

Car User GPS Tracks Routes Navigation GIS Maps Weather Service Traffic Service

1.// Switch on

Locate

2.// Request GPS tracks

3.// Return GPS tracks

4.// Request map

5.// Get map

6.// Show map

7.// Show position

8.// Switch off

9.// Enter destination

Get Route

10.// Search route

11.// Ask for route

12.// Return possible routes

13.// Ask for weather forecast

14.// Return weather forecast

15.// Ask for traffic density

16.// Return traffic density

17.// Show routes

18.// Show travel Time

AUTONOMOUS
REAL-TIME TESTING

TESTING ARTIFICIAL INTELLIGENCE AND OTHER COMPLEX SYSTEMS

THOMAS FEHLMANN

EURO PROJECT OFFICE AG

Zurich, Europe

JUNE 30, 2019

- i -

- ii -

WHY THIS BOOK?

Readers who worked through “Managing Complexity” (Fehlmann, 2016) – the previ-

ous book that appeared end of 2016 – may already have been waiting for its continu-

ation, addressing today’s deadlock around digitalization. Combining Artificial Intel-

ligence with autonomous vehicles and the Internet of Things creates new potential

products. While technology is here for building autonomous vehicles that are much

safer than human-driven cars, saving lives and eliminating traffic jams at once, society

is all but ready.

Autonomous cars will not it the roads because of liability concerns. Who is responsible

for incidents they cause? The supplier of software, or hardware, or the user sitting in

the passenger seat, or always the other, mostly unlucky, human involved?

And what if two autonomous cars crash into another?

Sure, nothing can avoid future incidents even with the best-equipped cars of the uni-

verse. However, precautions can be taken, and the most obvious precaution is testing

of the software that affects safety. Since one of the most intriguing safety issues is with

privacy violation, if data is stolen, or even malicious forces take over control, privacy

protection is among the most important requirements for software-intense products.

This book focuses on testing privacy protection and assessing safety risks

But today’s software testing is way behind the age of digitalization. No metrics exist

for test intensity that can compare different cars and manufacturers. Today’s software

tests cover code but not the full functionality needed to control autonomous vehicles.

While software changes continuously, with Continuous Integration / Continuous De-

livery, tests executed at release quality gates reflect the original state of delivery, in

isolated environments. But cars run through the real world, unfortunately.

This book is not an experience report but creates a vision. This vision opens the way

into future research to address the issues that arise with implementing continuous and

autonomous real-time testing for software-intense systems.

All examples shown are implemented in Excel in Microsoft Office 365 and freely avail-

able to readers of this book, including technical information. It suffices to send e-Mail

to info@e-p-o.com with some evidence of purchase and a valid e-Mail address. Access

is personal, encrypted and protected. This is necessary since the examples contain

open VBA code that otherwise can be compromised.

mailto:info@e-p-o.com

- iii -

ACKNOWLEDGEMENT

Important contributions originate from discussions and workshops with colleagues

from the Software Metrics and the Quality Function Deployment communities; espe-

cially, but not limited to, Silvan Fehlmann, Luigi Buglione, Eberhard Kranich and the

German QFD Institute.

- iv -

TABLE OF CONTENTS
Chapter 1: Why Autonomous Real-time Testing? ... 1

1-1 Introduction ... 1

1-2 What is Software Testing? .. 3

1-3 Representing Unlimited Knowledge ... 8

1-4 Autonomous Real-time Testing ... 11

1-5 Outlook .. 15

Chapter 2: Test Metrics .. 17

2-1 Introduction ... 17

2-2 Modeling Software.. 18

2-3 A Short Primer on Six Sigma Transfer Functions... 29

2-4 Measuring Tests .. 34

2-5 Test Metrics for the Navigator Application .. 38

2-6 Conclusion ... 49

Chapter 3: Testing the Internet of Things .. 51

3-1 Introduction ... 51

3-2 Testing the Internet of Things (IoT)... 53

3-3 Conclusions and Next Steps... 63

Chapter 4: Testing Privacy Protection and Safety Risks ... 65

4-1 Introduction ... 65

4-2 Consumer Metrics ... 66

4-3 ART for ADAS .. 75

4-4 Conclusion ... 86

Chapter 5: Artificial Intelligence for Testing.. 88

5-1 What is the Goal of Testing? .. 88

5-2 Generating New Test Cases ... 90

5-3 The Test Case Generator .. 95

5-4 Three Standard Tests .. 101

5-5 The DevOps Paradigm and Software Testing .. 103

5-6 Three Innovations needed .. 103

- v -

Chapter 6: Testing Highly Complex Technical Systems 107

6-1 Testing Digital Twins ... 107

6-2 The Fundamentals of Testing Complex Systems 109

6-3 AHP for Testing .. 118

6-4 Open Questions ... 127

6-5 Conclusion ... 128

Chapter 7: Testing Artificial Intelligence ... 129

7-1 Introduction ... 129

7-2 How to Test Artificial Intelligence .. 130

7-3 A Deep Learning Application as a Sample ... 134

7-4 Next Steps, and a Preliminary Conclusion ... 140

7-5 A Side Note.. 141

Chapter 8: Agile Testing with the Buglione-Trudel Matrix.................................. 143

8-1 Introduction ... 143

8-2 Story Cards with Test Stories ... 145

8-3 Selecting Test Stories for Story Cards ... 147

8-4 Creating Test Stories by the Development Team 148

8-5 Test Management .. 148

8-6 Conclusions ... 148

Bibliography ... 151

Reference Index .. 157

- 1 -

CHAPTER 1: WHY AUTONOMOUS

REAL-TIME TESTING?
Autonomous Real-time Testing sounds somewhat like one of the many hypes

that currently come with digitalization. The strange effect originates from the

term “Testing” – something that sounds today somewhat outdated. Who is

interested in Testing? Agile Enterprise, Agile Management, DevOps, Industry

4.0, Disruptive Transformation are stirring more interest, today.

However, most products today are software intense. Such products, as any

product, might fail, and if such failure causes damage or loss of goods or life,

liability questions arise. Today’s Internet of Things (IoT), Advanced Driving

Assistance Systems (ADAS), Autonomous Drones for goods delivery or build-

ing industry, all are under the thread of failure caused by software and conse-

quently liability issues.

This book does not address hardware failure, or failure by mechanical design

or construction. The focus is on failure by software faults, and what else can

we do than software testing against failure? When should we do such testing?

At the end of software development? When does development stop with

DevOps? Should we probably add Continuous Testing to Continuous Integra-

tion and Continuous Delivery (CI/CD/CT)?

1-1 INTRODUCTION

The first topic to address is where did our famous software projects go that where

always too late, with cost overruns, and tests left to the first customers?

With DevOps, there are no more projects. DevOps is a paradigm for product manage-

ment by continuous software integration and software delivery. The end of develop-

ment is not before end of product life. While there is still product design and software

architectural thinking, new software is created by integrating open source software

with own coding. Software testing is difficult, and since testing refers to code, only the

part written in-house undergoes testing. Each build is fully unit tested, supported by

test automation tools to ensure code meets expectations. Test coverage refers to code;

necessarily only to that part of software written in-house. Technical debt is the com-

mon metrics for released code that requires rework, be it for maintainability or exten-

sibility. The metric describes the amount of effort needed to remove weaknesses and

- 2 -

is typically calculated by the code repository system, e.g., SonarCube (SonarSource

S.A, Switzerland - Open Source, 2017). The aim is to totally avoid technical debt.

Also, unit testing of code written by the team is normally done daily; and no code can

be checked-in that does not pass unit tests. Best practices ask for unit tests written

before any code. This is the Test-Driven Development (TDD) approach made famous by

the Poppendiecks (Poppendieck & Poppendieck, 2007).

Final release testing for the product is done where compliance issues exist that need

being verified. Otherwise, system testing is usually done together with customers;

most often, but not always, these customers are aware of acting as a “beta-tester”. Sys-

tem testing cannot be performed by the code testing tools used for unit testing where

code is not available. Test coverage remains guesswork even after intense and effec-

tively monitored beta tests with users. No test metrics exist beside unclear indications

like the number of bugs detected and recorded in some issue management tool. Since

bugs can neither be identified and located in code, nor separated from each other, the

number of bugs recorded is a useless count. Whether two bug entries refer to the same

defect or not remains open.

While for game software or entertainment, even office publishing, such a situation is

acceptable, it is clearly not for products based on software that carries liability. Home

banking software without defect density measurements is risky for banks. If office

software becomes a tool for team communication in enterprises, liability for its correct

functioning carries a significantly higher risk for the software supplier than document

publishing and spreadsheet calculating software. Software that controls the Internet of

Things (IoT), or even more for Advanced Driving Assistance Systems (ADAS) in cars or

autonomous vehicles might have disastrous effects if not working safely and correctly.

All these examples do not rely on code written by some single development team.

They are rather a patchwork of functionality delivered with the “thing” or system

component; whether code is available, is uncertain. The need for testing is apparent;

the need for test metrics that characterize the amount of testing and current defect

density is obvious. However, while casual testing might be done somehow by suppli-

ers and users of such software; metrics are not available and not agreed. Without met-

rics, such casual testing is near to useless.

Yet another problem lies with software borrowed as services from the cloud. For in-

stance, communication software might be vulnerable to data theft; social media and

team communication might be subject to unauthorized big data analysis violating pri-

vacy rights; assumptions for cloud service security might turn out to be overly opti-

mistic without testing and test metrics. Consequently, autonomous vehicles might

take the wrong route, or keep routes taken not private. This is the small side of the

problem; safety risks by untested software-intense systems constitute the big end.

- 3 -

While privacy and safety risks are not the full story related to digitalization, these two

topics embrace the most urgent need for systems testing in software-intense products.

1-2 WHAT IS SOFTWARE TESTING?

Software Testing means the process of defining Test Stories (or Test Scenarios) that each

contain Test Cases that can be executed. A Test Case is a structure consisting of Test

Data 𝑥1, 𝑥2, … , 𝑥𝑛 and a Test Response 𝑦, where each test data item 𝑥𝑖 as well as the test

response is an Assertion. The assertion describes the state of the program under exe-

cution. Formally, a test case is expressed by the following Arrow Term:

 {𝑥1, 𝑥2, … , 𝑥𝑛} → 𝑦 (1-1)

For the origins of arrow terms see Engeler 1981 (Engeler, 1981). For a more recent ap-

plication, how arrow terms define a neural algebra on “how does the brain think?”,

see Engeler, 2019 (Engeler, 2019). In our case, the assertions describe the status of the

software-intense system under test. A simple assertion describes the value, or value

range, of a software variable; it can also describe a certain status of the system, such

as listening to some device, waiting for confirmation or executing a database search,

or simply identify the starting point for some test case. With reference to Six Sigma,

the left-hard finite set of an arrow term is references as Controls, the right-hand single-

ton is the Response.

Assertions use the basic numerical operations between variables and constants such

as equality, greater than, or inequality. It is not necessary to combine assertions using

logical operations AND, OR, and NOT. The test data sequence acts as an AND; instead

of a OR two arrow terms describe the same. NOT is more complicated to substitute by

arrow terms: sometimes, negation is immediately available as with equality, some-

times, negated assertions split into two. The test response 𝑦 is not necessarily unique;

several assertions might become true under identical test data assertions 𝑥1, 𝑥2, … , 𝑥𝑛,

for instance depending where the system under test is investigated for the test result.

A test case passes if we can run the software with valid test data assertions and the

assertion 𝑦 for the test response is valid in the system under test. A test story passes

if all its test cases pass. Real-time Testing is the process of testing real-time systems and

its software, see Ebner (Ebner, 2004).

Assertions can contain stronger assertions. For instance, the assertion 𝑎 = 20 is more

restrictive than 𝑎 ≤ 20. Test cases always contain weakest assertions; thus, inequali-

ties or range specification rather than sample numbers.

- 4 -

1-2.1 A STANDARD FOR REPRESENTING ASSERTIONS ABOUT TESTS

Since test cases are possibly something that shall be exchanged between different sys-

tems, even from different manufacturers, standardization is needed. If software from

different suppliers shall cooperate, standards must be agreed and implemented that

allow communication and cooperation. In the IoT and automotive area, such stand-

ards exist. For real-time testing, with focus on communication, an international stand-

ard for specifying test cases exists: Testing and Test Control Notation (ETSI European

Telecoms Standards Institute, 2018), now in its version 3 (TTCN-3). According Ebner

(Ebner, 2004), the test notation is useful for automatically generating test cases from

UML sequence diagrams, covering the base system. In our context, TTCN-3 is suitable

for stating assertions. However, TTCN-3 is much more than simply a framework for

stating test assertions such as fixing test data and test responses. It also contains the

necessary instructions for test instantiation and test automation.

Thus, using TTCN-3 for test assertions, software tests can be described by a standard

that is independent from the programming environment and from the supplier. Tests

can be interchanged between different actors related to software testing.

1-2.2 A REPRESENTATION FOR THE WORLD OF TESTS

However, software is dynamic. Trying to model software by static assertions is miss-

ing the dynamic behavior of a system. For this reason, we extend our definition of a

Test Case to include not only basic assertions but recursively other test cases as well.

Let ℒ be the set of all assertions over a given domain. Examples include statements

about customer’s needs, solution characteristics, methods used, etc. These statements

contain no free variables; i.e. they are assertions about the business domain we are

going to model. A sample language ℒ is TTCN-3. However, since this book is written

for humans, not robots, we will use natural language, not TTCN-3, knowing that our

verbal assertions need being converted in machine language before being executed.

Denote by 𝒢(ℒ) the power set containing all Arrow Terms of the form (1-1). The left-

hand side is a finite set of arrow terms and the right-hand side is a single arrow term.

This definition is recursive; thus, it is necessary to establish a base definition saying

that every assertion itself is considered an arrow term. The arrows of the arrow terms

are distinct from the logical imply that some authors also denote by an arrow. The

arrows denote cause-effect, not logical imply.

The formal, recursive, definition, in set-theoretical language, is given in equation (1-2):

𝒢0(ℒ) = ℒ

𝒢𝑛+1(ℒ) = 𝒢𝑛(ℒ) ∪ {{𝑎1, … , 𝑎𝑚} → 𝑏|𝑎1, … 𝑎𝑚 , 𝑏 ∈ 𝒢𝑛(ℒ),𝑚 = 0,1,2,3… }
(1-2)

- 5 -

𝒢(ℒ) is the set of all (finite and infinite) subsets of the union of all 𝒢𝑛(ℒ):

 𝒢(ℒ) =⋃ 𝒢𝑛(ℒ)

𝑛∈ℕ

 (1-3)

The elements of 𝒢𝑛(ℒ) are arrow terms of level 𝑛 . Terms of level 0 are Assertions,

terms of level 1 Test Cases. Sets of test cases are called Rule Set. (Fehlmann, 2016). In

general, a rule set is a finite set of arrow terms. Infinite rule sets we call Knowledge Base.

Hence, knowledge is a potentially unlimited set of rules about assertions about test

cases. This definition is recursive, as before.

A Test Story is a finite rule set and element of 𝒢𝑛(ℒ) that consists of level 1 terms only.

A test story comes with additional information relating to its business domain.

1-2.3 COMBINING TESTS

Let 𝑀,𝑁 be two rule sets, consisting of test cases. 𝑁 is a set of test cases consisting of

arrow terms of the form𝑏𝑖 = ({𝑥1, 𝑥2, … , 𝑥𝑛} → 𝑦)𝑖. Then application of 𝑀 to 𝑁 is de-

fined by

 𝑀 • 𝑁 = {𝑐|∃{𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 ∈ 𝑀; 𝑏𝑖 ∈ 𝑁} (1-4)

In other words, if all 𝑏𝑖 executed in 𝑁 with pass, the test story 𝑀 can be applied to

a rule set 𝑁 as a set of test cases. This represents the selection operation that chooses

those rules {𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 from test story 𝑀 that are applicable to the rule set 𝑁.

Combining tests is a strong means to extend test stories up to the limit as needed.

Combinatory Algebra (Engeler, 1995) is the mathematical theory of choice for automat-

ically extending test cases from a simpler, restricted system, to test stories that fully

cover a larger, expanded system. The extension works only if software testing not only

is automated but measured. Metrics must be independent from current implementa-

tion and from actual system boundaries.

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose

computational power is Turing-complete, i.e., all programs that are executable by

computers can be modeled. This guarantees the best achievable test coverage. With

combinatory algebra, test cases extend from real-time tests, covering a base system, to

the actual, expanded system.

The definition (1-4) looks somewhat counter-intuitive. To apply one test case to an-

other, it is required that the result of application contains all the full test cases provid-

ing the response sought.

A more intuitive approach would only require arrow terms providing such a response

meeting the required controls. The existential quantifier would then guarantee that

- 6 -

there is a test case yielding such response. When accepting the axiom of choice in its

traditional form, that does not look like a problem. However, it is left to the interested

reader to prove that this seemingly more intuitive approach would immediately lead

to a contradiction to Turing’s halting problem (Turing, 1937).

Since we are computer scientists and not traditional mathematicians, we require the

intuitionistic, or constructive, variant of the axiom of choice. The existential quantifier

requires not only the existence as such, but construction instructions for the existence

of arrow terms. It means for test cases, that it is not enough to know the existence of

tests, but you need to know how to construct them. This is the reason why our formal

system for automated testing requires at least level 1 – arrow terms for applying one

test set to another – and this is possibly also the reason why test automation has

proven to be so hard.

And for those who consider such reasoning too theoretical, let’s provide a rather prac-

tical argument: programmers who want to set up test concatenation 𝑀 • 𝑁 for auto-

matic testing, need access to the test cases in 𝑁 that provide the responses needed

for 𝑀. Otherwise combining tests is unsafe or cannot be automated. Thus, with the

combinatory algebra of arrow terms, mathematical logic meets intuitionism and prac-

tical programming.

1-2.4 ARROW TERM NOTATION

To avoid the many set-theoretical parenthesis, the following notations are applied:

• 𝑎𝑖 for a finite set of arrow terms, 𝑖 denoting some finite indexing function for

arrow terms;

• 𝑎1 for a singleton set of arrow terms; i.e. 𝑎1 = {𝑎} where 𝑎 is an arrow term;

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎;

• (𝑎) for an (potentially) infinite set of arrow terms, where 𝑎 is an arrow term.

The indexing function cascades, thus 𝑎𝑖,𝑗 denotes the union of a finite number of 𝑚

arrow term sets

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑗 ∪ …∪ 𝑎𝑖,𝑚 (1-5)

With these writing conventions, (𝑥𝑖 → 𝑦)𝑗 denotes a rule set; i.e., a finite set of arrow

terms having at least one arrow. Thus, they are level 1 or higher.

With this notation, the application rule for 𝑀 and 𝑁 now reads

 𝑀 • 𝑁 = {𝑐|∃𝑏𝑖 → 𝑐 ∈ 𝑀; 𝑏𝑖 ⊂ 𝑁} (1-6)

- 7 -

Or, in an abbreviated notation:

 𝑀 • 𝑁 = (𝑏𝑖 → 𝑐) • (𝑏𝑖) (1-7)

Arrow terms are not only useful for representing test cases. Quality Function Deploy-

ment (QFD) is a well-known method for customer-oriented product development (ISO

16355-1:2015, 2015). Each element 𝑥𝑖 → 𝑦 of (𝑥𝑖 → 𝑦)𝑗 denotes one Ishikawa diagram

(Akao, 1990), which is a cause/effect constituent of a QFD deployment and stands at

the origins of QFD in Japan. The matrix (𝑥𝑖 → 𝑦)𝑗 represents the QFD deployment.

This matrix obviously is a rule set within 𝒢(ℒ). The union of all possible QFD matrices

is infinite and therefore a knowledge base in 𝒢(ℒ).

Six Sigma Transfer Functions are constructively defined functions 𝑨 used in the form

𝒚 = 𝑨𝒙, where 𝒚 is the observable response, and 𝒙 is the vector of unknown causes.

For a short primer on transfer functions see section 2-3. Each set of arrow terms rep-

resents a constructively defined Six Sigma Transfer Function. This was originally de-

scribed by Ishikawa (Ishikawa, 1990).

The Ishikawa Diagram (Ishikawa, 1990) describes the cause-effect relations between

topics and are considered the initial form of QFD matrices, and thus of linear transfer

functions. Converting a series of Ishikawa diagrams into a transfer function is straight-

forward, see Figure 1-1 below. Rules correspond to the cause/effect correlations.

Figure 1-1. Representing Transfer Functions as Rule Sets

𝑦1: Response 1

𝑥3: Control 3

𝑥1: Control 1

𝒚
 :

 R
es

p
o

n
se

s

𝒙 : Controls

9Strong Dependency:

3Medium Dependency:

1Weak Dependency:

𝑥𝑖 → 𝑦

𝒙 , 𝒙 → 𝒚 ∈ 𝑥𝑖 → 𝑦

9

1

: C
on

tr
ol

 2

9

3

: C
on

tr
ol

 4

3

𝑦2: Response 2

𝑦1: Response 1

𝑦3: Response 3

: C
on

tr
ol

 1

: C
on

tr
ol

 3

7

5

Each element 𝑥𝑖 → 𝑦 of (𝑥𝑖 → 𝑦)𝑗 denotes one Ishikawa diagram (Akao, 1990), which

is a cause/effect constituent of a transfer function. The matrix (𝑥𝑖 → 𝑦)𝑗 represents the

full transfer function. Transfer functions obviously are rule sets within 𝒢(ℒ). The set

of all linear transfer functions is infinite and therefore a knowledge base in 𝒢(ℒ).

Other elements of 𝒢(ℒ) do not resemble linear transfer functions, such as

 ((𝑥𝑖 → 𝑦)𝑗 → 𝑧)
𝑘
 (1-8)

- 8 -

This is a finite set of arrow terms whose left hands consist of finite rule sets. Another

such example is 𝑥𝑖 → (𝑦𝑗 → 𝑧). This is a cascade of rules. The association for arrow

terms is to the right:

 𝑥𝑖 → 𝑦𝑗 → 𝑧 = 𝑥𝑖 → (𝑦𝑗 → 𝑧) (1-9)

1-2.5 TEST AUTOMATION

Tools used for implementing such an approach are test stories and test cases that use

a formal language to be machine-readable. The language is implemented as Arrow

Terms, see Engeler (Engeler, 1995), a model of combinatory algebra describing the gen-

eral Six Sigma approach, listing controls for observable responses of a system. Re-

sponses can be multi-dimensional, resulting in a Response Profile that is measurable

and thus can be compared to the expected response.

For the mathematical structures of Six Sigma Transfer Functions, see Fehlmann &

Kranich (Fehlmann & Kranich, 2011) and Fehlmann (Fehlmann, 2016)). Transfer func-

tions are used to uncover search response controls, for instance in Google search re-

quests, or technical solution that meet customer’s needs. In testing, transfer functions

indicate whether the goal of testing is achieved. The degree of achievement is called

Test Coverage. Test coverage can control automated generation of meaningful test cases

in a chosen context. Automatically generated test cases are selected only if they con-

tribute to the testing goal.

1-2.6 EXECUTING TESTS

Since arrow terms define test data up to an assertion, in ordered domains such as

numbers, test data may be defined only up to some range. Thus, when executing the

test, there is a choice which data exactly to select. If the range is limited, it is straight-

forward to select the limit, or possibly to explore the numerical precision of the limit.

Thus, the code implementing the test case may need more than one execution when

running the test case. However, we count the test case only once even if its execution

requires multiple runs.

1-3 REPRESENTING UNLIMITED KNOWLEDGE

Rule sets represent things that organizes themselves such as cars that drive automati-

cally, flying drones that find the way to its target, smart homes that save energy. These

things typically acquire knowledge while they are in operations. Predicting their

- 9 -

behavior is ultimately impossible without representing the knowledge acquisition

during operations.

Interestingly, agile software development works the same way: exact specifications

are unknown at the beginning. While software is developed together with the stake-

holders, more and more the ultimate result becomes apparent. Combinatory Logic

thus looks interesting as a framework for better understanding and modeling agile

software development.

1-3.1 PARALLEL COMPUTING

Rule sets are of unlimited size but well structured. Moreover, if the base set represent

transfer functions, they carry associated metrics, namely the Convergence Gap. Success-

ful software testing relies on measurable cause-effect relationship.

There are various measures that can be applied: functional size, security, safety, cost,

non-functional metrics such as ease-of-use. The IoT consists of things made intelligent

by software, connected by software, and acting autonomously by software. This is

called an IoT Concert. Organizing an IoT concert is called IoT Concertation. In IoT con-

cert is a valid paradigm for today’s software-intense systems. Its main characteristics

are it always grows, never being finished. Based on software metrics, two arrow terms

describing software can be compared with respect to size, to defect density and com-

pared with respect to behavior towards the same goal.

Behavior of an IoT concert changes when the environment changes – adding or re-

moving things might change, or even create totally new behavior. Totally unexpected

situations might emerge on streets driven by autonomous cars. The rule set is not com-

pletely known at any time; however, directed by metrics, a sufficiently good approxi-

mation can be built just when needed.

Implementing a rule set is by constructing an automaton that eventually produces all

its elements. The arrow term notation (1-1) describes the algorithm needed for the

automaton. The automaton produces arrow terms in parallel and in any order, with-

out knowing much from each other. To make them useful, the automaton needs guid-

ance through metrics-based heuristics.

1-3.2 THE RULE SET RADIUS AND VARIANCE

The trick is combining the strict and well-known structure of a rule set with the con-

vergence gap. The rule set can be constructed by an automaton that produces each

element eventually after some time. If that automaton can be directed to produce the

arrow terms closing the convergence gap, it is possible to do this in predictable time

- 10 -

(Fehlmann, 1981). The arrow terms arise from asking the components of an IoT concert

how they behave in some given circumstances. Asking the right question will do:

 {(𝑎𝑖 → 𝑏)𝑗|‖𝑏𝑗 − 𝝉𝒚‖ < 𝜀} (1-10)

where 𝝉𝒚 is the Goal Profile, representing the target for the circumstances under in-

vestigation, and ‖…‖ represents the Euclidian Norm for vectors. For instance, 𝝉𝒚

might represent the condition that the autonomous car avoids crash. Then, equation

(1-10) represents all crash-free conditions reachable by the autonomous car.

The controls to consider depend from the goal. It must be known what the goal of the

behavior is: doing no harm or minimizing it for autonomous cars, minimizing energy

consumption in intelligent homes, avoid crashing for flying drones. On the other

hand, testing aims at finding fault conditions.

Rule sets consist of solution topics vectors. The convergence gap against the goal re-

sponse vector can be computed, based on the achieved responses. This convergence

gap controls the automaton by producing the rule set that focuses on the goal profile

vector. Figure 1-2 demonstrates convergence gaps for three dimensions. Higher di-

mensions are more difficult to visualize but equally simple to calculate.

Let Δ1, Δ2, … , Δ𝑛 be these differences, namely the convergence gaps between eigen-

vector and the solution topic vectors in the rule set. Then the formula resembles the

standard deviation 𝜎 known from statistics:

𝑅𝑢𝑙𝑒 𝑆𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 = Max𝑗=1..𝑛(Δj)

𝑅𝑢𝑙𝑒 𝑆𝑒𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = √
∑ Δ𝑖

2
j=1..𝑛

𝑛 − 1

(1-11)

Figure 1-2. Small and Large Rule Set Radius and Variance for Three Dimensions

Small

Rule Set Radius

Goal Profile Vector

Large

Rule Set Radius

Goal Profile Vector

Test Case Vectors Test Case Vectors

- 11 -

The Rule Set Radius is the maximum of all the convergence gaps in a rule set, thus

acting as an envelope around them, serving as an indicator for total variations within

a rule set.

The rule set radius has a strange similarity with the Schurr Radius, used for assessing

consistency in AHP, see Schurr (Schurr, 2011) and Fehlmann (Fehlmann, 2016). What

it means, is yet an open question. Maybe the rule set radius is an indication for the

inconsistency of the test cases within a rule set?

1-4 AUTONOMOUS REAL-TIME TESTING

Testing becomes autonomous if test cases are no longer prepared a priori, but auto-

matically generated while the system extends by connecting with new components or

learning new things. This happens during normal operation. With the IoT, for in-

stance, when adding some new IoT component. If a car meets another car of different

making, or when different software releases meet, the system changes as well. Auton-

omous Real-time Testing (ART) means that new test cases are generated, and tests are

executed, all in real-time, before allowing the new components to join, or to have im-

pact. The time limit is needed for practical purposes. Systems supported by ART be-

have intelligent in the sense that they can anticipate the effects of actions even in pre-

viously unknown circumstances.

The base elements for autonomous testing are test stories, containing test cases, that

cover the initial base system. A set of test metrics is needed for assessing the test in-

tensity and defect density of the base system. According ISO/IEC 14143 (ISO/IEC

14143-1:2007, 2007), software metrics are independent from actual software imple-

mentations. Metrics must carry over from base tests to expanded automated tests cov-

ering the expanded system.

The main problem with testing the expanded system is how to generate new test sto-

ries that keep the focus on the relevant testing goals. Time and resources are limited.

Sometimes, only a few seconds are available for generating and conducting real-time

test runs. Measuring test intensity and predicting remaining defect density for the ex-

panded system is necessary to understand the effect of actions taken by the expanded

system. This compares the reliability of the expanded system with the original base

system.

Another major problem is computational speed. Test execution includes searching

suitable new test cases, executing them by asking the involved object, what they

would do in such a case, and calculating results. The generation of test cases for the

expanded system must deliver results in real-time. Autonomous real-time software

testing is impossible without suitable, implementation-independent test metrics.

- 12 -

The rich structure of arrow terms on top of TTCN-3 is the ideal framework for auton-

omous testing. Test rules are potentially infinite sets of test cases that can be exploited

for determining test cases suitable for enhancement. Autonomous testing always

starts with a normal test; thus, with a finite subset of test rules belonging to a test story.

Test cases can be added to such a test story, increasing test coverage and the capability

to detect defects. Or, two groups of test cases can be combined based on equation (1-3)

provided they belong to the same test story, i.e., they test the same business goal.

Setting up test rules for a software-intense system is now just the first step towards

continuous testing. The test rules can be made permanently available to users for the

entire life cycle of a product such that users can always verify that the product still

behaves as initially convened. This is autonomous testing by users who are not testers.

They can run the original test again and again. While this has some value already, it

is not yet ART. The problem is that software is subject to the condition of the real

world. In particular, the real world is changing over time quite a bit. Each software

update that is downloaded has the capability to affect the behavior of the system. This

is especially important for IoT concerts, where adding or removing a component can

change the behavior, especially exposure to privacy intrusions or safety risks. But also,

cars that talk to the smartphone are affected; and even more, systems that communi-

cate with each other for instance to exchange traffic information. Since threats also

change, new test cases are needed to detect new threats.

If new defects are detected, the result of the autonomous real-time test is shared with

the software supplier for removal of the defect. Moreover, any such detection is shared

with other users of the product. Testing is no longer an isolated activity of some group

of testers that wait for a product to be ready for test; it becomes a community-based

activity and closely linked to support and marketing of software-intense products.

1-4.1 TESTING SOFTWARE-INTENSE SYSTEMS

Obviously, the complexity that users can handle when performing tests is limited. The

limit is closely related to the users’ needs when using a product. While technical per-

formance or other quality aspects are usually important when buying the product,

during normal and intended use, other needs become dominant. Continuous availa-

bility of the functionality purchased is expected, and often the user perceives lack of

functionality immediately. However, missing functionality related to communication

and traceability is typically seen too late.

Defects that consumers affect but are hard to detect are most often related to missing

privacy protection, or safety issues. Both, privacy protection and safety risk assess-

ments have become controversial and find today public attention. The fact that today

all physical movements are traceable by the smartphones’ build-in GPS, or the

- 13 -

navigation instruments in cars, or soon by public transportation, seems only a weak

violation of privacy compared to all the spying of what we look at, read or talk. It

seems that if it does not touch property, or money, we are inclined to weight the ben-

efits of all these chatty assistants higher than concern for privacy.

However, things change if one of these helpful service providers suddenly suffer a

data leak, as happens from time to time indeed. Then it turns out to be quite hard to

find out if own private data has been affected. Often, after a leak, it takes weeks if not

months to find out what data was compromised.

ART in turn is something that can be immediately triggered in case some service pro-

vider experiences a hack. That would allow consumers to get immediately notified

whether they need to take some action. Obviously, testing is not restricted to the local

components of some system; this is sort of unit testing anyway. Testing a software-

intense system today almost always involves testing services, typically located in the

cloud. ART can check whether such services still behave as expected or start exhibiting

strange behavior such as scanning the private device for passwords or opening new

backdoors.

Similar it is for safety. Often, safe behavior is easily detectable and distinguishable

from unsafe behavior. Continuous safe behavior even after software updates or

changes in the related cloud services is testable and consumers are interested in such

tests. Full security testing includes hardware and is not addressed in this book.

Sure, privacy and safety are not the only test-worthy characteristics of software-in-

tense systems, but they address the major concerns of most consumers. And indeed,

having privacy tests performed after each major software update even for a

smartphone would even now be a welcomed gadget. Or does anyone know for sure

what privacy risks all those glossy games and racy apps entail?

1-4.2 CONSUMER METRICS

Testing is not for free, and when it does not add value to the product, it possibly

should not be done. However, whether safety and security testing – among others –

add value to a product, is out of question. On the other hand, whatever adds value,

can be used as a discriminator in the market.

It is therefore paramount that tested software becomes visible to the consumer, and

the amount of testing becomes a metric communicated to consumers. Consumer

might have a choice between an extensive, well-tested product and a less tested, but

cheaper product. This works up to the point where liability issues force the product

supplier to perform extensive testing just to stay in the market.

- 14 -

For all this IoT-kind of products with extensible software, especially for AI, it is incon-

ceivable how suppliers should cope with liability if they do not have the possibility to

do ART during their products’ lifetime. The risk, that consumers add features or func-

tions to an IoT concert causing harm to safety or privacy of the product is significant.

1-4.3 IMPACT ON SOCIETY

Autonomous Real-time Testing (ART) will make an impact on product liability issues of

software-intense systems. Suppliers can reduce their liability risks when providing

sufficiently good and actual test rules for their products during the full life cycle. Oth-

erwise, owning or using an autonomous car – if they ever hit streets – will probably

become quite costly, at least in Europe. Otherwise, autonomous vehicles apart from

closed motorways face too many challenges; for instance, traffic in cities or villages

becomes safer at less cost by reducing speed. Communication between vehicles is a

big asset and could improve traffic flow even in urban areas; however, this means not

necessarily autonomous driving.

In any case, autonomous vehicles, vehicles that rely on intercommunication and even

driving assistance systems become socially more acceptable if they adapt their capa-

bilities over time to changed environments and prove this to the responsible owner.

The adoption of the Internet of Things (IoT) is far below expectations not only because

users wait for the faster and more performant 5G telecom network, but even more

because the target users cannot assess and manage their privacy risk. Connecting an

additional device to their existing IoT concert might result in an unnoticed privacy

break. Only experts may give it a try.

Lessening the liability burden to suppliers of software-intense products clearly speeds

digitalization up and make it more acceptable. Furthermore, since many of the new

software-intense products use Artificial Intelligence (AI), such products change behav-

ior during their life cycle and you cannot use AI in products without at least basic

ART, at least for safety-critical issues. Deep learning is also accompanied with forget-

fulness and even human neural disorder (van Gerven, 2017). Consequently, visual

recognition systems need constant testing for making sure they keep their initial ca-

pabilities. Neural networks that have previously proven to be capable of successful

learning suffer from strange effects (Szegedy, et al., 2014). Small alterations in images

or video, even when invisible to the human eye, can strongly impact their capabilities.

- 15 -

1-5 OUTLOOK

From this introduction, many open questions arise. First, how shall tests be measured

such that they can be assessed for intensity and defect density? Next, how to identify

relevant tests from the huge test rules set generated by combinatory algebra? While

having all tests at disposition in a structure helps, how to extract those tests that are

relevant for privacy and safety – or any other goal?

Testing works only if the goal of testing is known. What suitable means exist to define

goals of testing? What are the goals of security testing?

How exactly shall AI be used to generate new test cases when testing AI? When is

testing AI successful, what means “pass” for AI? Can we test AI by AI? How exactly

can we use Combinatory Logic for testing AI?

How does ART fit into DevOps? Who shall prepare test cases and how shall test re-

sults be communicated to the user of software-intense systems?

- 17 -

CHAPTER 2: TEST METRICS
Today’s software testing body of knowledge focuses on testing code. While

testing code is important, testing the full system’s functionality matters much

more for the digital society. Code metrics, mostly captured by automated test-

ing tools, are unfit for functionality tests for software-intense systems. Code

is often unavailable for e.g., cloud services. Moreover, systems often use only

parts of the total implemented functionality of some service . Then, testing the

unused part does not matter.

Test metrics should refer to functionality, not code. This means that lines of

code cannot be the reference for testing intensity; it must be functional size.

For functional size, models exist that allow determining size at defined gran-

ularity for any service in use. The models also work for services that are only

partially used. In the past, functional size models were used to predict cost of

software projects and thus were not in the focus of the testing community.

Testers were referring to code. Now, when testers face the challenge of digital-

ization, they have to learn metrics for testing that are independent from code.

2-1 INTRODUCTION

Today’s practices in software and system testing are quite strange. People count en-

tries in bug inventories and mistake this count for the number of defects. Test cases

refer sometimes to code and sometimes to the behavior of some unidentified piece of

software. It remains unclear to what piece of software a bug report refers to.

