to:

 operational costs,

 facilities to support design and implementation,

 flexibility and capability to handle dynamic aspects

 minimize requirements with reference to computation time and memory resources

of the target systems,

 investment costs,

 ability to be compliant with different company-internal SE standards,

 ability to support the transition between the different phases.

The baseline project is analyzed to identify which of the extensions of the existing

control, can be taken to compare the efforts for the OO approach. The OO kernel of

the experimental system is defined as well. Specific attention is paid to the facts, that

the absolute size of the selected modules is as small as possible, but the complexity of

the interaction of the module with the control is typical for extensions of the REIS

control. A result is the selection of modules for the extension of the existing control

with a typical complexity of the interaction with the control kernel.

Appropriate metrics are selected to get quantitative measures. The measurements

concern the time necessary for development of the extensions as well as the comparison

of the efforts for integrating additional modules in the existing control and the test

kernel. Different metrics are considered in order to measure which metrics are most

useful. An essential measurement is the run time performance of the generated code.

Further metric aspects to be addressed are assessment aspects with reference to the

level of the encapsulation of the modules and the complexity of decomposition

structure of the software architecture. The measurement values achieved by the

application of metrics are compared with the measured values achieved by direct

human judgement. The corresponding deviations are measured and evaluated.

Phase 2

The OO control kernel is designed and implemented based on the selected minimal

requirements defined in phase 1. Because the control kernel provides only a test

architecture for extensions, it is implemented with minimum efforts. The kernel is

tested in order to ensure that it properly encapsulates all relevant features for testing

the efficiency of the OO approach.

The design and implementation of the selected extensions and the documentation of the

needed efforts are objectives of this phase. The needed efforts are documented as well

as the efforts for the corresponding prototypical module implementation, integration

and tests in the baseline project. Design, prototypical implementation and tests in

EMESO are carried out according to the selected OO methods.

A training of the several staff members on OO methods and tools is carried out.

Different organizational aspects are also considered (e. g. organization of team work

and ways of co-operation among developers etc.).

The measurements according to the metrics selected in phase 1 are also carried out.

Session 13 : SPI and Object Orientation

Page 13.19

The required efforts, the quality of the code and the run-time behaviour and necessary

resources of the experimental design and implementation are compared to those in the

baseline project. The resulting metrics from phase 1 are chosen for measuring the

improvement of the code quality and the run-time behaviour of the OO software.

Phase 3

The analysis of the improvements in the REIS software process is carried out, as well

as the analysis of the lessons learnt during the experimentation phase. The specific

experience in application of OO methods for real-time robotic control software is

formulated in the form of guidelines for specification, design, implementation and

testing at REIS. These guidelines are initially prepared in the scope of phase 1, but

they will be redefined at the end of EMESO to be used in further projects. The

consequences of the results of the project upon the different aspects of the software

process at REIS are analyzed.

Dissemination and documentation

Internal disseminations are carried out according to the planned activities. The

technical staff level in software and hardware development and in the production as

well as the management level will be addressed by these disseminations. The

knowledge concerning the application of OO specification and design methods as well

as the aspects relevant for the management of OO based software projects are

disseminated to the remaining development personnel at REIS.

Consultancy during the experiment

In order to use its resources optimally REIS subcontracted ATB – the Institute for

Applied System Technology, Bremen – to support the selection and the introduction of

OO methods and tools at REIS. Due to relatively low experience of REIS staff

members with OO methodologies, such an approach was necessary to ensure the

appropriate execution of the experiment. In reference to its expertise ATB provides

support in the following aspects:

 detailed selection of appropriate methods and toolsets for OO design and its

preparation to accommodate the specific needs of REIS,

 application of the OO methodology during the experimentation phase,

 selection of metrics and execution of the measurement of the project results,

 suggest special OO realization methods for integration in the REIS robot control

system,

 detailed planning of the improvement process at REIS.

Results and lessons learnt

Results

Technical impact

The analysis of the existing software structure of the control system and the selection

of the correct methods and system parts to be redesigned by OO methods has been the

key part of the project that has been carried out very carefully to obtain a good basis

for the OO redesign of the complete software.

The main result from the analysis phase of the robot control system is the selection of

Session 13 : SPI and Object Orientation

Page 13.20

one key module of the system: the interpreter, that is responsible for analyzing and

interpreting robot programs and for controlling the robot movement. This module

forms one centre of the control software and has interfaces to the main parts of the

control. Well defined interfaces for the interpreter are the basis for a later translation of

further modules of the control software into OO structures and C++. The basic

structure of the robot control is shown if fig. Dr.2.

CAN

HW

controllers

motion control

modules

TCP/IP

interpretation /

course control
PGS

user

prog.

communication / visualization

p
a
th

c
o

n
c
tr

o
l

..
.

..
.

D
N

C

d
is

p
la

y

..
.

..
.

RSV

standard

visualization

server 1 server n

fu
n

c
ti

o
n

d
a
ta

Fig. Dr.2. Basic architecture of the robot control.

The selection of the interpreter for being redesigned in an OO way has several

consequences for the activities carried out in EMESO: The combination of OO

designed and classically designed software modules in one control is not reasonable.

This condition is surely valid for the release version of a robot control. For the

experimental system for prototypical tests of OO designed control parts, a mixed

structure with OO and non OO modules is acceptable. For testing the interpreter it is

necessary to have a more complete platform that also contains modules still written in

C. These modules are necessary to keep the experimental system running.

Generally, a lot of effort also has to be spent on the dynamic memory management,

that is a critical part in C++-written software. But especially for embedded systems the

dynamic memory handling has to be designed and created very carefully due to the

limitation of resources in those systems and due to the long run time of embedded

systems. A memory fragmentation or leak is not acceptable because this will lead to a

complete system crash, that in a running automation system must never happen.

Also some other features that are convenient in C++ have to be taken into account very

carefully to deal with the conditions in embedded systems (e. g. recursive structures),

Session 13 : SPI and Object Orientation

Page 13.21

because these methods are memory consumptive and one has to manage with limited

resources in embedded systems. In a first approach those methods should be avoided at

all. Only in rare cases one should make any exceptions of this.

The automatic creation of variables in a wider range in C++ is also a point that has to

be paid attention to. I. e., that all of the constructors and destructors have to be

designed very carefully so that they don’t work memory and time wasting.

The evaluation of the applicability of OO tools with a version of Rational Rose at ATB

has shown that the tool is providing no sufficient support for the design of the software

needed by REIS. The problem REIS is faced with is the need for a detailed algorithmic

specification or an analysis of the effects of different language constructs of C++.

This, however, cannot be done on the abstract level which the tools are mainly

supporting. Interfaces and class hierarchies are defined to structure the overall system,

but all are affected by details of the implementation. Therefore, the structure of the

overall system is dominated by things which may not be easily visible in the tool and,

on the other hand, the views supported by the tool may not be very helpful for the

design. Thus, Rational Rose would be a too expensive tool to just draw class diagrams.

A tool which is more helpful for the development is a profiler allowing for the

measurement of the used CPU time and memory consumption of different code

sections.

The selection of the metrics is faced with the principal problem of comparing OO code

with non-OO code. On the one hand it is very obvious of how an OO design approach

can improve the structure of the system. Once it has been proven that the

implementation fulfils the requirements of an embedded system, it not only allows for

an easier understanding but also a better overview. On the other hand, a quantification

of such an improvement by certain characteristics of the code should be possible. Some

algorithmic parts of the code are not expected to be changed much, because they only

use internal data and their functionality is not affected by the restructuring. However,

these parts of the code for the interaction between modules will be greatly simplified

due to the layering of the complexity with the help of interface functions to data

structures. Such simplifications should be visible by means of the metrics ‘Cyclomatic

Complexity’ and ‘Average number of segments per path’.

Additionally, another improvement will be the de-coupling of different modules. The

present code is characterised by an extensive use of global variables. Although efforts

were spent to change this situation, the range of effects in the case of changes in the

code at one place is still too high. This is planned to be considerably changed due to a

functional interface to modules realized by class methods providing an interface on a

higher level of abstraction. This will be reflected in the ‘Total number of global

variables used’ and in the ‘Average number of modules sharing a data type’. The

number of modules sharing a data type represents the number of modules which have

to be adapted in case of a change. Therefore, the improvement of the OO design should

be indicated by measuring these values.

Other special OO metrics are not expected to be helpful in comparing the C++ code

due to the special nature of embedded systems, on the one hand and due to the

algorithmic structure of the robot controller on the other hand. Based on these

considerations it was decided to carry out the following measurements:

 Cyclomatic Complexity,

 Average number of segments per path,

 Total number of global variables used,

Session 13 : SPI and Object Orientation

Page 13.22

 Average number of modules sharing a data type.

Business impact

Up to now there are no direct impacts from the EMESO project perceptible, because

those changes of the SE process normally have medium-term or long-term effects. But

the results of EMESO, e. g. a shorter time-to-market and a better portability of the

control software and also a better maintainability and reuse of the OO structured

software will surely have positive effects in the future. Those impacts will take effect

when a new version of the control is introduced to the market.

At the beginning of the project we defined measurable quantitative objectives.

However, these goals can only be measured at the end of the project. Find following an

indicative table to demonstrate the intended measurement of the goals:

Item Goal

Reduced costs for extensions, modifications and maintenance 20 %

Reduced time-to-market for modifications 30 %

Reductions of errors in integration tests 20 %

Organizational impact

No definite organizational changes have not been made during EMESO up to now. But

already now there are possible changes in the organization of the software development

process and the software development department recognizable. The persons involved

in the project will obtain a stronger position with more responsibility because they get

an improved knowledge through the training and because of the work with new

methods and tools. In addition, there is a need for a more intensive information

exchange between all people concerned.

Culture impact

In the initial phase of the project the additional work concerning the necessary more

detailed definition and designing overhead as well as the more rigorous methods led to

a slight negative attitude towards the new methods. But after the training and after

recognizing the positive effects of an OO approach the attitude was no longer negative.

The training of the people in OO design and programming led to an improved co-

operation between the developers to transmit the knowledge to the persons not involved

in the training. Due to the use of OO structures in future there will thus be necessary a

closer teamwork in general.

Skills impact

The training of the people in OO design and programming leads to a better knowledge

in OO structures for designing and programming. But in addition to this the training

leads to an OO way of thinking in general. This means, that the SE process generally

will be affected by the improved OO way of thinking of the people. Besides this, the

use of new SE tools leads to a wider knowledge in CASE tools. A wider use of tools

rather than achieving things by do-it-yourself-methods could also be a positive impact

from the project.

Lessons learnt

Technological point of view

Besides the direct technical results there have been learnt some lessons from EMESO

that will have principal effect to the software development process. These refer to the

Session 13 : SPI and Object Orientation

Page 13.23

following points:

 Importance of good data structures and well defined interfaces,

 Importance of education and training to make the people able to use more

sophisticated development methods and tools to improve the software structures,

 Importance of modularity of the code to be able to affect things through changes in

one module rather than through changes spread over the whole code,

 Importance of code reuse through modularity of the modules,

 Importance of internal disseminations to improve the knowledge and information

exchange between the people,

 Better knowledge about the actual software through the very detailed analysis

carried out in EMESO,

 Better knowledge about how the software should be structured.

Business point of view

Some of the lessons learnt concerning the business point of view are the following:

 Importance of platform independence of the control software to have better choices

for future developments towards standardization and cost reduction,

 Importance of easy achieving big software changes by minimum efforts through

modularity of the software,

 Importance of software reuse that leads to a reduced use of memory, a reduced

amount of testing, service and maintenance. Software reuse leads to easier

introducing of new functionalities without big implementing efforts.

 Importance of investing in education and training to be able to use more

sophisticated methods and tools which lead to shorter development cycles in future.

Strengths and weaknesses of the experiment

From the actual point of view there exist some factors that point out principal strengths

and weaknesses. The identified strengths are as follows:

 The code structure of the control software is analyzed in an very detailed way.

 A plan for the principle structure of the software is obtained.

 A plan for an improved data structure and interface definition is obtained.

 The efforts of the people involved in the project are recognized by the

management.

 The identified weaknesses refer to the following points:

 Identify the big efforts necessary to achieve the recognized improvement actions.

 Identify that due to the heterogeneity of the software structure developed over the

years the selection of appropriate tools is difficult; the suggested tools cannot

achieve the performance as expected.

 The necessary preparation of the staff before starting the tasks of the project.

Conclusions

New SE methodologies are necessary in the REIS SE procedure to achieve the main

objectives. EMESO gives the opportunity to carry out a relative small experiment

besides the main actions taking place in the SE practice to test, to check and to

measure special methods. This makes it easier to get into new technologies than it

Chapter 6– Conclusions

Page 13.24

would be without the project.

In future the results of EMESO have to be inspected accurately to make the right

decisions how the found conclusions can be applied in general.

In future similar changes that have a general effect to the software structure or the SE

process could be realized by a similar experiment after the thoroughly positive results

from EMESO. Depending on the plans of the European Community to fund software

activities in a similar way than today, EMESO encourages REIS to take into account

to carry out further projects in a similar situation in the future.

Session 13: SPI and Object Orientation

Page 13.25

References

The best information on Object Orientation can be found on the internet under

http://www.rhein-neckar.de/~cetus/software.html. Further selected references are:

[1] Burkhard, Rainer: “UML-Unified Modelling Language, Objektorientierte

Modellierung für die Praxis”. Addison-Wesley Publishing Company, 1997

[2] Fowler, Martin: “UML Distilled”. Addison-Wesley Publishing Company,

1997

[3] Gamma, Erich et al.: “Design Patterns”. Addison-Wesley Professional

Computing Series, 1994

[4] Rüping, Andreas: “Software-Entwicklung mit objektorientierten Frameworks”.

Ph.D. Thesis, University of Karlsruhe, Shaker Verlag Aachen, February 1997

[5] Shaw, Mary, Garlan, David: “Software Architecture”. Prentice-Hall Inc., New

Jersey, 1996

Page 14.1

Session 14

SPI and Testing II

Chairman

Yingxu Wang
IVF, Gothenburg, Sweden

Session 14: SPI and Testing II

Page 14.2

Improvement of

development process

through enhanced

test procedure &

change request

management

- ImproveTCR

Marek Blaszczyk

DAKOSY GmbH

 Cremon 9

 20457 HAMBURG

Germany

http://www.dakosy.de

Introduction

Many companies which have chosen to introduce object-oriented technology have

started with design and implementation and then gone on to expand the technology to

include analysis. Other companies have tended to adopt the opposite approach. What

many companies have in common, however, is that they have ended the process of

introducing the object-oriented technology after implementation, i.e. after an object-

oriented programming language has been introduced. The substantial effort involved,

combined with the frequent lack of success, means that the test process remains

unchanged in its original form. Systematic use of the object-oriented technology

requires the test process to be adapted to the new object-oriented software development

Session 14: SPI and Testing II

Page 14.3

process.

This report describes our experience of changing over from the classic test (V-model)

to the object-oriented test process.

This experience is based on the results we have achieved at the half-way stage in our

PIE project „Improvement of development process through enhanced test procedures

and change request management “- ImproveTCR - 27352. The ImproveTCR

project is funded by the Commission of the European Communities (CEC) as a

Process Improvement Experiment (PIE) under the ESSI programme.

These results are especially significant for firms which have not yet adapted their test

process to object-oriented requirements or which are looking for new ideas in this area

to increase quality and productivity. The decision to view testing not as the last activity

in the software development process but as a parallel process which supports and

accompanies software development on a long-term basis, provides useful information

about both the resulting product and the development process. This is necessary for

everyone who is interested in continuously improving the process.

Starting scenario

Business motivation

The Port of Hamburg is a classic hub of intermodal transport, handling thousands of

containers each day (1997: 3.34 million TEU). For the transport process to work

properly, information must be transmitted as far as possible ahead of the actual

transport and be accessible at all times. This requires rapid communication between all

the firms involved in the transport process.

The function of DAKOSY is to act as a "data junction" linking together all the

companies and institutions involved in the handling processes, by means of EDI

(Electronic Data Interchange). All transport documents and orders can be exchanged

via a wide variety of EDI services and managed with many advanced application

systems.

DAKOSY’s main areas of business are:

1. Operating the data communication system created by DAKOSY for the Port of

Hamburg with 99.8% availability.