Common testing techniques, metrics and tools refer to code – notwithstanding that

code is often not available when testing software, and systems often rely on cloud

services. Moreover, code is subject to the programming language, programming en-

vironment, and sometimes not even open. It is not possible to define any reasonable

software metrics based on general code characteristics; you need always to be specific

about what kind of code you want to measure for testing. How to test cloud services?

When consulting the ISO/IEC/IEEE 29119 testing standard (ISO/IEC/IEEE 29119-4,

2015), it astonishes that part 4 identifies 23 different so-called Test Coverage Items. This

is already a step away from testing code. But tests primarily address software func-

tionality. It is unnecessary to define extra “Items” to undergo testing.

Functional models are available and are used since the past 40 years for sizing soft-

ware. Why shall test coverage items be something else than its model elements? Func-

tionality of software can easily be assessed and modeled. While the availability of code

- 18 -

is helpful because functional models can be generated automatically (Soubra, et al.,

2014), in general Functional User Requirements (FUR) are enough. The only thing you

need to know for testing software-based systems is what they are supposed to do.

Since functional requirements exist not only for code written on purpose – e.g., user

stories – for cloud services, or any standard software with proprietary code, they exist

as well.

While Non-Functional Requirements (NFR) also exist and are testable as well, such tests

cannot be automated and are not considered in Automated Real-time Testing (ART).

2-2 MODELING SOFTWARE

Any software can be modeled by its functional requirements. The ISO/IEC 14143

(ISO/IEC 14143-1:2007, 2007) defines what FUR exactly are and how to model them.

They key statement is that model elements must cover everything that is needed to

implement some FUR; thus, the ISO/IEC 14143 standard defines granularity. The

level of granularity is defined by the user view represented in the FUR. Sometimes,

general service considerations at the level of microservices are good enough; some-

times, code-level granularity is required, depending upon the “U” (User) in FUR.

The “U” in FUR is important: whatever functionality is modeled; it is important to

identify its user. A user can be a human, another application service, or another layer

in the system’s architecture. Some lines of code might implement multiple FUR for

different users; it is obvious that such a line of code can implement one or more FUR

imperfectly, or completely faulty, while other FUR behave correct. This consideration

alone demonstrates how misleading it is to link defects to code. To call today’s prac-

tices in software and system testing strange, is probably not appropriate. With today’s

testing practice, it is a miracle that not more software fails than does today. The mira-

cle is because software developers are perhaps the most responsible workers found

today. Testers in turn often enough fail to help them effectively.

The lack of proper testing is a threat to ICT as a profession as well as all the economic

churn put expectantly on ICT, digitalization for example.

2-2.1 METRICS FOR SOFTWARE

Before presenting the ways how to model software, let us introduce a related topic

that somehow seems half-forgotten in the metrics community. Metrics is nothing new;

since the beginning of civilization metrics have been indispensable for distributing

goods, resources, wealth, and organizing welfare and warfare. Most people know the

story how Eratosthenes calculated the size of the earth.

- 19 -

Citing Wikipedia: “Eratosthenes calculated the Earth's circumference without leaving

Egypt. He knew that at local noon on the summer solstice in Syene (modern Aswan,

Egypt), the sun was directly overhead. Syene is at latitude 24°05′ North, near to the

Tropic of Cancer, which was 23°42′ North in 100 BC. He knew this because the shadow

of someone looking down a deep well at that time in Syene blocked the reflection of

the Sun on the water. He then measured the Sun's angle of elevation at noon in Alex-

andria… From these measurements, he calculated the angle of the sun's rays. This

turned out to be about 7°, or 1/50th, the circumference of a circle. Taking the Earth as

spherical, and knowing both the distance and direction of Syene, he concluded that

the Earth's circumference was fifty times that distance.”

Eratosthenes built a model that was not perfectly accurate but good enough for the

purpose. He used a few simplifications, modeling the Earth as a perfect sphere, the

sun rays as parallel, putting Alexandria due north of Syene. Then he could perform

all necessary calculations on his model.

But how did Eratosthenes know the true distance between Alexandria and Syene?

Pharaonic bookkeepers measured the distance between Syene and Alexandria regu-

larly; an achievement that no civilization on Earth was able to repeat before France in

the 18th century (Russo, 2004).

However, you cannot measure such a distance by foot or – at the time – by camel only

in one go; you need to be able to measure parts of the distance and combine measure-

ments correctly, using trigonometrical adjustments because the straight line is blocked

sometimes.

This knowledge about the nature of metrics is the essence of the VIM and the GUM:

• The VIM: ISO/IEC Guide 99:2007, 2007. International Vocabulary of Metrology

(ISO/IEC Guide 99:2007, 2007) – Basic and general concepts and associated

terms (VIM);

• The GUM: ISO/IEC CD Guide 98-3, 2015. Evaluation of measurement data

(ISO/IEC CD Guide 98-3, 2015) - Part 3: Guide to Uncertainty in Measurement

(GUM).

Metrics must comply with the VIM and the GUM. Counting does not necessarily es-

tablish metrics. Counting points does not measure anything, unless the points mark

units on a measurement scale.

2-2.2 MODELS FOR FUNCTIONAL SIZING

We observed that testing should not be against code alone but against functionality.

For testing complex systems such as those powering autonomous vehicles, code is

only partially available, and safety-impacting functionality depends as much from

- 20 -

functions hosted in the cloud than from the local controls powered by embedded soft-

ware.

For measuring tests, it is therefore straightforward to size tests based on models for

the functionality of software. The size can be determined by counting model elements.

Sizing tests against code is inappropriate. For describing functionality, FUR according

ISO/IEC 14143 are the preferred kind of reference. Currently, four ISO standards exist

that conform to the concepts of ISO/IEC 14143. From those, the ISO/IEC 20926

(ISO/IEC 20926:2009, 2009), for long years maintained by the International Function

Point Users Group (IFPUG), is older and more widely used than all others.

2-2.3 THE IFPUG MODEL OF SOFTWARE

The IFPUG model (IFPUG Counting Practice Committee, 2010) defines a count for

functional size by counting model elements that are conceptually familiar to tradi-

tional mainframe software: Data Functions and Elementary Transactions.

Figure 2-1: IFPUG Model – Three Transactions: EI, EO, EQ; Two Data Functions ILF, EIF

Software Boundary

ILF

User

EIF

EI EO EQ

The IFPUG model identifies five elementary types of data functions or transaction,

categorizing each model element as either low, medium, or high complexity, each

with a fixed size number associated. These categories depend from the amount of data

handled by each element, and the number of data references. Consequently, the cate-

gories define a jumping count.

Thus, with IFPUG, adding data elements can let the complexity assessment jump from

one level into another. Or, in contrary, adding new elements to the model sometimes

is not reflected in the count. Nevertheless, the IFPUG model can also be used to count

Test Points, a test effort counting method for predicting test effort, proposed by Tom

Cagley (Cagley, 2018).

For knowing how to count model elements in ISO/IEC 20926, it is necessary to know

the boundary for the complete system. The reason is that the total number of Files

Types Referenced (FTR) impact the size of the transaction-type model elements. Without

knowing the whole system, parts cannot be counted, if following the rules exactly.

- 21 -

Consequently, the IFPUG count is not a metric; it does not conform to the VIM and

the GUM. While it seems possible to adapt the IFPUG rules by allowing intermediate

results instead of the jumps, and it is arguable that for practical purposes the FTR

number is known well enough, namely from the transaction alone without regard to

the whole system, such an enhancement of the IFPUG count towards a metric is not

yet on the agenda of the IFPUG counting committee. This makes the IFPUG counting

method unattractive both for agile software development that needs to measure the

functional size of sprints, and for test metrics.

2-2.4 TRANSACTION MAPS

The following Figure 2-2 explains how to combine the model elements shown in Fig-

ure 2-1 to create a Transaction Map. Transaction maps are a way to visualize the IFPUG

model for a software system. Depending upon the architecture, more than one trans-

action map might be needed. Then, typically one transaction map describes an appli-

cation that manages an ILF, while others refer to the same elementary data element as

an EIF. This in turn induces double counting for such elementary data functions that

makes adding size for different applications unreliable

Figure 2-2: Transaction Map for the Navigator Piece of Software

T002 T012 T004 T008 T010 T014 T016

T003

T001 T005 T011 T006 T007 T009 T013 T015 T017 T018

D001

D004

D005

D006 D002 D003

D007

D008

BoundaryIFP=153

EIF

8 / 3

Route Service Users

EIF

18 / 6

Destinations

ILF

3 / 1

Session Key

ILF

24 / 5

Routes

EIF

12 / 1

GPS Tracks

EIF

24 / 5

GIS Maps

EIF

32 / 8

Weather Service

EIF

18 / 6

Traffic Service

EO

3 / 2

Authorization

EI

5 / 2

Enter Destination

EO

8 / 3

Confirm Destination

EQ

12 / 2

List Destinations

EO

12 / 2

Request Route

EI

18 / 2

Get Route

EO

3 / 4

Request GPS for Location

EI

5 / 3

GPS Service

EO

8 / 3

Request Weather

EI

12 / 3

Weather Forecast

EO

5 / 3

Request Traffic Conditions

EI

18 / 3

Traffic Conditions

EO

3 / 5

Show Travel Time

EI

5 / 4

Confirm Route

EO

18 / 4

Propose Route

EI

12 / 4

Modify Route

EO

24 / 3

Route Directions
EO

3 / 2

Destination Reached

The Navigator application shown in Figure 2-2 is a piece of software using micro-

services such as GPS tracks, GIS maps, weather forecast and real-time traffic infor-

mation to propose routes for a car; it is a simplified navigation system. The user can

enter destination and the system proposes one or more possible routes to take, de-

pending upon weather and traffic conditions. Favorite routes taken previously are not

- 22 -

taken into consideration; routes are not attributable to car users. A session key is used

to separate authentication from identification of the user.

Despite their failure to comply with the VIM and the GUM, transaction maps are ide-

ally suited for use with agile teams, for visualizing which elements of software are

touched in each sprint. The model elements are easily recognizable by businesspeople,

somewhat less by developers, but can be used for communicating work done in

sprints, at the same time providing its functional size.

Because of the said missing compliance to the VIM and the GUM, the sum of func-

tional sizes delivered in sprints is significantly higher than the total functional size;

however, this does not matter too much in practice. Counting functional size with

IFPUG is the better predictor for performance of an agile team that any other agile

metrics, including story points. Anyhow, agile teams need be conscious about distin-

guishing new functionality from reused or enhanced existing functionality, to avoid

unnecessary double counting in sprints.

Nevertheless, the transaction maps like in Figure 2-2 serve many more purposes than

just sizing functionality. Maps help to orientate and localize software elements. For

tests, a map should be useful to localize test cases by identifying the model elements

touched when running the test case. But with IFPUG, this is difficult. Test cases are

not easily identifiable within a transaction map. It is unclear what role the FTR have,

whether they belong to a test case or not. The missing compliance to the VIM and the

GUM create quite practical problems making it difficult to define test metrics based in

the IFPUG method. Consequently, test size compares not directly to functional size.

2-2.5 THE COSMIC MODEL OF SOFTWARE

In contrary to the IFPUG count, the COSMIC standard (ISO/IEC 19761:2019, 2019)

complies to the VIM and the GUM. With COSMIC, you can measure parts, and from

the parts one can construct the size of the compose. System boundaries are also de-

fined in the standard but do not affect the count.

The COSMIC standard identifies layers. The layers’ boundaries detect the flow of data

moving from one object into another; however, the total count does not depend from

how boundaries are drawn. Communication between functional processes require

typically an Entry and an eXit, with a device in between that connects the two pro-

cesses. Fortunately, devices and other applications yield the same count, regardless

whether data movements cross an application boundary or not.

A Read or a Write moves data between functional processes and persistent data stores.

Every data movement transports a Data Group, identifying the data moved from one

- 23 -

object to another. Obviously, the content of those data groups matters for privacy pro-

tection; however, it also can affect safety up to some degree.

A data movement moves a Data Group. Data groups hold the information needed to

assess privacy protection needs, or safety risk exposure, of data. Two data movements

moving the same data group are considered only one model element.

Figure 2-3: The COSMIC Model, with Six Data Movements Entry, eXit, Write and Read

Software Boundary

Functional

Process

Persistent Data

Trigger
Entry

Entry

eXit

eXit

Write Read

Device User Application User

The constituent element of the COSMIC model is a Functional Process. A functional

process is an object together with a set of data movements, representing an elementary

part of the Functional User Requirements (FUR) for the software being measured, that

is unique within these FUR and that can be defined independently of any other func-

tional process in these FUR (COSMIC Measurement Practices Committee, 2017, p. 42).

Modeling software takes two distinct steps:

• Creating a model for the software is based on analyzing data movements and

identifying the relevant objects of interest that are the origins and targets of such

data movements. This step is called Mapping and results in uncovering the rele-

vant functional processes.

• Creating just enough model elements to explain how to implement all FUR. Cre-

ate data movements only once per data group moved per functional process,

notwithstanding how many times they are being executed.

Now you can count the size of software by counting the number of data movements.

This is the way ISO/IEC 19761 COSMIC measures functional size.

In COSMIC, one data movement with a unique data group yields one Function Point.

Two or more data movements moving the same data group between the same objects

do not add to functional size.

- 24 -

There are four kind of data movements: An Entry to some functional process; an eXit

to some device or other application; Reading from and Writing into a permanent store.

Counting the number of data movements yields the Functional Size.

2-2.6 DATA MOVEMENT MAPS

Data Movement Maps are a way to model a piece of software by connecting objects of

interest, representing functionality, persistent stores, devices and other applications.

The connectors are called Data Movements. They have some resemblance to UML Se-

quence Diagrams (Bell, D., 2004) but with less detail, and sequencing is not prescribed.

Figure 2-4: Sample Data Movement Map

2 Entry (E) + 2 eXit (X) + 1 Read (R) + 1 Write (W) = 6 CFP

Functional

Processes
Persistent

Data Store
Device Other Application

1.// Data Movement moving a Data Group

Trigger

2.// Write Data into Store

3.// Start Other Application

4.// Get Results from Other Application

5.// Read Data from Store

6.// Display FInal Result

Data Movements always move a Data Group, which can be thought as a data record.

Its uniqueness is indicated by color-filled trapezes. Another move of same data group

between the same objects within a COSMIC functional process lets the trapeze blank.

2-2.7 OBJECTS OF INTEREST

For data movement maps, we distinguish four types of Objects of Interest:

• Functional Processes: Objects that perform functional processes in the COSMIC

sense. One such object can perform several functional processes. Thus, such an

object represents for instance one Virtual Machine (VM), or Electronic Control Unit

(ECU) performing different calculations rather than a single functional process

in the sense of the COSMIC manual (COSMIC Measurement Practices

Committee, 2017, p. 42);

• Persistent Store: Objects that persistently hold data. Contrary to the COSMIC

definition, they provide data services to several different functional processes;

• Devices: a device can be a system user or anything providing data;

- 25 -

• Other Applications: other applications use functional processes the same way

as devices do; however, they typically represent other software or systems that

can be modeled the same way using data movement maps.

Triggers usually indicate the starting data movement of one COSMIC functional pro-

cess. Thus, one functional process object can have several triggers.

- 26 -

2-2.8 THE NAVIGATOR APPLICATION AS COSMIC MODEL

Figure 2-5 models the Navigator application as a data movement map:

Figure 2-5: Data Movement Map for the Navigator Application

12 Entry (E) + 17 eXit (X) + 4 Read (R) + 3 Write (W) = 36 CFP

Car User GPS Tracks Routes Navigation Users GIS Maps Weather Service Traffic Service

1.// Request credentials

Session

2.// Get credentials

3.// Record session key

4.// Confirm session

5.// Session rejected

6.// Switch on

Locate

7.// Get session key

8.// Request GPS tracks

9.// Return GPS tracks

10.// Request map

11.// Get map

12.// Show map

13.// Show position

14.// Switch off

15.// Revoke session key

16.// Enter destination

Get Route

17.// Search route

18.// Ask for route

19.// Return possible routes

20.// Ask for weather forecast

21.// Return weather forecast

22.// Ask for traffic density

23.// Return traffic density

24.// Show routes

25.// Show travel time

26.// Select route

Set Route

27.// Record route

28.// Confirm route

29.// Request GPS tracks

30.// Return GPS tracks

31.// Monitor route

32.// Routing directions

33.// Destination reached

34.// Incident

Alert

35.// Get route

36.// Alert

Data movement maps serve as graphical visualization of COSMIC models. The maps

have lifelines just like UML sequence diagrams. The objects in a data movement map

- 27 -

represent either functional processes, persistent store, devices, or other applications.

The difference to Figure 2-3 is that a lifeline belonging to a functional object can host

more than one COSMIC functional process. Triggers are needed according COSMIC

rules to initiate each functional process. As shown in Figure 2-5, more than one trigger

can exist in a data movement map pointing to the lifeline of a specific object of interest

representing functional processes. Thus, triggers pointing to an object of interest iden-

tify functional processes within this object.

Triggers also connect functional processes to user stories. A user story specifies a user

triggering some functionality. This corresponds often to one COSMIC functional pro-

cess; however, a user story might need more than one functional process to get com-

pletely implemented.

The Navigator application shown in Figure 2-5 consists of a mapping service, con-

nected to routing and positioning, usually by the Global Positioning System GPS. Such

an instrument is standard in today’s cars, although we use a simplified model. It has

the same functionality as the transaction map in Figure 2-2; however, the data move-

ment map shows more details how the application technically works.

A route once chosen is used to tell the driver where to turn right, left, or around after

missing the way completely. The Navigator relies on four external service applications:

GPS, maps, weather, and traffic service. One functional object is enough; it uses two

permanent stores, one for recording routes, the other one for recording users and their

credentials. The relation between these two stores is critical for the ability of the Nav-

igator to keep routes taken as private, in the ownership of the car user.

There are six different functional processes, all hosted by the Navigator functional ob-

ject. The first functional process authenticates the user and creates a session, identifi-

able by a session key. The second uses that session key to locate the car on a map. The

third functional process proposes routes to a destination chosen by the car user, based

on weather and traffic conditions. The fourth functional process consists of selecting

among different routes, if available, and storing the chosen route for further pro-

cessing by the Navigator application, in case the Traffic Service application issues a traf-

fic alert, or weather conditions change the expected travel time. This process continues

with giving directions to the car user until the destination is reached. The fifth func-

tional process informs the car user in case of a traffic incident that might cause choos-

ing another route. The car user then must try to get another route.

There is no functionality provided here that for instance uses recorded routes to iden-

tify user preferences, avoiding privacy issues that arise from collecting routes chosen.

Counting the data movement yields 36 CFP since each data movement moves a dif-

ferent data group.

- 28 -

2-2.9 AUTOMATICALLY CREATING DATA MOVEMENT MAPS

The code given, creating automatically a model for functionality is easy for the COS-

MIC model, for most programming languages. All one must do is identifying the ob-

jects of interest. In most programming languages, these are declared as objects. The

only difficulty is to decide whether such an object is visible to the user and thus could

correspond to a FUR. Then, once the objects are known, the data movements between

the objects are easily identifiable. The effort is comparable to building a compiler.

Moreover, if different functional users can be identified, the same code may exhibit

more than one data movement model. This is typical for a layered architecture, where

the front-end functional user requires different data movements from different objects

located in the middle layers or data layers, compared to what the end user requires

from the front-end.

Sometimes, automatically creating a data movement map is without any effort. With

today’s Microservice architecture, constructing the model is directly possible from a

Kubernetes network builder (The Kubernetes Authors, 2018). Kubernetes is a portable,

extensible open-source container-orchestration platform for automating deployment,

scaling and management of containerized applications. Kubernetes connects micro-

services by message pipes; for the respective granular view, this defines uniquely the

functional size of a microservice architecture.

While IFPUG describes software functionality from a static viewpoint, COSMIC ad-

dresses dynamic aspects. Since testing also is dynamic, COSMIC might be better

suited for sizing tests than IFPUG also from that perspective.

2-2.10 STRENGTHS AND WEAKNESSES OF SOFTWARE METRICS

Counting Requirements. Software metrics count Functional User Requirements (FUR).

This makes them independent from implementation details and allows comparing

different solutions. Moreover, one does not need a finished product for counting its

functional size. If functional size controls development cost, a functional count can be

used to predict development cost. Also, it allows managing the scope of a project, e.g.,

for dealing with deadlines, and controlling budget.

Today’s agile software development process has no clearly defined final set of require-

ments. Requirements are likely to change. However, as soon as there is a backlog, this

is easy to count. You can track agile development by counting the backlog in sprints.

Repeatability. Software metrics should be independent from the actual counter.

Counters are properly educated and certified for the method. A user community

maintains a counting practice manual, and provides examination for certified profes-

sionals, making it easy to decide whether a count is correct or not.

- 29 -

The problem with that approach is that automatic counting is in principle not possible.

Nevertheless, automatic counting methods exist but are approximations to the origi-

nal manual count.

Independent from Implementation. Software metrics do not model implementation

details. Functional size is the same for a single-user, closed application as for a mobile

app using cloud services if the same is being calculated.

The concept of counting data movements in COSMIC matches the way modern soft-

ware is build. Connecting Docker container service (Steve Singh et.al., 2018) can be

modeled as a sequence of data movements between containers.

Independent from Algorithmic Complexity. Functional size models do not model

mathematical algorithms, if they are not covered by the granularity of the FUR. Thus,

if the FUR says, use some very complicated and computing-intensive algorithm that

you can find maybe in a mathematical library, or you must implement manually.

Without stating all the details of the algorithm, its complexity does not impact func-

tional size.

Independent from Non-Functional Requirements (NFR). Functionality does not de-

pend neither from performance, nor from how much parallelism is implemented for

load balancing. Nevertheless, such NFR might in turn require additional functionality,

by turning into FUR on the respective granularity level. Performance improvements

might require cache, and the functional cache user sees FUR and related functional

size; load balancing also requires a load balancing functional process when looking at

it from some internal layer. Functional size is indeed dependent from the viewpoint.

This is the essence of the ISO/IEC 14143 international standard (ISO/IEC 14143-

1:2007, 2007).

2-3 A SHORT PRIMER ON SIX SIGMA TRANSFER FUNCTIONS

Readers of the previous book by the author (Fehlmann, 2016) can skip this section, or

quickly read through it as a refresher.

2-3.1 UNCOVERING HIDDEN CONTROLS

For decennials, Quality Function Deployment (QFD) is the discipline to uncover hidden

customer needs for creating successful products (ISO 16355-1:2015, 2015). The main

task is to capture the Voice of the Customer (VoC). Many proven methods and tools exist

to understand the VoC and turn it into a prioritization profile.

QFD uses the concept of linear Transfer Functions in the form 𝒚 = 𝑭𝒙, where 𝒚 is the

vector representing qualitative or quantitative user needs, and 𝒙 the vector of

- 30 -

quantitative parameters related to the technical solution. Since 𝑭 is linear, it can be

represented as a matrix (Fehlmann, 2003). It has many similarities to Six Sigma root

cause analysis, where 𝒚 is the observable response and 𝑭 the matrix of measure-

ments that correlate each vector dimension of 𝒙 with each vector dimension of 𝒚. For

measuring these correlations in Six Sigma, the Design of Experiments technique (Myers,

et al., 2009) provides guidance how to get a sufficiently well-defined transfer function

matrix for identifying main causes for an observed effect.

In both QFD and Six Sigma for manufacturing, finding the right controls for the vector

𝒙 is the difficult part. Because of the non-decidability of first-order logic, there is no

automated method possible to devise the “correct” instances of 𝒙, not even its dimen-

sions – otherwise we would have a general problem solver and could let computers

develop new technologies and new products. The main difference between Six Sigma

in manufacturing and QFD is that, in QFD, proper measurements are often not possi-

ble. Classical QFD for product design replaces measurements by team consensus;

thus, measuring expert judgment rather than physical evidence.

Measuring the response 𝒚 in QFD involves techniques to understand the VoC that

often rely on social science or involve not only mathematics but also psychology (such

as AHP). Methods and techniques for the acquisition of the voice of the customer

make up about two third of the ISO 16355 series of standards.

Since finding the transfer function and assessing the right topics and dimension of

𝒙 is a challenge with mutual dependencies, QFD is a very creative but disciplined pro-

cess. As for any transfer function, it is possible to validate any pair of 𝑭 and 𝒙 by ap-

plying 𝑭 to 𝒙. The result, 𝑭𝒙 is a vector with the dimensions of the original response

𝒚, in QFD the voice of the customer, and because of the measurement errors and the

uncertainty of expert judgements, it will not be the same.

The vector difference between 𝑭𝒙 and 𝒚 is called the Convergence Gap. This is an in-

dication how well 𝑭 and 𝒙 together explain the response 𝒚 , or in other words,

whether a product or technology based on the quantitative parameters 𝒙 and provid-

ing the transfer function 𝑭 are capable to deliver the qualitative requested user needs

𝒚, thus validating the approach but not able to exclude the existence of other ap-

proaches.

Let 𝒙 be the vector 𝒙 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉, 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑚〉 and 𝑭 = (𝑓𝑖𝑗) the transfer

function as a matrix, then the convergence gap is defined as the Euclidian distance

between the 𝑚-dimensional vectors 𝒚 and 𝑭𝒙 = 〈∑𝑓𝑖1𝑥𝑖 , ∑𝑓𝑖2𝑥𝑖 , … ,∑ 𝑓𝑖𝑚𝑥𝑖 〉:

 ‖𝒚 − 𝑭𝒙‖ = √∑(𝑦𝑗 −∑𝑓𝑖𝑗𝑥𝑖)
2

 (2-1)

- 31 -

The convergence gap can be used to optimize controls by iteration, using domain ex-

pertise, or by any other numerical optimization method. In fact, in Six Sigma the pre-

ferred method is the Eigenvector method because it settles and flattens variations that

originate from measurement errors or opinion blur, as observed by Saaty, and used

for the Analytic Hierarchy Process (AHP) (Saaty, 2003).

2-3.2 THE HOUSE OF QUALITY

For decades, QFD has been identified with, and partially misunderstood as, the so-

called House of Quality (HoQ). In the HoQ, the vector 𝒚 is the profile of customer

needs, as found by some suitable voice of the customer process, and 𝒙 is the profile

of the qualities required for the technical solution. Thus, QFD allows selecting opti-

mum solutions, avoiding unnecessary gadgets that only add cost to the new product.

For this, the HoQ is still ideal; however, the HoQ is only a small portion out of the

QFD method. Nevertheless, it is the best-known part of the method, and popular

among Six Sigma Black Belts and Marketing managers alike.

2-3.3 THE HELP DESK IMPROVEMENT EXAMPLE

For a HoQ example, assume, a Help Desk operator wants to improve its service. The

help desk is a traditional one, with humans answering questions and helping custom-

ers who are not yet able to help themselves with the tools provided through the Inter-

net. Humans sometimes can improve doing their jobs by receiving training, while ma-

chines undergo deep learning.

A simple pairwise comparison – a basic AHP session – identified the following prior-

ity profile 𝒚 for a typical Help Desk customer:

Figure 2-6: Pairwise Comparison for the Help Desk House of Quality

F
ri
e
n
d
lin

e
s
s

R
e
s
p
o
n
s
iv

e
n
e
s
s

A
c
c
u
ra

c
y

Customer's Needs y1 y2 y3 Weight

y1 Friendliness 1 2 1 41% 1 0.69

y2 Responsiveness 1/2 1 2 33% 2 0.56

y3 Accuracy 1 1/2 1 26% 3 0.45

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

Profiles and weight follow the definitions used for AHP (Saaty & Alexander, 1989):

the sum of the percentages is 100% while the profile represents a three-dimensional

normalized vector of length 1, i.e., the sum of the squares of the coefficients yields 1,

the unit vector length. From Saaty (Saaty, 1990) it is known that the solution profile 𝒚

of an AHP square matrix 𝑨 is its Principal Eigenvector; thus, 𝑨𝒚 = 𝒚 holds up to some

limit of exactitude caused by the numerical algorithm. The eigenvector balances the

- 32 -

inconsistencies out caused by human judgements in pairwise comparisons. Geomet-

rically, an eigenvector points in a direction that is stretched by the transformation.

Profiles and weight percentages always transpose into each other. This is only a matter

of convention. However, it is well known that you cannot add or subtract weight per-

centages, because this will no longer yield percentages, and even when recalibrating

the result of addition, if the weights are out of balance, the resulting bias can become

substantial. For comparing results from AHP, you must use profiles. Because of their

nature as vectors, they allow addition and subtraction, and can be compared to each

other, if they represent directions in a vector space only. The sum of two profiles yield

another profile, as soon as normalized to length one.

Figure 2-7: The Priority Profile 𝒚 for Customer Needs

Customer's Needs Topics Attributes Weight Profile

 y1 Friendliness Remains cool Always friendly 41% 0.69

y2 Responsiveness Understands the problem Finds a way to solve 33% 0.56

 y3 Accuracy Complete information Compelling 26% 0.451.7

AHP Priorities

We investigate the following pair of quantitative parameters 𝒙 and transfer function

𝑭 for improving the Help Desk service:

A team of experts might now come up with the following House of Quality (HoQ):

Figure 2-8: The Transfer Function 𝑭 (HoQ)

Critical To Quality

G
o

al
 P

ro
fi

le

T
ra

in
in

g

IC
T

 I
nf

ra
st

ru
ct

ur
e

S
al

ar
y

&
 B

on
us

W
or

k
P

la
ce

A
ch

ie
ve

d
 P

ro
fi

le

x1 x2 x3 x4

y1 Friendliness 0.69 9 2 0.67

y2 Responsiveness 0.56 7 6 0.58

y3 Accuracy 0.45 1 6 3 0.46

Solution Profile for Critical To Quality: 0.65 0.41 0.41 0.49 Convergence Gap

0.7 0.4 0.4 0.5 0.03

34 Total Effort Points

0.20 Convergence Range

0.20 Convergence Limit

Critical To Quality
Deployment Combinator

Customer's Needs

The matrix correlates customer needs with effects originating from Critical to Quality

controls. Solving the transfer function with the Eigenvector method explained below

(2-3.4) for the controls 𝒙 yields an Achieved Profile 𝑭𝒙 near enough to Goal Profile 𝒚.

- 33 -

For transforming the profile into percentages, consult Figure 2-9. Here the bottom pro-

file of Figure 2-8 is turned by 90° to display horizontally.

Figure 2-9: The Technical Solution Profile 𝒙 – Critical to Quality

Critical To Quality Topics Attributes Weight Profile

 x1 Training Behavioral Training With Stress Test Must make fun 33% 0.65

x2 ICT Infrastructure Customer Identification High Performance High Reliability 21% 0.41

x3 Salary & Bonus NPS related Predictable 21% 0.41

x4 Work Place Ergonomic Individual High Performance 25% 0.49

Priority

This means that the following distribution will provide best value for money: by in-

vesting 33% of the total budget into x1: Training, 21% into x2: ICT Infrastructure, 21%

into x3: Salary & Bonus, and 25% into x4: Work Place. The percentages indicate how the

budget for improving the Help Desk services is allocated best.

Tradition restricted the cell values adopted in QFD transfer function matrices to 0, 1,

3, 9; with 9 as the highest correlation value. This was found suitable for expert team

judgement; however, from a mathematical viewpoint any scale is permitted if the scale

is a Ratio Scale; i.e., 9 = 3 × 3.

2-3.4 SOLVING A TRANSFER FUNCTION BY THE EIGENVECTOR METHOD

There are various mathematical or empirical methods available to solve 𝐲 = 𝑭𝐱, given

the vector dimension of 𝐱 and some matrix 𝑭. A cute way of solving is by using the

AHP Eigenvector method which has the advantage to flatten out measurement errors.

Such errors are unavoidable especially if a team of experts is setting up the transfer

function matrix. For this, we tilt the 𝑚 × 𝑛 matrix 𝑭 over its diagonal into its 𝑛 ×𝑚

transpose 𝑭⊺ and multiply 𝑭 with 𝑭⊺; this yields a 𝑚 ×𝑚 positive-definite square

matrix that has 𝑚 Eigenvectors.

Figure 2-10: Solving the 𝒚 = 𝑭𝒙 problem with Eigenvectors

F : F
T

: FF
T

:

9 0 2 0 9 0 1 85 0 21

0 7 0 6 0 7 0 0 85 18

1 0 6 3 2 0 6 21 18 46

0 6 3

Jacobi Iterative Method

for Finding Eigenvalues: Eigenvectors: y : t : Diff:
99 0 0 0.67 -0.65 -0.35 0.69 0.67 0.02

0 85 0 0.58 0.76 -0.30 0.56 0.58 -0.02

0 0 32 0.46 -0.00 0.89 0.45 0.46 -0.01

99 85 32 TRUE FALSE FALSE Convergence Gap: 0.03

The solution relies on the theorem of Perron-Frobenius, saying that positive determined

square matrices have a principal Eigenvector 𝜏 which is all positive. For a short proof

- 34 -

of this theorem, see e.g., Cairns (Cairns, 2014). The Eigenvectors are calculated using

the Jacobi Iterative Method (Volpi & Team, 2007), or any other suitable solution method.

Then, setting 𝒙 = 𝑭⊺𝜏 solves 𝑭𝒙 = 𝑭(𝑭⊺𝜏) = 𝑭𝑭⊺𝜏 = 𝜏, because 𝜏 is an Eigenvector. If

it happens that 𝐲 ≅ 𝜏, i.e., the goal vector 𝐲 is near enough to an Eigenvector, the so-

lution 𝐲 is an approximative solution to the problem 𝐲 = 𝑭𝐱, up to convergence gap.

2-4 MEASURING TESTS

A Test is a finite collection of test stories. Test Stories are finite collections of test cases,

characterized by some common business value delivered. Test stories are often related

to user stories but typically not the same. Test stories can address more than just one

user story.

Test cases are represented as arrow terms, starting with a set of preconditions (test

data) and yielding some response. In a data movement map, it is straightforward to

identify those data movements that are executed if running a test case. The initial data

movements are those whose data group last meets the assertions made on test data;

the last data movement first meets the response assertion. Moreover, objects of interest

can be expected to provide test stubs; this means that such objects can provide test

data without executing all the data creation functionality that under normal opera-

tional conditions is needed. If there is some hardware in the loop, test stubs are needed

anyway to simulate the sensors’ or actuators’ data supplied into the test.

2-4.1 TEST SIZE

Test Size thus is the minimal number of data movements needed to execute some test

case to produce the test response. As with COSMIC in general, moving the same data

group is counted only once for size. However, since a test story consists of many test

cases, a specific data movement is executing many times within a test, typically with

different test data. All test cases within a test story must be different from each other.

Attributes contained within test cases must specify test data all different, otherwise

the test cases are considered equal.

Test Intensity in turn is an average number characterizing how many times on average

a data movement becomes part of test case. Since high test intensity does not rule out

that not all data movements are executed at least once in a test, Test Coverage remains

an important indicator, specifying the percentage of data movements not covered with

one test case in some test story; see Figure 2-29: Test Status Summary.

The total size of a test story is the sum of all size of the test cases executed within a test

story, thus increasing test size when executing more test cases.

https://en.wikipedia.org/wiki/Jacobi_method

- 35 -

In statistics, test distribution indicates the degree to which test intensity differs within

one test story, or within the full test. For practical purposes, such a metric seems not

very telling, since it does not replace test coverage. It is rather expected that high busi-

ness value increases test intensity while data movements moving irrelevant data are

well tested with a few test cases only. Thus, test intensity depends from business value

and is not and is not normally distributed. Therefore, test distribution is not a mean-

ingful indicator.

2-4.2 TEST WALK

The data movement maps can be used to visualize tests cases. You can walk the tests,

similar, but less in detail, to walk through code. Such visualization might help in

crowd testing for identifying bugs found. The tester sees selected sequences in the

data movement map; he can “walk” the data movements when planning or executing

tests. This makes functionality visible to the development team, localizes defects that

impact functionality, and supports communication between testers, users, and devel-

opers. Figure 2-11 shows how Data Walker walks four data movements of a test case

and detects a bug at the fourth data movement.

Figure 2-11: Test Walk on Data Movement Maps; one Bug Found in Forth Walk

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

Functional

Process

Other
Application

Some

Device

8.// Move some data

9.// Move some data

10.// Move some data

11.// Move some data

Other

Device

Functional

Process

Other
Application

Some

Device

Other

Device

A Bug is defined the traditional way for testing: a test case that returns an unexpected

response. Because our Data Walker can detect only one bug at a time, we are able to

count defects unambiguously and thus define what defect density is. We count a max-

imum of one defect per data movement executed within a specific test story. The

- 36 -

maximum number of defects per test case is its test size. However, if the Data Walker

detects bugs for different test stories in the same data movement, he can only count

one defect per test story.

2-4.3 DEFECT DENSITY

What is a defect? A defect relates to requirements, specifications or expectation re-

garding the behavior of a system. If test cases are available, a defect means that the

response does not meet the assertion of the response in the respective arrow term. It

is therefore obvious that a defect relates to a test story. It refers to some data movement

that exhibits the defect. Counting defects for each failed test case makes no sense if it

refers to the same data movement.