2. Carrying out all work which is necessary in the field of data processing with a

view to ensuring the smooth functioning of the Port of Hamburg.

3. Providing support and advice to companies in the field of data processing.

DAKOSY’s range of services includes software development, computer centre

services and DP consultancy for the port transport sector. With every service which

DAKOSY provides now and will provide in the future in the port area, the top

priorities are system reliability, speed and reliability of information processing.

Session 14: SPI and Testing II

Page 14.4

One part of achieving the functionality of the port is the project HABIS II/2

(HAfenbahn Betriebs- und Informations System). This software application, which is

being developed for the City State of Hamburg, covers approx. 23 person-years and is

in the middle of its production cycle. The application is of central importance for goods

transport in the port of Hamburg. The functions of order planning, disposition and

implementation together with order monitoring are the main attributes of the system.

This project is also the Baseline Project for the PIE.

The other motivation for the PIE project comes from the business environment:

increasing competition, constantly increasing demands on the reliability of DAKOSY

systems on account of the economic importance of the applications for the user.

Experiment context

The project objectives which we aim to meet relate to the Baseline Project but are also

expected to become established within the company as a whole. This task is not

difficult provided that the Baseline Project reflects the development environment of the

entire company. In our specific case we deal with a variety of different development

environments such as COBOL and RPG developments on the AS/400, Microsoft

Visual C++, PowerBuilder, Visual Basic on Windows NT, and JAVA on both

platforms (AS/400, Windows NT, and Internet). The Baseline Project shows only part

(MSVC++) of the spectrum covered within the company. For this reason our

experiment not only relates to the chosen process organisation, its methodology and

applied technology, but also gains the additional dimension of company validity. Our

process is defined in such a way that it is independent of the tools and systems used.

The tested product/part of a product is termed test object in Figure 1. The test method,

which includes the test procedure, is determined in relation to the developmental phase.

The test procedure considers relevant test techniques. Supporting tools are allocated to

the test procedures.

Fig. MB.1: Test process

V 1.0.0

method-n

procedure-1

procedure-2

procedure-n

r
e
su

lt
s

Test Process

test object

software

development phase

tool-2

tool-n

te
st

im
p
le

m
en

ta
ti

o
n

 method-1

method-2

platform test technique

tool-1

Session 14: SPI and Testing II

Page 14.5

A further main aspect of our project is that the test process follows the software

production process. The quality of a complex system is determined by the quality of its

individual components. We therefore do not regard the test process as the final stage of

the software development process, but as a parallel process closely connected to the

software development process (Figure 2).

The test process must provide an appropriate procedure for each test object

(independent of the particular developmental phase from analysis to implementation).

This includes the consideration of all available information on any one test object, e.g.

UseCase models, class models, sequence diagrams and collaborations diagrams in

order to minimise effort.

Fig. MB.2: Testing in the context of software development

This approach allows the following aspects of the previously defined software process

to be examined:

- Are the UseCases defined also specified with sufficient clarity for the test process?

- Can appropriate test cases be derived from the collaboration, sequence and state

diagrams?

- Does the system architecture provide appropriate information which can be used to

define adequate test procedures?

A further important aspect of the experiment is the expansion of testing to include the

request

analysis

system

analysi

sss system

design

module

design
implemen

tation

unit

test

integra-

tion test

system

test

acceptance

test

test

aspects
planning & administration

test development

Test against ...

test case generation

 source-code analysis

test execution

test coverage analysis

Session 14: SPI and Testing II

Page 14.6

analysis and design phase. In other words, checklists are to be used to ensure that the

specified information and design models are recorded completely and systematically.

The later a design fault is discovered, the more expensive it is to remedy it. This is very

important in terms of efficiency, productivity and quality of the product and process.

With this approach we aim to achieve a higher degree of efficiency with regard to

technology and business.

Baseline application

The Baseline application is a prototype implementation of the most important

operating masks of incoming and outgoing journeys, initially with a low degree of

functionality. The prototype is based on selected specialised classes and their link to

the system database. At the same time, it is also used to evaluate both the system

architecture design and the software development process.

The HABIS II/2 prototype 1.7 (HABIS II/2 represents the further DP development of

the HABIS II/1 system) has the following distinguishing features:

1. It produces a visualisation of transport orders. Transport orders from HABIS II/1

are displayed and broken down into planning units.

2. It produces a reading interface to the HABIS II/1 system.

3. Data from the HABIS II/1 System are incorporated into the HABIS II/2 database.

4. Train journeys (arrivals and departures) in the HABIS II/1 system are incorporated

into the order scope of the HABIS II/2 system.

Fig.MB.3: Application architecture

Status before the experiment

Arrival/Departure

disposition

 Disposition of empty

waggons

Disposition of loading

points

Marshalling

disposition

Dispersion

 disposition

Planning of track

 use

Order management

Interfaces

Tracks

 Loading

points

Dispersion

points

Vehicles

Operating

points

 1*

Interfaces

OPERATING DATA

 1* :Journeys/Waggon sequence

Session 14: SPI and Testing II

Page 14.7

The client/server development process, based on object-oriented technology, which

DAKOSY introduced in its offices in 1996 requires a different software development

procedure than the host applications developed hitherto on AS/400: an iterative and

incremental procedure. The software development process includes four individual

phases: Analysis, Design, Implementation and Test.

Early results from the analysis and design phase are tested using prototypes. With the

knowledge obtained from these prototypes the analysis phase is run through again.

This makes it possible to:

- Recognise risk factors early, and where appropriate eliminate them.

- Integrate into the modelling process any new knowledge gained through

implementation.

- Involve the user in the development process.

The result is a cycle which is repeated a number of times within a project. These steps

are controlled and monitored by project and quality management. DAKOSY has been

certified in accordance with the DIN ISO 9001 quality standard since 1995.

In spite of the cyclical procedure, the development process is not without risks. This

part of the process is too dependent on the developer inasmuch as he is obliged to carry

out all the steps as they are laid down in the QM handbook. There is a lack of support

for him in the form of methods and procedures which the developer can supply with

information such as errors found, type of error, release processed. The process in

which information is gathered should automatically lead on to further processing steps,

such as: drawing-up of test documentation, error correction process, generation of new

release, reverse engineering and model correction and so forth.

This would ensure that the processes interlock automatically and that nothing can be

confused and forgotten.

The multi-layer client/server architecture which has been introduced, and in which the

layers in the network can be distributed in any way, increases the risks of software

development. The result is that many more factors have to be considered during

implementation and testing. The developer is dependent on his own experience and

creativity to be able to formulate as many aspects and test constellations as possible.

The result of the phase is then reflected in the number of errors detected in the product

delivered. The process needs improvement in this area.

Plans and the expected outcomes

Project objectives

The PIE project in the areas of testing and change request management is intended to

bring medium and long-term business improvements in a number of areas:

 Increase productivity by 20 %

 Increase quality by 50 %

Session 14: SPI and Testing II

Page 14.8

In addition there are other, not directly measurable, objectives: increased product

reliability, customer satisfaction, development staff motivation and awareness of

quality management.

From a technical point of view, the objectives of the project are as follows:

 Reduce software error rate by 50%

 Reduce testing effort by 30 %

 Reduce correction time by 50 %

 Increase process transparency

In the medium to long term the following effects are expected:

 Efficiency and transparency of the test process and the change request process

within the company. The individual activities are more strongly triggered by the

process itself than by a member of staff because of a clear definition and a tool-

supported completion. In this way the processes reach a higher level of human

independence and a consistent translation.

 Customer satisfaction. Customers are already following the process improvement

with increasing interest.

Phases of the experiment

Workpackage overview

Ref. Activity Phase State

WP0 Project Management In progress

WP1 Co-operation with other ESSI Projects In progress

WP2 Process Assessment Part I – Begin I. Initialisation Concluded

WP3 Process & Organisation Definition Concluded

WP4 Process Improvements Metrics II. Process Measurements Concluded

WP5 Technology III. Evaluation of Technology Concluded

Milestone I

WP6 Improvement of Test IV. Improvement Part I Concluded

Milestone II

WP7 Improvement of Change Req. Proc. V. Improvement Part II In progress

Milestone III

WP8 Product of the Improvement Future

WP9 Result Evaluation VI. Result of Evaluation Future

WP10 Dissemination Activities In progress

Table 1. Workpackage activities

Workpackage WP2 was assessed with the assistance of the management consultancy

DTK GmbH. The entire software production process was analysed with the help of the

Session 14: SPI and Testing II

Page 14.9

Bootcheck tool in version 3.0. The SW process (WP2) evaluation [3] combined with

the knowledge [1][4][5][10][14][15] and experience gained from other projects formed

the basis for the test specification and change request process (WP3). The result of the

specification is the “process definition” [2] which describes the “improvement process”

and the processes “testing “ and “change request” and their size within the experiment.