Thus, counting defects become a limited task. You can count a maximum of one defect

per data movement per test story. Defect Density is therefore a percentage of the total

of defect opportunities. This definition opens the possibility to apply the usual Six

Sigma techniques to defect density and defect distribution. Traditional defect counts

obtained from counting the number of entries in a bug repository are not suitable for

applying Six Sigma.

2-4.4 TEST COVERAGE

The key point for test metrics is Test Coverage. The problem with test coverage is that

it has to do with users’, or customers’, values. It is useless to test pieces of software

that deliver nothing visible to the user, or nothing that has any value. Test coverage

has to do with FUR, with functionality, and nothing with code. Code implements

functionality, and tests cover functionality, not code. Functionality can origin from

anywhere, the cloud, other services. Code might provide other things that functional-

ity.

For defining test coverage, functionality needs evaluation in view of customer values.

It is obvious that just counting whether any given piece of functionality is covered by

tests does not yield and useful metric, because users see value in respective function-

ality differently.

2-4.5 CREATING A CUSTOMER NEEDS PROFILE

The usual way of valuating functionality is by prioritizing user stories. Agile team set

priorities when selecting user stories for a sprint; however, the methods used for set-

ting priorities are not standardized. Since product owner is the most difficult role in

agile development, especially with Scrum (Schwaber & Beedle, 2002), it is helpful to

use a method dedicated to developing a product towards customer needs. The method

- 37 -

is taken from Quality Function Deployment (QFD) (Fehlmann, 2016, p. 16). The Naviga-

tor Application explains it.

The methods of choice is the Analytical Hierarchy Process (AHP), proposed by Saaty

(Saaty, 2003) and used in Fehlmann (Fehlmann, 2016, p. 21), based on calculating Ei-

genvector solutions. Our preferred alternative, combined with AHP, is the Net Pro-

moter® Score (NPS) approach (Fehlmann & Kranich, 2014-2). The applicable ISO stand-

ard (ISO 16355-1:2015, 2015) lists many more excellent alternatives, e.g., (Mazur, 2014)

and (Mazur & Bylund, 2009). Net promoter is a method of evaluating surveys, avoid-

ing large questionnaires by focusing on the Ultimate Question only (Reichheld, 2007).

The ultimate question is how likely it is you would recommend a product or service

to closely related persons. The second, related, question is why. Then, it is possible to

evaluate the responses by classifying answers into candidate business drivers – or cus-

tomer needs – and calculating importance and satisfaction using transfer functions.

The transfer functions try to uncover the customers’ values for importance of, and

satisfaction with, the candidate business drivers by trying to explain the observed NPS

score with the solutions of the respective transfer functions. That will not always work

but if it does, it is much more reliable than directly asking customers.

2-4.6 EFFECTIVENESS OF THE IMPLEMENTED SYSTEM

With customer needs established, user stories can easily be prioritized with a transfer

function that maps user stories onto customers’ needs. The transfer function uses the

frequency of data movements needed for implementing the user stories. The resulting

profile for the user stories can be used in agile development for prioritization.

In turn, mapping test stories onto user stories, again using the frequency of data move-

ments used in test cases, defines Test Coverage. The matrix looks familiar; tester use it

to assess coverage of code by tests. But usually they are not aware of the convergence

gap. If the test cases in a series of test stories cover the user stories, and the transfer

functions yields a satisfactory convergence gap, this shows how well the test stories

cover customer needs.

The test coverage matrix represents a transfer function providing assurance that the

test stories verify the correct implementation of the user stories. The convergence gap

is the metric that tells how well correctness can be proved by these tests.

Obviously, these tests do not prove anything else than the requirements expressed in

the user stories have been correctly implemented. Adding user stories requires adding

test stories. And as ever with transfer functions, there is no way of proving that the

selected test stories are the only selection that works, not even the minimal one. The

selected test stories work sufficiently well if the convergence gap closes. But that is

enough for test automation, eliminating test stories that are not needed.

- 38 -

2-5 TEST METRICS FOR THE NAVIGATOR APPLICATION

Before continuing with theoretical statements, we look at a practical example: the nav-

igation device application already encountered in Section 2-2.8: The Navigator Applica-

tion as COSMIC Model.

2-5.1 CUSTOMER NEEDS, THE CAR USERS’ VALUES

Customer needs are in our case rather the values of the car user, because it is unclear

whether the car user is the same as the car owner and, even if so, if this is the direct

customer of whoever offers the navigation device service. Also, car users are not nec-

essarily car drivers; the car could drive autonomously.

We use two approaches:

• The Analytical Hierarchy Process (AHP)

• A Net Promotor Survey (NPS)

and combine the resulting profiles for the car users’ values.

2-5.2 THE ANALYTIC HIERARCHY PROCESS

The AHP consist of pairwise comparisons between the following five potential values:

Figure 2-12: Car Users’ Values

Customer's Needs Topics Attributes Weight Profile

 y1 Find a Route Fast Secure No jams 17% 0.37

y2 Know Arrival Time Reliable Flexible 23% 0.51

y3 Avoid Jams Minimum traffic Fast Predictability 14% 0.31

y4 Avoid Blockers Incidents Events Bad weather 17% 0.36

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 28% 0.612.2

AHP Priorities

The navigation device cannot slow down a car if needed; that would be part of auton-

omous driving, or of an Advanced Driving Assistance System (ADAS) connected to the

Navigator.

The AHP in Figure 2-13 puts the value y5: Drive Safe highest by assigning equal value

as for y1: Find a Route but double the pairwise comparison weights against the other

three proposed weights in the AHP matrix. The second in ranking is y2: Know Arrival

Time which is obviously closely linked to value y5. However, this is difficult to find

out by asking the user directly. The car user will rather pretend y1, y3 and y4, finding

the fastest route and avoiding jams and other blocking obstacles have highest priority.

- 39 -

Only pairwise comparison detects the true needs.

Figure 2-13: Analytic Hierarchy Process for Five Potential Car Users’ Values

F
in

d
a

R
ou

te

K
no

w
 A

rr
iv

al
 T

im
e

A
vo

id
 J

am
s

A
vo

id
 B

lo
ck

er
s

D
riv

e
S

af
e

Car Users' Values y1 y2 y3 y4 y5 Weight

y1 Find a Route 1 1/3 1/2 2 1 17% 3 0.37

y2 Know Arrival Time 3 1 2 1 1/2 23% 2 0.51

y3 Avoid Jams 2 1/2 1 1/2 1/2 14% 5 0.31

y4 Avoid Blockers 1/2 1 2 1 1/2 17% 4 0.36

y5 Drive Safe 1 2 2 2 1 28% 1 0.61

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

2-5.3 NET PROMOTER® SCORE

Reichheld, Bain & Company, and Satmetrix Systems, Inc. have introduced and trade-

marked Net Promoter® Score (NPS) as a measurement method for customer loyalty

(Reichheld, 2007). Because such considerations look somewhat odd, it is appropriate

to ask the users of a car by means of a survey. Avoiding the useless direct question,

we rather rely on the NPS methodology asking the car user whether he or she recom-

mends our Navigator application, yielding the NPS score, and why she or he probably

give this score – named the Verbatim.

The result looks as follows:

Figure 2-14: Response to NPS Survey by Three Segments of Car Users

25%

Attributes NPS Profile NPS

NPS1 Business People Meeting Time Pressure Planned 0.61 29%

NPS2 Professionals Appointments Predictable 0.72 33%

NPS3 Leisure Shopping Sightseeing Likes driving 0.33 15%0.5

Customer Segments

Survey Results Overall NPS:

A total NPS of 25% is nice but does not necessarily guarantee product success. For

more detail on NPS, see (Reichheld, 2007), and for the methodology how to interpret

it for VoC, see (Fehlmann, 2016, p. 104) and (Fehlmann & Kranich, 2012).

The verbatim responses were categorized into references to the five values listed in

Figure 2-12. Counting the frequency of mention yields the importance given to these

values; also considering the positive or negative value of the mention yields the satis-

faction. Satisfaction can be used as a corrective to importance; however, since satisfac-

tion be negative, namely dissatisfaction, it not always gives clear guidance on the rel-

ative importance of the five values.

The method is a typical application of Artificial Intelligence (AI) techniques. It combines

classification with counting. Classification means to cluster words into notions de-

scribed with these words, omitting subtle differences, and counting means simply to

count how many times they appear in verbatims.

- 40 -

It should be noted that the term AI does not imply any of the concepts related to mind-

fulness, reasoning and understanding that other languages – such as German – con-

nect to the terms derived from the Latin “intellegere”. The Latin origin intellegere means

read, or infer, between the lines, or other objects. Intelligence, in English, has a slightly

other meaning. It is used to describe the activity of collecting data and turn it into

knowledge by counting similarities found in such data. Secret Intelligence Service is

exactly that. Artificial intelligence does not aim for reason, not even inducing appro-

priate behavior. But transfer functions can reveal the possible causes, even the most

likely causes if used with due domain expertise.

We got the following two transfer function matrices:

Figure 2-15: Importance Transfer Function Figure 2-16: Satisfaction Transfer
Function

Car Users' Values

N
P

S
 P

ro
fi

le

F
in

d
 a

 R
o
u
te

K
n
o
w

 A
rr

iv
a
l T

im
e

A
v
o
id

 J
a
m

s

A
v
o
id

 B
lo

c
k
e
rs

D
ri
v
e
 S

a
fe

E
x
p

la
in

e
d

 P
ro

fi
le

y
1

y
2

y
3

y
4

y
5

NPS1 Business People 0.61 6 5 3 5 8 0.58

NPS2 Professionals 0.72 6 6 8 5 9 0.72

NPS3 Leisure 0.33 4 7 1 2 4 0.39

Solution Profile for Car Users' Values: 0.45 0.46 0.38 0.31 0.59 Convergence Gap

0.45 0.45 0.38 0.31 0.59 0.07

79 Total Effort Points

0.15 Convergence Range

0.30 Convergence Limit

Car Users' Values

Importance

Transfer Function

Customer Segments

Car Users' Values

N
P

S
 P

ro
fi

le

F
in

d
 a

 R
o
u
te

K
n
o
w

 A
rr

iv
a
l
T

im
e

A
v
o
id

 J
a
m

s

A
v
o
id

 B
lo

c
k
e
rs

D
ri
v
e
 S

a
fe

E
x
p

la
in

e
d

 P
ro

fi
le

y
1

y
2

y
3

y
4

y
5

0.61 5 2 2 7 0.45

0.72 1 1 9 6 8 0.86

0.33 2 4 2 3 1 0.26

0.23 0.21 0.53 0.47 0.64 Convergence Gap

0.28 0.25 0.46 0.45 0.66 0.23

The value y5: Drive Safe wins again; however, the second rank is not so clear. Obvi-

ously, satisfaction is high with the ability of our Navigator to avoid jams.

Combining importance and satisfaction transfer function profiles for the car users’

values yields:

Figure 2-17: Combining Importance and Satisfaction from the NPS Survey

Im
p

o
rt

a
n

ce

S
a

tis
fa

ct
io

n
 G

a
p

Attributes 5 1 S Weight Profile -0.21

 y1 Find a Route Fast Secure No jams 2.23 0.60 2.83 22% 0.48 0.60 0.57 0.23

y2 Know Arrival Time Reliable Flexible 2.30 0.63 2.93 22% 0.49 0.63 0.60 0.21

y3 Avoid Jams Minimum traffic Fast Predictability 1.89 0.29 2.18 17% 0.37 0.29 0.28 0.53

y4 Avoid Blockers Incidents Events Bad weather 1.56 0.34 1.89 15% 0.32 0.34 0.32 0.47

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 2.95 0.22 3.18 24% 0.54 0.22 0.21 0.64
6 2.2 2.44 0.95 0.64

Car Users' Values

NPS Priority

- 41 -

The Satisfaction Gap is useful as a corrective. The satisfaction gap weights negative

statements exponentially; it thus stretches the importance profile in case of dissatis-

faction. If customers are dissatisfied with an unimportant topic, the satisfaction gap

remains nevertheless small and does not affect the profile (Fehlmann, 2016, p. 117).

In our case, the ranking is almost the same as with the AHP. Since satisfaction has not

been very reliable, looking at the convergence gap, it is considered as a corrective only,

with weights five (5) against one (1), in favor of the importance profile and ranking

(Figure 2-17).

2-5.4 VOICE OF THE CUSTOMER

There exist many more methods to measure the Voice of the Customer (VoC). Among

these are such simple things as voting. We can also draw a vote amongst car users’

what matters to them most, and a possible result could be as shown in Figure 2-18:

Figure 2-18: Sample Vote of Car Users on their Values

V
o

C

In
p

u
t

Car Users' Values Topics Attributes Weight Profile

 y1 Find a Route Fast Secure No jams 111 16% 0.32

y2 Know Arrival Time Reliable Flexible 274 40% 0.79

y3 Avoid Jams Minimum traffic Fast Predictability 149 22% 0.43

y4 Avoid Blockers Incidents Events Bad weather 74 11% 0.21

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 75 11% 0.22347.4 2.0

Combining AHP, NPS, and VoC car users’ profiles yields:

Figure 2-19: Combined Profile from AHP, NPS, and VoC for Car Users’ Values

Q
fd

N
a

v
ig

a
to

rA
h

p
P

ri
o

ri
ty

Q
fd

N
a

v
ig

a
to

rN
p

s
P

ri
o

ri
ty

Q
fd

N
a

v
ig

a
to

rV
o

c
P

ri
o

ri
ty

C
o

m
b

in
e
d

 P
ro

fi
le

Attributes 1 2 1 S Weight Profile

Y.a Target Group A y1 Target 1 Attribute 1.1 Attribute 1.2 Attribute 1.3 0.23 0.64 0.34 1.22 17% 0.30

y2 Target 2 Attribute 2.1 0.82 1.50 0.79 3.11 43% 0.78

Y.b Target Group B y3 Target 3 Attribute 3.1 Attribute 3.2 0.47 1.07 0.45 1.99 28% 0.50
y4 Target 4 Attribute 4.1 Attribute 4.2 Attribute 4.3 0.23 0.43 0.23 0.89 12% 0.221.0 1.0 1.0 4.0 1.8

Targets

Here, in Figure 2-19, the NPS survey has been given double the weight than the AHP

and the VoC, because NPS did ask more people at once than AHP or the VoC survey.

- 42 -

2-5.5 THE USER STORY PROFILE – FUNCTIONAL EFFECTIVENESS

With help of the car users’ profile, the user stories can easily be prioritized by help of

a transfer function. The transfer function for Functional Effectiveness originates from

the data movement map. Do the data movements cover all needs of the customer, as

expressed by the FUR, or user stories?

Functional effectiveness is easily measurable; it simply means assessing which data

movements contribute to what goal target, and then compute the convergence gap. A

software is functionally complete and effective, if the convergence gap closes.

Functional effectiveness has practical value. While missing functionality hints at

missed business values, sometimes functionality is required that does not contribute

to some of the values; maybe other reasons call for it. Then the convergence gap closes

only if those other requirements are part of the value profile.

Figure 2-20: User Stories for the Navigator Application

User Stories Topics As a … I want to … [get something done] such that …[quality characteristic] so that … [value or benefit]

1) Q001 Authentication Car User authenticate myself I can use the Navigator I remain anonymous for the Navigator

2) Q002 Get Route Car User get the fastest route I arrive at the predicted time I can make arrangements for work and leisure

3) Q003 Safe Route Car User arrive safely the predicted driving time remains valid I arrive at the predicted time

4) Q004 Avoid Jams Car User use a route around traffic jams I arrive at the predicted time I can make arrangements for work and leisure

5) Q005 Avoid Storms Car User avoid bad weather conditions I arrive at the predicted time I can make arrangements for work and leisure

6) Q006 Use Routes Car User know my Driving Assistant where to go I can use it without hesitation the Driving Assistant knows where to go

7) Q007 Locate Car User know my position I know where I am the Navigator can calculate travel time

8) Q008 Set route Car User decide which route to take I can exhibit my preferences the car takes my preferred route

9) Q009 Navigate Car User know which direction to go I can rely on my Navigator I reach the destination directly

Thus, the question is interesting in both cases: why some software is functionally ef-

fective or not. In practice, checking for functional effectiveness is a means to detect

both missing functionality and excess functionality; consequently, it is a metric of high

interest for Lean Six Sigma practitioners.

To assess functional effectiveness, it suffices to count how many data movements sup-

port some specific car users’ value. However, such an assessment is not straightfor-

ward; sometimes it can be disputed whether a data movement carries specific im-

portance for one of the car users’ values. Since we use that information later for test

coverage, the importance should be derived from the criticality of proper functioning

of such data movement.

- 43 -

Figure 2-21: Get Route supporting y1: Find a Route

Car User Navigation GIS Maps

16.// Ask for a route

18.// Ask for route

19.// Return possible routes

24.// Show routes

25.// Show travel time

The technique used for identifying such data movements is extracting the user stories

from the data movement map. E.g., from the Navigator map in Figure 2-5, the Q002:

Get Route user story supports the y1: Find a Route value for the car user with the fol-

lowing five data movements shown in Figure 2-21.

Doing that for all combinations of user stories and car users’ values yields the Func-

tional Effectiveness transfer function that again has a convergence gap of 0.05 indicating

that the Navigator application is indeed a valuable implementation of the car users’

need for a valid navigation device.

Figure 2-22: Functional Effectiveness for the Navigator Application

User Stories

G
o

al
 P

ro
fi

le

A
ut

he
nt

ic
at

io
n

G
et

 R
ou

te

S
af

e
R

ou
te

A
vo

id
 J

am
s

A
vo

id
 S

to
rm

s

U
se

 R
ou

te
s

Lo
ca

te

S
et

 r
ou

te

N
av

ig
at

e

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

Q
00

5

Q
00

6

Q
00

7

Q
00

8

Q
00

9

y1 Find a Route 0.41 8 5 5 9 4 2 0.40

y2 Know Arrival Time 0.56 6 5 6 6 2 2 2 8 0.53

y3 Avoid Jams 0.37 3 6 5 4 4 3 0.38

y4 Avoid Blockers 0.41 3 6 4 5 4 4 0.38

y5 Drive Safe 0.47 3 6 7 5 5 5 5 0.52

Solution Profile for User Stories: 0.19 0.31 0.42 0.42 0.32 0.25 0.42 0.21 0.36 Convergence Gap

0.19 0.32 0.42 0.41 0.32 0.26 0.42 0.21 0.36 0.06

157 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Car Users' Values
Deployment Combinator

Car Users' Values

The cells in the functional effectiveness transfer function (Figure 2-22) count the num-

ber of data movements supporting each of the car users’ values. Since the application

has 36 CFP only but the total count – called Effort Points – is 157, it is obvious that

many data movements support more than just one of the five car users’ values. This

is a sort of classification we need for later applying AI to automate testing.

- 44 -

Functional effectiveness proves that the software is meeting exactly customer needs

and expectations; however, it is not always possible to close the convergence gap.

However, if not, there is a risk of not providing enough functionality, or excess func-

tionality that is expensive to test but has no value for the customer.

2-5.6 TEST COVERAGE FOR THE NAVIGATOR APPLICATION

Creating test stories covering the user stories for the Navigator application is rather

straightforward, based on the few user stories selected to fit into a book.

Figure 2-23: Thirteen Test Stories for the Navigator Application

Test Story Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A Identity A.1 Session Key A.1.1 {User in good standing, User known} Session key issued A.1.2 {User didn't pay, User known} Session key denied

A.2 Session Ends A.2.1 {Session key valid} Session key revoked A.2.2 {Session Timeout} Session key revoked

A.3 User Identity A.3.1 {Match session key with user data} No match A.3.2 {Login user twice} Session Key issued

B Routing B.1 Destination B.1.1 {Valid destination} Route proposed B.1.2 {Invalid destination} Destination rejected

B.3 Shortest B.3.1 {No obstacles, route is free, weather fair} Shortest route proposed B.3.2 {Traffic jam detected} Bypass proposed

B.4 Safest B.4.1 {No obstacles, route is free, weather fair} Avoids populated areas B.4.2 {Bypass proposed} Avoids populated areas

B.5 Obstacle B.5.1 {Build-up of traffic jam} Alert! B.5.2 {Storm detected} Alert!

B.6 Alternate B.6.1 {Alternate route recommended} Alternative proposed B.6.2 {No alternative available} Inform

B.7 Incident B.7.1 {Sudden traffic obstacle} Alert! B.7.2 {Incidence ahead} Ask destination

B.8 Select B.8.1 {Proposed routes, travel times, alerts} Ordered proposals B.8.2 {Select route} Show chosen travel time

C Navigate C.1 Direction C.1.1 {Arriving at crossing} Show direction C.1.2 {Traffic jam detected} Alert!

C.2 Track C.2.1 {On map} Show position C.2.2 {Lost GPS} Alert!

Test Cases

Figure 2-24: Thirteen Test Stories for the Navigator Application (cont.)

Test Story

A Identity A.1 Session Key

A.2 Session Ends

A.3 User Identity

B Routing B.1 Destination

B.3 Shortest

B.4 Safest

B.5 Obstacle

B.6 Alternate

B.7 Incident

B.8 Select

C Navigate C.1 Direction

C.2 Track

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {User unknown} User redirected A.1.4 {Switch on} Show map & position

A.2.3 {Try credentials more than 3 times} Session key denied A.2.4 {Switch off} Route deleted

A.3.3 {Exchange session key} Session ends A.3.4 {2nd session} Both continue A.3.5 {User credentials, Get Location} blocked

B.1.3 {Match List, Completed Entry} Valid destination B.1.4 {Session expired} Get new session key

B.3.3 {Storm detected} Bypass proposed

B.4.3 {User preference} According preferences

B.7.3 {Incident, Request driving track} Activity track

B.8.3 {Select route} Show on map

C.1.3 {Destination not set} Show map only

C.2.3 {User track} No user found C.2.4 {Switch off} Revoke session key

For instance, the four test cases for test story B.1: Destination are:

• B.1.1: {Valid destination} → Route proposed

• B.1.2: {Invalid destination} → Destination rejected

• B.1.3: {Match List, Completed Entry} → Valid destination

- 45 -

• B.1.4: {Session expired} → Get new session key

The third case refers to an entry completed by matching destinations from a list. The

corresponding data movement maps are:

Figure 2-25: Test Case B.1.1: {Valid destination} → Route proposed

Car User Navigation Users GIS Maps Weather Service Traffic Service

7.// Get session key

16.// Enter destination

18.// Ask for route

19.// Return possible routes

20.// Ask for weather forecast

21.// Return weather forecast

22.// Ask for traffic density

23.// Return traffic density

24.// Show routes

25.// Show travel time

Figure 2-26: Test Case B.1.2 Figure 2-27: Test Case B.1.3

Car User Navigation GIS Maps

16.// Enter destination

18.// Ask for route

24.// Show routes

Car User Navigation GIS Maps

16.// Enter destination

19.// Return possible routes

We visualize test flow by letting a Data Walker walk data movements, for instance in

Figure 2-25, and count how many bugs he encounters; he’s allowed to count only one

bug per data movement and test story. Thus, he classifies data movements into those

executing a test story correct, and those moving faulty data. This rule limits the total

number of defects within an application that can be found by testing.

The two smaller test cases use only a part of the data movements needed to propose a

route. The last one (B.1.3) tests a part of the process of entering a destination. Entering

a destination shall be made easy by completing partial entries of a destination’s name.

For instance, you can enter the two or three initial characters of a valid destination and

press the Enter key – or close entering data by any means suitable for the input device

used – and the system will select the unique match from a list of valid destinations

known to the GIS Maps application or, for more than one match, propose selecting

- 46 -

from all valid matches. This ease-of-use functionality is considered part of “all that is

needed to complete the ‘16) Enter destination’ data movement”. Our data walker on

Figure 2-25 has just left this data movements, after checking with 7) Get session key,

continuing on 18) Ask for route searching for defects.

Consequently, it is possible to count all data movements that belong to test story B.1:

Destination. The total count is 50 – the sum of its column in Figure 2-28; however, only

14 of these data movements aim at user story Q002: Get Route. These 14 data move-

ments are those shown in Figure 2-25 except 7) Get session key.

The resulting test coverage matrix in Figure 2-28 has a favorable convergence gap of

0.12.

Figure 2-28: Test Coverage Transfer Function Showing Good Test Coverage

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

S
es

si
on

 K
ey

S
es

si
on

 E
nd

s

U
se

r
Id

en
tit

y

D
es

tin
at

io
n

S
ho

rt
es

t

S
af

es
t

O
bs

ta
cl

e

A
lte

rn
at

e

In
ci

de
nt

S
el

ec
t

D
ire

ct
io

n

T
ra

ck

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 A

.3

4)
 B

.1

5)
 B

.3

6)
 B

.4

7)
 B

.5

8)
 B

.6

9)
 B

.7

10
)

B
.8

11
)

C
.1

12
)

C
.2

Q001 Authentication 0.19 11 12 30 6 4 4 3 0.14

Q002 Get Route 0.31 1 15 7 9 6 9 1 11 4 1 0.22

Q003 Safe Route 0.42 1 3 4 13 13 10 16 12 11 19 17 7 0.45

Q004 Avoid Jams 0.42 3 4 6 8 14 11 11 11 15 14 18 8 0.42

Q005 Avoid Storms 0.32 3 4 6 8 12 11 10 7 11 12 13 8 0.35

Q006 Use Routes 0.25 1 8 8 9 7 9 8 11 9 3 0.26

Q007 Locate 0.42 8 6 16 8 10 15 4 8 8 17 12 11 0.38

Q008 Set route 0.21 1 5 8 9 7 9 8 10 9 3 0.25

Q009 Navigate 0.36 3 7 6 17 6 19 9 25 9 0.38

Ideal Profile for Test Stories: 0.08 0.10 0.19 0.26 0.31 0.31 0.31 0.27 0.34 0.40 0.44 0.21 Convergence Gap

0.09 0.11 0.21 0.27 0.31 0.32 0.31 0.27 0.33 0.41 0.43 0.2 0.12

854 Total Test Size

0.15 Convergence Range

0.25 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Again, the cells of the matrix contain the frequency of executing data movements by

the test stories. We use the knowledge from Functional Effectiveness for assigning data

movements to user stories in the row of the matrix.

Thus, the test coverage matrix results from the selected test cases automatically; no

further assessment of data movements is needed.

Real-world test coverage matrices have the dimensions of the number of user stories:

a few hundred up to thousands, and test stories typically even more than user stories.

- 47 -

Automatically generated test coverage matrices, measured with the convergence gap,

are indeed indispensable for making the approach feasible and attractive.

Real-world applications also have a few hundreds to several thousand CFP functional

size; thus, without machine-collectable data, and automated testing, test metrics re-

main theoretical stuff.

The test statistics for our Navigator application looks as follows:

Figure 2-29: Test Status Summary for Navigator

Total CFP: 36 Test Size in CFP: 854

Test Intensity: 23.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

2-5.7 KEY FIGURES FOR TESTING

The total Test Size depends from the number of test stories in place, as typically every

data movement is tested several times in view of other FUR, or user stories. It counts

how many data movements are executed by test cases, in total.

The Test Intensity tells how many times in average. This is test size divided by func-

tional size; its dimension is the ration between functional size, in CFP, and test size,

also in CFP. Thus, it is dimensionless.

The percentage of data movements covered by tests is what used to be called Test

Coverage; however, test coverage is a matrix, not a key figure. The key figure that mat-

ters indicates Data Movements Covered; it is in memory of the traditional Code Lines

Covered by tests that is still in use with testers, although it is not a metric and mean-

ingless for cloud services.

In any case, Defect Density should be zero for safety-critical software, or near to zero

in all other cases. Real-world applications are likely not to remain without defects;

nevertheless, users would dearly like to know how many. Statistical methods exist to

predict the residual defect density after the testing process; nevertheless, predictions

are not actual measurements. The important point with defect density measured by

COSMIC according ISO/IEC 19651 is, that the total number of possible defects is

known, considering that defects count only once per data movement and per test

story.

Consequently, it is well known when a software is so buggy that every data movement

is faulty; also, if it passed all tests without a single bug detected. However, even in this

favorable case, adding more test stories might result in detecting previously unde-

tected bugs. Because of the test coverage transfer function, this is likely to cause more

user stories to appear; that is, new functionality added to a software causes new

- 48 -

defects to appear, even in well-tested code. This is the reality developers experience;

users and customers rather find it difficult to understand why their need for such

functionality has not been detected much earlier.

However, key figures are not here to express feelings, or frustration. They shall reflect

the reality, and for this reason we need to say goodbye to the familiar pseudo-metrics

used in software testing, still declared as best practices nowadays, see (ISTQB, 2011)

& (ISTQB, 2014).

2-5.8 DEMING CHAIN OVERVIEW FOR TESTING

The most important precondition for automated testing is to know the goals of testing.

Without the goals there is no way to help a robot or algorithm to decide whether it

does the right kind of testing.

The following Deming Chain might serve as graphical overview for the method used:

Figure 2-30: Deming for Tests

CN → VoC

Voice of the
Customer (VoC)

Decision

User Stories
(USt)

TSt→ USt

Realization

Customer Needs
(CN)

USt → CN

#CFP

#NPS, #AHP

Functional Effectiveness Test Coverage

Test Stories

(TSt)

#CFP

2-5.9 AUTONOMOUS REAL-TIME TESTING FOR THE NAVIGATOR?

There is not much interaction of the navigator with the real world. GPS delivers the

location on a map, but the map is not maintained by the Navigator application. The

map changes over time; also, road construction sites impose new obstacles, but all this

is not done within the navigation device. Therefore, there is little to test after release,

and nothing that cannot be tested when releasing updates.

- 49 -

Safety by a navigation device is not a big concern. Privacy is somewhat more chal-

lenged: while tracking cars is important for the Traffic Services application for predict-

ing jams and detecting obstacles, such tracks should remain anonymous. Identifying

car users might be useful for personalized advertisement based on the geographical

location; however, for this navigation services is less useful than other devices such as

a smartphone that can point its user immediately to shops and attractions. It is there-

fore safe to assume that privacy violations by navigation devices is rather limited and

not subject to change over time.

Nevertheless, privacy checks during the operating lifetime of a navigation system may

at least prove the validity of such an assumption.

2-6 CONCLUSION

Test metrics are of low interest for consumers that do not care for any risk connected

to software. The Navigator is an example of an interconnected software-intense system

that has no immediate need for more testing after released to the public. Even real-

world larger-size systems with more than just skeleton functionality do not pose

threats to safety, and rather few for privacy. Sharing routes taken, after all, is what

most people gladly do without hesitation.

Nevertheless, under certain special conditions people do not like to share location and

routing to everyone. In this case, privacy protection might become essential even for

a simple navigation service.

The need for consumers to understand how well their privacy is protected exists even

for such harmless services, and if consumers do not care, then it is because they fail to

understand the impact of big data and the ability of AI-driven software to steal their

privacy.

The fourth chapter exhibits a general proposal how privacy protect, and safety risk

exposer, shall be made visible to the public. However, before that we look at the Inter-

net of Things (IoT) requiring ART.

- 51 -

CHAPTER 3: TESTING THE

INTERNET OF THINGS
The Internet of Things (IoT) has become very famous recently and a break-

through is expected when the new 5G standards in mobile internet coverage

become widespread. Testing the IoT meets the challenge that the system under

test is unstable; simply, because it is extensible. You can always add another

intelligent thing to the IoT concert and expand the system.

How do you test expandable software systems?

3-1 INTRODUCTION

Combinatory Algebra (Engeler (Engeler, 1995)) is the mathematical theory of choice for

automatically extending test cases from a simpler, restricted system, to test stories that

fully cover a larger, expanded system. The extension works only if software testing

not only is automated but measured. Metrics must be independent from current im-

plementation and from actual system boundaries.

Metrics for testing are based on the international standard ISO/IEC 19761 COSMIC.

3-1.1 METHODOLOGY

Figure 3-1 shows a Data Movement Map (Fehlmann, 2016) for a simple data retrieval

application, with a total functional size of 5 CFP according ISO/IEC 19761 COSMIC

(ISO/IEC 19761:2019, 2019).

Figure 3-1. A Data Movement Map for Data Retrieval

User Search Process Database

1.// Search Criteria

Trigger

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message

- 52 -

The map identifies objects of interest – here a user device, a functional process for

search, and a persistent data object – and the data movements (or UML messages)

between them. The data movements’ count represents the functional size of an appli-

cation. The number of data movements moving a unique data group determines func-

tional size in COSMIC Function Points (CFP). The exact conditions when and how to

count data movements according ISO/IEC 19761 is documented in the COSMIC

measurement manual (COSMIC Measurement Practices Committee, 2017).

3-1.2 REAL-TIME TESTING

Real-time testing is the process of testing real-time systems and its software (Ebner

(Ebner, 2004)). Real-time does not mean anytime, but it means in limited time within

a freely selectable and adjustable time frame.

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose

computational power is Turing-complete, i.e., all programs that are executable by

computers can be modeled. This guarantees the best achievable test coverage.

With combinatory algebra, test cases extend from real-time tests, covering a base sys-

tem, to the actual, expanded system.

3-1.3 AUTONOMOUS TESTING

Autonomous testing is automated testing; however, without the need of simultaneous

presence of a responsible test manager, or tester. The system executes tests autono-

mously, by connecting to some test case database, downloading the test cases as

needed, executing the tests, and recording responses.

This requires the software be equipped with test stubs capable of accessing the test

case database, and able to supply test data instead of a user device, or another appli-

cation that accesses the system under test.

Test stubs can be present in any object; however, most test stubs reside in device and

application objects. Such a system of test stubs replacing actual sensors, actuators and

other hardware-in-the-loop are called Digital Twins. A Digital twin refers to a digital

replica of potential and actual physical assets (physical twin), processes, people,

places, systems and devices that can be used for various purposes. For a recent dis-

cussion of digital twin’s technology, see El Saddik (El Saddik, 2018).

- 53 -

3-2 TESTING THE INTERNET OF THINGS (IOT)

The Internet of Things is a collection of sensors, actuators, and services that connect

these hardware elements to software that reacts on events or collects data for further

analysis. Such services are often hosted in some cloud, and the term Web of Things

commonly refers to this. The IoT impacts the physical world over actuators, such as

motors, locks, braking and steering controls.

The IoT changes scope and behavior with every sensor added or removed. Autono-

mous cars are a relatively simple example of an IoT since within a container; as soon

as they start talking to each other, for instance to find out where the other approaching

car is heading to, the scope of the IoT is changing. Smart homes are intrinsically more

complex since they are subject to external controls such as power plants optimizing

the power supply over time.

Most IoT components remain small and tiny and have no great complexity by them-

selves. A temperature sensor reports actual temperatures on a continuous but limited

scale; an actuator might lock doors or continuously dim light as needed. Their state is

relatively easy to describe by terms over the physical world, called Assertions. Asser-

tions describe test cases and test responses. This is an immediate application of com-

binatory logic.

Test cases have the structure of arrow terms. The arrow terms represent tests; in 𝑎𝑖 →

𝑏, the 𝑎𝑖 describe the test data and 𝑏 the test response. Responses can be as simple as

the amount of impact on the actuators in an IoT orchestra.

The necessity for test cases produced automatically in IoT is apparent. There are no

testers present when users connect a new sensor to their smart home network, or two

autonomous cars meet each other for the first time. Behavior of the newly connected

system still must remain safe.

3-2.1 A SIMPLE IOT TESTING CASE

The mechanism in place are shown with a simplified IoT network. Consider a simple

data retrieval application. The application meets two functional (FUR) and two non-

functional (NFR) requirements with the following goal profile. The requirements and

their profile represent Customer Needs, found by suitable Voice of the Customer tech-

niques, see Figure 3-3. For our sample IoT application, we call them IoT Needs.

- 54 -

Figure 3-2: Analytic Hierarchy Process for IoT Needs

E
xt

en
si

bl
e

O
pe

n

R
el

ia
bl

e

F
as

t

IoT Needs y1 y2 y3 y4 Weight

y1 Extensible 1 2 1/2 6 28% 2 0.53

y2 Open 1/2 1 1/3 9 24% 3 0.45

y3 Reliable 2 3 1 1 36% 1 0.68

y4 Fast 1/6 1/9 1 1 12% 4 0.22

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

For an explanation of the Analytic Hierarchy Process (AHP) and the tool used here to

calculate, see (Fehlmann, 2016) or the original literature, e.g. (Saaty, 2003)

Figure 3-3: IoT Needs Priority Profile

IoT Needs Topics Attributes Weight Profile

FUR y1 Extensible Easy to extend IoT Device independent Flexible 28% 0.53

y2 Open Open Source Open Interfaces 24% 0.45

NFR y3 Reliable Always correct Always secure Safe 36% 0.68

y4 Fast No waiting 12% 0.221.9

AHP Priorities

Only three user stories are needed to cover these requirements:

Figure 3-4: User Stories covering IoT Needs

User Stories Topics As a … [functional user] I want to … [get something done] such that …[quality characteristic] so that … [value or benefit]

1) Q001 Search Data Search Data App User find data matching my search criteria It's attractive I know when data exists

2) Q002 Answer Questions Search Data App User know whether some data exists answers are correct I know when data doesn't exist

3) Q003 Keep Data Safe Search Data App User make sure my data is safe it cannot be deleted I can retrieve it if necessary

For user stories, we use the four-tailored Fagg & Rule form, see (Fehlmann, 2016, p.

158). The data movement map in Figure 3-1 with five data movements implements

these three user stories.

This yields the following priorities for user stories, see Figure 3-5:

Figure 3-5: User Stories’ Priority Profile for Simple Data Retrieval

User Stories Topics

1) Q001 Search Data

2) Q002 Answer Questions

3) Q003 Keep Data Safe

Weight Profile

32% 0.55

40% 0.68

29% 0.49

Priority

This profile is found at the bottom of the following transfer function (Figure 3-6) that

computes functional effectiveness with these five data movements yields:

- 55 -

Figure 3-6. IoT Needs Coverage by Data Movements

User Stories

G
o

al
 P

ro
fi

le

S
ea

rc
h

D
at

a

A
ns

w
er

 Q
ue

st
io

ns

K
ee

p
D

at
a

S
af

e

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

y1 Extensible 0.53 3 1 1 0.50

y2 Open 0.45 4 0.48

y3 Reliable 0.68 2 2 3 0.70

y4 Fast 0.22 1 1 0.18

Solution Profile for User Stories: 0.55 0.68 0.49 Convergence Gap

0.57 0.66 0.50 0.06

18 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

IoT Needs
Deployment Combinator

IoT Needs

The priority profile reflects the number of data movements needed in the software to

cope with the user requirements expressed in user stories.

The user stories priority profile is a consequence of the customer needs profile in Fig-

ure 3-3. The total functional size according ISO/IEC 19761 COSMIC is 5 CFP, i.e., six

data movements only; thus, this is a very small and simple application. The user sto-

ries’ profile reflects IoT Needs as shown in Figure 3-3 by transfer functions (see section

2-3: A Short Primer on Six Sigma Transfer Functions). User stories’ priority profile is

calculated by counting the number of data movements needed per user story to meet

the IoT Needs’ priority profile.

The test stories in turn are simple. Basically, the tests verify that data is kept safe and

not altered when reading. Moreover, an invalid search string – whatever that means

– is rejected and not used for searching the database. Missing data is shown as not

available in the database, and repeatedly entering the same equation returns identical

answers.

Figure 3-7: Test Stories with first Test Cases

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Case 1 Test Data Expected Response

A.1.1 {Search String; Valid} Return (known) answer

A.2.1 {Search String; Valid; No Search Result} No response available

B.1.1 {Search String; Valid} Correct responses

B.2.1 {Query; Repeated} Return identical Answer

Instead of full test case assertions we use an abbreviated form that just indicated what

test data should be specified here. Data can be specified as anything that matches a

predicate such as 𝑥 < 𝑏, or 𝑎 < 𝑥 < 𝑏. In view of section 1-2.2: A Representation for the

- 56 -

World of Tests care must be taken that in order to execute any such test, a mechanism

must exist that selects an appropriate test data sample 𝑥; once more explaining why

computer scientists must master intuitionistic mathematics, not traditional analysis.

Every programmer knows how much can go wrong with such test data predicates

that do not exactly specify how to pick an appropriate sample for executing the test.

The remaining test cases, for two of the test stories are shown in Figure 3-8

Figure 3-8: Test Stories with remaining three Test Cases

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Case 2 Test Data Expected Response Case 3 Test Data Expected Response

A.1.2 {Combined Query; Valid} Return (new) answer A.1.3 {Combined Query; Invalid} No response available

B.1.2 {Search String; Invalid} Invalid search string

The data movements executed for the first test case of the first test story A.1.1

A. 1.1: {Search String; Valid} → Return (known) answer

consists of the first three data movements:

Figure 3-9: Test Case A.1.1

User Search Process Database

1.// Search Criteria

2.// Get Result

3.// Show Result

Thus, its test size is three. Moreover, the User device needs test stubs allowing him to

get pairs of combined queries and known answers to execute this test case.

In general, every device object in a data movement map needs the ability to access test

data and expected responses for executing tests. Some functional and data processes

might need this as well, depending upon which test stories are defined. This is an

additional task that developers must accomplish when making their software fit for

ART.

Completing the count for test sizes across all seven test cases yields the test coverage

matrix (Figure 3-10):

- 57 -

Figure 3-10. Test Coverage for Simple Data Retrieval Application

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

R
et

rie
ve

 R
es

po
ns

es

D
et

ec
t

M
is

si
ng

 D
at

a

V
al

id
at

e
R

es
po

ns
es

D
at

a
S

ta
ys

 U
nt

ou
ch

ed

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

Q001 Search Data 0.55 6 1 4 3 0.53

Q002 Answer Questions 0.68 7 2 3 4 0.60

Q003 Keep Data Safe 0.49 7 2 3 4 0.60

Ideal Profile for Test Stories: 0.79 0.20 0.39 0.43 Convergence Gap

0.79 0.2 0.39 0.4 0.13

46 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

The test coverage transfer function in Figure 3-10 is defined by the number of data

movements in a test story delivering user stories. Coverage is fine with a convergence

gap of 0.13 in this transfer function, the total number of tested data movements per

cell never exceeds seven. Total test size is 46, for a functional size of 5. Better conver-

gence gaps are difficult to reach because of the small numbers.

3-2.2 CONNECTING IOT DEVICES TO THE DATABASE

Connecting IoT devices to a simple data retrieval application adds not only a contin-

uous flow of searchable data but also considerable complexity. By adding one type of

sensor and one type of actuator, the functional size almost triples and becomes 21 CFP.

Security and safety risks increase with every data movement added to the IoT concert,

as they can be misused or hacked, or cause unwanted and unsafe behavior.

- 58 -

Figure 3-11: IoT Concert After Adding a Sensor and an Actuator

User Search Process Database Sensor Data Collection Actuator Response

1.// Search Criteria

Search

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message

6.// Enable Sensors

Sensors

7.// Switch Sensor on

8.// Sensor Data

9.// Data Recording

10.// Sensor Statistics

11.// Dashboard

12.// Enable Actuators

Actuators

13.// Switch Actuators on

14.// Read Sensor Data

15.// Calculate Response

16.// Acknowledge Task

17.// Error Message

18.// Record Task

19.// Task Statistics

20.// Dashboard

21.// Error Messages

3-2.2.1 ADDING MORE DATA MOVEMENTS

In practice, adding an IoT device goes with little or no programming. The additional

devices come with software already prepared and use standard interfaces to connect

with the database in our simple search module.

Nevertheless, there are a couple of new objects that require test stubs, making it obvi-

ous that ART is not something already there yet. Software suppliers need to cooperate

to prepare their pieces for ART. In Figure 3-11, both the Sensor and the Actuator need

such test stubs.

For the purpose of demonstrating ART, we keep the number of user stories and con-

sequently of test stories, thus concentrating still on the same requirements while ig-

noring any additional requirements that could govern the use of sensors and actua-

tors. Consequently, actuators and sensors will not be tested, as is probably realistic

- 59 -

since we buy products ready for plug-in. If the application domain is rather safety-

critical, such an assumption is potentially dangerous.

Functional effectiveness for the IoT concert is now expected to change (Figure 3-12),

while the user stories and their profile remain. There are now many more data move-

ments that impact user stories. Basically, these are the Read and Writes to the Database

from both the functional processes that manage the sensor and the actuator. Note that

the Actuator also records the tasks it performs, adding more data than just sensor data

to the database.

Figure 3-12: Functional Effectiveness after Adding an IoT Concert

User Stories

G
o

al
 P

ro
fi

le

S
ea

rc
h

D
at

a

A
ns

w
er

 Q
ue

st
io

ns

K
ee

p
D

at
a

S
af

e

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3
y1 Extensible 0.53 8 11 9 0.52

y2 Open 0.45 7 10 5 0.40

y3 Reliable 0.68 10 13 16 0.72

y4 Fast 0.22 5 4 4 0.23

Solution Profile for User Stories: 0.48 0.63 0.60 Convergence Gap

0.49 0.64 0.60 0.06

102 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

IoT Needs
Deployment Combinator

IoT Needs

Since the user stories remain unchanged, the only interest is in verifying extensibility,

openness, reliability, and access speed of the data already existing, or stored by the

new sensor and the new actuator in the data base.

The IoT Needs deployment combinator for the full IoT data retrieval concert now takes

more data movements into consideration, and consequently the user stories’ profile

changes (Figure 3-13).

The goal profile for IoT Needs remains the same – not necessarily in all cases; however,

no additional IoT Needs arise in this context with the full IoT concert, because it still

does data retrieval, see Figure 3-13:

Figure 3-13. User Stories’ Priority Profile for Full IoT Concert

User Stories Topics

1) Q001 Search Data

2) Q002 Answer Questions

3) Q003 Keep Data Safe

Weight Profile

28% 0.48

37% 0.63

35% 0.60

- 60 -

3-2.2.2 EXTENDING TEST CASES

Functional size increases from 5 CFP (Figure 3-1) to 21 CFP (Figure 3-11) because of

the added sensor and actuator and their respective functional processes for sensor

data collection and for creating a response through the actuator. Also, user stories re-

main the same, although data now refers not to static but to dynamic data and the

priority profile now changes towards higher importance for Q003: Keep Data Safe. Test

stories too remain the same but must cover many more data movements between de-

vices, database, sensors, and actuators. Consequently, the IoT Needs profile (Figure

3-3) remains valid while the user stories’ priority profile (Figure 3-5) changes after

connecting the database to the IoT concert. Figure 3-5 transforms into Figure 3-13 with

more focus on Q003: Keep Data Safe.

Figure 3-14: Extended Test Cases for the Full IoT Concert

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A.1.1 {Enter valid Search String} Return (known) answer A.1.2 {Combined Query; Valid} Return (new) answer

A.2.1 {Search String; Valid; No Search Result} No response available A.2.2 {Sensor Off} No data available

B.1.1 {Search String; Valid} Correct responses B.1.2 {Search String; Invalid} Invalid search string

B.2.1 {Query; Repeated} Return identical Answer B.2.2 {Transmission Interference} Data Rejected

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {Combined Query; Invalid} No response available A.1.4 {Sensor Readings} Retrieved in Database A.1.5 {Transmission Error} No Data available

A.2.3 {Sensor Off} Dashboard Indication A.2.4 {Actuator Off} Dashboard Indication A.2.5 {Invalid Actuator Data} No Action

B.1.3 {Actuator Set} Actuator does it

B.2.3 {Transmission Interference} Dashboard Indication B.2.4 {Actuator Off} Dashboard Indication

Case 6 Test Data Expected Response Case 7 Test Data Expected Response Case 8 Test Data Expected Response

A.1.6 {Actuator Enabled} Dashboard Indication A.1.7 {Actuator Off} No Action A.1.8 {Actuator Response} Stored in Database

A.2.6 {Invalid Actuator Data} Dashboard indication

Consequently, test cases increase in number. For instance, to keep data safe (Q003:

Keep Data Safe), data transmissions to sensors and actuators must be tested against loss

of data, or data transmission interference, e.g., by hackers. This increases test size but

not the number of test stories.

Because of adding sensor and actuator, the number of test cases increases by all the

new combinations of reading and writing into the database. Additional test cases be-

come necessary to test these assertions, such as test case A.1.4:

A. 1.4: {Sensor Readings} → Retrieved in Database

The corresponding test case uses the following data movements:

- 61 -

Figure 3-15: Test Case A.1.4

User Database Sensor Data Collection

6.// Enable Sensors

7.// Switch Sensor on

8.// Sensor Data

9.// Data Recording

10.// Sensor Statistics

11.// Dashboard

The resulting test coverage (Figure 3-16) remains like Figure 3-10 although test size

increases considerably. This means that many more data movements are now under

test; however, with the same test stories. The knowledge for testing the IoT is inherited

from the original tests for the simple data retrieval test scenario.

Figure 3-16. Test Coverage for Full IoT Concert

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

R
et

rie
ve

 R
es

po
ns

es

D
et

ec
t

M
is

si
ng

 D
at

a

V
al

id
at

e
R

es
po

ns
es

D
at

a
S

ta
ys

 U
nt

ou
ch

ed

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

Q001 Search Data 0.48 32 15 10 12 0.53

Q002 Answer Questions 0.63 41 17 9 14 0.65

Q003 Keep Data Safe 0.60 34 15 7 11 0.54

Ideal Profile for Test Stories: 0.85 0.37 0.21 0.30 Convergence Gap

0.86 0.37 0.2 0.3 0.08

217 Total Test Size

0.10 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Clearly, both transfer functions for both test coverages remain within a safe Rule Set

Radius. Adding more types of IoT devices causes the cell counts grown in the test cov-

erage matrix while the convergence gap remains within the rule set radius limits

thanks to additional test cases. This is what combinatory logic predicts. Thus, the orig-

inal data retrieval application test serves as a model for the full IoT test. Only one rule

set has been applied so far: (𝑥3 → 𝑦)3, representing the transfer function for test cov-

erage (Figure 3-16).

If the IoT concert covers more user stories, say , then this becomes (𝑥3 → 𝑦)𝑗; what in

turn most likely requires 𝑖 more test stories: (𝑥𝑖 → 𝑦)𝑗. The importance of the original

three test stories changes between the data retrieval application and the full IoT con-

cert, like seen in Figure 3-5 and Figure 3-13.

- 62 -

Table 3-17. Test Priority Change when Adding Full IoT Concert

 Data Retrieval Full IoT Concert

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Weight Profile

44% 0.79

11% 0.20

21% 0.39

24% 0.43
1.81

Weight Profile

49% 0.85

22% 0.37

12% 0.21

17% 0.30
1.73

Main focus remained on A.1: Retrieve Responses but secondary changed from B.2: Data

Stays Untouched to A.2: Detect Missing Data. This reflects the addition of tests that de-

tects the failure of writing data from sensor or actuator into the database. This reflects

the additional effort that is required to protect data movements between sensors and

database from interferences, e.g., data loss or even privacy violations, reflecting the

higher focus on Q003: Keep Data Safe,

The following table (Table 3-18) shows a comparison of test sizes between the original

data retrieval application test, and the full IoT concert test.

Table 3-18. Data Retrieval Test Size vs. IoT Test Size

Data Retrieval Full IoT Concert

Test Size in CFP: 46

Test Intensity: 9.2

Defect Density: 40.0%

Data Movements Covered: 100%

Test Size in CFP: 217

Test Intensity: 10.3

Defect Density: 19.0%

Data Movements Covered: 100%

The key indicator for tests is the Test Intensity, the ratio between Test Size and Func-

tional Size. Defect Size in turn is the percentage of defective data movements in the

software. Size measurements follow the international standard ISO/IEC 19761 COS-

MIC (ISO/IEC 19761:2019, 2019). There are no limits for neither functional size nor

test size.

3-2.3 AUTOMATED TEST CASE GENERATION

Thanks to the test priority goal profile, derived from the original IoT Needs and car-

ried through user stories to test stories, it is possible to generate test cases automati-

cally. The convergences gap serves as the heuristics which test cases to add to the test.

The principle behind artificial intelligence are heuristics; i.e., metrics telling which

search branches to follow and which to avoid.

Because of the heuristics, artificial intelligence adds only test cases that pertain to the

functionality of the implemented user stories, notwithstanding whether the IoT con-

cert now features additional but untested functionality. The data retrieval approach

does not cover additional requirements that might come with the IoT concert, such as

in a smart house, whether window stores close when the sun is shining strong, or

- 63 -

when it is necessary to avoid car collisions. The model extends, for instance, from the

simple, well-controllable and well-tested application to something more sophisticated

such as a smart home, or autonomous cars. Then, combinatory logic extends the test

suite from the original model to the full-blown system.

3-3 CONCLUSIONS AND NEXT STEPS

Automated testing is a must for IoT systems, especially for autonomous cars. But au-

tomation is not enough. Autonomous testing means that new test cases are generated

when software is updated or cloud services change. This requires a sound theory how

to generate test cases and intelligence for selecting the relevant test cases for test exe-

cution.

The time for actual testing can be very small. For instance, in case of an encounter with

another car from a different manufacturer that wants to connect and whose behavior

is hardly predictable, testing time allowance might be reduced to a few milliseconds.

We demonstrated with an example how testing scenarios carry over from simple ap-

plications to complex IoT concerts, using the original test cases as testing patterns for

automatically extending the test to the full IoT application. Using combinatory logic,

testing scenarios designed for the original model carry over to its extended IoT imple-

mentation, and this is already an important saving, enabling safe IoT concertation.

Combinatory logic paves the way to testing complex IoT concerts and networked sys-

tems, based on the solid ground of existing testing experiences. The quality of testing

can be maintained even after moving to automated testing. For testing the IoT, this

approach offers significant savings; however, the full potential of combinatory logic

in organizing knowledge is significantly greater.

Adding more “things” to that system requires additional testing that prove safety and

security, other qualities, and functionalities of the expanded system. Such systems,

serving as proof of concept, seem within easy reach for the currently available tools

and can be used to study the legal basis for future, even more intelligent and autono-

mous things.

- 65 -

CHAPTER 4: TESTING PRIVACY

PROTECTION AND SAFETY RISKS
Privacy protection has become a major concern since we noticed that Google

always knows where we are – because of the location services switched on in

our Smartphones. And because we find it so attractive to know where we are,

to see which restaurants are open around us, what they offer, and investiga te

the shops’ offers already before visiting them.

Maybe all this loss of privacy is not indispensable but who cares? On social

media, we give even more insights in all aspects of our private life, and we

know that a dozen characteristics are enough to match a person’s identity even

without the consent of people to disclose their names.

Unfortunately, privacy protection has more than just luxury. If softwar e-

intense products become popular, it is easy to use them for stealing relevant

information, concerning money, property, or simply turn such products into a

threat for your health or even life.

Privacy protection and safety risk assessment by Autonomous Real-time

Testing (ART) is much more than just luxury. It is the foundation of digitali-

zation. Or, what do you think will happen after the first incidence of the sort

that your smartphone threatens you with causing an accident by misguiding

your car? Unless you pay immediately some ransom fee? By bitcoin? Unfortu-

nately, you downloaded a new, cool, app that tells your car’s Advanced Driv-

ing Assistance System (ADAS) where to go…according your preferences, they

said…

4-1 INTRODUCTION

While test intensity certainly is important, it is not a consumer metrics by itself. Con-

sumers value more to know the degree of protection against perceived dangers.

Among them, physical safety matters most when sitting in an autonomous vehicle,

but privacy is another major concern. Not only is it sometimes not convenient if the

public knows where the car was directed, but other aspects of privacy might be

equally important. For instance, who overhears private conversations in a car? Who

has access to the credit card used to refuel the car, or reload batteries? Some might be

worried of hackers that might gain control over the car (Andy Greenberg, 2015).

- 66 -

Privacy protection is not a new requirement. For centuries, privacy was easy to protect

but hard to break because you had to personally overhear talking, not targeted at the

public, or steal physical things such as letters or notepads. Nowadays, Alexa can over-

hear you while you think you privately chat to friends and family, listening to music,

or laptops can use their cameras watching you, and anyway, whatever you like, com-

ment or disgust in newspapers and other social media is immediately known to almost

everybody, be it the Russian secret service, the FBI, or Amazon and Google.

Nevertheless, you own the data that you produce and most of your listeners require

permission to track you. Some services track you but anonymously; for instance, car

drivers are traced and monitored by whatever map service they are using, not only

for placing advertisement nearest to their location, but also to learn about traffic inter-

ruptions and jams.

While location is not so much a concern for most people, some people feel less at ease

with the continual location tracking, be it when conducting secret visits for business

talks or personal affairs, or simply when robbing a family home. Switching off your

smartphone is a means of protecting your privacy; however, then

you cannot use any of the features offered and since we all depend

from our smartphones, you don’t do it easily.

More serious is that hackers use personal data such as credit card

numbers or passwords or both for stealing more tangible things

such as money. Or they block entry into your well-protected IoT-

controlled family home, asking you for ransom money before un-

locking, eventually. Similar things can easily happen to your car,

for instance by taking control over your Advanced Driving Assis-

tance System (ADAS). If ever the dream of Autonomous Driving

would come true, it could turn into a nightmare if the protection of

privacy were insufficient.

4-2 CONSUMER METRICS

The EU has set a good example in the European Union energy label; see the Directive

2010/30/EU (European Commission, 2010) and Figure 4-1. A graphical representation

is certainly better than presenting pure numbers. Thus, consumers can easily orient

themselves.

If you want to get consumers to do tests, then you must think of something about how

to present the results of such tests. James Watt had to explain how to compare the

output of steam engines with the power of draft horses. The “Horsepower” is a unit

of measurement of power – the rate at which work is done. It was later expanded to

Figure 4-1: Sample

EU Energy Label

- 67 -

include the output power of other types of piston engines, as well as turbines, electric

motors and other machinery.

The “Horsepower” unit of measurement became very popular, later, and still is, alt-

hough it is at odds to the metric system.

We propose a graphical representation that uses similar colors and resembles the fa-

miliar FMEA diagram used in automotive, using two dimensions; see Figure 4-2:

• Privacy Needs – the level of protection needed, the worthiness of protection;

• Privacy Protection – the means used to protect data against theft or sniff.

Both dimensions use a zero-to-five scale, indicating the need for privacy protection

and the means used to protect. While the privacy protection scale might be stable over

time, the adopted means of privacy protection clearly are not and need consensus for

acceptance. New protection schemes are easily fit into the zero-to-five scale.

The bubble marks where the system is placed in the grid in terms of privacy needs

and privacy protection. The privacy index is the distance from the upper right corner

– the worst case – to the bubble. Bubbles placed on the circles have the same index.

The grid is skewed for accommodating bubbles that represent maximum protection

even though they do not need it.

Figure 4-2: Proposal how to Assess Privacy Issues for Technical Systems

Privacy Needs

Value = 0: No privacy. It’s public.

Value = 1: Disclosure is inconvenient

Value = 2: Disclosure can be harmful

Value = 3: Disclosure costs money

Value = 4: Disclosure makes guilty

Value = 5: Disclosure sets life at peril

Privacy Protection

Value = 0: No protection. It’s public.

Value = 1: Weak protection

Value = 2: Strong protection

Value = 3: Two-way protection

Value = 4: Blockchain protection

Value = 5: Container-internal data

4

3

2

1

0

5

Privacy Needs
4320 1 5

P
riv

ac
y

P
ro

te
ct

io
n

2.6

Privacy Index 2.6 =

Distance to bubble

at position <2,3>

More than one bubble can be placed on the grid. This is useful if parts of the systems

exhibit a different privacy behavior than others. The size of the bubble can then be

used to indicate which one is predominant. If so, it is recommended to label the dif-

ferent bubbles indicating for what they stand for.

- 68 -

Privacy protection can be excellent if no privacy is needed because data is public. Pub-

lic data does not need protection. It depends from the context. Container-protected

data remains within a virtual machine and is not exposed to the environment. In view

of the possibility of attacks to hardware – for instance Spectre and Meltdown – even

container-internal data in containers that share one kernel is not entirely safe (Graz

University of Technology, 2018). For consumer metrics, this limitation is acceptable.

Measuring privacy is basically the product of privacy value for the user times the de-

gree of public exposure. If one of them is near zero, there is no privacy, or no privacy

needed. Highest privacy protection is if there is data worth protecting, and protection

is effective.

The formula for the privacy index is given in (4-1) where Needs and Protection are the

distances in the grid from the worst-case point, and thus must be counted inverse for

the Needs. It is simply the Euclidian distance, somewhat distorted by allowing for the

green bottom row.

Much more elaborate schemes exist for characterizing privacy protection, distinguish-

ing up to seven dimensions of protection, and for safety risk assessments, see e.g.,

Tilghman (Tilghman, et al., 2014) for warfare applications. While such specialized

high-tech applications doubtless would benefit from autonomous real-time software

testing, seven dimensions of protection indices seems far away from a privacy protec-

tion index representation acceptable to the general public.

Consumer metrics do not replace sound technical assessments but help engineers

identify weak points – at least those that impact consumers’ perception. For a sound

privacy protection and safety risk assessment, the traditional methods are still

presumed; they remain indispensable. Moreover, some of the consumers’ assessment

criteria cannot be answered without knowing the technical background. For instance,

container protection depends from the implementation details and is not replaceable

by consumer metrics.

We recommend limiting the number of bubbles shown to consumers. For instance, the

many bubbles in Figure 4-6 are not helpful. One, or two, plus the maximum risk

bubble are enough. The tools support limiting the number of bubbles. However, a

general recommendation cannot yet be given.

4-2.1 ACCEPTABILITY OF CONSUMER METRIC FOR SAFETY & PRIVACY

There is obviously a need to provide these representations also for handicapped, e.g.,

color-blind people; however, this is a standard task today and is not covered in this

paper. Black-and white versions are provided for the print version of this paper; colors

are used for the online version.

- 69 -

There are important obstacles to overcome for such consumer metrics. The first one is,

that suppliers of autonomous vehicles are not very eager of getting measured by any-

one, and if doing measurements, to keep results under disclosure. Another one is that

customer organizations, forget lawmakers, have not yet fully understood the impact

of digitalization and, of autonomous vehicles on the society.

Nevertheless, users of laptops and smartphones would already today welcome such

indicators after downloading new apps or an operating system update, or after new

attacks on their privacy have been publicly communicated. Whoever comes first pro-

posing such consumer metrics might gain a significant competitive advantage, forcing

the automotive industry to follow up.

An open question remains whether assessing privacy and safety on data movements

alone is good enough for all domains. While this choice has merits for cloud systems,

the Internet of Things (IoT) (Fehlmann & Kranich, 2017), and embedded software in

autonomous vehicles, it is unclear whether it also suffices for mobile applications, or

traditional web applications and stand-alone software.

4-2.2 THE PROPOSED MEASUREMENT PROCESS

More difficult obstacle is that the proposed measurement process uses models for

large and complex software systems that are far from widespread practice. While the

IFPUG model is popular for early cost estimation, and the COSMIC model is used for

estimation of memory load prediction in automotive (Soubra, et al., 2015), it is gener-

ally difficult to get an accurate model after completion of the software, or for any soft-

ware in operation.

For institutionalizing consumer metrics for software, the software deployment pro-

cess – aka DevOps toolchain – needs being enhanced to provide such models. Luckily,

at least for the ISO/IEC 19761 COSMIC model, automated model creation, suitable for

model-based testing as well as for consumer metrics, are in the making (Soubra, et al.,

2014). However, although net analyzers exist, for cloud service it is still unclear how

to automatically create valid software models. If automated measurement tools are

not yet available, models can still be created manually, as for predicting cost; however,

this is costly, and getting updated models for new releases are even more challenging.

4-2.3 PRIVACY PROTECTION

When is privacy protection good enough? Privacy protection can be excellent if no

privacy is needed because data is public. Public data does not need protection. It de-

pends from the context.

- 70 -

Privacy is basically the product of privacy needs for the user times the degree of public

exposure. If one of them is near zero, there is no privacy, or no privacy needed. High-

est privacy protection is if there is data worth protecting, and protection is effective.

The sample ADAS service we use to demonstrate the principles is a simple Car Driving

Function starting a visual recognition system (Camera driven by a Sensor Bus) and a

Neural Network Engine interpreting images. A Lidar – a device that measures distances

with a pulsed laser light – delivers distances and allows the neural network engine to

assess the safety risks that originate from the object on the image analyzed. Sequences

of images serve for determining the objects movements and direction.

The Car Driving Function asks the Recommender for advice and Acts in accordance with

the selected route that the navigation system stored in the Remember Routes persistent

database. This is a simplified ADAS for instructional purpose only; it possibly can

power a model car. But it is a model car equipped with camera, Lidar, and sensors for

slippery roads. And it uses a Navigator service to find a route. However, we out-

sourced both the recommender and the Visual Recognition System (VRS) which do most

of the work. Both services are likely implemented as neural network engines. Never-

theless, for a real-world ADAS, there is a lack of redundancy.

Figure 4-3: Look & Act in ADAS

Car User Recommender
Car Driving

Function
Visual Recognition Sensor Bus Camera App Lidar

Car Steering

Devices
Remember Routes

1.// Trigger Sensor

Look

2.// Start Cameras

3.// Supply Images

4.// Request Distance

5.// Lidar Distance

6.// Analysis Request

7.// Analysis Result

Act

8.// Chosen Route

9.// Ask for Actions

10.// Recommended Action

11.// Act

12.// Inform

Privacy is best measured by looking at the data movements between objects, under

the assumption that the application objects do no other data movements than those

listed in the model. Compliance to the ISO/IEC standard 14143 ensures exactly this

(ISO/IEC 14143-1:2007, 2007). Then privacy protection is measurable by the protection

level of the data movements between those objects.

- 71 -

Figure 4-4. Privacy Needs vs. Privacy Protection for Look & Act

	Minimum

Priv acy

	Low Priv acy

Index

	Medium

Priv acy Index

	High Priv acy

	Low Priv acy

Index

	Medium

Priv acy Index

	High Priv acy

Index

	Good

4

3

2

1

0

5

P
riv

ac
y

P
ro

te
ct

io
n

Minimum Privacy

Low Privacy Index

Medium Privacy Index

High Privacy Index

Good Privacy Index

Privacy Needs

4320 1 5

5.0 4.7 4.1

These data movements can be open to the public, encrypted, or secured by two-way

authentication scheme, by blockchain, or be transported on physically isolated and

protected cables. Data groups moved within a container, or processor, are among the

latter. Data protection within containers cannot be taken for granted but can be as-

sured with reasonable effort. For the technology behind such protection, see e.g.,

Staimer (Staimer, 2015).

Protection methods in turn are implementation dependent – and the labels chosen

arbitrary. Protection technology will change, and encryption might be appropriate in

many cases to protect data movements when transporting data through Internet, but

there exist many industrial bus systems that require different categories with different

labels. Also, encryption is not the only way protecting data against hackers. Encryp-

tion is best against man-in-the-middle attacks, but many more attack vectors exist and

many other effective protection schemas. Again, only the level matters.

Table 4-5: Privacy Assessment Categories

Privacy Needs Privacy Protection

Value = 0: No privacy. It’s public.

Value = 1: Disclosure is inconvenient

Value = 2: Disclosure can be harmful

Value = 3: Disclosure costs money

Value = 4: Disclosure makes guilty

Value = 5: Disclosure puts life at peril

Value = 0: No protection. It’s public.

Value = 1: Weak encryption

Value = 2: Strong encryption

Value = 3: Two-way encryption

Value = 4: Blockchain protected

Value = 5: Container-internal data

These categories can be used in a table for recording the assessment.

- 72 -

The Table 4-5 above shows five categories of privacy needs on the left and five degrees

of privacy protection methods on the right. Privacy needs can be directly assigned to

data groups in COSMIC; this is a model property. The labels chosen are unimportant,

the level matters.

For a graphical representation, we propose a square representation. This also explains

why we consider two dimensions only; for consumer metrics, this is already

challenging.

Distance of the bubbles in the grid (Figure 4-4) is measured from the starting point

(0,0). The Privacy Index is in range 0 – 5. Five (5) is the index for maximum privacy;

Zero (0) privacy means public data; no privacy granted, or no privacy needed.

The Privacy Index should provide equal length for equal protection; thus, Euclidean

distance yields the following, square root of sum of squares, formula:

 𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑀𝑎𝑥(√((5 − 𝑁𝑒𝑒𝑑𝑠) ∗ 5 5⁄)
2

+ (𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 6 5⁄)
2

, 5) (4-1)

The 𝑁𝑒𝑒𝑑𝑠 coefficient must be inversed by 5 because the bubble distances are calcu-

lated from the upper right edge of the graph area. The maximum function in equation

(4-1) ensures that the index is bounded by a maximum of five. The size of the bubbles

indicated how many data movements yield that index. The minimum privacy – here

0 – is highlighted

Stretching the 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 by 6 5⁄ has the effect that if no privacy is required, the pri-

vacy index remains high (upper left square in Figure 4-4).

The size of the bubbles represents the number of data movements that lie within this

privacy index range. The graphical representation in Figure 4-4 is intuitive because

distance from the upper right square conforms to the level of privacy, which is best

at the down-right square. It has some resemblance to the FMEA Criticality Matrix of

the German Verband der Automobilindustrie (VDA) (VDA, 2008, p. 64) and thus is

also acceptable to automotive security engineers.

4-2.4 SAFETY RISK

Safety risks are less difficult to represent. According classical risk management theory

(ISO 31000:2018, 2018), risks can be assessed by

• Identifying the risk catalogue

• Classify impact, usually on a scale 0 – 5

• Assigning the probability of risk incurrence

- 73 -

For identifying safety risks in road vehicles, the series of international standards ISO

26262, see (ISO 26262-1, 2011), provide guidance. recently, the new SOTIF1 version of

the ISO/IEC 26262 has been released. These standards can be used for assessing risks

of critical parts; not only mechanical, but also data movements moving critical data

groups.

Since we avoid fake assessment precision, we use the same scale 0…5 for probability

as well, thus only allowing for 0%, 20%, 40% risk probability. Moreover, probability

is something difficult to find in software; we use frequency instead, namely the fre-

quency of executing a certain data movement. Frequency is an implementation char-

acteristic and cannot be assessed uniquely in the model. The risk of Safety Impact on

the other hand depends from the content of the data group and is a model property,

like the privacy needs in privacy protection assessment.

The safety risk graphical representation for consumers looks as follows:

Figure 4-6. Safety Risk Exposure for Look & Act

	Max imum

Safety Risk

	Major Safety

Risk

	High Safety

Risk

	Medium

	Major Safety

Risk

	High Safety

Risk

	Medium

Safety Risk

	Low Safety

Maximum Safety Risk

Major Safety Risk

High Safety Risk

Medium Safety Risk

Low Safety Risk

Incurrence Frequency

4320 1 5

1

2

3

4

5

0

Im
pa

ct
 o

n
S

af
et

y

1.5 2.3

0.4 2.4 2.8

1.9

0.3 0.9

The Safety Index is calculated as follows:

𝑆𝑎𝑓𝑒𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =

𝑀𝑖𝑛(√((5 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ 5 5⁄)
2

+ ((5 − 𝐼𝑚𝑝𝑎𝑐𝑡) ∗ 6 5⁄)
2

, 5)

(4-2)

For the graphical representation, we propose the formula (4-2), which looks similar to

(4-1), also using Euclidian length, for the positioning of the bubbles. Because distance

1 SOTIF = Safety of the Intended Functionality

- 74 -

in the risk grid is measured starting from the 〈5,5〉–Point, both grid indices will be

mirrored at the grid size value 5, and colors should remain the same for the consumer.

Table 4-7: Safety Assessment Categories

Incurrence Frequency Safety Impact

Value = 0 (0%): No risk. It’s safe.

Value = 1 (20%): Seldom

Value = 2 (40%): Sometimes

Value = 3 (60%): Medium

Value = 4 (80%): Often

Value = 5 (100%): Very frequent

Value = 0: None

Value = 1: Low

Value = 2: Little

Value = 3: Medium

Value = 4: Quite

Value = 5: High

The safety risk graph yields different information, showing that the various data

groups in Look & Act move data of unequal impact on safety. The most impact (Maxi-

mum Risk Index 2.8) originates from data movement 10) Analysis Result; by lack of re-

dundancy – or lack of check by another “intelligent” module – its frequency is 1: Sel-

dom and its impact 4: Quite. Reducing impact to 2: Little could be achieved with adding

a cross-check against serious impact, or using two independent Recommenders that

agree on actions.

4-2.5 PERFORMING THE ASSESSMENTS FOR PRIVACY & SAFETY

The assessment is part of the COSMIC model and can be recorded directly in the table

for data movements. Privacy Needs are represented by the effects of privacy disclosure.

Figure 4-8: Assessment of Look & Act Data Movements

Name Label Data Movement Sub-Process Description

1) E002 Trigger Sensor Tell the sensor who is ready for capturing data

2) X001 Start Cameras If necessary, activate the sensor

3) E001 Supply Images Supply sensor data, e.g., images

4) W001 Save Images Keep mages for further references

5) X015 Request Distance Request distance measurement against a selected object

6) E015 Lidar Distance Returns distance against selected object

7) W002 Lidar Captures Save Lidar captures for future references

8) R001 Collect Images Collect images and Lidar captures pertaining to some selected object

9) X006 Analysis Request Request analysis by Visual Recognition System

10) E003 Analysis Result Result of analysis

11) R005 Chosen Route The actual route chosen for driving

12) X003 Ask for Actions Trigger the Recommender, supplying sensor information

13) E004 Recommended Action Based on its intelligence, recommend action

14) X004 Act Execute recommended action

15) X005 Inform Inform the Car User

Data Movements

Add Row Ins Row Del Row Validate Extract SNAP

E
ffe

ct
 o

f

P
riv

at
e

D
at

a

D
is

cl
os

ur
e

P
riv

ac
y

P
ro

te
ct

io
n

P
ri

va
cy

F
re

qu
en

cy

of
 d

at
a

m
ov

em
en

t

ex
ec

ut
io

n

Im
pa

ct
 o

n

S
af

et
y

S
af

et
y

 3: Costs money 5: Internal 5.0 4: Often 1: Low 0.9

 3: Costs money 5: Internal 5.0 2: Sometimes 1: Low 0.3

 3: Costs money 5: Internal 5.0 4: Often 2: Little 1.9

 1: Inconvenient 4: Blockchain 5.0 4: Often 2: Little 1.9

 2: Harmful 4: Blockchain 4.7 2: Sometimes 4: Quite 2.3

 2: Harmful 4: Blockchain 4.7 2: Sometimes 4: Quite 2.3

 2: Harmful 4: Blockchain 4.7 2: Sometimes 4: Quite 2.3

 2: Harmful 4: Blockchain 4.7 4: Often 2: Little 1.9

 3: Costs money 5: Internal 5.0 4: Often 2: Little 1.9

 4: Makes guilty 4: Blockchain 4.1 1: Seldom 4: Quite 1.5

 2: Harmful 5: Internal 5.0 4: Often 1: Low 0.9

 4: Makes guilty 4: Blockchain 4.1 2: Sometimes 4: Quite 2.3

 4: Makes guilty 4: Blockchain 4.1 4: Often 3: Medium 2.8

 2: Harmful 4: Blockchain 4.7 3: Medium 3: Medium 2.4

 4: Makes guilty 4: Blockchain 4.1 0: Very rare 3: Medium 0.4

4.7 1.9

4.1 2.8

Safety Index:

Minimum Privacy: Maximum Risk:

Privacy Index:

- 75 -

Figure 4-4 and Figure 4-6 have enough similarities to help consumers understanding

the meaning of both indices, such that they can look at both representations together

and get a correct impression.