The metrics which are relevant for the project were worked out using GQM method [9]

in WP4. With the aid of these metrics it will be possible to adequately evaluate the

development, i.e. the improvement, in the project [6][7][13]. The metrics form the

basis for the analysis of the process and they are summarised in the document "Process

Improvement Report" [11].

The basis for the tool evaluation (WP5) was mainly provided by the process definition

(WP3) and the process and product metrics (WP4). The pre-selection was made on the

basis of the “Ovum-Report” “ Software Testing Tools” [12].

The pre-selected tools, which best supported the defined process and conformed to the

relevant commercial, technical and technological aspects, were examined and

evaluated. A comprehensive tool evaluation report has been prepared.

Table 1 gives an overview of the test tools used and the main areas where they were

employed.

Test tool Manufacturer Main area of use Type of test

Cantata++ IPL Ltd. Developer tests – White-Box Tests Class test

Cluster test

SQA

TeamTest

RATIONAL GmbH Technical Test – Black-Box Tests System test

Logiscope VERILOG Source-Code Analysis, Metrics

Test coverage – Black-Box Tests

System test

Purify RATIONAL GmbH Developer tests – Memory error Integration test

System test

PureCoverage RATIONAL GmbH Developer test – Test coverage Integration test

 Table 2. Test tools used

This workpackage forms a critical aspect of the project. A wrong tool selection would

not only result in waste of resources, but it will also jeopardise the process by

preventing the achievement of the targets identified. Consequently, the tools were

scrutinised and tested where evaluation licences were available.

Individual analysis and design models, black- and white-box tests have begun (WP6).

The activities of the workpackage were finished on 30.06.99. The activities of WP8,

which ensure distribution and stabilisation of the objectives achieved, can be carried

out subsequently. A second evaluation using the “bootstrap method” will be conducted

(WP9) at the end of project activities and following an evaluation of the process and

product data of the two process cycles. This will assess whether the project objectives

have been achieved.

Session 14: SPI and Testing II

Page 14.10

Implementation of the improvement action

Process sequence

The initialisation, process definition and tool evaluation phase was followed in the

period from 01.02.99 - 30.06.99 by the first cycle of the test process (WP6). The test

process was divided into two cycles. The main emphasis of Cycle 1 is the

implementation of the test process as an automatically running process. This meant

that it had to be clearly defined, responsibilities had to be assigned, selected test tools

integrated and product and process data measured.

In Figure 4 this corresponds to Curves 1-4. After the process has been evaluated, the

automatic stage follows. The initial difficulties must be eliminated before this stage

(Curve 5). This is the sequence of Cycle II. Its main emphasis includes the intensive

collection of process and product data and verification of the process in respect of use

throughout the company

Fig. MB.4: Process sequence

In parallel to the test process in Cycle II, change request management is introduced

into the process. Here too, it is to be expected that as a result of the build-up activities,

the change request process will adopt first Curve 1 and later Curve5.

The shape of Curve 1 in comparison to Curve 5 is intended to symbolise the additional

effort that is incurred during the build-up phase

This includes:

1. Problems installing or using the test tools and their errors

Gather

Measurements

Select

Improvement

Analysis &

Assess

1

2

3

4

5

6

Metric

Gathering

Cycle

Improvement

 Cycle

Implement

Improvement

Session 14: SPI and Testing II

Page 14.11

2. Learning how to use the test tools in practice

3. Effort involved in integrating the test process with configuration and project

management

4. Definition of various documents and templates

5. Co-ordination effort on the part of those involved in the process

6. Corrections in the process sequence

There are thus technological, organisational and methodological factors that can have a

negative influence on the process in the build-up phase. For this reason, the data

obtained have a different significance from those obtained in the course of Curve 5.

Improvement actions

To improve the development process within the Baseline Project, the following

methods and procedures have been established:

 Test planning and test case execution have been established. We have the

possibility to manage the whole test process with the identification of test

requirement, the planning of test cases and test procedures. With this set of test

cases we have been able to integrate in our test process a regression test

functionality.

 Integration of design specifications into the test process. The specifications

which were established in the design phase can be adopted as requirements in the

test process.

 White-box tests – specification and procedure of the different test types are

defined : class and cluster tests.

 Black-box tests – specification and procedure of the different test types are

defined : GUI test (GUI-Graphic User Interface), performance test, memory test,

integration test, system test, acceptance test.

 Effectiveness of the testing is established on the basis of the test coverage.

 Introduction of metrics for products and processes which facilitate fast analysis

of the test process and product and therefore minimise risks. Metrics analysis

enables early recognition of negative trends.

 Establishing the metrics of products and quality. In order to be able to assess

the effectiveness of the testing, one requires information about the complexity of a

product, e.g. depth of inheritance, number of children, coupling between objects,

coupling between classes etc., to put them in the context of established results (e.g.

number errors, test effort).

 An acquired knowledge database was implemented to store results and

experiences. This database can be accessed by any member of staff at any time.

 Checklists for analysis specifications and design models were developed and

implemented successfully.

Session 14: SPI and Testing II

Page 14.12

Measured Results, Impact and the Lessons Learned

The measured results

Errors

Within the scope of the Baseline Project, the new test procedures were used to develop

a prototype of the future system. The incremental and evolutionary software

development procedure allowed a number of prototypes of the system to be

constructed.

 Prototype–Version 1.7.1 - with a basic functionality

 Prototype–Version 1.7.2 - expansion of basic functionality

 Prototype–Version 1.7.3 - further expansion of functionality

Versions 1.7.2 and 1.7.3 incorporate the error correction from the previous version.

Table 2 shows the results of the various tests.

Number of test objects per test type Number of test cases

Number of
deviations

Main

cases

Derived test

cases

Class test 3 18 4,912 5

System test 42

 Technical requirements 53 210

 GUI 23

 Performance 13 13

 Memory 1 210

 Function coverage 1 210

 Installation 1 1

Table 3. Overview of test cases

Within the scope of the class tests, 3 classes which have a very high degree of

replicability were tested. 3 test cases were established here. The formation of the

equivalence classes generated a large number of subtest cases which were tested -4,912

in total. 5 errors were discovered during the tests.

A total of 42 errors/deviations were found during the system test. This number of

errors represents the sum of the errors from all three prototypes. Figure 5 shows the

number of errors for each version. It is noticeable that the errors mainly occurred in the

earlier versions. This is a positive effect of early testing.

Session 14: SPI and Testing II

Page 14.13

 Fig. MB.5: Application defects distribution

Other Metrics

The scope and key data for the applications are shown in Tables 3 -6. These data are
very important for the evaluation of the productivity of the process and the quality of
the products. The basic metrics for the scope are the number of Statements (STMT)
and not the number of Lines of Code (LOC). Statements are defined as an executable
instruction independent of the number of Lines of Code.

APPLICATION VOLUME : NUMBER

 Number of classes 220

 Number of methods – Private 1,980

 Number of methods – Protected 113

 Number of methods – Public 460

 Total – Methods 2,553

 Statements and Commentaries :

 Number of Statements 10,063

 Lines of commentary before class definition 3,940

 Lines of commentary in classes 826

 Total 14,829

Table 4. Scope of application

Session 14: SPI and Testing II

Page 14.14

Class data : Value Class name

 Highest complexity of a class (total VGs) 208 CbasCtlListCtrl

 Highest number of derived classes 7 CpersistentObjectDbzo

 Highest number of dependent methods 171 CMSFlexGrid

 Highest coupling (max. number of connections) 312 ClehFrtDbzo

Table 5. Maximum values of the application

Critical values in relation to complexity and coupling between individual classes

occurred in only 1.5 % of the methods. These methods include complex functionality

and are part of the standard class library, and thus they have already been tested

relatively often.