The question is how the Privacy Index (4-1) and the Safety Index (4-2) should combine

for all data movements assessed. We prefer the Median against Average because the

median is less subject to the effect of outliers. However, one outlier is always import,

namely minimum privacy and maximum risk. They mark the weakest points in the

system, and consequently the likeliest violation locations. Nevertheless, outliers are

bad representative for the whole system.

4-3 ART FOR ADAS

The full ADAS application for our model car consists of four more parts:

• Find Route, e.g. by help of a navigation system, or according car user’s preference;

• Locate, compare current location with actual route;

• Check Route, used to compare different possible routes in terms of traffic,

weather, any other obstacles or fitting car user’s preferences;

• Amend Route, after conditions changed under way it can become necessary to

propose another route.

4-3.1 ADAS FUNCTIONALITY

Finding a route is usually based on some Navigator service (see section 2-2.7) that can

propose a route between current location and some known destinations.

Figure 4-9: Find Route using Navigator and GPS Services

Car User Recommender Routing Remember Routes Navigator GPS Service

1.// Enter Destination

Navigation

2.// Get Location

3.// Request Route

4.// Recommend Route

5.// Record Route

6.// Set Route

7.// Propose Route

Thus, it is necessary to keep the car user informed in case no route is selected.

- 76 -

Location service is used to show the user where the car is driving:

Figure 4-10: Location using GPS

Car User Recommender
Car Driving

Function
Routing Remember Routes GPS Service

1.// Update Location

Locate

2.// Compare with Actual Route

3.// Update Location

4.// Recalculate Route

5.// Adapt Route

6.// Inform

Checking the route involves rejecting a proposed route and selecting another one – or

none if none is left. If none is left, the ADAS eventually cannot continue and manual

driving is necessary. Because the Look & Act part requires knowing where to go, the

ADAS is significantly less useful without a route selected. The complete ADAS is

shown in Figure 4-13; results of joining Figure 4-3 with Figure 4-9, Figure 4-10, Figure

4-11, and Figure 4-12.

The car driver may want to select another route, or the Navigator offers a selection of

possible routes:

Figure 4-11: Approve or Modify Route

Car User Routing Remember Routes Approve Route

1.// Check Route

Check

2.// Get Route

3.// Show Route

4.// Approve Route

5.// Modify Route

6.// Change Route

7.// Changed Route

8.// Inform

If a problem occurs with the selected route while driving, it can become necessary to

amend the chosen route. We assume the Navigator service to be capable of alerting in

case of any change on the chosen route – which includes that the Navigator knows

about the chosen route, eventually violating privacy of location.

- 77 -

The car driver is still entitled to choose yet another route, using Figure 4-11. The Alert

proposes another route or amend at least the driving time prediction.

Figure 4-12: Alert on Chosen Route

Car User Routing Remember Routes Navigator

1.// Routing Alert

Alert

2.// Recall Route

3.// Recalculate Route

4.// Change Route

5.// Propose Route Change

The full data movement map in Figure 4-13 is the concatenation of these five parts.

4-3.2 TESTING THE ADAS

Now, in order to test all these services with regard to the assessed privacy protection

and presumed safety risk exposure, one has to provide an Automated Real-time Testing

(ART) application providing the necessary tests, such as verifying the encryption level

per data movement as stipulated, and data group content according the assumption

done in Figure 4-8. Note that the Navigator app provides not only routes but also driv-

ing conditions; part of the data group moved by the data movement Routing Alert.

This piece of software first prepares the setting – collecting car specifics, test cases,

extending them – then executes testing first the neural network engine, then the rec-

ommender, finally the Lidar and the camera.

The testing software resides local, on the car, but the test data originate from a repos-

itory called Testing Cloud common to all cars undergoing the same tests. Test cases

originate there, and the Testing AI engine also works on this cloud service. The ADAS

of the car could upload images taken for adding those to the testing cloud; however,

this is neither reflected in the part of the ADAS shown before, nor in Figure 4-14. Only

test results are recorded in the testing cloud, upon approval by the car user, the owner

of the test results.

On the following page, Figure 4-14 shows the data movement map for Automated Real-

time Testing (ART) for some Model of an Advanced Driving Assistant System (ADAS).

- 78 -

Figure 4-13: The Complete ADAS Model

Car User Recommender
Car Driving

Function
Visual Recognition Sensor Bus Camera App Lidar

Car Steering

Devices
Routing Remember Routes Approve Route Navigator GPS Service

1.// Trigger Sensor

Look

2.// Start Cameras

3.// Supply Images

4.// Request Distance

5.// Lidar Distance

6.// Analysis Request

7.// Analysis Result

Act

8.// Chosen Route

9.// Ask for Actions

10.// Recommended Action

11.// Act

12.// Inform

13.// Enter Destination

Navigation

14.// Get Location

15.// Request Route

16.// Recommend Route

17.// Record Route

18.// Set Route

19.// Propose Route

20.// Routing Alert

Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

25.// Update Location

Locate

26.// Compare with Actual Route

27.// Update Location

28.// Recalculate Route

29.// Adapt Route

30.// Inform

31.// Check Route

Check

32.// Get Route

33.// Show Route

34.// Approve Route

35.// Modify Route

36.// Confirm

37.// Change Route

38.// Changed Route

39.// Inform

- 79 -

Figure 4-14: Automated Real-time Testing (ART) for some Model of an Advanced Driving Assistant System (ADAS)

Recommender Recommender Test Visual Recognition
Visual Recognition

Test
Camera App Lidar Sensor Test Test Timer Car Specifics

Autonomous

Testing
Test Cases Test Updater Testing Cloud User

1.// New Test Case

Expand

2.// Add Test Case

3.// Collect Car Specifics

4.// Collect Car Specifics

5.// Collect Car Specifics

6.// Record Car Specifics

7.// Get Test Cases

8.// Get Car Specifics

9.// Extend Test

10.// Scan for Test Case

11.// Upload Test Case

12.// Car Ready?

13.// Car Ready

14.// Alert

15.// Start Testing

VRS Test

16.// Execute Tests

17.// Load Tests

18.// Yield Result

19.// Store Result

20.// Results Ready

21.// Start Testing

Reco Test

22.// Execute Tests

23.// Load Tests

24.// Yield Result

25.// Store Result

26.// Results Ready

27.// Start Testing

Sensor Test

28.// Execute Tests

29.// Load Tests

30.// Yield Results

31.// Load Tests

32.// Yield Result

33.// Store Result

34.// Results Ready

35.// Test Results Ready

Results

36.// Collect Responses

37.// Record Responses

38.// Display Test Results

39.// Acknowledge Test Results

40.// Record Test Results

41.// Scan forTest Results

42.// Upload Test Results

- 80 -

Figure 4-14 consists of test preparation, execution of tests for the Neural Network, the

Recommender, and the Visual Recognition Systems including the Lidar, plus a test result

recording and test result presentation for the tester testing the ADAS. It represents an

application by itself, with user stories and the need for testing. However, since the

main concern is getting the right kind of test cases that can be executed automatically,

we keep the focus on testing ADAS (Figure 4-13).

4-3.3 THE CAR USERS’ NEEDS

Using the AHP, we identify the following major values for users of the ADAS:

Figure 4-15: Car Users’ Needs

Car User Needs Topics Attributes Weight Profile

Y.a Drive Fast y1 Agile Driving Arrive safe Do not block other traffic Have fun 16% 0.36

y2 Smooth Driving Drive predictibly Do not break unnecessarily 15% 0.32

y3 Arrive in Time Arrive predictibly Avoid obstacles 23% 0.50

Y.b Drive Safe y4 Avoid Incidences Drive foresightful Know what's ahead Know my way 27% 0.58

y5 No Surprises Communicate Never surprise anybody Give signs 19% 0.422.2

AHP Priorities

The AHP process is used to analyze these needs and produce a profile for its relative

importance. The profile for the car users’ needs is based on the following pairwise

comparison, shown in Figure 4-16. This is again a basic AHP:

Figure 4-16: AHP for ADAS

A
gi

le
 D

riv
in

g

S
m

oo
th

 D
riv

in
g

A
rr

iv
e

in
 T

im
e

A
vo

id
 I

nc
id

en
ce

s

N
o

S
ur

pr
is

es

Car User Needs y1 y2 y3 y4 y5 Weight

y1 Agile Driving 1 1/2 1 1/2 2 16% 4 0.36

y2 Smooth Driving 2 1 1/2 1/2 1/2 15% 5 0.32

y3 Arrive in Time 1 2 1 2 1/2 23% 2 0.50

y4 Avoid Incidences 2 2 1/2 1 3 27% 1 0.58

y5 No Surprises 1/2 2 2 1/3 1 19% 3 0.42

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

The needs of human drivers in today’s traffic might be individually quite different;

however, in view of an ADAS, characteristics linked to safety and avoidance of dis-

turbance are dominant. You use an ADAS because you need something that helps

through dense urban traffic, avoids jams and incidences, and makes driving experi-

ence smoother.

An ADAS is less suited for people who drive cars just for fun. They eventually turn it

off. Their needs are not investigated by that AHP; an AHP for such people likely

would produce a different car users’ needs profile.

- 81 -

The data movements are those of the joint ADAS data movement map Figure 4-13.

The user stories for ADAS are summarized in Table 4-17:

Table 4-17: ADAS User Stories

Label As a … I want to … Such that … So that …

Populated
Area

Car
User

let my car reduce speed my car can
safely stop

my car is not causing
delays by an incidence

Obstacle Car
User

let my car avoid obstacles my car can
drive around

my car is not stopping
unnecessarily

Know my
Way

Car
User

let my car take appropriate
routes

my car avoids
blocked routes
and traffic jams

I know when I'll arrive

Amend
my Way

Car
User

optimize my route when
needed

no incidence
blocks my way

I still can predict when
I'll arrive

Check my
Way

Car
User

approve or disapprove the
car's choice for routing

I can take my
preferred route

I feel in control

Able to
Stop

Car
User

have my car break soon
enough

it can avoid
dangerous
situations

It recognizes obstacles
ahead

Check my

Way

Car

User

approve or disapprove the

car's choice for routing

I can take my

preferred route
I feel in control

The user stories remain on a high epic level without specifying the details how the

ADAS should behave in specific cases. With these user stories, the functional effec-

tiveness matrix yields a satisfying rationale for the user stories (Figure 4-18):

Figure 4-18: Functional Effectiveness for ADAS

User Stories

G
o

al
 P

ro
fi

le

P
op

ul
at

ed
 A

re
a

O
bs

ta
cl

e

K
no

w
 m

y
W

ay

A
m

en
d

m
y

W
ay

C
he

ck
 m

y
W

ay

A
bl

e
to

 S
to

p

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

Q
00

5

Q
00

6

y1 Agile Driving 0.36 6 3 3 2 5 0.34

y2 Smooth Driving 0.32 4 3 5 5 2 0.34

y3 Arrive in Time 0.50 7 3 4 7 1 6 0.52

y4 Avoid Incidences 0.58 6 4 3 6 6 8 0.58

y5 No Surprises 0.42 1 3 3 8 9 0.41

Solution Profile for User Stories: 0.46 0.30 0.33 0.54 0.33 0.43 Convergence Gap

0.46 0.30 0.33 0.54 0.33 0.43 0.04

123 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Car User Needs
Deployment Combinator

Car User Needs

- 82 -

It means that the data movement map implements the user stories completely and

without any wrong focus.

As before, the functional effectiveness transfer function maps the user stories onto the

car users’ needs by counting how many data movements contribute to the user stories.

This yields the cause-effect relation between functionality and requirements; also, it

assigns data movements to at least one user story.

4-3.4 THE TEST STORIES

The test stories tell more about the details how to implement ADAS functionality; see

the following Table 4-19:

Table 4-19: Test Cases for ADAS

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Test Story Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A People Around A.1 People around A.1.1 {Playball; Populated Area} Get ready to break A.1.2 {Person; Moving; Towards street} Stop before collision!

B Obstacle B.1 Obstacle ahead B.1.1 {Obstacle ahead!} Stop before collision! B.1.2 {Obstacle; At roadside} Drive around

C Know my way C.1 Get route C.1.1 {Valid destination} Select best route C.1.2 {Invalid destination} Select route home

C.2 Change route C.2.1 {Alert; Alternative available} Propose new route C.2.2 {Alert; No alternative available} No better route available

C.3 Update position C.3.1 {Current position} Recalcuate arrival time C.3.2 {Route; Change} Recalcuate arrival time

D Choose way D.1 Approval D.1.1 {Route; Approval} Confirm this route D.1.2 {Route; Reject} Propose another one

E Arrival E.1 Arrival time E.1.1 { } Show expected arrival time E.1.2 {New conditions ≠ Route conditions} Change expected arrival time

E.2 Learnings E.2.1 {Route; Fast} Prefer them E.2.2 {Route; Slow} Avoid them

F Stop F.1 Keep under control F.1.1 { } Car can stop within sensor's reach F.1.2 {Route conditions = bad!} Lower speed

F.2 Brake action F.2.1 {Dry road condition} Short braking distance F.2.2 {Route conditions = wet} Medium braking distance

F.3 Avoid stops F.3.1 {Under all conditions} Listen to actual road condition F.3.2 {Route; Traffic jam} Try another route

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {Person; Looking; At traffic} Lower speed A.1.4 {Person; Motionless} Go ahead

B.1.3 {Obstacle; Light} Drive around B.1.4 {Route; Obstacle} Change route

C.1.3 {Location = Home} "Destination reached" C.1.4 {Route} Show risks C.1.5 {Location} Show position

C.2.3 {Route; Modification} Show risks

C.3.3 {Null GPS} Continue current route C.3.4 {Route; Changed; Approved} Change current route C.3.5 {Location} Show position

D.1.3 { } Choose proposed route D.1.4 {Route; No alternatives} Choose proposed route

E.1.3 {Changed route} New arrival time E.1.4 {Route; New alert} New arrival time

E.2.3 {Route conditions} Adapt speed

F.1.3 {Route weather = bad!} Reduce speed F.1.4 {Route; Rain} Reduce speed

F.2.3 {Slippery road} Long braking distance F.2.4 {Speed = low} Short braking distance F.2.5 {Speed = medium} Medium braking distance

F.3.3 {Red light ahead} Lower speed F.3.4 {Route; modification} Show risks

 etc.

Read these test cases in Table 4-19 with an arrow → between test data and expected

response. There are three more test cases for test story 10) F.2: Brake action:

• F.2.6: {Speed = high} → Long braking distance

• F.2.7: {Must brake; curve} → Normal braking distance

• F.2.8: {Must brake; Descent} → Normal braking distance

- 83 -

Thus, for test story 10) F.2: Brake action we have a maximum of eight test cases, where

the other test stories only have five test cases or less, according Table 4-19.

This yields the following test coverage:

Figure 4-20: Initial Test Coverage

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

P
eo

pl
e

ar
ou

nd

O
bs

ta
cl

e
ah

ea
d

G
et

 r
ou

te

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

A
pp

ro
va

l

A
rr

iv
al

 t
im

e

Le
ar

ni
ng

s

K
ee

p
un

de
r

co
nt

ro
l

B
ra

ke
 a

ct
io

n

A
vo

id
 s

to
ps

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
)

F
.2

11
)

F
.3

Q001 Populated Area 0.46 25 22 9 7 11 9 10 8 12 14 0.42

Q002 Obstacle 0.30 10 15 13 5 15 7 11 9 13 16 10 0.36

Q003 Know my Way 0.33 2 5 17 6 15 12 9 6 7 9 9 0.27

Q004 Amend my Way 0.54 24 19 14 19 21 9 25 9 17 15 21 0.59

Q005 Check my Way 0.33 16 13 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 26 25 5 2 10 4 6 8 10 8 13 0.39

Ideal Profile for Test Stories: 0.44 0.41 0.25 0.20 0.32 0.24 0.32 0.19 0.25 0.20 0.36 Convergence Gap

0.45 0.42 0.25 0.19 0.32 0.24 0.31 0.19 0.25 0.19 0.4 0.11

768 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

With a convergence gap of 0.11 we are within convergence range – set a bit wider than

in usual transfer functions.

4-3.5 EXTENDING TEST CASES

Extending test cases within the same test stories yields more reliable results, and a

higher test intensity; see Figure 4-23. In this example, extension works in two stages:

• Adding test cases that refer to bad weather forecast. If the Navigator reports rain

on the route, driving speed and arrival forecast must be adapted;

• Even more test cases are added after the Navigator reports stormy weather caus-

ing eventually a change to the chosen route.

ART detects these new test cases because the data group received from the Navigator

contains a weather forecast, as part of the route description; see Figure 4-12. New test

cases are created starting from the existing ones, by variation of test data, considering

other all data received from data movements. Obviously, weather forecast changes

the driving time prediction. Among the many test cases that can be created, ART keeps

the convergence gap within limits, using this as selection process.

- 84 -

The following matrices (Figure 4-21 & Figure 4-22) show the results after each of the

two steps outlined above:

Figure 4-21: After Adding Bad Weather Forecast Test Cases

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

P
eo

pl
e

ar
ou

nd

O
bs

ta
cl

e
ah

ea
d

G
et

 r
ou

te

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

A
pp

ro
va

l

A
rr

iv
al

 t
im

e

Le
ar

ni
ng

s

K
ee

p
un

de
r

co
nt

ro
l

B
ra

ke
 a

ct
io

n

A
vo

id
 s

to
ps

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
)

F
.2

11
)

F
.3

Q001 Populated Area 0.46 39 31 9 7 11 9 10 8 12 14 0.46

Q002 Obstacle 0.30 16 18 13 5 15 7 11 9 13 16 10 0.33

Q003 Know my Way 0.33 4 6 17 6 15 12 9 6 7 9 9 0.21

Q004 Amend my Way 0.54 38 26 14 19 21 9 25 9 17 15 21 0.56

Q005 Check my Way 0.33 24 19 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 40 32 5 2 10 4 6 8 10 8 13 0.44

Ideal Profile for Test Stories: 0.59 0.47 0.20 0.16 0.26 0.20 0.26 0.16 0.21 0.16 0.30 Convergence Gap

0.58 0.47 0.21 0.16 0.27 0.2 0.26 0.16 0.21 0.16 0.3 0.13

859 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Figure 4-22: After Changing Routing due to Stormy Weather

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

P
eo

pl
e

ar
ou

nd

O
bs

ta
cl

e
ah

ea
d

G
et

 r
ou

te

C
ha

ng
e

ro
ut

e

U
pd

at
e

po
si

tio
n

A
pp

ro
va

l

A
rr

iv
al

 t
im

e

Le
ar

ni
ng

s

K
ee

p
un

de
r

co
nt

ro
l

B
ra

ke
 a

ct
io

n

A
vo

id
 s

to
ps

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 B

.1

3)
 C

.1

4)
 C

.2

5)
 C

.3

6)
 D

.1

7)
 E

.1

8)
 E

.2

9)
 F

.1

10
)

F
.2

11
)

F
.3

Q001 Populated Area 0.46 39 31 16 11 11 9 10 8 12 16 0.44

Q002 Obstacle 0.30 16 18 18 9 15 7 11 9 13 20 11 0.34

Q003 Know my Way 0.33 4 6 23 10 15 12 9 6 7 13 11 0.24

Q004 Amend my Way 0.54 38 26 25 29 21 9 25 9 17 25 22 0.59

Q005 Check my Way 0.33 24 19 14 5 7 23 12 8 28 0.35

Q006 Able to Stop 0.43 40 32 6 2 10 4 6 8 10 10 14 0.40

Ideal Profile for Test Stories: 0.54 0.43 0.31 0.23 0.25 0.19 0.24 0.15 0.20 0.22 0.32 Convergence Gap

0.54 0.43 0.32 0.23 0.25 0.19 0.24 0.15 0.2 0.22 0.3 0.11

954 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

- 85 -

Total test size is growing, and convergence gap is stable, or shrinking. The additional

test cases improve reliability and accuracy. ART finds such extensions by scanning

data groups of the data movements involved. Since the chosen route is not fix but

changes on receiving an Alert from the Navigator, the VRS learns that conditions such

as rainy and stormy weather can exist.

ART detects these new test cases because the data group received from the Navigator

contains a weather forecast, as part of the route description. New test cases are created

starting from the existing ones, by variation of test data, considering other all data

received from data movements. Obviously, weather forecast changes the driving time

prediction. Among the many test cases that can be created, ART keeps the conver-

gence gap within limits, using this as selection process. Total test size is growing, and

convergence gap is stable, or shrinking.

4-3.6 HOW CAME THE WEATHER FORECAST INTO ART?

The additional test cases improve reliability and accuracy. ART finds such extensions

by scanning data groups of the data movements involved. Since the chosen route is

not fix but changes on receiving an Alert from the Navigator (Figure 4-12), ART learns

that conditions such as rainy and stormy weather can exist and generates suitable test

cases.

The data group moved by the data movement Routing Alert from Navigator application

to the Routing functional process contains all sort of alerts, including traffic jams and

bad weather conditions. The ART mechanism extending test cases considers weather

as a reason to change driving. Thus, when replacing other reasons for choosing a

route, the Chosen Route data movement in Look & Act (Figure 4-3) tells the Car Driving

Function about the changed weather conditions. This attribute is now selectable by

ART for generating new test cases, also for the Visual Recognition System (VRS). Thus,

it will be added as another test case for VRS, sooner or later. And because the new test

case fits well with the car users’ needs, rather sooner than later.

ART thus must find images showing people, or other vehicles, in the rain, or in a

storm, to produce the same results in the test stories A.1: People around; B.1: Obstacle

ahead; C.1: Get route; and C.2: Change route.

Weather is one thing that can be considered. But there is much more before autono-

mous cars can hit the road. For instance, a tendency, or the need in certain social en-

vironments, to use bikes for transporting bags, affects safety and must impact behav-

ior of the ADAS. ART tests such behavioral change, dynamically, adapting to change.

- 86 -

4-3.7 SUMMARY VIEW

The summary view on the original and the two extended test suites reveals, as ex-

pected, that test size and intensity increased.

Figure 4-23: Initial Test Suite, and two Extensions

Total CFP: 39 Test Size in CFP: 768

Test Intensity: 19.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Total CFP: 39 Test Size in CFP: 859

Test Intensity: 22.0

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Total CFP: 39 Test Size in CFP: 954

Test Intensity: 24.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

Functional size remained stable: CFP 39, while increasing test size also increased test

intensity. Contrary to the IoT case, the functional size of the model ADAS remains the

same.

Thus, improving testing is always possible by simply extending the test cases by sim-

ilar ones, provided test coverage keeps the convergence gap narrow enough. ART

provides value without increasing functional size. In this example, it was enough to

trace back data movements that could contribute data to tests. Thus, the data move-

ment map is paramount for automatic test case generation.

For testers, it is enough to provide an initial test suite (Table 4-19: Test Cases for ADAS).

The rest is left to automatisms. You can increase test intensity as much as you like.

More tests certainly increase opportunities for detecting defects that can be removed.

Thanks to the test coverage transfer function and its convergence gap, those additional

tests remain relevant. Moreover, since tests are generated randomly, there is no bias

blocking certain test cases, although extending test cases along some application cases

such as weather or route change might allow for targeted test extensions.

4-4 CONCLUSION

Testing Privacy and Safety is an ongoing task, that not only needs continual repeat

but also extension in scope. What once was appropriate is within short time obsolete.

Consumers have the right and the duty of keeping themselves informed about the

actual status, and ART is delivering such updated and actual notification.

- 87 -

In the next chapter, we take a deeper look in how ART generate new relevant test cases

within given test stories. In the end, ART uses methods from AI, and uses them to test

AI. In some sense, ART applies the design ideas behind AI to the field of software

testing.

- 88 -

CHAPTER 5: ARTIFICIAL

INTELLIGENCE FOR TESTING
Artificial Intelligence for Testing provides test cases for extending test

suites. The intelligence relies on finding variations of given test cases for a

test story and selecting the right ones from these variations.

Using the data movement maps as a guide, generating new test cases can be

accomplished by extending existing test cases by similar ones. The data group

yields the relevant information in which direction to extend.

Such a process can be conducted with no limit. Nevertheless, for Autono-

mous Real-time Testing (ART), we also have the term “Real-time”, and this

means that we must be able to make selection small enough to fit into some

available time allowance. This requires having some limiting function telling

the AI robot when it is done.

AI for testing is expected to look at the software and to add test cases that

prove the software’s ability to achieve certain goals. To do this, goals of test-

ing must be known, and the AI robot must be able to judge whether a test

response is correct or not. The latter can be achieved by learning but also re-

quires some understanding for the domain addressed by the software. For ex-

ample, if the software drives a vehicle, a model must exist that allows the

robot to decide whether an action proposed by the software under test is ap-

propriate to achieve its goals.

5-1 WHAT IS THE GOAL OF TESTING?

As we have already seen, there is no automated testing without knowing the goals of

testing. The goals must be available as a profile, clarifying priorities among the func-

tionalities defined by user stories, or other means of expressing Functional User Re-

quirements (FUR). The normalized form of a profile is a 𝑛-dimensional vector of length

one; the 𝑛 vector coefficients indicating the direction of the vector in the 𝑛-dimen-

sional vector space of topics.

The primary topic is something characterizing customer needs, or business driver, that

the software under test shall deliver. From this, a profile for the user stories can be

derived using a transfer function. This derived profile is the goal of testing.

- 89 -

Let 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 be a vector in the 𝑛-dimensional vector space of topics. A topic

can be anything that is in use when talking about software, especially user require-

ments, or business values, or customer needs.

The vector 𝒚 is a Profile, if the equation (5-1) holds:

 ‖𝐲‖ =∑yj
2

𝑛

𝑗=0

= 1 (5-1)

As before, the double-bar ‖…‖ indicates the Euklidian Norm for vectors. Any vector

𝒙 ≠ 𝟎 can become a profile by dividing it through its length 𝒙 ‖𝒙‖⁄ .

The advantage of profiles is they can be compared. Also, profiles can be added or

subtracted; however, then they lose the property of having length one unless you re-

calibrate the resulting vector on length one.

Assume two profiles 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 and 𝒛 = ⟨𝑧1, 𝑧2, … , 𝑧𝑛⟩, then its difference is:

 𝒚 − 𝒛 = 〈𝑦1 − 𝑧1, 𝑦2 − 𝑧2, … , 𝑦𝑛 − 𝑧𝑛〉 (5-2)

The difference is not a profile; however, equation (5-3) makes another profile out of

the difference, provided the difference is not equal to zero. This profile points into the

same direction as the difference vector but with a length of one:

𝒚 − 𝒛

‖𝒚 − 𝒛‖
=

〈𝑦1 − 𝑧1, 𝑦2 − 𝑧2, … , 𝑦𝑛 − 𝑧𝑛〉

∑ (𝑦𝑗 − 𝑧𝑗)
2𝑛

𝑗=0

 (5-3)

The ability to compare profiles is the key to automated testing. Provided you have a

goal profile, you can compare this goal to what you are planning to test. This compar-

ison allows selecting test cases such that test effort remains limited, but the goal of

testing is reached within acceptable limits.

5-1.1 TRANSFER FUNCTIONS FOR TEST COVERAGE

The transfer function that defines the test stories needed to test a certain user story

profile is called Test Coverage. Test coverage has a convergence gap that tell how well

coverage is with regards to user stories. Since real-world user stories for software

count for a few hundred rather than the half dozen shown with this book, test stories

have similar dimensions.

However, since transfer functions can be computed quite effectively nowadays, this is

not so much a concern. The test coverage matrix is automatically filled as soon as the

functional effectiveness transfer function is established. The functional effectiveness

- 90 -

matrix links data movements to certain requirements. However, since functional ef-

fectiveness has a convergence gap, the data movements’ assessment can be validated.

5-1.2 WHAT MEANS TEST COVERAGE?

Test stories and user stories complement each other. While the user stories explain

what must be achieved, test stories often specify how this must be achieved. Thus, the

test coverage matrix is a classical QFD matrix, matching the “how” to the “what” as

explained in the respective ISO/IEC standard (ISO 16355-1:2015, 2015). If the conver-

gence gap is small, it means that the test stories “implement” the user stories good

enough. Or, in other words, the test stories test what the user stories require but noth-

ing more.

It also means that nothing else than the user stories can be taken for granted. Proper-

ties not mentioned in user stories might hold or not; they remain untested.

The transfer function constitutes of the test sizes per user story. Each cell in the matrix

contains the number of data movements executed by some test case in a test story that

pertains to some user story. The functional effectiveness matrix is decisive for that.

Because the assignment of data movements to user stories is sort of arbitrary, test cov-

erage depends from which data movements are considered important or supportive

for certain user stories.

5-2 GENERATING NEW TEST CASES

Artificial Intelligence (AI) is not a well-defined notion. According TechTarget, AI is the

simulation of human intelligence processes by machines, especially computer sys-

tems. These processes include learning (the acquisition of information and rules for

using the information), reasoning (using rules to reach approximate or definite con-

clusions) and self-correction (Rouse, et al., 2018). While AI is around for decennials,

recently it has gained attention and is commercially exploited for all kind of “intelli-

gent” services. It has become a buzzword that obscures reality.

Intelligence has to do with data acquisition and the ability to interpret it; critical rea-

soning is not required. How test cases shall be generated without reasoning seems

rather incomprehensible.

However, AI in testing can do what AI always does: collect and exploit data, classify

it and interpret it in view of known pattern. AI does not replace skilled testers, it is not

capable of finding new insights or cool new ways of validating software, but AI can

industriously generate and compare test cases where people fail because of the hard-

ship. Generating test cases needs the additional help of combinatory algebra.

- 91 -

5-2.1 TESTING BLOCKCHAINS

We have seen in Chapter 1: Why Autonomous Real-time Testing? how test cases can be

represented by the combinatory algebra of arrow terms. We left there with the general

statement that arrow terms (1-1) represent test cases, provided the base language ℒ

consists of assertive statements about test cases. The basic arrow terms have an arbi-

trary but finite number of test data left and a test response on the right. Arrow term

can be combined (1-4), quite similar as test cases also can be combined.

For test automation, it is best to use arrow terms as a combination of elementary arrow

terms, each representing one data movement only, and combine them for each object

of interest that is touched by some specific test case. Thus, instead of applying equa-

tion (1-4), we use a sequence of arrow terms that, when combined, together yield the

test case within a test story. Such a sequence of arrow terms is called Testing Chain. If

all objects of interests touched by the test case are considered separately in an arrow

chain, none ignored, the chain is called Testing Blockchain. Because, as a matter of fact,

this represents a blockchain (Wikipedia, 2018); only, it links data groups – blocks –

within a test case instead of encryption keys. A testing blockchain is sort of white-box

test: if you execute a test case and trace it with the objects as debugging points, you

get the testing blockchain.

Remember the definition of arrow term application in section 1-2.4: Arrow Term Nota-

tion. The testing blockchain is – after application – the left-hand side of the original

arrow term. Thus, a testing blockchain contain more information than the resulting

arrow term, or test case, after concatenation using equation (1-6). It contains the trace

of the test case.

5-2.2 MEASURING TEST SIZE

Arrow terms represent test cases, and test cases can be combined. It is straightforward

to represent testing blockchains as a sequence of arrow terms of level one; each block

contains one data movement within a test case. The total test size of the test case there-

fore is equal to the number of blocks within its testing blockchain.

The size of an arrow term is defined such that it still reflects test size. For this, it is not

useful to count recursive elements, but only those elements that relate to the base pred-

icate elements, and thus represent executable, testable terms.

As before, let ℒ be the base language consisting of assertive statements about test

cases.

- 92 -

|𝑎| = |{𝛿1, … , 𝛿𝑛} → 𝜌|, if 𝑎 = {𝛿1, … , 𝛿𝑛} → 𝜌,where 𝜌, 𝛿𝑖 ∈ ℒ

| 𝑏𝑖 → 𝑎| = ∑| 𝑏𝑖|

𝑖

+ |𝑎|, for all 𝑎, 𝑏𝑖 ∈ 𝒢(ℒ)

|(𝑏𝑖 → 𝑎)𝑗| = ∑| 𝑏𝑖 → 𝑎|𝑗
𝑗

(5-4)

The size of a test does not increase with the level. It describes the executable size.

Data movements that appear in more than one test case are multiple counted. Test size

depends from the number of test stories, the number of test cases per story, and thus

is much larger than the software’s functional size. The ratio between test size and func-

tional size is the Test Intensity; see section 2-5: Test Metrics for the Navigator Application.

Increasing test size is the best way of finding additional defects; however, it does not

guarantee it. If there is no customer need, or compliant user story, that let us classify

a feature of the software as unwanted, as a “defect”, no test will eventually recognize

it. Defect Density in turn is not affected by increasing test size, because defect density

is the number of defects divided by functional size, not test size.

5-2.3 DATA MOVEMENT MAPS AND TESTING BLOCKCHAINS

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be a testing blockchain and let 𝑎1• 𝑎2• … • 𝑎𝑛 = 𝑎 be its combina-

tion. Then, 𝑎 is an arrow term that represents a test case of size 𝑛. This is an immedi-

ate consequence of equation (5-4). Testing blockchains thus are something like the

“natural” representation of the test case, also encoding the objects of interest that the

test case needs to execute in the data movement map.

For instance, assume a test case for the ADAS example has the form (Figure 5-1):

Figure 5-1: Test Case for Testing Route Alert

Car User Routing Remember Routes Navigator

20.// Routing Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

Test cases can split and join in the data movement map. Nevertheless, a test case is

closely linked to its data movements and therefore also to the data groups and objects

of interest. Test cases can be uniquely traced in a data movement map when executed.

- 93 -

Since ISO/IEC 19651 defines the same measurement rules for functionality as for test,

we have the necessary metrics framework for test automation.

The relevant test assumptions for the whole test case are the three arrow terms (5-5):

{𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐽𝑎𝑚} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

{𝐼𝑐𝑦 𝑅𝑜𝑎𝑑} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

{ 𝐻𝑒𝑎𝑣𝑦 𝑅𝑎𝑖𝑛} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

(5-5)

Then the corresponding testing blockchain consists of all test assumptions that can be

made for the data movements needed to execute these tests (Figure 5-2):

Figure 5-2: Testing Blockchain for the Alert Test Case

Car UserNavigator Remember Routes Navigator Remember RoutesRouting

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐽𝑎𝑚 → 𝑙𝑒𝑟𝑡
𝐼𝑐𝑦 𝑅𝑜𝑎𝑑 → 𝑙𝑒𝑟𝑡

𝐻𝑒𝑎𝑣𝑦 𝑅𝑎𝑖𝑛 → 𝑙𝑒𝑟𝑡

𝑆𝑡𝑜𝑟𝑒𝑑 𝑅𝑜𝑢𝑡𝑒, 𝑙𝑒𝑟𝑡 → 𝑐𝑡𝑢𝑎𝑙 𝑅𝑜𝑢𝑡𝑒

 𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛 𝑒, 𝑙𝑒𝑟𝑡 → 𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒
 𝑦𝑝𝑎𝑠𝑠 𝑏𝑠𝑡𝑎𝑐𝑙𝑒, 𝑙𝑒𝑟𝑡 → 𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

 𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒 → 𝑆𝑡𝑜𝑟𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

 𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒, 𝑙𝑒𝑟𝑡 → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

20.// Routing Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

It can easily be verified that the concatenation of elements from these five groups of

blockchain arrow terms yields the original three test cases. However, you can combine

them in different ways and thus get either traffic jam alerts causing a changed route,

or weather conditions doing the same. Response might become different depending

upon the cause of the alert.

5-2.4 USING DATA MOVEMENTS MAPS TO GENERATE NEW TEST CASES

Testing blockchains have a unique relationship to some path through the data move-

ment map. This makes it possible to use the data movement map for searching varia-

tions of existing test cases. Variations can be made as follows:

- 94 -

A-1 Replacing existing test data by a variation of that test data; thus, exploring limits

for the controls;

A-2 Tracing back data movements that contribute to some of the data groups ad-

dressed in the arrow term; thus, replacing fixed test data by calculated data; add-

ing additional controls, or replacing existing controls.

In both cases it is unclear whether the response of the test case changes as well; exe-

cuting the test case possibly yields another response. The testing system must learn

whether this response is acceptable or not.

For learning, the system has various choices:

B-1 One is by simulating the physical impact the response has. If the response is

speed, acceleration or breaking, the simulation can predict the possible impact

against obstacles;

B-2 Another is using a risk function. If the risk increases above a threshold level, the

response is inacceptable;

B-3 Yet another is asking a human tester. Since generation and evaluation of new

test cases happens under supervision, not autonomous, humans can decide

about the response.

Learning requires that a testing system has a model of the domain under test that al-

lows to judge about the suitability of a response. Such models are sometimes available

– e.g., for car driving, accelerating and braking – but sometimes they require human

expertise. A car driving in mixed traffic depends not only from its own controlled

actions, but also from the perception other road users get. Today, pedestrians look car

drivers in the eye to see if they have been noticed. With autonomous cars, this is im-

practical; car users sitting in the car and playing games or texting have no immediate

impact at what the car does next. The best way of learning is to train a neural network

for situations, where the car should lower speed at an early stage to make it clear that

it grants the right of way, against other situations where denying it is safer. A horn

signal would then be more appropriate as a response.

However, with training a neural network we run into another problem of testing: the

neural network changes its behavior while learning. If it learns “on the road”, it can

unlearn as well. Without continuous testing, the autonomous car, or the ADAS, might

unexpectedly fail on challenges that it used to master, initially.

Combining the points A-1 and A-2 with the variety of responses as outlined in B-1 to

B-3, yields the following framework for automatic new test case generation, see Table

5-3. The controls are the test data; the response is the test result.

There are infinitely many test cases that can be generated using Table 5-3; thus, we

need a mechanism to limit and guide growth of the test suite.

- 95 -

Table 5-3: Automatically Generation of Additional Test Cases

C-1 Level 1: Parametrization of same
controls 𝑥1, 𝑥2 , … , 𝑥𝑛; same response 𝑦

Existing test cases without changing logic,
changing test data only

C-2 Level 2: New controls
𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, same response 𝑦

New controls with new test data but
response as before

C-3 Level 3: Same controls 𝑥1, 𝑥2, … , 𝑥𝑛,
new response 𝑦′

Same controls with new test data generate
new response

C-4 Level 4: New controls

𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, new response 𝑦′

Same controls with new test data generate

new response

5-2.5 MONITORING THE TEST COVERAGE MATRIX

The mechanism to limit and guide growth of the test suite is monitoring the conver-

gence gap on the test coverage matrix.

Whatever new test case is selected, it is entered in the test coverage matrix and affects

the convergence gap. This is the laborious part of the learning: adding a test case alone

almost certainly open the gap, while adding two or more test cases at different cells

might well improve the gap.

Thus, there is nothing than try and error, except if some sensitivity analysis for the test

matrix exists that allows predicting where to look for additional test cases. However,

since we have enough time to improve our test suite, we will try and select new test

cases as needed to improve the convergence gap. Since the content of all cells are data

movement counts, the more cells a matrix has, the more finely the convergence gap

can be adjusted.

However, this is only true if the test stories and the user stories are not linearly de-

pendent. If the functional efficiency matrix does not provide enough distinction for

the data movements, the test coverage matrix might contain linearly dependent row

vectors, or column vectors, and thus not be able to close any gap. Such situations are

detectable with linear algebra. Since all matrix cells contain positive integers only, the

matrices usually meet the conditions for the Perron-Frobenius theorem and the princi-

pal eigenvector exists.

5-3 THE TEST CASE GENERATOR

Remember that test cases are arrow terms containing testing blockchains in their left-

hand side. Thus, the Test Case Generator has access to the full testing blockchain, and

it needs that information. The following data movement (Figure 5-5) map designs a

test case generator. We comment on the six functional processes.

- 96 -

Figure 5-4: Start Creating a New Test Case

Tester
Generate New

Test Case
Test Cases Testing Blockchain

Data Movement

Map
Data Groups Validator

Select New

Test Case

Functional

Effectiveness

1.// Start

Start

2.// Existing Test Cases

3.// Request DM

4.// Data Movements

5.// Data Group

6.// Use Blockchain

7.// Request User Story

8.// Return User Story

9.// Try new Test Data

10.// Valid Response

11.// TC Matrix

12.// Create Test Case

13.// Show Test Case

- 97 -

Figure 5-5: The Test Case Generator as a Data Movement Map

Tester
Generate New

Test Case
Test Cases Identity Blockchain Testing Blockchain

Data Movement

Map
Data Groups Validator

Select New

Test Case
Test Coverage

Functional

Effectiveness
Test Case Selector Rejected Test

Cases
ART Cloud ART

1.// Start

Start

2.// Existing Test Cases

3.// Request DM

4.// Data Movements

5.// Data Group

6.// Use Blockchain

7.// Request User Story

8.// Return User Story

9.// Try new Test Data

10.// Valid Response

11.// TC Matrix

12.// Create Test Case

13.// Show Test Case

14.// Request Test Case

Blockchain

15.// Read Test Case

16.// Run Test Case

17.// Identify DMs

18.// Create Blockchain

19.// Confirm Blockchain

20.// Add Test Case

Get CG

21.// TC Matrix

22.// Get Impact of DM

23.// Impact of DM

24.// Convergence Gap

25.// Convergence Gap

26.// Show Convergence Gap

27.// Select?

Select?

28.// Select!

29.// Reject!

30.// Selected TC

31.// Updated TC

32.// Reject!

33.// Reconsider

34.// Updated CG

35.// Improved Convergence Gap

36.// Request Specific TC

Search

37.// Get Suitable DM

38.// Get Suitable DG

39.// Use Blockchain

40.// Try new Test Data

41.// Valid Response

42.// TC Matrix

43.// New Test Case

44.// Publish

Publish

45.// Convergence Gap

46.// Show TC Matrix with CG

47.// Approve?

48.// Approve!

49.// Publish

50.// Confirm Publication

- 98 -

5-3.1 START GENERATING A NEW TEST CASE

The first step (Figure 5-4) is by using the testing blockchain to create a new test case.

First, get the existing test cases for all test stories involved. Next, collect the data move-

ments executed by that test case. This yields the candidate data movements for the TC

matrix.

The data groups are needed to build the testing blockchain. By recombining the arrow

terms inside the testing blockchain, several new test cases can be generated. However,

their response is not given; it must be asserted by some validation application that

might involve human judgement. As a result, the test case has now a valid response;

otherwise it is rejected. The functional process ends with announcing new test cases

to the device that selects those test cases which have the potential to lower the conver-

gence gap in the respective TC matrix.

This functional process uses information from Functional Effectiveness as heuristics

which test cases to generate. This allows to generate test cases that support certain

user stories; for instance, those that lack support in the TC matrix. Such a functionality

speeds up the test case generator but also can block finding useful other test cases that

are not obvious. A random generator must ensure the necessary fuzziness.

5-3.2 CALCULATE THE CONVERGENCE GAP

Calculate the convergence gap for an updated test suite, creating the TC matrix and

using equation (2-1).

Figure 5-6: Calculate Convergence Gap

Tester Test Cases
Select New

Test Case
Test Coverage

Functional

Effectiveness

1.// Add Test Case

Get CG

2.// TC Matrix

3.// Get Impact of DM

4.// Impact of DM

5.// Convergence Gap

6.// Convergence Gap

7.// Show Convergence Gap

Calculating the convergence gap is straightforward. As before, calculation considers

functional effectiveness for counting the impact of each cell in the TC matrix. A TC

- 99 -

matrix is represented by selecting relevant test cases within the test stories. Many can-

didate TC matrices will be needed for the selection step (5-3.3), coming next.

5-3.3 SELECT THE NEW TEST CASE FOR INCLUSION INTO TEST COVERAGE

Select the new test case for inclusion in the TC matrix, based on the convergence gap

of the TC matrix. This step selects or rejects test cases for inclusion into the test suite,

and consequently the TC matrix. The decision depends from the convergence gap,

computed before. The Tester remains informed.

Figure 5-7: Select a New Test Case for Inclusion into Test Coverage Matrix

Tester Test Cases
Select New

Test Case
Test Coverage Test Case Selector Rejected Test

Cases

1.// Select?

Select?

2.// Select!

3.// Reject!

4.// Selected TC

5.// Updated TC

6.// Reject!

7.// Reconsider

8.// Updated CG

9.// Improved Convergence Gap

The device Select New Test Case is an information exchange bus, triggering the neces-

sary steps to create and select a new test case, and decide whether to include it into

the TC matrix and thus the test suite.

5-3.4 SEARCH FOR A NEW TEST CASE

The TC matrix might not be satisfactory. Sometimes, it is necessary to search for a new

test case that adds impact to specific test stories or user stories, based on specific data

movements that add weight to some weakly supported user story. This functional

process is called when needed.

- 100 -

Figure 5-8: Create New Test Case Executing Specific Data Movement

Generate New

Test Case
Testing Blockchain

Data Movement

Map
Data Groups Validator

Select New

Test Case

1.// Request Specific TC

Search

2.// Get Suitable DM

3.// Get Suitable DG

4.// Use Blockchain

5.// Try new Test Data

6.// Valid Response

7.// TC Matrix

8.// New Test Case

As before, the Validator application is needed to validate the response in the test case.

The device Select New Test Case remains in control for the enhancement of the TC ma-

trix, and thus the total amount of test cases per test story.

5-3.5 PUBLISH TEST SUITE

If the tester is satisfied with the result, she or he publishes the new test suite to the

cloud for use by all connected ART clients.

ART users can now download the test suite, execute the tests and upload the test re-

sults. These results might be consulted in case of failure or incident, to assess respon-

sibilities of software suppliers, or at least to learn how to make the software better.

Control is given back to the (human) Tester.

Figure 5-9: Publish Test Suite to the Cloud

Tester Test Cases ART Cloud ART

1.// Publish

Publish

2.// Convergence Gap

3.// Show TC Matrix with CG

4.// Approve?

5.// Approve!

6.// Publish

7.// Confirm Publication

- 101 -

5-4 THREE STANDARD TESTS

In preparing Autonomous Real-time Testing (ART), three standard tests are used to pro-

tect a software-intense product against privacy violations and the consequential safety

risks:

• The Data Walker Test (DWT) consists of visiting all objects, listing their published

methods and assessing their privacy protection status. Data groups, retrieved

from the model, are used to detect hidden interfaces, by checking whether those

data groups appear in other objects. If they are not, there must be data move-

ments that are not listed in the model.

• Each data movement is assessed in view of its privacy protection needs whether

it is effectively protected. This yields the privacy protection index and is called

the Data Movement Test (DMT).

• The Sniffer Dog Test (SDT) is one layer below the application and watches data

communication traffic. Each data package must be assignable to some data

group of the model.

5-4.1 THE DATA WALKER TEST

The DWT is basically a static test, if source code is available. Interface specifications

are good enough. If not available, the DWT walks the data movement map model,

trying to visit each identified object of interest. If the software supplier provided for

such testability, a list of public methods is offered that can be used to execute the visit.

If not, effective DWT testing depends on the ability of the tester to model the function-

ality with a suitable data movement map, plus how well those objects of interest ef-

fectively can be visited. For the visit, they need to exhibit some programmable inter-

face. Else the DWT is difficult and eventually the privacy index cannot be determined.

However, in those times of open source computing, the DWT test can quite often be

executed, and it should be a normal requirement for an Original Equipment Manufac-

turer (OEM) that he needs to provide equipment that is DWT-testable.

The test runs as follows:

1) Identify all Data Movements that go out or into the object;

2) Determine the Data Groups

3) Compare with the Privacy Needs for these data groups

4) Compare with the Safety Impact for these data groups

The privacy needs and the safety impact are attributes to the COSMIC model as ex-

plained already in section 4-2 and 4-2. In short, the left-hand part of the privacy as-

sessment and the right-hand side of the safety risk assessment. The test detects typical

- 102 -

failures such as data movements moving data groups without privacy needs attribute,

or without safety impact attributes.

To some extent, the DWT is a model validation test. However, analyzing the code or

the behavior of the object of interest does also detect data movements that are not part

of the model; for instance, for technical reasons. Some data movements remain invis-

ible to the functional user. They are not required by a FUR. Thus, not all findings of

the DWT are automatically data leaks, but they should be investigated whether they

have such potential.

Obviously, it is also possible that the model is not complete, or not all functional users

have been taken in due consideration. In both cases, the results of the DWT might

cause rework and fixes, be it to code, to the embedding container, or to the model

itself.

5-4.2 THE DATA MOVEMENT TEST

The DMT is the logical continuation of the DWT: all data movements found by the

DWT are tested against effective protection. This is a dynamic test. Usually it is ex-

pected that data is encrypted according some one-way or two-way protection scheme.

Although this could be a static test, if code is available, normally such a test must be

executed dynamically, looking at the data moved whether it is readable without en-

cryption key or not, and where the key originates.

The most efficient way to execute a DMT is by executing the software in some stand-

ard environment and tracing each data movement executed. The frequency of execu-

tion is also measurable; thus, it serves as well for assessing Incurrence Frequency. From

its results, both the Privacy Index and the Safety Risk Index can be calculated.

The DMT does not validate the model but its implementation.

5-4.3 THE SNIFFER DOG TEST

The SDT is a black box test looking at the dynamic execution of the software. It moni-

tors all communication channels that are used by the software. It expects each data

communication matching one or more data groups identified in the model. If some

data communication does not fit into the model, it might indicate an illegitimate data

movement, or a shortcoming of the model.

The SDT needs access to keys used for encryption and therefore can be executed in

combination with the DWT, and thus complements model validation.

- 103 -

5-5 THE DEVOPS PARADIGM AND SOFTWARE TESTING

The DevOps paradigm requires that software development interacts with operations,

and it is not called DevTstOps. Testing is part of product development or not done at

all. That the tendency is for “not done at all” is more than obvious. Untested software

publishes today’s newspaper, runs train systems, and delivers organizational sched-

ules, making every aspect of our life more and more adventurous.

Thus, modern software testing must become part of the operation of software, not

only part of software development. This means, software must be able to test itself at

any time and occasion. Automated tests must be built into the software, and available

for execution to both consumer and supplier.

Agile software development had developed a branch called Test-Driven Development

(TDD) that creates unit tests before delivering any functionality. Unfortunately, and

unnecessarily, these unit tests usually become not part of the delivered code, possibly

for fear of decreasing performance. But performance is not a major issue nowadays

and is only affected when the software starts testing itself while it should be available

for performing its primary purpose. Obviously, a software-based system can cope

with such a constraint.

Test stories and test cases can be stored in any software and can be executed at any

time that the workload permits. Hence testing must be fully automated. This is still

difficult but state-of-the-art. And if performance still matters, missing computing

power can be borrowed from cloud systems.

5-6 THREE INNOVATIONS NEEDED

The current art of testing is outdated. As already stated, the ISO/IEC/IEEE 29119 test-

ing standard (ISO/IEC/IEEE 29119-4, 2015), part 4, identifies 23 different so-called

Test Coverage Items, but not software functionality. As if software functionality were

not items in software that can be well distinguished and handled.

While non-functional software characteristics exist that can be tested, dynamic test is

per se functional; otherwise it would be static testing. While static testing, e.g., code

analysis, is highly important for technical debt and for safety and security assess-

ments, static testing never suffices to ensure proper functioning of mission-critical

software.

But dynamic testing of complex systems inclusion artificial intelligence requires three

innovations.

- 104 -

5-6.1 FIRST INNOVATION – TEST AUTOMATION

The first innovation needed refers to Test Automation. Traditionally, tests were suc-

cessful when they produced reproducible responses. Reproducible responses cannot

be the goal of testing in learning systems. We therefore propose a new method of spec-

ifying test cases using Combinatory Logic. This is a system that maps preconditions to

postconditions expressed by formulas. It classifies similar test cases. A test is passed

when the response formula is found to be true. Determining whether a response is

valid or not might be delayed until running the test.

For autonomous cars, such test conditions and test responses fit well. Things like

speed limit, speed range, acceleration and breaking effectiveness can be better ex-

pressed with formulas, referring to some thresholds, rather than by fixed test data,

referring to known, expected and correct responses. Varying road conditions or truck

load loads can influence the correct answer in a way that is hard to predict.

For test automation, we refer to Data Movement Maps that describe a software in terms

of data groups being moved from one object of interest to another. These objects, be it

functional process, device, other application, or persistent store, all need being

equipped with Test Stubs. Test stubs are the pieces of code that emulate a device, or

other application, in a physical environment. Persistent stores and functional pro-

cesses also need test stubs; in cases where some fixed behavior is expected in the test

case. In case of hardware in the loop, we effectively call for a Digital Twin (El Saddik,

2018).

Simply speaking, test automation means programming test stubs such that they exe-

cute certain test cases. This is what makes ART possible, at the end.

5-6.2 SECOND INNOVATION – TEST METRICS

The second innovation needed refers to Test Metrics. Test metrics must be independent

from implementation, especially from code, as code for certain services needed by the

system under test are often not available, and code size is irrelevant. Test metrics like

test size, test intensity, test coverage and defect density must compare with functional

size. It is the functionality that’s being tested, not code. Moreover, test metrics must

be understandable by consumers using a software-intense system, like ecolabels for

today’s products.

Consequently, test metrics must refer to functionality in use, and not to obsolete re-

quirements or specifications. Test metrics cannot refer to code, as code is usually not

available for measurement, be it that functionality originates from cloud services or

proprietary code.

- 105 -

Moreover, certain code today is self-correcting and usually not responsible for func-

tional failures. Code is not the object of testing; it is the systems functionality.

Test metrics must use the same measurement method as functional size metrics. We

can use the same data movement maps for representing pieces of functionality as we

use for tests.

5-6.3 THIRD INNOVATION – ART

More challenging is adapting test stories and test cases continuously, by new experi-

ences made by the software, changing the behavior of the complex system. The soft-

ware might modify itself, or modify data that controls its behavior, or the system

might encounter new situations in changed environments. For instance, an autono-

mous car that encounters new traffic situations and learns from them might cause the

controlling software to behave differently than before. Test cases, and even test stories,

must adapt. An automated test repository is needed that grows with the changes to

the software, and with additions to the system. This is the essence of Autonomous Real-

time Testing (ART).

This is the major innovation that we propose to software testing. To make it work

requires even more innovations. Future software contains its own testbed that users

can run anytime when needed and see the result. Moreover, the software can run the

tests autonomously, for instance when encountering new situations with an autono-

mous car, or when adding or removing system components such as an IoT device, or

when adding a new truck member to a truck platoon, or when commissioning a new

software-intense train system. Even when establishing communication with another

car or road user, a short test might be appropriate to establish trust into the new rela-

tionship and the communication means. ART also regularly checks existing software

for newly introduced software faults, vulnerabilities, changed features, or hardware

wear such as breaking effectiveness.

- 107 -

CHAPTER 6: TESTING HIGHLY

COMPLEX TECHNICAL SYSTEMS
The problem with complex technical systems is testing. Testing is utterly

complex and sometimes not feasible because of the many subsystems involved.

People cannot devise enough test cases because they cannot test everything

against anything.

Moreover, if your functional size exceeds, say, a million – this is easy for

airplanes or spacecraft or even for autonomous vehicles or trains – you need a

test size of ten to hundred million for achieving a reasonable test intensity.

Men cannot deliver that. We need machines to do this.

6-1 TESTING DIGITAL TWINS

Whenever testing software-intense systems, testing with hardware-in-the-loop can be

quite demanding. The hardware needs to put in a state that produces the wanted test

data. In many cases, this is impossible or very costly to keep the hardware in the loop

while testing large, complex systems.

As already explained, we rather test Digital Twins, where hardware components, sen-

sors, and actuators are emulated rather than tested in the loop. Digital twins today are

available for all kind of hardware component build into software-intense systems.

6-1.1 THE DOUBLE-TIDDLEMUTZZ EXAMPLE

The Double-Decker Tilting Long-Distance Multiple Unit Trainset (D2TLDMUTS) serves as

an example to explain the new concepts. D2TLDMUTS is pronounced “Double-Tiddle-

mutzz”, with a sharp “zz” hiss at the end. It refers to a large Intercity multiple unit

trainset, able to run on international railway traffic as a double-decker with restaurant,

with children’s corner, offering space for people with disabilities, featuring roll com-

pensation for faster driving around a curve, comfortable enough for three to six hours

of daytime train riding.

It has been ordered by a European railway operator, originally targeted for 2013 but

now, in spring 2019, finally being commissioned. Commissioning started in February

2018 and will last well into 2020. Normally, commissioning a train takes three to six

months; assuming, it is a commuter train with mostly standard components. But this

train is utterly complex. After the first year of commissioning, the number of bugs

- 108 -

found, and problems encountered, piled higher than ever. Suppliers and train service

operator realized that they are only half-way through before letting the D2TLDMUTS

run operational services. Such kind of failure is common not only with train operators;

several similar cases occurred in the last few years in aircraft industry as well and is

likely to happen with autonomous cars.

The problems encountered with the D2TLDMUTS are basic: it is virtually impossible

for humans to create complete test suites for such a complex, software-intense system.

Consequently, commissioning such a train set takes very long, much longer than ever

planned. Defects touching across the various systems are detected in this trial period

only. This is very late, because every modification of train software requires an extra

re-certification and a new admission procedure.

6-1.2 COMMISSIONING REPLACES TESTING

Key of testing complex systems is understanding the needs (or values) of the train

operator, in our case, or the needs of the customer, in general. The needs of the train

operator are the key means for distinguishing relevant test cases from unnecessary

tests, allowing test case automation and finally Autonomous Real-time Testing (ART).

Commissioning such a software-intense system takes an unpredictable amount of

time. Not only due to the difficulties of designing such a multi-purposed system –

even if the supplier did an excellent engineering job – but far more in the commission-

ing of its software. Either instrumentation and control fail, or the door control stops

working, or you cannot connect to the European Train Control System ETCS (Wikipedia,

2019). If the software somewhere fails, the only remedy is to switch everything off and

then reboot the train. This takes ten to twenty minutes. In rail networks like in Swit-

zerland, the Netherlands or Japan, after such a reboot, the timetable is out of control;

nationwide. A software breakdown during train operation must never happen; this

constraint is absolute.

It is unknown how big the software is; probably, even the supplier does not know.

Today, publishing software size seems nothing aimed at the public, and train manu-

facturers still do not behave as a software house, although they are.

However, if we assume 500’000 CFP, we might still underestimate the complexity of

a D2TLDMUTS, with instrumentation and control, with information and ticketing ser-

vices for the public riders, incorporating services needed to control and minimize en-

ergy consumption, comfort services controlling all the technical installations on board,

including heat control and air circulation, and all the recording needed for the big

amount of data. It is not a simple commuter train, or a locomotive hauling trailers, the

D2TLDMUTS is a multiple unit railcar with restaurant, children playing area and

space accommodating a thousand passengers, including people with disabilities.

- 109 -

It is impossible to let testers set up enough test cases, manually. Too many systems

interact. It is a typical case for Combinatory Logic. Test cases must be created automat-

ically, combined from test stories with basic test cases. Such tests can run, searching

for weaknesses and bugs, before commissioning the train, or put the system into ser-

vice.

Testing such a system involves several steps. Note that we do not need textual speci-

fications. Although in theory specifications would be helpful to set up test stories and

the related test cases; in practice, specifications are meddling up the important with

the marginal and thus of limited value. In any case, specifications without priority

profiles are near to useless. No written document can describe adequately the com-

plexity of our D2TLDMUTS train system in full.

6-2 THE FUNDAMENTALS OF TESTING COMPLEX SYSTEMS

Traditionally, the customer needs are what matters and defines the goals of testing.

However, when buying train sets, the customers are not primarily the train riders but

the train operators. It is the train operators’ interest that the trains run on schedule

and its riders come back again, remaining loyal customers of the train operator. While

train riders and operators might share common values, in some other respects they

differ. Train riders do not care much about the costs of running the trains reliably; in

turn, operators do. Operational cost must remain below older trains.

Figure 6-1 shows The Complete Analytic Hierarchy Process for the D2TLDMUTS. The lists

the Operator’s Needs regarding the new D2TLDMUTS is hierarchically grouped and

analyzed using the Analytic Hierarchy Process (AHP). This time AHP in full, with one

level of hierarchy. The hierarchy reflects those subsystems of the D2TLDMUTS that

we intend to test. For testing, each group will need its Operator’s Needs for defining the

goals of tests. All group tests combine for the full D2TLDMUTS tests, letting ART fill-

ing the test gaps in between groups.

- 110 -

Figure 6-1: The Complete Analytic Hierarchy Process for the D2TLDMUTS

Weight Profile

1% 0.07

6% 0.28

2% 0.09

3% 0.15

5% 0.23

3% 0.13

4% 0.19

3% 0.16

2% 0.08

3% 0.13

5% 0.22

3% 0.13

2% 0.09

4% 0.17

2% 0.10

2% 0.12

1% 0.06

3% 0.13

2% 0.12

6% 0.31

4% 0.19

1% 0.04

2% 0.10

4% 0.20

8% 0.40

3% 0.16

7% 0.33

6% 0.30

2% 0.104.8

E
T

C
S

In
st

ru
m

en
ta

tio
n

T
ra

ct
io

n

E
le

ct
ric

ity

C
om

fo
rt

D
oo

rs

T
er

m
in

ol
og

y

M
ai

nt
en

an
ce

The Double-Tiddlemutzz A B C D E F G H Weight

A ETCS 1 3 3 9 5 1 1/3 1/3 17% 2 0.47

B Instrumentation 1/3 1 1/3 1/5 1 3 3 1/9 10% 5 0.27

C Traction 1/3 3 1 1/3 1/3 1/5 3 1 9% 6 0.25

D Electricity 1/9 5 3 1 1/3 1/3 1 1/3 8% 8 0.22

E Comfort 1/5 1 3 3 1 1/3 1/3 1 8% 7 0.23

F Doors 1 1/3 5 3 3 1 1 1/3 13% 4 0.35

G Terminology 3 1/3 1/3 1 3 1 1 3 16% 3 0.42

H Maintenance 3 9 1 3 1 3 1/3 1 19% 1 0.50

AHP Priorities

P
ro

fi
le

R
an

ki
n

g

E
T

C
S

 R
el

ia
bi

lit
y

H
um

an
 I

nt
er

fa
ce

E
T

C
S

 R
ed

un
da

nc
y

E
T

C
S

 S
ta

bi
lit

y

E
T

C
S

 I
nd

ep
en

de
nc

e

A ETCS A
01

A
02

A
03

A
04

A
05 Weight

A01 ETCS Reliability 1 1/3 1/5 1 1/9 9% 5 0.17

A02 Human Interface 3 1 3 1 7 34% 1 0.68

A03 ETCS Redundancy 5 1/3 1 1/3 1/9 11% 4 0.21

A04 ETCS Stability 1 1 3 1 1 19% 3 0.37

A05 ETCS Independence 9 1/7 9 1 1 28% 2 0.57

AHP Priorities

P
ro

fi
le

R
an

ki
n

g

N
ee

ds
 P

re
di

ct
io

n
fo

r
T

ra
ct

io
n

E
ff

ic
ie

nt
 T

ra
ct

io
n

S
af

e
T

ra
ct

io
n

C Traction C
01

C
02

C
03

Weight

C01 Needs Prediction for Traction 1 1 1/5 19% 3 0.31

C02 Efficient Traction 1 1 1 31% 2 0.50

C03 Safe Traction 5 1 1 50% 1 0.81

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

E
le

ct
ric

ity
 S

en
si

ng

P
ow

er
 M

an
ag

em
en

t

E
ne

rg
y

S
av

in
g

D Electricity D
01

D
02

D
03

Weight

D01 Electricity Sensing 1 3 1/3 32% 2 0.55

D02 Power Management 1/3 1 1 24% 3 0.39

D03 Energy Saving 3 1 1 44% 1 0.74

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

H
ea

t
Le

ve
l

M
oi

st
ur

e
Le

ve
l

C
ab

in
 A

cc
el

er
at

io
n

A
cc

es
si

bi
lit

y

E Comfort E
01

E
02

E
03

E
04 Weight

E01 Heat Level 1 1 3 1/3 24% 3 0.47

E02 Moisture Level 1 1 3 1 29% 2 0.56

E03 Cabin Acceleration 1/3 1/3 1 1 15% 4 0.28

E04 Accessibility 3 1 1 1 32% 1 0.62

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

D
oo

r
S

en
si

ng

A
nt

i-T
ra

p
S

en
si

ng

D
oo

r
C

lo
su

re
 S

af
et

y

F Doors F
01

F
02

F
03 Weight

F01 Door Sensing 1 1/5 1 19% 3 0.31

F02 Anti-Trap Sensing 5 1 1 50% 1 0.81

F03 Door Closure Safety 1 1 1 31% 2 0.50

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

S
en

so
r

R
ob

us
tn

es
s

S
en

so
r

In
de

pe
nd

en
ce

S
en

so
r

R
ed

un
da

nc
y

B Instrumentation B
01

B
02

B
03 Weight

B01 Sensor Robustness 1 1/9 3 27% 3 0.47

B02 Sensor Independence 9 1 1/3 40% 1 0.68

B03 Sensor Redundancy 1/3 3 1 33% 2 0.57

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

Operators' Needs

A ETCS A01 ETCS Reliability

A02 Human Interface

A03 ETCS Redundancy

A04 ETCS Stability

A05 ETCS Independence

B Instrumentation B01 Sensor Robustness

B02 Sensor Independence

B03 Sensor Redundancy

C Traction C01 Needs Prediction for Traction

C02 Efficient Traction

C03 Safe Traction

D Electricity D01 Electricity Sensing

D02 Power Management

D03 Energy Saving

E Comfort E01 Heat Level

E02 Moisture Level

E03 Cabin Acceleration

E04 Accessibility

F Doors F01 Door Sensing

F02 Anti-Trap Sensing

F03 Door Closure Safety

G Terminology G01 Audio Clarity

G02 Visual Clarity

G03 Data Interpretation

G04 Consistency

H Maintenance H01 Predictive Maintenance

H02 Wear Sensors

H03 Alarming

H04 Maintenance Controlling

The Double-Tiddlemutzz

Operators' Needs

The Hierarchy Comparison

P
re

di
ct

iv
e

M
ai

nt
en

an
ce

W
ea

r
S

en
so

rs

A
la

rm
in

g

M
ai

nt
en

an
ce

 C
on

tr
ol

lin
g

H Maintenance H
01

H
02

H
03

H
04

Weight

H01 Predictive Maintenance 1 1 1/3 1 18% 3 0.33

H02 Wear Sensors 1 1 3 3 38% 1 0.69

H03 Alarming 3 1/3 1 5 34% 2 0.62

H04 Maintenance Controlling 1 1/3 1/5 1 11% 4 0.20

AHP Priorities
P

ro
fi

le

R
an

ki
n

g

A
ud

io
 C

la
rit

y

V
is

ua
l C

la
rit

y

D
at

a
In

te
rp

re
ta

tio
n

C
on

si
st

en
cy

G Terminology G
01

G
02

G
03

G
04

Weight

G01 Audio Clarity 1 1/3 1/5 1/9 5% 4 0.08

G02 Visual Clarity 3 1 1/3 1/3 14% 3 0.23

G03 Data Interpretation 5 3 1 1/3 27% 2 0.44

G04 Consistency 9 3 3 1 53% 1 0.86

AHP Priorities

R
an

ki
n

g

P
ro

fi
le

- 111 -

With a few more textual attributes to explain what is intended by the Operators’

Needs for the D2TLDMUTS (Figure 6-2):

Figure 6-2: Operators’ Needs for the D2TLDMUTS

Operators' Needs Attributes

A ETCS A01 ETCS Reliability Safety for humans Safety for instrumentation

A02 Human Interface Communicate clearly With operators and pssengers

A03 ETCS Redundancy All ETCS equipment is redundant If results differ, alert!

A04 ETCS Stability Unambiguous status Consistent

A05 ETCS Independence Each subsystem is autonomous Can close or fail

B Instrumentation B01 Sensor Robustness Legibility Completeness

B02 Sensor Independence Save energy Use energy wisely

B03 Sensor Redundancy Have two sensors where applicable Compare sensor data

C Traction C01 Needs Prediction for Traction Predict knowing train load Predict knowing weather conditions

C02 Efficient Traction Optimize acceleration Minimize energy consumption

C03 Safe Traction Safety for humans Safety for instrumentation

D Electricity D01 Electricity Sensing Sensing the power supply Adaption traction

D02 Power Management Distribution of power in train Laptop plug supply

D03 Energy Saving Extract relevant data Keep data for analysis

E Comfort E01 Heat Level Convenient for passengers Both women and men

E02 Moisture Level Convenient for passengers Enough dry

E03 Cabin Acceleration Convenient for passengers

E04 Accessibility Entrances Toilets

F Doors F01 Door Sensing Door knows who's inside

F02 Anti-Trap Sensing Doors must not close by force Avoid dangerous conditions

F03 Door Closure Safety Each subsystem is autonomous Can close or fail

G Terminology G01 Audio Clarity Understandable Also for the hearing impaired

G02 Visual Clarity Legibility Completeness

G03 Data Interpretation Doors must reopen when needed People mst never get trapped

G04 Consistency Consistent Messages Adaptive terminology

H Maintenance H01 Predictive Maintenance Alert well in time Before failure

H02 Wear Sensors Put sensors near wearing equipment Have sensors for all wear & tear

H03 Alarming Timely alarms Alert in case of uncertainty

H04 Maintenance Controlling Make sure maintenance is effective Also check efficiency

6-2.1 THE HIERARCHY OF OPERATOR’S NEEDS FOR THE D2TLDMUTS

Each new, complex, system requires training, adaptation of operational processes and

new standard procedures for operations and maintenance. For instance, older electric

traction gear only needed a switch being turned off for putting them out of service,

while modern equipment has many functional processes that need being shut down

in an orderly manner. A train software feeding a data base might cause database cor-

ruption when turned off unexpectedly; restarting software plus database might take

a long time because the database needs being repaired. Locomotive engineers might

not be used to such thinking; thus, they need training and instruction to understand

new technologies. On the other hand, software engineers that program instrumenta-

tion and control are probably not aware of the operational conditions and constraints.

Thus, they take things for granted that are not. The standard approach to such a prob-

lem is addressed by Quality Function Deployment (QFD).

The method of choice to find priorities is the Analytic Hierarchy Process (AHP). It makes

sense to do the pairwise comparison once per needs’ group and combine their profiles.

The result is quite surprising. While H02: Wear Sensors, F02: Anti-Trap Sensing for

- 112 -

doors, and H03: Alarming clearly dominate other needs; the need for unambiguous

communication G04: Consistency wins over all. This is a clear indication where the

software problems arise: lack of consistent communication between the many elec-

tronic and software components in the train sets.

For a train set that assembles components of various suppliers with software devel-

oped during different ages, consistent communication is not something for free, but

something that requires decent consideration and dedicated work. The components

of the D2TLDMUTS originate from different ages and suppliers; regulations have

changed over time and with regulation terminology, the meaning of terms.

6-2.2 TERMINOLOGY MANAGEMENT

These requirements are relatively new. However, since a few years the discipline of

Terminology Management has evolved responding to the needs of the European Union.

This suggests developing a Terminology Broker that not only controls, but also consoli-

dates and levels out the different messages obtained from instrumentation and con-

trols with those from the signaling system and from traction. Such a terminology bro-

ker also enables testing and has a few more advantages (Cabré Castellví, et al., 2017).

Setting up a learning system that learns how to interpret the thousands of messages

coming in from the various components is probably the simplest way to create a ter-

minology broker for such a complex software intense system.

For many readers, it might not be clear what a terminology broker is. Basically, it is a

message broker that “understands” messages and can translate a term from one envi-

ronment into the correct term in a different environment, translating the meaning un-

ambiguously. Terminology Management is a relatively new language science (Fathi,

2017) aiming at providing a platform for technical and societal communication among

members of different communities such as within the European Union. Terminolo-

gists establish the terms specific to a field of activity, define them, and then find equiv-

alents in another language. They also define the terms in use for businesses, databases,

glossaries, dictionaries and lexicons for the purposes of standardization.

6-2.3 THE ANALYTIC HIERARCHY PROCESS

The effect of this AHP (Figure 6-1) is stunning; it is an eye-opener. While everybody

probably would agree, without hesitation, to the principle that AI could help with

complex technical systems, the idea that AI could provide a terminology broker func-

tionality is a somewhat surprising consequence from the 29 different operators’ needs.

While these needs look complicated enough to handle, this sample size still is quite

- 113 -

below reality and we do not try to make it more detailed; otherwise, it would not fit

into this book’s format.

On the other hand, while quality or marketing managers are tempted to concentrate

on the 7 ± 2 most relevant needs (Gigerenzer, 2007), technical people must concede

that needs not carried forward into programming probably will also not be tested.

Thus, complex software-intense systems clearly require other teaching methods than

examples in a traditional book.

For people not familiar with the Analytic Hierarchy Process (AHP) we give a short ex-

planation how to read Figure 6-1. The basic principle of AHP is pairwise comparison

among comparable criteria. Therefore, the evaluator must compare each criterion with

each other. However, to reliably compare 29 criteria with each other is difficult if not

impossible.

Saaty therefore introduced the AHP. The AHP uses Euclidian vector space metrics –

the direction of unit vectors that we call Profiles – to compare two evaluations. This

allows splitting these comparisons into smaller groups according a hierarchy. Because

the result of comparisons are profiles rather than linear weights, you can combine such

profiles simply by multiplication. Profiles, as already explained in section 2-3, define

a direction within an event, or in this case a decision room and combining directions

is possible without introducing a bias for some of them. The Hierarchy Comparison

AHP matrix defines by its solution profile how to combine the priorities of the indi-

vidual part pairwise comparisons for the full AHP. The components of this profile are

used as weights when combining the various part solution profiles from the part pair-

wise comparisons.