The aim of the static analysis is to detect critical components of a system. These are to

be checked more closely during the test. Classes which exhibit a high degree of

coupling and complexity are not only candidates for possible errors, they are also

extremely difficult to test, as the classes possess a large number of independent paths.

Testing thus becomes very expensive.

Table 6 shows the test effort.

Activity Effort for system

tests

Effort for class tests

Person

days

% Person

days

%

Test case determination 13 34.3 8 40.0

Test data determination 17 44.7 10 50.0

Test execution 8 21.0 2 10

Total in person days: 38 100 20 100

Table 6. Effort

Static analysis using Logiscope is a very good way of verifying the software. The

values (minimum and maximum) specified for a metrics in the quality model provide a

solid basis for evaluating the software. With the aid of Kiviat diagrams, many metrics

can also provide a clear picture of a method, classes or entire applications. See Figure

6.

In addition to the Kiviat metrics diagrams, it is also possible to draw up Kiviat quality

diagrams. This evaluation provides important information not only for testing, but also

for further implementation in the case of an increment.

Session 14: SPI and Testing II

Page 14.15

Fig. MB. 6. Kiviat diagram

Evaluation

It is premature to make any statements about the increase in quality and productivity.

This is due to the increased complexity of the construction phase which has resulted in

the generation of insufficient data for a meaningful analysis.

Positive Effects

The evaluation of the completed test cycle is positive, since testing has become a

comprehensive and stable process. Testing in the early stages of the development

process delivers good synergy effects between test effort and high quality of the test

object.

 It is easier to find errors in the early stage of software development, because the

system is not yet so complex.

 Errors which can be attributed to incorrect design can be corrected with relatively

little effort.

 Excessively complex methods can be redesigned in good time, without placing

undue pressure on effort and deadlines.

 The complexity of a system grows with its quality.

Session 14: SPI and Testing II

Page 14.16

These effects are confirmed in Figures 5. Testing of the three prototypes also allowed

the advantages of the regression tests to be exploited.

Another positive effect of the test came from testing with Cantata++. This tool

allowed an error in Microsoft Visual C++ - Dev.Studio to be detected. A newly

developed method, getCurrentTime(), was replaced during execution, and for no

apparent reason, by a Microsoft method.

A further very important aspect is the fact that the test process allows the

functionality and quality of a system to be consistently demonstrated in a way that

has never before been possible.

The introduction of the tool Logiscope means that quality and quality features are now

an objectively measurable value and no longer a collection of subjective adjectives.

Another strength of the tool is the flexible manipulation of a quality model. The quality

model in accordance with Standard ISO 9126 [8] which was used can be adapted in

any desired way. This allows different quality models to be developed for different

systems (depending on emphasis).

Another positive aspect is the introduction of the model test and entity relationships

model test. These tests, which are carried out with the support of checklists and rose

scripts, allowed 72 inconsistencies/errors in design models to be identified. This

allowed false associations, incorrect package assignment, missing return values in

methods and infringements of the name conventions to be recognised.

Negative Effects

The negative effects of the cycle include:

 Difficulties in installing the test tools. All three tool manufacturers use FlexLm as

license management. Unfortunately, every tool assumes that it has the license

server all to itself. Problems therefore occurred when it was necessary to install

additional license managers.

 Unfortunately the test tools too have their errors:

 Cantata++ Ver. 2.0 cannot work with templates (STL libraries), this leads to

an error.

 In Logiscope Ver.4.0, static analysis is halted with an error when a project has

been compiled using the option /YX.

These difficulties caused unnecessary extra effort and delayed our test process in the

build-up phase.

Input for Test Cycle II

Cycle I supplies a range of basic metrics for our quality model which is used in Cycle

II. Here the main aim is to empirically establish where for us the permissible value

range lies, for example in respect of:

 Complexity,

 Coupling,

 Number instructions in a method,

 Number of derived classes,

 Number of dependent methods

Session 14: SPI and Testing II

Page 14.17

etc. The measured value can also only be evaluated via establishment of the basic

values.

Key Lessons learned

Technological point of view

From the technical point of view the key lessons learnt are as follows:

 Time and work spent in the tool evaluation phase is very often underestimated.

Increasing competition among tool manufacturers means that many tools vary only

slightly in their functionalities. Only detailed examination and analysis will reveal

the differences that are very important for the process integration, e.g. internal

administration of data.

 The effective way to reduce risk is to start testing early in the development cycle

and to test iteratively, with every build.

 Experience with the introduction of new procedures, technologies and organisation.

 Testing and applying of the GQM method.

 Experience with the introduction of metrics.

 Experience in relation to process evaluation and tool evaluation methods

 A range of technological experience in relation to various test methods and applied

tools.

The effectiveness of the test processes can be strongly influenced by two factors:

- Regression tests, which with every iteration of the development process can call

upon tests already developed

- Test coverage, which should increase with every new test case

Test coverage makes it possible to check not only the progress of the testing, but also

the completeness of the specification against which tests are carried out. In practice, a

few UseCases need to be further specified in order to achieve complete test coverage.

Business point of view

It has become clear that an increase in productivity and quality of the software

development process and the software maintenance process can only be achieved

through a continuous improvement of the process rather than a single technical

breakthrough.

Introducing new methods in development is a cost- and time-intensive task in the early

phase of such an improvement project. Increasing effectiveness will be seen in a later

phase of the Baseline Project.

With respect to quality targets, we have observed a 34 % increase in quality over previous

systems, i.e. the average error rate per 1000 statements has fallen from 6.4 to 4.2. The

Session 14: SPI and Testing II

Page 14.18

tendency is increasing.

There are two main causes of this positive tendency: model tests and regression tests.

These were used during the development increments and have allowed us to achieve

continuous product improvement.

With respect to productivity, it is still too early to give a judgement, as the first cycle phase

involved too many build-up activities. In order to determine productivity we use standard

metrics, such as for example:

and also additional metrics, including:

Various metrics derived from these were then used to measure test coverage. It was

ascertained that 70 - 80 % test coverage can be achieved easily and is associated with

20 % of the test effort. This confirms the Pareto rule.

With respect to the spread of errors over the modules, we were not able to establish the

Pareto rule: the errors found are distributed over 2.25 % of the modules.

We are confident that we will achieve the target in terms of quality and productivity by

the end of the project.

Knowledge of modern software technologies will increase the quality of the people

involved. This will strengthen the competitive situation of a company.

Strengths and weaknesses of the experiment

The strength of the experiment is clearly the opportunity to realise the improvement

process in its depths, i.e. to be able to consistently analyse, specify, translate and

measure all aspects of the relevant process. Software improvement in this shape and

format is unfortunately not possible in day-to-day business.

An experiment like this is the best way to evaluate new techniques and introduce them

volume (product complexity)

effort
Productivity =

TPM =

sum (in-ouput mask)

sum (test effort)

TPM – Test productivity in relation to input-output-masks

TPGE =

sum (in-output-graphical element)

sum (test effort)

TPGE – Test productivity in relation to input-output-graphical-elements

Session 14: SPI and Testing II

Page 14.19

in parallel to on-going development. Even in the future we will formulate fundamental

improvement actions as a separate project. Otherwise it is not guaranteed that the

necessary tasks will be performed in a serious way.

The measures presented have led to a substantial improvement in the quality of the

products and processes. This may be attributed to the fact that the test process was

used in a systematic fashion for all part-products of the software development process,

from analysis, via design, to implementation.

Conclusions and Future Actions

The new way of looking at the test and change request process with its analytical

approach, delivering the values of complexity and cohesion of the tested software and

process metrics in correlation to traced errors, generates a new understanding of

product and process quality.

As a main aspect, the emphasis of the next actions is the definition and improvement of

the change request process, implementation of improvement products (e.g. guidelines),

and finally result evaluation. Internal and external dissemination have been and will be

planned in the next phase. After a successful analysis of the process it will be

introduced to the company as a whole and integrated into the quality management.

Further long-term activities may be expected after the completion of the project.