More on AHP can be found from its inventor (Saaty, 1990), or in the precedent book

of the author (Fehlmann, 2016, p. 33ff).

6-2.4 THE SOFTWARE UNDER TEST

It is not possible to include data movement maps for the full D2TLDMUTS in this book.

However, we have construed the AHP hierarchy in such a way that it maps the part

software applications of the D2TLDMUTS. This is obviously always possible, and we

can set up user stories and test stories for each of the eight parts; although, we are still

oversimplifying. User stories and test stories yield test coverage matrices for each part

application. Each part application has its own data movement map, although these

applications do talk to each other; thus, have data movements connecting them. The

initial test coverage matrix for the D2TLDMUTS is then simply the combination of all

nine test coverage matrices, weighted by the profile of the pairwise comparison AHP

matrix that governs the hierarchy combination. Multiplying matrices by a linear pro-

file component is a standard operation in linear algebra and yields a linear

- 114 -

combination of the other nine test coverage matrices. The combined response profile

then matches the profile of the 29 operators’ needs, up to some convergence gap.

However, for testing, leaving all the interactions out that occur between the nine soft-

ware applications would introduce an unbearable safety risk. The gaps can be filed in

manually, but better this is addressed by ART. ART does not work on the nine soft-

ware applications alone but on the whole system; thus, filling up the empty space.

This means for instance that ART adds test cases to test stories that for instance refer

to door closure, connecting it to ETCS status. Exactly such dependencies have hit the

actual D2TLDMUTS’ commissioning. Thanks to ART, such tests can be done before

the train operator is involved; and, what is even better, they are generated by a struc-

tured, almost “intelligent” algorithm. It does happen according the test generator

rules when some data movement exists that connects ETCS information – e.g., free

track ahead – with door closure control software.

The details when the D2TLDMUTS can depart or let passengers disembark are mod-

elled in the Door Control part application but this application depends in many re-

spects from other part applications – such as Traction and ETCS. Testing Door Control

is not complete without taking these interferences into account. But things become

complicated with that many interrelated systems; setting up test stories and finding

relevant test cases becomes a tedious task.

Below we show two of the part applications – Door Control in Figure 6-3 and Terminol-

ogy in Figure 6-4. The Combination application has data movements that connect al-

most all the part applications with each other. This can be used to generate testing

blockchains for ART, connecting all different parts of the D2TLDMUTS system to ex-

tend test coverage. The Combination application is already too large to fit on a book

page. Readers interested in these details can study all related data in the shared cloud

data accompanying this book (Fehlmann, 2019).

However, the extract shown in Figure 6-5 is enough to demonstrate the mechanisms

of ART with complex technical systems. By data movements, the Combination applica-

tion connects all other part applications to collect a comprehensive status of the

D2TLDMUTS. This part is shown. For constructing the testing blockchains needed to

test status, these are the essential data movements.

- 115 -

Figure 6-3: The D2TLDMUTS door control application – opening, closing and locking doors

Train Engineer Door Opening
Door Opening

Actuators
Comfort Sensors Door Closing

Door Closing

Actuators
Antitrap Door Status Door Analytics Door Block Door Repair Door Status

1.// Unlock doors

Open

2.// AC ready?

3.// Pressure lowered

4.// Press Open

5.// Open Doors

6.// Show Open Doors

7.// Close Doors

Close

8.// Close Doors

9.// Try Closing

10.// Show Close Doors

11.// Door Closed?

Safe?

12.// Keep Open

13.// Door Status

14.// Door Status

15.// Keep Trying

16.// Close Door

17.// All Doors Closed

18.// Door Functional?

Check

19.// Repair Status

20.// Door Responsive?

21.// Block Door

22.// Block Door

23.// Report Blocked Door

24.// RepairDoor

Trigger

25.// Report Repair

26.// Report Repair

- 116 -

Figure 6-4: The D2TLDMUTS Terminology Application - Test Case Generator as a Data Movement Map

Locomotive

Engineer
Audio Converter Announcements Loudspeakers Network Status

Connecting

Trains
Infotainment Train Position On-Board Infosystem Screen Installations Combination App

Terminology

Broker
Terminology SVM

Terminology

Entry
Terminology Base

Terminology

Manager

Terminology

Catalogue
Data Interpretation Data Repository

1.// Message Index

Audio

2.// Priority Message

3.// Priority Message

4.// Message Stream

5.// Terminology

6.// Message Composition

7.// Direct Message

8.// Direct Message

9.// Message Confirmation

10.// Audio Stream

11.// Audio Message

12.// Location

Stop Info

13.// Block Infotainment

14.// Terminology

15.// Request Location Info

16.// Location Info

17.// Location Info

18.// Block Infotainment

19.// Block Infotainment

20.// Connection Timetable

21.// Location Infotainement

Infotainment

22.// Unblock Infotainement

23.// Unblock Infotainement

24.// Get Infotainement

25.// Infotainement

26.// Priority Messages

27.// Priority Data

Data

28.// Save Data

29.// Priority Report

30.// Check Term

31.// Confirm Term

32.// Priority Repoort

33.// Ask for Term

Term

34.// Request Term

35.// Clarify Term

36.// Standard Term

37.// Standard Term

38.// Learn Term

Learn

39.// Standard Terms

40.// Learn Term

41.// Get Terms

42.// Standard Term

43.// Approve?

44.// Standard Term

45.// Learn Term

46.// Learned Term

47.// Learned Term

48.// Learned Term

- 117 -

Figure 6-5: Extract from the Combination Application Combining Other Part Applications of the D2TLDMUTS

Locomotive

Engineer
ETCS Traction Control Instrumentation Traction Traction Track Electricity Comfort Comfort Control Doors Door Control Terminology Maintenance Alerts Data Interpretation Status Status Report

1.// Start

Start

47.// Alert confirmed

48.// Alert Saved

49.// Alert Shown

50.// Request Status

Status

51.// Request Status

52.// Confirm Status

53.// Request Status

54.// Confirm Status

55.// Request Status

56.// Confirm Status

57.// Request Status

58.// Confirm Status

59.// Request Status

60.// Confirm Status

61.// Request Status

62.// Confirm Status

63.// Request Status

64.// Confirm Status

65.// Request Status

66.// Confirm Status

67.// Request Status

68.// Confirm Status

69.// Status Report

70.// Status Report

71.// Status Report

- 118 -

6-3 AHP FOR TESTING

It has already been noted that testing is not very effective without reference to the

goals of testing, the needs of the customer, or user. The AHP is the method of choice

to analyze and prioritize needs of the customer. However, when used in its full, hier-

archical form, AHP is even more helpful. The hierarchy typically addresses system

parts; parts can be tested independently, and their test coverage matrices combined

the same way as the part AHP. This is quite straightforward but allows managing

large test coverage matrices, when combined with ART.

6-3.1 USING THE AHP HIERARCHY FOR SETTING UP TEST STORIES

Let 𝑨1, 𝑨2, … , 𝑨𝑘 be a sequence of AHP pairwise decision matrices with solution pro-

files y1, y2, …, yk respectively; k∈N; k>0. Thus, up to some numerical imprecision,

𝑨 𝒚 ≅ 𝒚𝑰, for 𝑖 = 1, … , 𝑘. because there are no algebraic solutions for Eigenvectors.

Let 𝑨̅ be the Hierarchy Comparison with the solution profile 𝒚̅. 𝑨̅̅ is a 𝑘 × 𝑘 square ma-

trix; thus 𝐲̅ = 〈𝑦̅1, 𝑦̅2, … , 𝑦̅𝑘 , 〉 is the solution profile for 𝑨̅.

The combined solution profile for the full AHP is shown in equation (6-1):

𝒗 =∑y̅i𝐲i

k

i=1

, 𝑖 = 1,… , 𝑘; k ∈ N; k > 0

𝐹𝑢𝑙𝑙 𝐻𝑃 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 =
𝒗

‖𝒗‖

(6-1)

Note that equation (6-1) denotes a sum of profile vectors, divided by its Euclidian

length; thus, making the result 𝒗 ‖𝒗‖⁄ yet another profile.

According Saaty, this is the mechanism how a hierarchy of decisions should be han-

dled. The key point is using vectors of normalized length that can be added, sub-

tracted, and multiplied by scalars. Intuitively, this represents the direction to take in

the decision space, and that is what AHP is all about.

6-3.2 TESTING THE PARTS

Now, each of the 𝑨 pairwise decision matrices describe the needs of the customer

with respect to its part, be it ETCS, door control, communications. It is easy to describe

the functionality required to fulfil these needs by data movement maps, and verify

effectiveness of the implementation by the Functional Effectiveness transfer function 𝑬𝑖.

𝑬𝑖 maps the user stories onto customer’s needs, by counting data movements needed

- 119 -

to implement certain user stories, and thus assigns data movements to user stories.

These transfer functions are described by matrices that are not square; typically, many

more user stories are needed to implement needs of the customer, than needs itself.

For the user stories, a profile results that describes the importance of the functionality

described by the user story to the customer in view of the stated needs 𝒚𝑖. Let 𝒖I de-

scribe this profile. Its dimension is the number of user stories needed to implement

the topics decided with 𝑨 .

For each of these sets of user stories with profile 𝑢𝐼 , an initial set of test stories is

needed to cover the user stories with tests, together with an initial sample starting set

of test cases. The resulting test coverage matrices 𝑭𝑖 map test stories onto user stories,

again based on the data movements executed in the respective test cases. In turn, its

solution profile we denote by 𝒔 . By definition, 𝑭𝑖𝒔𝑖 ≅ 𝒖𝑖 holds up to the convergence

gap. This nearly equality ensures test coverage for each of the 𝑖 hierarchical part ap-

plications, referring to the AI pairwise decision matrices for the initial needs of the

customer per part application, for 𝑖 = 1,… , 𝑘.

6-3.3 DOOR CONTROL

The creative task is inventing such test stories and test cases that effectively test the

implemented functionality. The initial needs of the customer help managing the com-

plex system and its setup.

Figure 6-6: Pairwise Comparison for Door Control

D
oo

r S
en

si
ng

A
nt

i-T
ra

p
S

en
si

ng

D
oo

r C
lo

su
re

 S
af

et
y

F Door Controls F0
1

F0
2

F0
3

Weight

F01 Door Sensing 1 1/5 1 19% 3 0.31

F02 Anti-Trap Sensing 5 1 1 50% 1 0.81

F03 Door Closure Safety 1 1 1 31% 2 0.50

P
ro

fil
e

R
an

ki
ngAHP Priorities

Figure 6-7: User Stories for Door Controls

As a …

[functional user]

I want to … [get

something done]

such that …[quality

characteristic]

so that … [value or

benefit]

1) Q001 Stop Train Operator open all doors passengers can leave the

train and new passengers

can bord

exchange is fast

2) Q002 Start Train Operator close all doors no passengers are

trapped in a door

start is fast and

according schedule

3) Q003 Safety Train Operator get an alert for any door

left open or needing

repair

I can block defect doors

when stopping

passengers recognize

door that are out of

operation

4) Q004 Pressure Train Operator lower the air condition

pressure

doors do not produce air

blow when opened

cabin pressure does not

interfere with door

opening

User Stories

Topics

- 120 -

These four user stories explain the basic functionality of door controls and implement

the Door Control operators’ needs effectively, as shown in Figure 6-8:

Figure 6-8: Functional Effectiveness for Door Controls

User Stories

G
o

al
 P

ro
fi

le

S
to

p

S
ta

rt

S
af

et
y

P
re

ss
ur

e

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

F01 Door Sensing 0.31 4 4 2 0.37

F02 Anti-Trap Sensing 0.81 6 8 3 6 0.80

F03 Door Closure Safety 0.50 5 6 4 0.48

Solution Profile for User Stories: 0.58 0.53 0.35 0.50 Convergence Gap

0.58 0.52 0.37 0.51 0.07

48 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Door Controls
Deployment Combinator

Door Controls

With functional effectiveness, we know which data movement is assigned to which

user story and therefore we can calculate test coverage, give a suitable set of test sto-

ries, just by looking at the data movements executed by the test cases defined per test

story:

Figure 6-9: Initial Test Coverage for Door Control

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

O
pe

n
D

oo
r

P
re

ss
ur

e

C
lo

se
 D

oo
rs

D
oo

r
oc

cu
pi

ed

D
oo

r
bl

oc
ks

A
ll

do
or

s

N
ee

d
R

ep
ai

r

D
oo

r
un

us
ab

le

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

5)
 B

.3

6)
 B

.4

7)
 C

.1

8)
 C

.2

Q001 Stop 0.58 10 27 19 7 8 4 4 0.63

Q002 Start 0.53 7 12 19 17 7 4 5 5 0.54

Q003 Safety 0.35 6 6 3 10 19 17 0.31

Q004 Pressure 0.50 6 10 16 15 6 3 4 4 0.46

Ideal Profile for Test Stories: 0.23 0.23 0.66 0.52 0.20 0.21 0.23 0.22 Convergence Gap

0.23 0.24 0.65 0.52 0.19 0.21 0.25 0.2 0.08

280 Total Test Size

0.10 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Figure 6-9 explains how to test door controls (the data movement map shown in Fig-

ure 6-3). For the details of the initial test cases for the eight test stories addressing door

control functionality, we refer again to the shared cloud data accompanying this book

(Fehlmann, 2019).

- 121 -

6-3.4 TERMINOLOGY

Note that locking doors has another meaning when looking at door control from the

traction or ETCS standpoint than from door control itself. Locking doors – and some-

times even side-specific door locking – is a precondition for the train departing. Unlocking

when stopping at stations is necessary for letting passengers disembark.

Thus, terminology plays a role when door control talks to ETCS or traction, and this is why we

chose the Terminology Application as next part of the D2TLDMUTS software; see Figure

6-4 for the data movement map.

Figure 6-10: Pairwise Comparison for Terminology

A
ud

io
 C

la
rit

y

V
is

ua
l C

la
rit

y

D
at

a
In

te
rp

re
ta

tio
n

C
on

si
st

en
cy

G Terminology G
01

G
02

G
03

G
04

Weight

G01 Audio Clarity 1 1/3 1/5 1/9 5% 4 0.08

G02 Visual Clarity 3 1 1/3 1/3 14% 3 0.23

G03 Data Interpretation 5 3 1 1/3 27% 2 0.44

G04 Consistency 9 3 3 1 53% 1 0.86

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

Six user stories are needed for implementing the Terminology priorities:

Figure 6-11: User Stories for Terminology

As a … [functional

user]

I want to … [get

something done]

such that …[quality

characteristic]

so that … [value or

benefit]

1) Q001 Audio Train Operator have an audio stream I can transmit audio

messages to passengers

they understand and are

advised

2) Q002 Information Train Operator have freely

programmable video

information screens

I can transmit all necessary

information to passengers

passengers are informed

about connections and

train statuses

3) Q003 Entertainment Train Operator use video screens for

ads and news

passengers can follow the

train ride

they know where they are

and where they about to

go

4) Q004 Train Status Train Operator see the status of all

systems running the

Double-Tiddlemutzz

I can perceive component

failure early enough

train failure can be

avoided

5) Q005 Terminology Train Operator address all components

in their own language

each SW components

receives the information it

understands

I can combine part

systems of various ages

and generations

6) Q006 Training Train Operator train the terminology

broker

communication improves

over time

wear and tear can be

combated

User Stories

Topics

Functional Effectiveness is calculated the way same as before. Note the strong focus

on G04: Consistency:

- 122 -

Figure 6-12: Functional Effectiveness for Terminology

User Stories

G
o

al
 P

ro
fi

le

A
ud

io

In
fo

rm
at

io
n

E
nt

er
ta

in
m

en
t

T
ra

in
 S

ta
tu

s

T
er

m
in

ol
og

y

T
ra

in
in

g

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

Q
00

5

Q
00

6

G01 Audio Clarity 0.08 2 5 2 0.11

G02 Visual Clarity 0.23 9 9 5 0.28

G03 Data Interpretation 0.44 9 6 11 7 6 0.46

G04 Consistency 0.86 10 11 13 13 7 16 0.83

Solution Profile for User Stories: 0.37 0.43 0.47 0.48 0.29 0.38 Convergence Gap

0.37 0.42 0.47 0.47 0.28 0.40 0.07

141 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Terminology
Deployment Combinator

Terminology

With 13 test stories, we can cover the six user stories for Terminology:

Figure 6-13: Initial Test Coverage for Terminology

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

D
ire

ct
 M

es
sa

ge
s

C
om

po
se

d
M

es
sa

ge
s

S
w

itc
h

S
ou

rc
es

In
fo

ta
in

m
en

t

D
ep

ar
tu

re
 T

ab
le

P
rio

rit
y

M
es

sa
ge

s

Le
ar

n
ab

ou
t

P
rio

rit
y

T
ra

in
 L

oc
at

io
n

N
ex

t
A

rr
iv

al

S
ta

nd
ar

d
T

er
m

s

T
ra

ns
la

tio
n

Le
ar

n
T

er
m

s

U
se

 L
ea

rn
in

gs

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

5)
 C

.1

6)
 C

.2

7)
 C

.3

8)
 D

.1

9)
 D

.2

10
)

E
.1

11
)

E
.2

12
)

F
.1

13
)

F
.2

Q001 Audio 0.37 23 14 4 9 2 5 5 9 8 8 2 6 9 0.37

Q002 Information 0.43 10 15 6 4 9 11 10 9 9 14 14 2 7 0.43

Q003 Entertainment 0.47 13 9 15 13 18 10 10 16 11 6 12 8 0.50

Q004 Train Status 0.48 8 10 14 7 17 8 10 14 11 6 12 6 0.44

Q005 Terminology 0.29 4 6 10 2 2 16 14 13 15 0.29

Q006 Training 0.38 4 4 8 4 8 12 4 6 14 6 25 17 0.39

Ideal Profile for Test Stories: 0.31 0.28 0.26 0.20 0.32 0.21 0.29 0.30 0.25 0.31 0.31 0.21 0.30 Convergence Gap

0.31 0.28 0.26 0.2 0.32 0.21 0.29 0.3 0.25 0.31 0.31 0.21 0.3 0.05

682 Total Test Size

0.10 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Again, the details are left to the reader using the cloud data accompanying this book

(Fehlmann, 2019).

- 123 -

6-3.5 THE HIERARCHY COMPARISON

The hierarchy comparison not only serves for connecting part comparisons but relies

itself on software connecting the part solutions. It therefore has a data movement map

describing functionality of its own that in turn must be effectively implement how

parts interact. The data movements also play a role when extending initial test cases

with ART; the test assertions travel along the data movements to extend test cases

within existing test stories.

The pairwise comparison for the hierarchy comparison defines another operators’

needs profile that serves as the goal profile for user stories describing the functionality

of combining all the various D2TLDMUTS services into one train steering and control

functional working place. Thus, we can again analyze and test this piece of software

using the other applications as services – assuming already tested services.

The hierarchy comparison AHP is shown in Figure 6-14:

Figure 6-14: Pairwise Comparison for the Hierarchy

E
T

C
S

In
st

ru
m

en
ta

tio
n

T
ra

ct
io

n

E
le

ct
ric

ity

C
om

fo
rt

D
oo

rs

T
er

m
in

ol
og

y

M
ai

nt
en

an
ce

Hierarchy Comparison A B C D E F G H Weight

A ETCS 1 3 3 9 5 1 1/3 1/3 17% 2 0.47

B Instrumentation 1/3 1 1/3 1/5 1 3 3 1/9 10% 5 0.27

C Traction 1/3 3 1 1/3 1/3 1/5 3 1 9% 6 0.25

D Electricity 1/9 5 3 1 1/3 1/3 1 1/3 8% 8 0.22

E Comfort 1/5 1 3 3 1 1/3 1/3 1 8% 7 0.23

F Doors 1 1/3 5 3 3 1 1 1/3 13% 4 0.35

G Terminology 3 1/3 1/3 1 3 1 1 3 16% 3 0.42

H Maintenance 3 9 1 3 1 3 1/3 1 19% 1 0.50

P
ro

fi
le

R
an

ki
n

g

AHP Priorities

The following user stories (Figure 6-15) implement these operators’ needs:

Figure 6-15: Functional Effectiveness for Combining the Hierarchy

As a …

[functional user]

I want to … [get

something done]

such that …[quality

characteristic]

so that … [value or

benefit]

1) Q001 Traction Train Operator have the train running

smoothly

all systems work together energy consumption is

minimized

2) Q002 Comfort Train Operator to ensure convenient

conditions for

passengers

comfort is maintained passengers feel well in

the Tiddlemutzz

3) Q003 Stop Train Operator make passengers exit

and enter the

Tiddlemutzz

exchange is fast train stops can be kept

short

4) Q004 Monitor Train Operator know the wear & tear

status of all components

failures can be prevented maintenenace can be

scheduled as needed

User Stories

Topics

This is a typical case of combining services. Many services are needed to fulfil basic

functional needs.

- 124 -

Figure 6-16: Functional Effectiveness for Combining the Hierarchy

User Stories

G
o

al
 P

ro
fi

le

T
ra

ct
io

n

C
om

fo
rt

S
to

p

M
on

ito
r

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

A ETCS 0.47 8 7 8 11 0.47

B Instrumentation 0.27 3 7 9 0.24

C Traction 0.25 4 7 7 0.24

D Electricity 0.22 4 2 4 6 0.22

E Comfort 0.23 9 7 0.24

F Doors 0.35 8 14 0.33

G Terminology 0.42 11 13 7 0.43

H Maintenance 0.50 9 2 4 22 0.52

Solution Profile for User Stories: 0.50 0.56 0.37 0.54 Convergence Gap

0.51 0.57 0.38 0.53 0.05

193 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Hierarchy Comparison
Deployment Combinator

Hierarchy Comparison

Test coverage is calculated the same way as before (Figure 6-17):

Figure 6-17: Initial Test Coverage for Combining the Hierarchy

Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

A
cc

el
er

at
io

n

C
on

su
m

pt
io

n

R
ec

up
er

at
io

n

A
ir

C
on

di
tio

n

S
m

oo
th

 R
un

P
re

di
ct

ab
ili

ty

U
rg

en
cy

 S
to

p

D
et

ec
tio

n

A
le

rt
s

C
lim

at
e

C
ov

er
ag

e

A
ch

ie
ve

d
 C

o
ve

ra
g

e

1)
 A

.1

2)
 A

.2

3)
 A

.3

4)
 B

.1

5)
 B

.2

6)
 C

.1

7)
 C

.2

8)
 D

.1

9)
 D

.2

10
)

E
.1

11
)

E
.2

Q001 Traction 0.50 22 8 14 9 16 27 18 16 22 15 10 0.48

Q002 Comfort 0.56 11 9 7 21 6 26 17 20 29 36 4 0.53

Q003 Stop 0.37 28 14 19 16 25 15 5 8 3 6 0.37

Q004 Monitor 0.54 15 10 7 17 8 20 5 2 2 38 57 0.59

Ideal Profile for Test Stories: 0.33 0.18 0.20 0.23 0.20 0.44 0.24 0.20 0.28 0.46 0.39 Convergence Gap

0.33 0.18 0.2 0.23 0.2 0.44 0.25 0.2 0.29 0.45 0.4 0.06

683 Total Test Size

0.10 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

Combining the previous test coverage matrices yields an initial test coverage matrix

for the complete D2TLDMUTS (Figure 6-18):

- 125 -

Figure 6-18: The D2TLDMUTS Initial Test Coverage Matrix, with the Combination App and the first two Part Apps – for Terminology and Door Control

Test Stories Test Stories Test Stories

G
o

al
 T

es
t

C
o

ve
ra

g
e

A
cc

el
er

at
io

n

C
on

su
m

pt
io

n

R
ec

up
er

at
io

n

A
ir

C
on

di
tio

n

S
m

oo
th

 R
un

P
re

di
ct

ab
ili

ty

U
rg

en
cy

 S
to

p

D
et

ec
tio

n

A
le

rt
s

C
lim

at
e

C
ov

er
ag

e

D
ire

ct
 M

es
sa

ge
s

C
om

po
se

d
M

es
sa

ge
s

S
w

itc
h

S
ou

rc
es

In
fo

ta
in

m
en

t

D
ep

ar
tu

re
 T

ab
le

P
rio

rit
y

M
es

sa
ge

s

Le
ar

n
ab

ou
t

P
rio

rit
y

T
ra

in
 L

oc
at

io
n

N
ex

t
A

rr
iv

al

S
ta

nd
ar

d
T

er
m

s

T
ra

ns
la

tio
n

Le
ar

n
T

er
m

s

U
se

 L
ea

rn
in

gs

O
pe

n
D

oo
r

P
re

ss
ur

e

C
lo

se
 D

oo
rs

D
oo

r
oc

cu
pi

ed

D
oo

r
bl

oc
ks

A
ll

do
or

s

N
ee

d
R

ep
ai

r

D
oo

r
un

us
ab

le

1)
 A

.1

2)
 A

.2

3)
 A

.3

4)
 B

.1

5)
 B

.2

6)
 C

.1

7)
 C

.2

8)
 D

.1

9)
 D

.2

10
)

E
.1

11
)

E
.2

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

5)
 C

.1

6)
 C

.2

7)
 C

.3

8)
 D

.1

9)
 D

.2

10
)

E
.1

11
)

E
.2

12
)

F
.1

13
)

F
.2

1)
 A

.1

2)
 A

.2

3)
 B

.1

4)
 B

.2

5)
 B

.3

6)
 B

.4

7)
 C

.1

8)
 C

.2

Q001 Traction 0.50 22 8 14 9 16 27 18 16 22 15 10 0.48

Q002 Comfort 0.56 11 9 7 21 6 26 17 20 29 36 4 0.53

Q003 Stop 0.37 28 14 19 16 25 15 5 8 3 6 0.37

Q004 Monitor 0.54 15 10 7 17 8 20 5 2 2 38 57 0.59

Q001 Audio 0.37 23 14 4 9 2 5 5 9 8 8 2 6 9 0.36

Q002 Information 0.43 10 15 6 4 9 11 10 9 9 14 14 2 7 0.43

Q003 Entertainment 0.48 14 9 16 15 19 11 10 16 11 6 12 8 0.52

Q004 Train Status 0.47 8 10 14 7 17 8 10 14 11 6 12 6 0.44

Q005 Terminology 0.29 4 6 10 2 2 16 14 13 15 0.29

Q006 Training 0.38 4 4 8 4 8 12 4 6 14 6 25 17 0.38

Q001 Stop 0.58 10 27 19 7 8 4 4 0.63

Q002 Start 0.53 7 12 19 17 7 4 5 5 0.54

Q003 Safety 0.35 6 6 3 10 19 17 0.31

Q004 Pressure 0.50 6 10 16 15 6 3 4 4 0.46

Ideal Profile for Test Stories: 0.33 0.18 0.20 0.23 0.20 0.44 0.24 0.20 0.28 0.46 0.39 0.31 0.28 0.27 0.22 0.33 0.22 0.29 0.30 0.25 0.31 0.31 0.20 0.30 0.23 0.23 0.66 0.52 0.20 0.21 0.23 0.22

User Stories

- 126 -

6-3.6 THE FULL TEST COVERAGE MATRIX

To build the full test coverage matrix 𝑭, it is not good enough to add the sequence of

test coverage matrices 𝑭𝑖, because the parts are of unequal importance for the cus-

tomer. However, when multiplying each of the matrices 𝑬𝑖 and 𝑭𝑖 by the respective

component of the solution profile y̅i for the hierarchy comparison, the profiles remain

the same and adding these matrices together yields a transfer function from all test

stories into all user stories, thus the full coverage matrix. Additionally, its convergence

gap remains small because the convergence gaps of the part matrices were already

small.

 𝑭 =∑y̅i𝑭i

k

I=1

, 𝑖 = 1,… , 𝑘; k ∈ N; k > 0 (6-2)

The matrix 𝑭 is sparsely filled: no test cases exist outside of the diagonal part matri-

ces 𝑭𝑖. This means that no test cases cover the interactions between different part ap-

plications required by the 𝑨1. However, such interactions exist and are essential for

proper functioning of the whole complex system. Also, the initial set of test cases con-

tains enough test stories that suggest test cases linking different part applications. In

the D2TLDMUTS case, suitable test cases use the Combination application and even-

tually the Terminology application to move data across the other part applications.

Finding the relevant test cases for these test stories seems not difficult at all; except

that there are quite a few. The real D2TLDMUTS has not only eight hierarchy levels

but many more, and its part applications contain much more than just a few dozen

functional size units. Consequently, the matrix becomes quite unhandy – for humans.

6-3.7 EXTEND THE TEST CASES

Not so for ART. Automatically extend the test cases in the white space requires noth-

ing else than the application of the testing blockchain algorithm. The terminology ap-

plication is paramount for combining test cases from various applications. Combining

test cases from different parts of the diagonal also does the job, using combinatory

logic.

The essence is that when selecting relevant test cases, the convergence gap must stay

small while test intensity increases. The selection process depends from the effects on

the convergence gap, just as with any other instance of ART.

This process of generating test cases and selecting those that keep the convergence

gap small is not limited except by practical considerations how many tests eventually

can be executed.

- 127 -

6-3.8 DO THE TESTS

Because the next step is executing the tests. If tests fail, fix defects found and re-execute

the tests again with more test cases. These tests run on digital twins, if possible. It is

not necessary to use a physical D2TLDMUTS; although a mockup would be helpful to

test the wiring technology – which might be less that state of the art – and sometimes

the networking technology is stone-age in real train systems.

Tests executed in the mockup can take as much time as needed; the ‘real-time’ adjec-

tive is optional now. Nevertheless, given that time is always precious, setting a time

limit to extensive testing as still a valid idea. Testing can stop if no defects can be found

anymore. There exist techniques that allow predicting the number defects not found

yet; e.g., by using the exponentially weighted moving average as a sort of dynamically

calculated control chart, proposed by Fehlmann & Kranich (Fehlmann & Kranich,

2014-1). Moreover, testing intensity – the average number of times a data movement

is executed for testing – is another metric that allows determining when to stop testing.

6-3.9 PUT THESE COMPLEX SYSTEMS IN SERVICE

Now it is time to build these wonderful new railway cars – this needs a considerable

amount of time, anyway – and try the complex new software-intense systems in the

real world. There will be problems still, especially if the design was not excellent; how-

ever, these will rather not be software problems. There is reasonably good hope that

ART already uncovered such problems and developers had time to fix it before the

D2TLDMUTS goes into commissioning with the train operator.

6-4 OPEN QUESTIONS

One of the things that would be of highest interest is knowing which cell values must

be increased to close a convergence gap. Such a sensitivity analysis seems not impos-

sible since the coefficients are linear and thus increments as well. However, the prob-

lem lies in the Eigenvector. It is well known that this kind of solutions have jumps; the

primary eigenvector jumps from one position into the other. While small increments

still might behave linearly, the jump from one principal eigenvector to another can

happen anytime and is difficult to predict. The solution profile also has jumps and

does not behave smoothly. We have no solution yet for this problem. For this reason,

trying to identify the behavior of a certain cell is probably as hard as calculating the

whole matrix.

- 128 -

6-5 CONCLUSION

Extending tests by artificial intelligence becomes surprisingly simple once the under-

lying combinatory algebra is considered.

Note that these techniques can be applied even if little is known about how the part

applications have been programmed. All that is really needed is a good investigation

into what are the needs of the customer, e.g., the train operator.

Is this technique possibly useful for testing Artificial Intelligence (AI) itself? Remember,

AI is basically a program whose algorithmic design is unknown; part of the training

that the SVM received instead of the traditional programming.

- 129 -

CHAPTER 7: TESTING ARTIFICIAL

INTELLIGENCE
Autonomous cars rely on visual recognition systems that use Artificial In-

telligence (AI) for recognizing objects; for instance, an ADAS. They can be

trained but they can also unlearn.

Testing image recognition systems requires creating new test images that

can be used for Autonomous Real-time Testing (ART) of Advanced Driving As-

sistance Systems (ADAS) and autonomous vehicles. This is achieved with a

data movement map according ISO/IEC 19761, serving as a model for image

recognition.

7-1 INTRODUCTION

The death of Elaine Herzberg (August 2, 1968 – March 18, 2018) was the first recorded

case of a pedestrian fatality involving an autonomous car, following a collision that

occurred at around 10 PM Mountain Standard Time (UTC -7) in the evening of Sun-

day, March 18, 2018 (The National Transportation Safety Board, 2018). The following

narrative is extracted from the said source.

Herzberg was pushing a bicycle across a four-lane road in Tempe, Arizona, United

States, when she was struck by Volvo XC90 taxi outfitted with a sensor system, oper-

ated under test conditions by Uber. Since 2015, Uber conducted tests with various lev-

els of automation in Arizona. The car was operating in self-drive mode with a human

safety backup driver sitting in the driving seat. Following the collision, Herzberg was

taken to the hospital where she died of her injuries.

According Uber, the accident was largely caused by the software that decides how the

car should react to objects it detects. The car’s sensors detected the pedestrian, who

was crossing the street with a bicycle. Uber’s software first registered Elaine Herzberg

on lidar six seconds before the crash — at the speed it was traveling, that puts first

contact at about 115 m away. As the vehicle and pedestrian paths converged, the self-

driving system software classified the pedestrian first as an unknown object, then as

a vehicle, and then as a bicycle with varying expectations of future travel path. The

software decided it did not need to react right away. Like other autonomous vehicle

systems, Uber’s software can ignore “false positives,” or objects in its path that are not

an obstacle for the vehicle, such as a plastic bag floating over a road.

- 130 -

Then, 1.3 seconds before impact, which is to say about 24 m away, the self-driving

system determined that an emergency braking maneuver was needed to mitigate a

collision. According to Uber, emergency braking maneuvers are not enabled while the

vehicle is under computer control, to reduce the potential for erratic vehicle behavior.

The vehicle operator is relied on to intervene and act. The system is not designed to

alert the operator. The Volvo model’s built-in safety systems — collision avoidance

and emergency braking, among other things —were also disabled while in autono-

mous testing mode.

The self-driving system data showed that the vehicle operator intervened less than a

second before impact by engaging the steering wheel. The vehicle speed at impact was

62 km/h. The operator began braking less than a second after the impact. The data

also showed that all aspects of the self-driving system were operating normally at the

time of the crash, and that there were no faults or diagnostic messages.

The dead of Elaine Herzberg raises one major question: Why were the visual recog-

nition systems tested in real life situations, instead of under labor conditions?

7-2 HOW TO TEST ARTIFICIAL INTELLIGENCE

Computer Vision and Artificial Intelligence (AI) overlap. AI is different from ordinary

software by its capability to learn. This means, AI can adapt to new environments,

data, images and videos. While AI can be used for other tasks, computer vision is con-

cerned with the theory behind artificial systems, extracting information from images.

Areas of AI deal with autonomous planning or deliberation for robotical systems to

navigate through an environment. A detailed understanding of these environments is

required to navigate through them. Information about the environment could be pro-

vided by a computer vision system, acting as a vision sensor and providing high-level

information about the environment and the robot.

AI and computer vision share other topics such as pattern recognition and learning

techniques. Consequently, computer vision is sometimes seen as a part of the AI field.

Testing AI in computer vision obviously is not so straightforward; mainly, because it

is not possible to predict what is the correct outcome. The test case might produce

different responses, and all are correct at a given state of experience collection.

Recall that AI basically is sorting data into categories based on previous learning, or

sample sets. The Uber car did exactly that when its Lidar, and ten visual cameras,

recognized the object moving towards the car’s driveway (The National

Transportation Safety Board, 2018). The difficulty was to find the right category. Hu-

mans encounter the same difficulty, when a biker enters the road from the pedestrian

sidewalk. Expecting a pedestrian, they rapidly must adapt categories to a bicycle that

- 131 -

moves differently and follows different traffic rules than a pedestrian. Things become

even more complicated if suddenly the pedestrian conjures up a skateboard, or a

scooter. Traffic rules for the latter two conveyances are unknown, or do not exist. Hu-

mans are disturbed, and so are visual recognition systems.

Since the important contribution of the visual recognition system is categorization, it

should be tested whether categories detected by the visual recognition system remain

the same over its lifetime. But that is not enough. Behavior on certain sample image

sequences should also remain stable – except if new learnings tell it otherwise. Obvi-

ously, tests must adapt to learnings. On the other hand, learning systems can become

neurotically disturbed – sick, like humans (van Gerven & Bothe, 2018). Thus, this is a

case for Autonomous Real-time Testing (ART). For using AI in safety-critical environ-

ments, testing AI is required anytime, autonomous, without human intervention.

7-2.1 BASELINING

You start testing AI as any other software

• Identify the software under test

• Identify the goals of testing

• Draw a data movement map that explains the user’s view on its functionality

• Calculate functional effectiveness to make sure it does what users expect

• Adjust scope of testing until goal and functional effectiveness converge

• Prepare the test stories:

o Identify new test stories

o Fill test stories by test cases

o Calculate test coverage

• Repeat above three steps until test coverage converges

• For each test story, generate more test cases:

o Apply the test case variation rules defined in Table 5-3

o Thus, generating even more test cases

• Repeat generating more test cases per test story until test coverage converges

Perform the tests and validate test stories and test cases. Identify defects and remove

them, or mitigate them, until your system is defect-free.