Session 14: SPI and Testing II

Page 14.20

References

[1] Balzert H., Lehrbuch der Software-Technik, Spektrum Akademischer Verlag,

Heidelberg, Berlin, 1998

[2] Blaszczyk M., Prozeßdefinition Ver.1.0, DAKOSY GmbH, 1998

[3] H.Debler, Self-Assesment Report, DTK GmbH, 1998

[4] Guide to Software verification and validation, ESQPSS-0510 1/94

[5] IEEE Standard for Software Test Documentation 829, Publ. by IEEE

[6] IEEE Standard for Software Productivity Metrics, Publ. by IEEE Std.1045-

1992

[7] IEEE Standard for Software Quality Metrics Methodology, Publ. by IEEE

Std.1061-1992

[8] ISO/IEC International Standard 9126 “Information technology – Software

product evaluation – Quality characteristics and guidelines for their use”

International Standard Organisation.

[9] Morscherl I., GQM-Plan-Software-Architekturen, 1997

[10] Myers G., Methodisches Testen von Programmen, R.Oldenbourg, 1991

[11] Nordhoff S., Blaszczyk M., Process Improvement Report Ver. 1.1, DTK

DAKOSY, 1998

[12] Ovum Report, Software Testing Tools, OVUM 1998

[13] Simmons D., Software Measurement, Prentice Hall PTR, 1998

[14] Thaller G., Der individuelle Software-Prozeß, bhv Verlag, 1997

[15] Wallmüller E., Softwarequalitätssicherung in der Praxis, Hanser, 1990

Session 14: SPI and Testing II

Page 14.21

Annexes

Annex A: DAKOSY business and products

DAKOSY was founded in 1982 to support the Hamburg seaport transport sector using

EDI. Currently, some 480 companies and institutions are using the system to exchange

transport data with each other. The DAKOSY computer centre deals with some

400,000 computer-computer linkages each month, with a transmission volume of over

28 million data records. The IBM AS/400 systems used as transfer mainframe

communicate with over 120 autonomous EDP systems from all commercial hardware

manufacturers. Any computer configuration can be connected to DAKOSY using tried

and tested DAKOSY standards or EDIFACT messages.

To assist the widest possible range of potential users to take advantage of "electronic

commerce", DAKOSY has developed a series of advanced application systems for

specific sectors. Within the transport sector, the following applications have become a

byword for the professional combination of the latest EDP technology and the specific

requirements of the companies working in this sector:

- ACTION - Agents ́Container Transport Improving and Organizing Network.

- SEEDOS - Seaport Documentation System for Seaport Forwarders.

- HABIS - Port Railway Operating and Information System.

- GEGIS - Dangerous Goods Information System.

- LADOS - Liner Agents ́Documentation System.

- ZAPP - Customs Export Monitoring in the Paperless Port.

Annex B: Author

Mr. Marek Blaszczyk is a project leader in DP technology at DAKOSY GmbH.

He was born in 1957 and graduated in telecommunications science from the

polytechnic in Bydgoszcz, Poland in 1982. After college he worked as a developer of

modules for electronic call systems at the "TELFA" electronics works in Bydgoszcz,

Poland. From 1987 to 1996 he worked as a project leader at GEET GmbH in

Hamburg, Germany. Here he gained experience in system programming, real-time

systems, data transmission by radio and control of means of transport. In 1996 he

joined DAKOSY GmbH in Hamburg, Germany as a project leader in DP technology.

His areas of responsibility are software development, monitoring the IT market, and

development of concepts for new technologies which support the strategic objectives of

the company. His experience covers many areas, including quality assurance, process

improvement and management, systems analysis, system design, implementation and

testing.

Session 14: SPI and Testing II

Page 14.22

TERRA FIRMA

Improvement of testing process

through systematisation for

increasing software

manufacturing assurance

Julián Navas

Alberto González

Sainsel, Sistemas Navales, S.A.

Manuel Velasco Pando, 7

41007 - Seville - Spain

www.sainsel.es

terra_firma@sainsel.es

Introduction

Nowadays, Testing Techniques for Software products are essential to improving the

reliability of applications. Sainsel, as a manufacturer of complex systems for Naval

Command & Control, Simulation and satellite-based Fleet Monitoring, is aware that the

early detection of errors in the production process is vital to reducing cost, shortening

delivery times and decreasing the number of corrective after-sale interventions.

The purpose of the experiment is to implement an integrated test environment and to

determine in quantitative terms (using different metrics) the impact on economic aspects

and productivity. The experiment also aims to bring about a substantial improvement in the

reliability and quality of the applications delivered to the end user. Different metrics are

used: Project Cost per Line of Code (LOC), Application Maintenance Cost, Testing

Proficiency Ratio, etc.

Session 14: SPI and Testing II

Page 14.23

The implementation of the test environment includes various phases of the System Software

Life Cycle (SLC): Specification and Analysis of functional requirements, Design and

Programming, Verification & Validation and Operation & Maintenance. Different tasks are

carried out: implementation of the process to analyse and correct specifications, test case

specification and design (Black Box), White Box tests, acceptance tests, test management,

etc.

At the end of the project we will have learnt:

 A practical method for writing testable requirement specifications.

 How to specify and design a set of cases to verify that the design and code fully

implement all functional requirements.

 How to use powerful tools, such as SoftTest and LDRA.

We expect a considerable reduction in errors in the end product and a significant decrease

in maintenance costs.

We expect to consolidate an independent software testing team.

MTP, Métodos y Tecnologías de Sistemas y Procesos, S.L. (www.mtp.es), a Spanish

consulting firm which is highly experienced in quality issues, is acting as a subcontractor,

providing Sainsel with the training needed in Requirements Specification, Test Case

Design, and Black Box Test Case Execution, as well as helping to define and exploit the

standard set of metrics. MTP provides a variety of training and other assistance services in

support of those organisations involved in Software Process Improvement and is very

experienced in the introduction of metrics models.

TERRA FIRMA as such has been supported by the European Commission within the

framework of the ESSI initiative, and has been advised by the Spanish SPINODE in the

preparation of external dissemination.

Business Motivation

From the business point of view, Testing Techniques for Software products have been

essential to improve the reliability of applications and relating TERRA FIRMA Project

objectives to company objectives.

It is essential–for reasons of cost–that the number of latent errors which appear in the

product in the operation & maintenance phase be as small as possible, because the

correction of errors and the reinstallation of software is very expensive. The correction of

defects or errors is even more costly if it has to be carried out at the client’s facilities,

which may be geographically distant, i.e. in African or American countries.

Sainsel has a strong presence in the Spanish Market, but has increased its international

market share in recent years, offering its products mainly to the African and South

American markets. Obviously, Sainsel faces strong competition, not only from outside

Europe but also from European companies. This means that investments must be increased,

Session 14: SPI and Testing II

Page 14.24

developing new leading products, but taking into account that these emerging products must

be competitive and of a high quality.

With a view to achieving this goal, Sainsel is seeking to reduce maintenance costs and

increase the reliability of systems/products, taking into account that safety is one of the

most important requirements requested by its clients. By achieving these objectives, Sainsel

could increase the loyalty of its clients and maintain their trust over the years.

Objectives

The aim is to bring about a significant improvement in the quality (reliability) of

applications using an integral test plan to substantially improve test coverage (both in

functional and structural terms). The increase in reliability will be achieved for reusable

components as well as for end products.

Methodologies and Techniques:

 Draw up unambiguous system requirements.

 Design the functional and acceptance test cases (Black Box Techniques)

 Defect tracking using regression library.

 Design code coverage tests and analyse code (White Box Techniques)

 Verification & Validation (Traceability).

Another objective is to analyse Cost/Benefit, by measuring cost and productivity

parameters in order to quantify the cost–of the quality–of the improvements introduced.

Metrics used to measure impact on the final goals [2]:

 Financial impact: present cost; increment of the cost due to implementation

(training, tools, new resources, etc); cost of the application in the maintenance

phase.

 Impact on productivity: number of LOC or Function Points (FP) delivered per unit

of effort (LOC/man.days); effort needed to support a LOC or FP application

(man.days/LOC); Duration Delivery Rate, which measures how quickly LOC or

FPs are delivered (LOC/Elapsed Time); application maintenance load per person,

which measures the overall work load of maintenance and support personnel

(LOC/number of maintenance people).

 Impact on quality: cost to repair defects; stability ratio, which measures how well

the application met the expectations of the user (number of changes/LOC); testing

proficiency ratio, which measures the efficiency of the testing technique and also

system defects as a percentage of total FPs or LOC.

Starting Scenario

TERRA FIRMA is focused on improving the software process. This experiment was

prompted by high maintenance costs and the lack of a dedicated Test Department.

Session 14: SPI and Testing II

Page 14.25

The Sainsel Software Department is carrying out this experiment, which involves four

software engineers skilled in programming and design working as part of the testing team.

Currently, the software process in Sainsel includes five points:

 Project Management: Ms-Project and CVS are used in some projects, but not all.

 Methodology: Object Oriented Methodologies are used in the design phase of SLC

and are supported by Rational Rose.

 Code: Visual Basic, Ada, C and C++ programming languages are mainly used for

coding. Unix and NT Operating Systems are usually used.

 Tests: unit, integration and acceptance tests are implemented in all projects.

 Metrics: quality and productivity metrics are not collected in a systematic way.

Metrics cost, effort and LOC are available.

The experiment is being carried out in conjunction with a real system project (CSP98

project): “Fishing Fleet Tracking and Monitoring System”. The baseline project is

characterised by world-wide coverage and twenty-four hour uninterrupted operation. By

means of a device installed on board a fishing vessel, with satellite tracking technology,

from a Control Centre it is possible to monitor: geographical position, information about

the state of the fleet, speed and course, the activity that the fishing vessel is performing at

that moment, entries to and departures from port and fishing areas, etc. Therefore, it is very

important that this system is highly reliable. The required reliability can be achieved

through improvements in the test process [3].

Due to the fact that the CSP98 project involves two builds, the TERRA FIRMA project is

divided into two parts, with each phase of the experiment being carried out twice.

CSP-98 is a medium-size project in Sainsel: ~100 KLOCS of executable code, 12 months

duration, and 2000 person/days of effort.

Tools and languages used:

 C++ and Visual Basic languages.

 Solaris 2.6 and Windows NT.

 Informix.

Session 14: SPI and Testing II

Page 14.26

Description of the experiment

Overview

TERRA FIRMA is divided into two main phases [3]:

Phase 1, Implementation of the Test Process, covers from the specifications phase through

to delivery of the product (CSP-98). It is necessary to define the activities, methods and

tools used in each one of the SLC phases [5,8].

The purpose of Phase 2, Management of Implementation, is to control and measure in

quantitative terms the effectiveness of the implementation of test systematisation. As

commented previously, the economic, productivity and quality rates will be calculated and

monitored to determine the impact of the implementation of a test environment on the

above-mentioned rates as well as on cost / benefit.

Phases of the experiment

The activities included in the two phases of the TERRA FIRMA Project are explained

below:

 Specification and analysis of functional requirements.

At the same time as the User Requirements are drawn up, the graphics of the

method cause/effect are constructed [10]. Any language pitfalls, negations

scope, omissions, ambiguous logical operators, etc. will be corrected and

reviewed.

Req uirem ents an d

F un ction al Analys is

Verificat ion and

Val id ation

Testing Process

O p erat ion and Mainten ance

US ER

RE Q UIREM ENTS

F INAL

BU ILD

Desig n and

Developm en t

Fig. TFIRMA1: Test Process

A repository of requirements has been implemented using Lotus Notes to

record the derived text information of the graphics constructed on the basis of

the functional requirements [4,5] and to control the different versions

generated as a result of changes in the different phases of the CSP98 project.

Session 14: SPI and Testing II

Page 14.27

The next step is to specify and design the Test Cases using Black Box

Techniques (Cause / Effect Method, Equivalence Class Partition, Bound

Values Analysis and Defects Inference) [10]. The functional requirements will

be covered 100% (it is done in this way because it is based on mathematical

algorithms, which use logical operators as in hardware tests that are known for

high reliability). A powerful tool (SoftTest) has been used to design different

functional variations that define all test cases.

In the same way, a repository has been created using Lotus Notes to record

and control test cases. This repository will be the source of test executions and

defect control.

 Design and programming.

During the design and programming phase, the Software Testing Team builds

the test cases specified and designed in the previous phase, preparing sets of

input test data in an independent "target" system (analogue to the client’s

system). Data is normally entered in a "target" database or using an ODBC

link ("target" database - Ms Access).

Once the test cases have been performed, the Software Testing Team records

any errors and defects in the test case database, so that they can be later

analysed to obtain quality metrics.

White Box Tests [6,7,9] are performed to complete Black Box Testing using

structure analysis techniques and measuring code, statement, decision and

LCSAJ coverage. If coverage does not reach an established minimum, more

White Box Tests are designed using an LDRA Testbed.

Finally, using an LDRA Testbed, design faults (data and control flows,

statements, syntax, etc.) can be analysed, studying Code Complex

(Cyclomatic Complex (McCabe), Knots, Nest, LCSAJ) and Sainsel C++

programming yardsticks and requirements. For example, if the cyclomatic

complex of a block is high (more than ten), that block must be split into

simpler blocks.

 Verification & validation.

At this stage, the Software Testing Team has verified that the system is

working according to the functional specifications and has reviewed all the

paperwork. This is done by testing all the functions of the system ensuring

traceability between functional requirements and test cases and that test case

results are as expected, etc.

Session 14: SPI and Testing II

Page 14.28

 Operation & maintenance.

The maintenance phase covers the entire process. Databases might be

modified due to changes in requirements or to results showing defects found

during performance of the tests. These modifications make it necessary to

repeat the previous processes depending on the point at which they occurred.

The implementation of any improvement process in a company must have at least the

following two goals: first, to optimise implementation and maintenance costs; and, second,

to improve productivity and technical aspects. With these two goals in mind, those involved

in the project analyse impact at three levels: economic, productivity and quality.

The results obtained by implementation of the process are evaluated according to several

metrics:

 Productivity Metrics

Project Delivery Rate measures the LOC delivered

(KLOC/person · year) WorkEffort

Delivered LOC

Application Support Rate measures the effort

required to develop support applications (man

year/Application LOC) where Application LOC are

the LOC used to support the CSP-98 project
LOC nApplicatio

WorkEffort

Duration Delivery Rate measures the speed of code

delivery (LOC/Elapsed time) time Elapsed

LOC

Application Maintenance Load per Person

measures the overall work load of support personnel

(KLOC/man)
people eMaintenanc

LOC

 Economic Metrics

Project Cost per LOC measures the

cost incurred by development

(Euros/KLOC) LOC

expenses Other cost) t(WorkEffor

Application Maintenance Cost

measures the cost of application

maintenance and support

(Euros/KLOC)
LOC

expenses Other cost) t(WorkEffor

Session 14: SPI and Testing II

Page 14.29

 Quality metrics

Repair Cost Ratio measures the cost

required to investigate and repair defects

(Euros/KLOC) LOC

Costtime Repair

Stability Ratio measures how the well the

application meets the expectations of the user

(no dimension)

FP

Reported Defects
1

Defect Ratio measures the quality of

development and application enhancements

delivered to user (Defects/KLOC) LOC

defects of Number

Testing Proficiency Ratio measures system

defects as a percentage of total LOC

(Defects/KLOC · Tests) LOC

testing userby found Defects

Cyclomatic Complexity is a measure of the

complexity of the directed graph

corresponding to each function [9].

2 nodes - edges

Average size per procedure

procedures of number

LOC

Comment density measures the comment

LOC – Project LOC ratio [11]. LOC

LOC Comment

LOC: lines of project executable code.

Application LOC: lines of support application executable code.

Work Effort: Working days / Working months.

Elapsed Time: time required to develop System / Software.

Cost: person cost.

Tests: acceptance tests designed.

FP: Function Point = 128 LOC (C language) [11].

Edges: edges of directed graph [7]

Nodes: nodes of directed graph. [7]

Defects Reported: functional defects reported by user (over six months)

Current state of the experiment

All the phases of the TERRA FIRMA project must be carried out for the first build and the

final build. At present, the base project has reached the maintenance and operation phase

for the first build and the requirements specification phase for the final build.

In the TERRA FIRMA project, all the test process implementation phases (systematisation)

have been completed for the first build of the base project and the test process

implementation management phase has been reached. Quality and productivity metrics

have been obtained using the CSP98 project results for the first build.

During implementation of the test processes the following tasks were completed:

 Draw up system requirements.

 Design the functional and approval test cases.

Session 14: SPI and Testing II

Page 14.30

 Test scripts automation (SoftTest from Bender & Associate).

 Implement the requirement coverage matrix.

 Create a testing and requirements repository using Lotus Notes.

 Build the test cases.

 Execute the functional test cases.

 Design the white test cases.

 Analyse code coverage using Testbed LDRA

 Build the test regression library.

 Create a defects and errors repository using Lotus Notes.

 Results verification and validation.

 Execute the approval test cases.

 Finally, integrate all the databases in one (testing, requirements, defects and

errors databases).

During test process implementation management the following tasks were completed for the

first build:

 Write documents and papers based on MIL-Std-498 (Requirements

Specification Document, Test case Specification Document, Approval Test

Document, Result Test Document, Validation &Verification Report, Test

Case Maintenance Report).

 Obtain quality and productivity metrics.

 Provide training in different techniques: "Writing Testable Requirements",

"Black Box Testing" and "White Box Testing".

 Evaluate different tools: LDRA, SoftTest, TestDirector, Caliber, Panorama,

Cantata, etc.

Metrics Results

These metrics have been calculated for the first CSP-98 project build using currently

available data (LOC, effort, defects found, development time, etc.). These values will be

compared with average values generated by projects carried out at Sainsel previously.

The metrics relating to project costs or maintenance cannot be calculated until the CSP-98

project has been completed.

Project Delivery Rate

1.28
MonthMan

KLOC

 58.08

DayMan

LOC

Duration Delivery Rate Application Support Rate

106
Year

KLOC
 0.23

KLOC

MonthMan

Defect Ratio Testing Proficiency Ratio

6.34
KLOC

Defects
 0.15

TestKLOC

Defects

Session 14: SPI and Testing II

Page 14.31

Stability Ratio Repair Cost Ratio

94% 608.26
KLOC

Euros

Average Cyclomatic Complexity Average size per procedure

2.22 30.36 LOC

Comment density

26%

 System development rate: average value: -> 1.4 - 61.65

 Effort coefficient for support tools: average value -> 0.27

These three metrics indicate that the effort expended to develop code in the CSP-98 project

is more or less average, signalling that it is representative of projects carried out at Sainsel

in terms of productivity.

 Duration delivery rate : average value -> 59.45

An increase of approximately 80% on the average value is achieved. This is due to the

number of programmers working on the project. The use of visual tools that generate large

amounts of automatic code is another factor that influences this result.

 Repair cost ratio: no previous data available.

 Defect ratio: average value -<4.08.

The number of defects found during the test process exceeded the average value by 50%.

This is a good result and proof of how exhaustive the process is.

 Acceptance test efficiency ratio: average value ->0.17

This is a slight improvement on the average value. This metric depends largely on the

number of tests performed during acceptance testing. In this case, a comprehensive System

Acceptance Testing Document was produced, which met the client’s requirements amply.

The result obtained, although better than the average value registered by the company, did

not meet the expectations of the testing team, since some of the system functionalities were

not implemented.

 Stability ratio: average value ->88%

The result is above average, although only the modifications received over the last three

months have been taken into account.

 Stability ratio: average value ->2.07.

The result is acceptable since is it well under 10, which is the maximum recommended

value per procedure.

 Average size per procedure: average value ->40.9

There is a reduction in average size per procedure. The code for each function is less dense

and more easily understandable, and therefore less likely to give rise to errors. The

maximum recommended value per procedure at Sainsel is 100 LOC.

Session 14: SPI and Testing II

Page 14.32

 Comment density: average value ->26%.

There was a considerable increase in comment density owing to the headers introduced by

the CVS version control tool, which translates into a more intelligible code. The

recommended proportion of comments is between 20 and 30%.

Fig. TFIRMA2 Comparative metrics

Statistics

 Accumulated test results by version.

 Version

0.95

Version

0.96

Version

0.97

Version

0.98

Satisfactory Testing: 30 31 31 93

Unsatisfactory Testing: 42 85 88 137

Executed Test Cases: 72 116 119 230

Satisfactory Testing = Test cases with satisfactory results.

Unsatisfactory Testing = Test cases with unsatisfactory results.

Executed Test Cases = All the executed test cases.

Defects = Errors + Improvements.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

Project

Delivery

Application

Support

Duration

Delivery

Stability Ratio Defect Ratio Testing

Proficiency

Cyclomatic

Complex.

Procedures Average size

procedure

Comment

density

Sainsel

CSP-98

Session 14: SPI and Testing II

Page 14.33

 Evolution of defects according to gravity.

Fig. TFIRMA3 Defects per version.

It can be seen in figure TFIRMA3 that open defects exist in version 0.98. This is due to the

fact that certain functionalities were not implemented in this build. Therefore, while critical

errors are seen to increase initially due to the implementation of the main system

functionalities, they tend to decrease for later versions. However, the evolution of high-

gravity errors is quite different, with the development of a number of new functionalities in

version 98 giving rise to a considerable increase in such errors. Medium- and low-gravity

errors evolve in an acceptable manner according to expectations. The incorporation of

improvements is reserved for the final build, so that the number remains practically

unchanged, with only a slight increase due to the implementation of new functionalities.

 Evolution of Defects Vs Test Cases

Fig. TFIRMA4: Defects Vs Executed Test Cases per version.

0

20

40

60

80

100

120

140

160

0.95 0.96 0.97 0.98
Version

N
u

m
b

e
r

Critical

High

Medium

Low

Improv.

0

50

100

150

200

250

300

0.95 0.96 0.97 0.98
Version

N
um

be
r

Executed

Test Cases

Open

Defects

Session 14: SPI and Testing II

Page 14.34

Figure TFIRMA4shows both the number of test cases performed and the number of open

defects (errors and improvements) in relation to the software version developed.

Conclusion and future action

The experiment bridges a real gap in our organisation: the need to consolidate a Software

Testing Team.

Nevertheless, there are some factors that have not assisted in the development of the

TERRA FIRMA project because of a lack of previous experience. The introduction of the

TERRA FIRMA project meant that a number of personnel aspects had to be addressed:

people must be made aware of the fact that what is being measured is the baseline project,

and not the people involved. In order to obtain the full collaboration of the whole team, it

was necessary to explain how the experiment fits in with the organisation’s medium-term

and long-term goals, the benefits of introducing the new methodology, and how the return

on investment is expected to be obtained.

It was also necessary to clarify that the experiment will not affect the course of the CSP98

project and that the necessary resources have been assigned to carry out additional work. It

is therefore evident that the notion of SW testing is not an easy one to grasp.

Since the Base Project (CSP98) is standard in terms of time, documentation, etc, all the

techniques and procedures can easily be implemented in any other similar projects.

In June the first build of the CSP98 project was installed, and good results have been

registered in the maintenance phase to date. However, it is still too early to draw any firm

conclusions about system maintenance and the stability ratio.

The metrics results are good overall. An improvement on these results is expected when

post-delivery maintenance costs are taken into account. These will be calculated once the

second build is completed.

The Software Testing Team is currently disseminating its experience inside and outside

Sainsel. Sainsel plans to incorporate the procedures derived from the TERRA FIRMA

project in its QP (Quality Procedures), in order to promote their use by everybody

throughout the company and to develop a strong Software Testing Team and a sound testing

methodology.

Session 14: SPI and Testing II

Page 14.35

References

[1] http://www.esi.es/VASIE/

[2] Fenton N. Software Metrics (A Rigorous Approach), Editorial

Chapman&Hall. ISBN 0442313551

[3] TERRA FIRMA – 27703. Testing process through systematisation for

increasing SW manufacturing assurance. Annex I.

[4] Guía para la Elaboración de un Documento de Especificación de Requisitos

SL/04/0101/PSW/003/01.

[5] MIL-Std-498.

[6] Computer Science and Technology Structured Testing: A Software Testing

Methodology Using the Cyclomatic Complexity Metric NBS Special

Publication 500-99

[7] Arthur H. Watson&Thomas J. McCabe. Structured Testing: A Testing

Methodology Using the Cyclomatic Complexity Metric. National Institute of

Standards and Technology Gaithersburg, MD 20899-0001 September 1996.

NIST Special Publication 500-235.

[8] Pressman, R, Software Engineering: A Practitioner’s Approach, McGraw

Hill,1992.

[9] LDRA Testbed v 5.6.0. Reference Manual.

[10] SoftTest Release 5.3 Reference Manual.

[11] COCOMO II Model Definition Manual.