7-2.2 EXTENDING TEST CASES

Use the algorithm explained in section 5-2: Generating New Test Cases to expand the

test suite. Consider the AI domain when expanding the testing blockchain. For

- 132 -

instance, for traffic vehicles, use video sequences form traffic scenes to add to new test

cases. Use video sequences that have been used for deep learning and other who were

not. You must manually classify the videos for the category of traffic it represents; it

is therefore the same kind of work for testing as for learning.

As always with ART, you keep the test stories from the initial test suite stable while

adding more test cases to improve test intensity and to detect more defects. For visual

systems, the primary source for new test cases are new images and videos.

Keeping test coverage good enough is somewhat easier than in other ART instances,

since you only exchange test data. You do not change the aim of testing; not even

incrementally.

7-2.3 INTERPRETING TEST RESULTS

In fact, it does not matter if you take all learning videos for testing or not. It is unlikely

that you get a higher degree of trust in your AI system whether you show him only

all tests in advance. Unlike humans, who might remember learning videos but need

extra effort to verify their learning, machine intelligence always can recall what they

once have seen before; but the question is whether they still put those videos in the

same categories as in the beginning.

The aim of AI testing is to verify stable behavior in categorization as previously

learned. This is different from human learning where humans should be able to inter-

fere correct evaluations from their skills. As already mentioned, there is nothing intel-

ligent with AI. Testing machine intelligence means verifying that the software keeps

identifying the same categories and does not change them. Testing AI remains simple

while no new categories are added.

If something else is being tested than categorization, interpreting test results can be-

come quite difficult. Remember that test results should be known in advance. AI be-

havior is not known before.

Evaluating test results is therefore a manual task, supported by AI but delegating re-

sponsibility back to the humanin case the response of the test case is something else

than one of AI’s established categories.

Adding another category to AI is connected to re-learning from scratch. You must

supply all given evidence again and accept that the category borders move. In such

cases, testing AI also starts from the beginning with establishing a new baseline.

- 133 -

7-2.4 NEVER STOP TESTING – REPEAT TESTING FOREVER

Not only learning data changes, categories themselves are not except from change.

Certain categories such as legal behavior in traffic are also subject to change and must

be adapted to new environments and facts. Testing AI will detect such changes.

Therefore, for the lifetime of the AI system, testing must repeat. AI systems consist not

of stable, always repeatable software but depend from their environment. If the AI

system fails to reproduce correct answers, it might indicate a shift in the learning data

and probably learning must restart from the beginning. Such restarts are typically re-

quired, for instance in traffic, if new conveyors appear, such as scooters, electro-scoot-

ers, electro-bikes, and if rules change, for instance if fast electro-bikes are no longer

admitted on cycle paths.

Testing AI happens typically if the AI system is idle. Only in rare cases a test that

interrupts and competes with actual operations might be useful, for instance when

encountering unexpectantly a new environment. If a car unexpectedly meets local traf-

fic that is typical for urban areas, and the car believes it is overland, then it might

indicate the need for retesting the map services used. When map service problems can

be excluded, the car might run through a newly developed housing area - or a squatter

habitation – and inform its map services about this. The map service can then decide

from this and similar notifications whether it needs adjourning the map.

7-2.5 LOCALIZATION

There are also other geographical factors. For instance, in certain countries a pedes-

trian moving towards a pedestrian crossing causes car traffic to stop. Pedestrians have

priority. In certain other countries, if you stop your car to let a pedestrian strip, you

risk a rear-end collision. Other road users would be surprised. Such differences in the

practices adopted in road traffic can exist despite quite similar road traffic regulations.

This makes ART not simpler. To use the same test suite for different locations involves

the risk that such local practices are not reflected. In such cases, an autonomous car

that “learned” driving in one country is not easily acceptable on other roads.

7-2.6 WHEN TO TEST ARTIFICIAL INTELLIGENCE?

We already mentioned that AI must be testable “anytime”. Nevertheless, no system is

anytime available for testing. The typical times a system does ART are when idle.

Since idling can be stopped anytime, running tests too must be able to stop immedi-

ately. This is possibly not so easy if sensors and actuators are involved that first need

being reset before use.

- 134 -

Users of AI systems therefore must be able to see when their system is running tests.

It is also recommendable that users see results of tests. Section 1-4.2: Consumer Metrics

proposes a standard how to represent test results for consumers. It is obvious that

such representations are complimentary to the full test suite records that are probably

of more interest to the system supplier than to the consumer.

7-3 A DEEP LEARNING APPLICATION AS A SAMPLE

We take our first example from Chapter 4: Testing Privacy Protection and Safety Risks and

use it now to demonstrate how to test the Look & Act in ADAS as shown in Figure 4-3.

7-3.1 XAI – EXPLAINABLE ARTIFICIAL INTELLIGENCE

However, we must go deeper into the details without really knowing how the Visual

Recognition System (VRS) works. Interestingly, we do not need to know how the VRS

was implemented. It does not matter whether the VRS uses programmed algorithms

or whether a neural network has learned to behave correctly.

An automatic generation of the data movement map is not possible without code. But

we can draw a data movement map that delivers what we want, using our under-

standing of the VRS. The ISO/IEC 19761 standard and the data movements maps en-

able software measurements without code.

Explainable AI addresses this problem – how can you understand and comprehend

decisions of an AI-enabled device that probably used deep learning to learn correct

decisions? Such devices are now omnipresent and gradually replacing older decision

algorithms that proved considerably less reliable but have code that can be assessed

and eventually understood. Nevertheless, regulators ask for explanations.

Theodorou provides a robust definition of transparency as a mechanism to expose the

decision making of a robot (Theodorou, et al., 2017). The Defense Advanced Research

Projects Agency (DARPA) conducts since 2017 a project providing explainable deci-

sion models and enable humans to understand, appropriately trust, and effectively

manage the emerging generation of artificially intelligent partners (Gunning, 2017).

A data movement map explains any AI device consistently and effectively, the con-

vergence gap of the test coverage transfers function guarantees relevance. Regulators

would better ask for test coverage than whatever an AI device may produce as “ex-

planation”. Remember that it is quite easy for an AI system to learn what kind of ex-

planations humans accept. Whether those explanations guarantee correct decisions is

not part of the question asked.

- 135 -

7-3.2 THE GOAL OF TESTING

As before, we need the goal profile to do testing. These goals are not the same as the

car users’ needs for ADAS, and obviously we need dedicated user stories. First, the

user of the visual recognition system is not the car user, but the car itself, represented

by the car’s ADAS. Second, we focus on the visual recognition system and how it vis-

ually understands and interprets the environment using its cameras and Lidar. For

modeling this different viewpoint on testing (or explaining) the VRS, we clearly need

more data movements and thus we need to look deeper into the VRS app in Figure

4-3: Look & Act in ADAS.

Although this is an arbitrary viewpoint, we expect that three levels of decisions are

taken, and monitored, when executing the VRS app:

• A top-level decision: Is the object hard, soft, or possible a blur only? Sometimes,

fogs look like a cat, empty plastic bags simply fly around.

• The next level is whether the object moves actively, or passive, or not at all. This

requires sensing wind, rain and other weather events.

• The third level is assigning it a traffic category such as pedestrian, bike, other

car, or fixed installations such as a signal, a post, or curbstone.

With our preferred method for prioritization, the pairwise comparison or simple AHP,

we get the following profile (Figure 7-1):

Figure 7-1: The Visual Needs

Visual Needs Topics Attributes Weight Profile

 y1 Recognize Objects Distinguish from background Movable Rolling or not 13% 0.32

y2 Impact Category Hard Soft 18% 0.46

 y3 Reaction Category Active Passive None at all 13% 0.32

y4 Traffic Category Cars Bikes Pedestrians 10% 0.25

y5 Movement Direction Speed Variability 22% 0.57

y6 Blur Resilience Minimum outline Fog Snow or rain 8% 0.19

y8 Distance Lidar measurements 16% 0.402.5

AHP Priorities

The decisions originate from the following AHP (Figure 7-2):

Figure 7-2: The Visual Needs Priority AHP

R
ec

og
ni

ze
 O

bj
ec

ts

Im
pa

ct
 C

at
eg

or
y

R
ea

ct
io

n
C

at
eg

or
y

Tr
af

fic
 C

at
eg

or
y

M
ov

em
en

t

B
lu

r R
es

ili
en

ce

D
is

ta
nc

e

Visual Needs y1 y2 y3 y4 y5 y6 y8 Weight

y1 Recognize Objects 1 1 1/3 1/3 1/9 1/3 9 13% 4 0.32

y2 Impact Category 1 1 3 3 1 1 3 18% 2 0.46

y3 Reaction Category 3 1/3 1 2 1 3 2 13% 5 0.32

y4 Traffic Category 3 1/3 1/2 1 1/3 6 1/3 10% 6 0.25

y5 Movement 9 1 1 3 1 9 1/6 22% 1 0.57

y6 Blur Resilience 3 1 1/3 1/6 1/9 1 1 8% 7 0.19

y8 Distance 1/9 1/3 1/2 3 6 1 1 16% 3 0.40

P
ro

fil
e

R
an

ki
ng

AHP Priorities

- 136 -

It is not surprising that y5: Movement and y2: Impact Category are highest in ranking.

These are the most important visual needs for driving a car. On the other hand, y6:

Blur Resilience, the ability to recognize objects even in fog or precipitation, is a precon-

dition for the others, but by itself it is not dominant. Consequently, this strengthens

the point that an ADAS needs a Lidar; otherwise, recognizing objects and thus move-

ments and impact category is difficult to achieve if cameras only rely on signals in the

visible range. As usual, already the AHP points at some relevant technical challenges.

7-3.3 USER STORIES FOR THE VRS

The application modeled in Figure 7-4: Data Movement Map for the Visual Recognition

System (VRS) implements the following eight user stories (Table 7-3):

Table 7-3: Visual Recognition User Stories

Label As a … I want to … Such that … So that …

Identify
Objects

Car
ADAS

understand objects
around me

I do not hit any of
them

I can have a
smooth drive

Identify
Movements

Car
ADAS

understand which objects
move and where they
move

I can calculate my
free way

I can have a
smooth drive

Identify
Dangers

Car
ADAS

distinguish objects from
background environment

I get no false
alarms

I do not stop
unnecessarily

Predict
Reactions

Car
ADAS

understand whether an
object moves actively or
passively

I can predict
where it's moving

I can adapt my
route

Identify
Traffic

Car
ADAS

identify traffic
participants

I can predict their
speed

I can adapt my
route

Collect
Images

Car
ADAS

extract relevant
information from images

I understand my
environment

I can use
experiences for
later learning

Blur
Independence

Car
ADAS

have vision despite fog
and precipitation

I can drive
despite limited
visibility

Bad weather does
not stop me

Plausibility Car
ADAS

be sure the VRS returns a
valid object catalog

I can rely on its
findings

I won't get
disturbed

The data movement map in Figure 7-4 on the following page implements these user

stories.

- 137 -

Figure 7-4: Data Movement Map for the Visual Recognition System (VRS)

Look&Act Device Decision Organizer Decision Bus Previous Decisions Top Layer Top Categories Middle Layer Middle Categories Bottom Layer Bottom Categories Movement Detector Images & Distances
Plausibility

Check
3D Model

1.// Provide Images

Images

2.// Record Images

3.// Remember Images

4.// Call Top Layer

5.// Start Top Layer

Objects

6.// Compare Top

7.// Record Top Category

8.// Selected Top Category

9.// Continue?

10.// Call Middle Layer

11.// Start Middle Layer

Group

12.// Compare Middle

13.// Get Distance

14.// Get 3D-Model

15.// Record Middle Category

16.// Selected Middle Category

17.// Continue?

18.// Call Bottom Layer

19.// Start Bottom Layer

Identify

20.// Compare Bottom

21.// Get Distance

22.// Get 3D-Model

23.// Record Bottom Category

24.// Selected Bottom Category

25.// Continue?

26.// Moving Objects?

27.// Does it move?

Moving?

28.// Compare

29.// Moving Objects

30.// Moving Objects

31.// Object Catalog

32.// Plausible Objects?

33.// Check Plausibility

Plausible?

34.// Compare 3D

35.// Get Top Decisions

36.// Get Middle Decisions

37.// Get Bottom Decisions

38.// Compare

39.// Create 3D-Model

40.// Valid Objects

41.// Save Valid Objects

42.// Valid Objects

43.// Image Analysis

44.// Save Image Analysis

- 138 -

Deploying the user stories against the visual needs yields the transfer function shown

below in Figure 7-6. Not surprisingly, Q004: Predict Reactions is the most important of

our eight short user stories.

Figure 7-5: User Story Priority

User Stories Topics

1) Q001 Identify Objects

2) Q002 Identify Movements

3) Q003 Identify Dangers

4) Q004 Predict Reactions

5) Q005 Identify Traffic

6) Q006 Collect Images

7) Q007 Blur Independence

8) Q008 Plausibility

Weight Profile

8% 0.23

11% 0.30

14% 0.38

19% 0.52

14% 0.37

10% 0.26

8% 0.21

16% 0.45

Priority

Remember that we had no clue how our VRS determines the list of valid objects that

it recognizes. Possibly a Support Vector Machine (SVM) is used; see Gunn (Gunn, 1998),

and more recently Pupale (Pupale, 2018). However, we use our data movement map

model from Figure 7-4 to assess functional effectiveness with the later goal of testing.

Figure 7-6: Functional Efficiency – User Story Deployment based on Figure 7-4

User Stories

G
o

al
 P

ro
fi

le

Id
en

tif
y

O
bj

ec
ts

Id
en

tif
y

M
ov

em
en

ts

Id
en

tif
y

D
an

ge
rs

P
re

di
ct

 R
ea

ct
io

ns

Id
en

tif
y

T
ra

ff
ic

C
ol

le
ct

 I
m

ag
es

B
lu

r
In

de
pe

nd
en

ce

P
la

us
ib

ili
ty

A
ch

ie
ve

d
 P

ro
fi

le

Q
00

1

Q
00

2

Q
00

3

Q
00

4

Q
00

5

Q
00

6

Q
00

7

Q
00

8

y1 Recognize Objects 0.32 4 2 6 5 6 7 4 0.34

y2 Impact Category 0.46 4 6 8 6 6 8 6 7 0.48

y3 Reaction Category 0.32 4 4 6 12 0.29

y4 Traffic Category 0.25 4 3 6 6 6 0.28

y5 Movement 0.57 6 6 12 8 6 6 9 0.55

y6 Blur Resilience 0.19 2 3 6 8 3 0.18

y8 Distance 0.40 6 6 2 6 6 11 0.39

Solution Profile for User Stories: 0.23 0.30 0.38 0.52 0.37 0.26 0.21 0.45 Convergence Gap

0.23 0.31 0.38 0.52 0.36 0.26 0.21 0.44 0.05

248 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

Visual Needs
Deployment Combinator

Visual Needs

There is a clear focus on predicting reactions and check distances for plausibility in

the data movement map. This is what we expect from a VRS but do not know how it

is implemented by the SVM or any other neural network. The functional effectiveness

matrix identifies the data movements that implement a specific user story.

- 139 -

Test Coverage is calculated from the following fourteen test stories:

Figure 7-7: Test Stories with two Test Cases

Test Story

1) A Objects A.1 Object Contour

2) A.2 Object Move

3) B Prediction B.1 Predict Move

4) B.2 Predict Collision

5) B.3 Predict Reaction

6) C Identification C.1 Identify People

7) C.2 Identify Child

8) C.3 Identify Car

9) C.4 Identify Truck

10) C.5 Identify Bike

11) C.6 Identify Blur

12) C.7 Identify Position

13) D 3D-Model D.1 Use 3D-Model

14) D.2 Verify 3D-Model

Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A.1.1 {Object; Background} Contour exact A.1.2 {Object; Fog; Background} Contour somehow

A.2.1 {Object; Move active} Move Vector A.2.2 {Object; Move passive} Move Vector

B.1.1 {Object; Move; Identity} Move Vector B.1.2 {Object; Move; Unknown} Move Range

B.2.1 {Object; Move Vector; Identity} Collision Point B.2.2 {Object; Move Vector; Unknown} Collision Range

B.3.1 {Identity} Move Vector B.3.2 {Object; Move Vector; Unknown} Action Range

C.1.1 {Pedestrian; Walking} Move Vector C.1.2 {Pedestrian; Stagnant} Action Range

C.2.1 {Child; Playing} Collision Range C.2.2 {Child; Watching} Action Range

C.3.1 {Car; Move Vector} Collision Range C.3.2 {Car; Braking slow} Collision Range

C.4.1 {Truck, Move Vector} Collision Range C.4.2 {Truck; Braking slow} Collision Range

C.5.1 {Bike; Move Vector} Collision Range C.5.2 {Bike; Stopping} Collision Range

C.6.1 {Object; Blur; Move Vector} Identify C.6.2 {Blur; no object} Identify

C.7.1 {Objects; Identified; Move Vectors} Move Model C.7.2 {Objects; Identified; Stagnant} Position Model

D.1.1 {3D Position, Identified, Move Vector} Move Model D.1.2 {3D-Model; Identified; Stagnant} Position Model

D.2.1 {Move Model, Move Vector} 3D-Position D.2.2 {Objects, Stagnant} Position Model

There are many more than two test cases per test story; however, not shown here.

Based on this, we get the following test coverage (Figure 7-8):

Figure 7-8: Baseline Test Coverage

Test Stories

G
o

a
l

T
e
s
t

C
o

v
e
ra

g
e

O
b
je

c
t

C
o
n
to

u
r

O
b
je

c
t

M
o
v
e

P
re

d
ic

t
M

o
v
e

P
re

d
ic

t
C

o
lli

s
io

n

P
re

d
ic

t
R

e
a
c
ti
o
n

Id
e
n
ti
fy

 P
e
o
p
le

Id
e
n
ti
fy

 C
h
ild

Id
e
n
ti
fy

 C
a
r

Id
e
n
ti
fy

 T
ru

c
k

Id
e
n
ti
fy

 B
ik

e

Id
e
n
ti
fy

 B
lu

r

Id
e
n
ti
fy

 P
o
s
it
io

n

U
s
e
 3

D
-M

o
d
e
l

V
e
ri
fy

 3
D

-M
o
d
e
l

A
c
h

ie
v
e
d

 C
o

v
e
ra

g
e

1
)

A
.1

2
)

A
.2

3
)

B
.1

4
)

B
.2

5
)

B
.3

6
)

C
.1

7
)

C
.2

8
)

C
.3

9
)

C
.4

1
0
)

C
.5

1
1
)

C
.6

1
2
)

C
.7

1
3
)

D
.1

1
4
)

D
.2

Q001 Identify Objects 0.23 36 21 13 18 22 15 19 18 21 16 15 13 22 15 0.24

Q002 Identify Movements 0.30 42 21 20 13 23 14 13 23 25 24 35 26 21 18 0.28

Q003 Identify Dangers 0.38 18 20 16 24 34 28 36 23 27 22 29 25 40 20 0.34

Q004 Predict Reactions 0.52 47 33 29 27 44 36 46 34 31 33 24 24 84 39 0.52

Q005 Identify Traffic 0.37 9 22 18 21 42 38 46 26 18 23 12 14 72 32 0.41

Q006 Collect Images 0.26 11 16 14 20 25 19 26 18 18 19 29 20 31 19 0.27

Q007 Blur Independence 0.21 7 14 16 11 28 22 22 20 13 20 28 20 40 20 0.27

Q008 Plausibility 0.45 23 26 21 19 37 29 30 23 16 25 20 20 73 42 0.41

Ideal Profile for Test Stories: 0.24 0.22 0.18 0.19 0.32 0.26 0.31 0.23 0.21 0.23 0.22 0.19 0.51 0.26 Convergence Gap

0.24 0.22 0.18 0.19 0.32 0.26 0.3 0.23 0.21 0.23 0.22 0.2 0.51 0.3 0.09

2838 Total Test Size

0.10 Convergence Range

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

The main test focus receives Q004: Predict Reactions; as expected. This can be seen

when enhancing the highest frequency cell by color, or bold type, display. Also, user

story Q008: Plausibility receives support by all tests; this is because results always flow

into the decision repository fueling later plausibility checks.

- 140 -

The need for the test stories D.1: Use 3D-Model and D.2: Verify 3D-Model became ap-

parent after it proved impossible to reach a convergence gap below 0.10 (10%) with

only the twelve test stories directly addressing ADAS functionality. Thus, the assump-

tion of the tester, that the VRS uses a kind of three-dimensional model to take in-

formed decisions, is supported by the ART testing algorithm. Whether the “intelli-

gence” inside the VRS does it this way, or another way, remains open but is irrelevant.

The total test size statistics looks as follows:

Figure 7-9: Baseline Test Status Summary

Total CFP: 44 Test Size in CFP: 2838

Test Intensity: 64.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%

An initial test intensity of 64.5 is not bad; it looks we have mapped enough data move-

ments to reach the necessary granularity that allows explaining and testing the ex-

pected qualities of the VRS, including plausibility checks and categorization of the

various traffic participants.

At least, we have an idea how to test a VRS before it hits the roads.

7-4 NEXT STEPS, AND A PRELIMINARY CONCLUSION

Clearly, a visual system needs more tests than those shown in this chapter. We use

ART to generate more test cases out of the fourteen test stories to increase test inten-

sity. However, at the current stage of research, we have no clue what test intensity is

enough for a VRS in an autonomous car.

Applying ART means adding more test cases, more image sequences, always with

respect to the convergence gap, aiming at improving it towards less than 0.1. The con-

vergence gap of less than 0.1 indicates that the current test suite misses the goal profile

by less than 10% (Fehlmann, 2016, pp. 13,31). This limits combinatorial explosion, as

it allows selecting relevant test cases only.

The basic idea how to deal with “untestable” neuronal networks and deep learning

SVMs is to create a model. This model describes what we think how it should work,

and then we use API Test Automation (Reichert, 2015) to ask the right questions to the

intelligent device, as indicated in the test cases. Obviously, this requires the ability of

the device to answer more questions that those primarily intended.

- 141 -

7-5 A SIDE NOTE

SVM, Perceptron, Combinatory Logic are all inventions of the first and second third

of the 20th century. The original SVM had been described by Vladimir Vapnik at times,

where he possible never had the opportunity to touch a computer except huge main-

frames without nominal computing power. The original combinatory logic algorithm

for generating new test cases – or formulas about tests – has been implemented in 1980

on a DEC-10 at the Center for Interactive Computing of the ETH Zurich, by the author

(Fehlmann, 1981).

There is nothing new about AI; it had been rediscovered and put to work because

finally computing power is available almost for free. And again, there is nothing in-

telligent about AI. It is all about searching big data, and classifying vectors describing

objects of the real world.

Preparing the reference vectors for deep learning is hard work by intelligent, insight-

ful people. The same is true when preparing test stories and initial test cases for testing

AI. The rest of the work is ephemeral: big calculations with much data elaborating on

the rationale of skilled humans.

However, the real beauty of all these stories is: all the ingredients are here, only need-

ing rediscovery. We only had to put old threads in a new way together.

- 143 -

CHAPTER 8: AGILE TESTING WITH

THE BUGLIONE-TRUDEL MATRIX
While functional effectiveness is enough to calculate test coverage automat-

ically, focusing in development on functional effectiveness alone does not

guarantee developing a product continuously towards increased customer sat-

isfaction. Customers might have other requirements than functionality alone.

Developers thus need to keep an eye on both, functional effectiveness and on-

functional customer needs.

This chapter describes modern software development that harvests on the

teams’ experience and expertise to continuously provide world-class customer

experience using the Buglione-Trudel Matrix introduced in the “Managing

Complexity” book of 2016 (Fehlmann, 2016).

Autonomous real-time testing is also useful for continuously observing and

measuring customer experience.

8-1 INTRODUCTION

Readers of the previous book (Fehlmann, 2016, p. 200ff) remember how the Buglione-

Trudel (BT) Matrix helps agile teams to organize themselves, elicit requirements and

adapt easily to changed goals in product development. The crucial point is to use the

value seen by customers also in a transfer function that is possibly not equal to the

functional effectiveness. The BT matrix complements functional effectiveness by tak-

ing non-functional requirements into account and develop work along the lines of

value perceived by the customer. The customer and its values are typically repre-

sented by the Product Owner. The BT matrix is basically an interactive story board for

agile teams where the story cards are valuated against the customer’s needs. The Story

Cards represent those parts of a user story that is selected within a given sprint. Often,

a user story splits into a functional story card, implementing functionality, and one to

several non-functional story cards, implementing quality characteristics that also need

time and effort.

For this, we distinguish the Sundeck and the Cellar of the BT matrix. Both are transfer

functions, mapping user stories, respectively its story cards, to customer needs. How-

ever, the sundeck is interactively designed by the development team, while the cellar

remains much more stable. The functional requirements in general are more stable

and less influenced by the development team than the quality, or non-functional,

- 144 -

requirements. However, all is subject to new learnings and change of environment;

the transfer functions adapt themselves and possible need rework to keep the conver-

gence gap low.

Figure 8-1: Deming Chain for Agile Software Development and Software Testing

CN → VoC

Voice of the
Customer (VoC)

Decision

User Stories
(USt)

TSt→ USt

Story Cards
(StC)

Realization

Customer Needs
(CN)

USt → CNStC → CN

#CFP

#NPS, #AHP

Customer Needs Coverage Test Coverage

#Business Impact

Test Stories

(TSt)

#CFP

Functional Effectiveness

Formally, the Customer Needs Coverage and the Functional Effectiveness transfer function

look similar, since both rely on user stories. However, since the first uses the valua-

tions of the customer and the second the functional size for the matrix cells, its results

can diverge, and most often they do.

Since automatic testing is possible for functionality only, we can rely on the functional

effectiveness for assessing test coverage, while some of the quality aspects – if not

linked to any functionality – cannot be tested automatically. Whether some output

screen is readable and convenient to users, looking attractive, only users can tell, un-

less we can test its layout against certain ergonomic rules and regulations.

On the other hand, development must follow the customer’s priorities and provide

value. Such value can be other than functionality; for instance, does adherence to cor-

porate identity rules provide high value but no functionality.

- 145 -

8-2 STORY CARDS WITH TEST STORIES

To deal with these constraints and requirements, we use functional and non-func-

tional story cards, plus a mix of both. Story cards can have functionality to implement,

or simply call for adding value by adding quality features that affect things such as

ease-of-use, or appearance, or information presentation to humans; even to machine

users.

Thus, a story card describes one of the tasks needed to implement a user story, refer-

ences the functionality affected by such work, ideally as a data movement map, and

identifies the business value of this task. Thus, it might be that the business value does

not so much originate from the functionality but from other aspects such as establish-

ing credibility and trust among users of a software.

We use the ADAS example from section 4-3 and distribute its user stories on four

sprints. This yields a story card table as shown in Figure 8-2:

Figure 8-2: Story Table for ADAS

Responsible Scheduled for Effort Size

Card ID Label Description ID Developer Sprint StP CFP
1) Q001-01Q Look Operate the Sensors Q001 Populated Area 1 Susi #01 - Overture 8 6

2) Q001-02Q Analyze Ask for Recommended Actions Q001 Populated Area 2 Heidi #01 - Overture 13 4

3) Q001-03Q Understand Build 3D-model for Actual Environment Q001 Populated Area 3 Paul #02 - Allegretto 8

4) Q002-01Q Act on Obstacle Act on Obstacle Ahead Q002 Obstacle 1 Paul #01 - Overture 13 4

5) Q002-02Q Test Recommender Write Test Cases for Recommender Q002 Obstacle 2 Olly #01 - Overture 8 1

6) Q002-03Q Inform Car User Design Car User interface Q002 Obstacle 3 Heidi #02 - Allegretto 5 1

7) Q002-04Q Test Actuator Write Test Cases for Actuator Q002 Obstacle 4 Olly #02 - Allegretto 8

8) Q002-05Q Obstacle Recognition Teach Recommender how to Distinguish Obstacles on the Q002 Obstacle 5 Olly #04 - Finale 13 2

9) Q003-01Q Locate Inform about Actual Position Q003 Know my Way 1 Susi #02 - Allegretto 5 6

10) Q003-02Q Navigate Connect to Map Services Q003 Know my Way 2 Heidi #02 - Allegretto 8 6

11) Q003-03Q Inform Car User Design Car User Interface Q003 Know my Way 3 Fritz #01 - Overture 8 2

12) Q003-04Q Test Navigation Write Test Cases for Navigation and Location Services Q003 Know my Way 4 Olly #03 - Scherzo 13

13) Q004-01Q Change Route On Alert, Propose Another Route Q004 Amend my Way 1 Susi #03 - Scherzo 8 5

14) Q004-02Q Test Routing Write Test Cases for Routing Decisions Q004 Amend my Way 2 Olly #04 - Finale 13

15) Q005-01Q Approve Change Let the Car User Decide which Route to Take Q005 Check my Way 1 Heidi #03 - Scherzo 8 9

16) Q005-02F Learn from Past Compare with Previous Experiances Q005 Check my Way 2 Paul #03 - Scherzo 8 3

17) Q006-01Q Adjust Speed Connect Route Information to Recommender Q006 Able to Stop 1 Fritz #02 - Allegretto 13 5

18) Q006-02Q Inform Car User Show Car User the Car Driving Strategy Decisions Q006 Able to Stop 2 Fritz #03 - Scherzo 8 5

19) Q006-03Q Arrival Time Keep the Arrival Time Updated Q006 Able to Stop 3 Fritz #04 - Finale 8

176 59

StP for FUR: 126

Story Cards Requirement

Total Story Points (StP) / Function Points (CFP):

User Stories

Add Card Hide Card Unhide PublishClear

For instance, the user story Q001: Populated Area is implemented with three story

cards, spanning over two sprints:

• Q001-01Q Look Operate the Sensors (StP: 8; CFP: 6)

• Q001-02Q Analyze Ask for Recommended Actions (StP: 13; CFP: 4)

• Q001-03Q Understand Build 3D model for Actual Environment (StP: 8; no CFP)

- 146 -

Looking at the three story cards that implement user story Q001: Populated Area, we

see one (Figure 8-3) that implements main functionality by accessing the sensors and

collecting data from them. The next story card (Figure 8-4) analyzes the situation and

provides recommendations for the ADAS. This story card has highest business value

as this is what the car user expects from the ADAS. The third story card is about how

the functional process F001: Car Driving Function asks for action. To do this, it creates

a 3D model of the actual road situation, with predictions what the other vehicles and

people on the road are likely to do next, that it can submit to the A003: Recommender.

Figure 8-3: Q001-01Q: Look - Operate the Sensors

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

Q001-01Q: Look
6

Name:8

#01 - Overture

Business Impact:

Functional Size:

Story Points:

Operate the Sensors

Sprint:

Susi

y4: 3y2: 2y1: 2

As a Car User, I want to let my car reduce speed, such that my car can

safely stop, so that my car is not causing delays by an incidence
Car User Recommender

Car Driving
Function

Visual
Recognition

Sensor Bus Camera App Lidar Routing
Remember

Routes
GPS Service

1.// Trigger Sensor

2.// Start Cameras

3.// Supply Images

5.// Request Distance

6.// Lidar Distance

9.// Analysis Request

28.// Update Location

29.// Compare with Actual Route

30.// Update Location

31.// Recalculate Route

32.// Adapt Route

33.// Inform

Figure 8-4: Q001-02Q: Analyze - Ask for Recommended Actions

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

Q001-02Q: Analyze
4

Name:13

#01 - Overture

Business Impact:

Functional Size:

Story Points:

Ask for Recommended Actions

Sprint:

Heidi

y4: 6y1: 3

As a Car User, I want to let my car reduce speed, such that my car can

safely stop, so that my car is not causing delays by an incidence

Recommender
Car Driving

Function
Visual Recognition Remember Routes

10.// Analysis Result

11.// Chosen Route

12.// Ask for Actions

13.// Recommended Action

The third story card has no extra functionality, since constructing the 3D model is

contained in the functional process F001: Car Driving Function. It does not require extra

data movements – except if we change focus and granularity and ask how the various

functional users in the functional process F001: Car Driving Function perceive the steps

needed for car driving.

Thus, the last story card shown in Error! Not a valid bookmark self-reference. pro-

vides no new functionality in terms of data movements but implements the algorithm

- 147 -

needed to let the VRS make a recommendation. It is left open whether the mentioned

3D model is built by an algorithm or learned by an SVM or neural network. Most

likely, according today’s technology, it is the latter. In any case, the external applica-

tion A001: Visual Recognition (VRS) provides a suitable 3D model that can be used to

make recommendations for steering and acting by the ADAS. The actual recommen-

dation originates from another external application A003: Recommender.

Figure 8-5: Q001-03Q: Understand - Build 3D model for Actual Environment

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

Q001-03Q: Understand
0

Name:8

#02 - Allegretto

Business Impact:

Functional Size:

Story Points:

Build 3D-model for Actual Environment

Sprint:

Paul

y4: 3y1: 2

As a Car User, I want to let my car reduce speed, such that my car can

safely stop, so that my car is not causing delays by an incidence

8-3 SELECTING TEST STORIES FOR STORY CARDS

He back of the story cards contains the applicable test stories. Since the user story

Q001: Populated Area is quite prominent for ADAS functionality, ten of the eleven test

stories (see section 4-3: ART for ADAS) are listed. Thus, the developers know against

which test stories their functionality will be tested. Test stories clarify requirements.

However, the aim is two ways: the developers are encouraged to write additional test

cases that they think relevant.

The selection of test stories on the back of story cards is automatic: all test stories that

contain a test case testing one of the data movements occurring in the user story are

listed. Thus, the story card Q001-03Q: Understand - Build 3D model for Actual Environ-

ment also features all ten test stories that affect user story Q001: Populated Area even if

the story card is not referring directly to any data movement. Nevertheless, it might

make sense since testing any of the non-functional quality characteristics involves

some functionality – otherwise, it would not be a test, rather a static assessment.

As you always need functionality to implement non-functional characteristics, you

always need functional tests for testing quality characteristics.

- 148 -

8-4 CREATING TEST STORIES BY THE DEVELOPMENT TEAM

Since our cards use “intelligent paper” – i.e., they are distributed and available elec-

tronically – adding test cases is a matter of harvesting developers intelligence for cre-

ating relevant tests. Thus, the test suite grows while the product evolves.

Obviously, tests run as soon as enough functionality is available. This is the same kind

of automated test runs that is usually in place for unit tests delivering the “green bar”

needed for the daily build.

Harvesting skills and intelligence of the development team – this is the reason why

we institutionalize collection of test stories and test cases while developers look at the

details of implementing user stories.

The back of the story cards is not immutable but is used to collect test stories and test

cases. Initially, when development starts, the test stories might even be missing, and

it is up to the development team to propose them. If every developer proposes tests,

it needs a Test Manager who collects these proposals, identifies when the same test

story is proposed twice, or a test case is assigned to the wrong test story. The test

manager arranges the back of the story cards.

8-5 TEST MANAGEMENT

Test management is probably the most important task in ART. That testing starts at

the beginning of any product development, is already clear. Most agile software de-

velopment uses Test-Driven Development (TDD) (Poppendieck & Poppendieck, 2007),

as already mentioned. ART extends TDD based on existing test cases and can be used

to increase test intensity already while developing the product.

Setting up the test stories goes in parallel with the user stories and controlling evolu-

tion of knowledge all through the development stages and sprints by functional effec-

tiveness and test coverage transfer functions starts at the very beginning of product

development. Especially, if the product is complex or safety critical.

8-6 CONCLUSIONS

Thanks to the ongoing controlling of convergence gaps in all transfer functions in-

volved, developing software even for safety critical application such as automatic

driving, for artificial intelligence, or for complex software-intense systems becomes

feasible.

- 149 -

Technology advances cannot become successful without developing suitable control

mechanisms as institutionalized with software testing. The dream of autonomous ve-

hicles seems nowadays, by mid-2019, remaining a dream. Whether ART alone can put

the dream into reality is not sure. ART detects defects and avoids fatal failures but

does not solve the problem how to drive through Naples or Delhi. There human-to-

human communication between car drivers is much more important than sensors and

car-to-car communication.

Nevertheless, the future is with software-intense systems; but the future still lacks

ART. Developing tools for ART is probably right now the most urgent task for the ICT

community.

While it is not sure whether ART helps avoiding catastrophic failures, ART creates an

open space, the combinatory algebra of arrow terms, where unthinkable test cases

have a well-defined place. While AI, as already stated, is not intelligent, AI can help

people to think much farther than ever and anticipate consequences of their new tech-

nology that they are going to develop and impose on society.

- 151 -

BIBLIOGRAPHY
Akao, Y., ed., 1990. Quality Function Deployment - Integrating Customer Requirements

into Product Design. Portland, OR: Productivity Press.

Andy Greenberg, 2015. Hackers Remotely Kill a Jeep on the Highway—With Me in It.

[Online]

Available at: https://youtu.be/MK0SrxBC1xs

[Accessed 15 March 2018].

Bell, D., 2004. UML basics: The Sequence Diagram – Introductory Level, Armonk, NY:

IBM DeveloperWorks.

Cabré Castellví, T. et al., 2017. El multilingüisme en blanc i negre. 1 ed. Barcelona:

Càtedra Pompeu Fabra-Universitat Pompeu Fabra.

Cagley, T., 2018. Using Size to Drive Testing in Agile. s.l.:Webinar - Verbal

Communication.

Cairns, H., 2014. A short proof of Perron’s theorem. [Online]

Available at: http://www.math.cornell.edu/~web6720/Perron-

Frobenius_Hannah%20Cairns.pdf

[Accessed 25 August 2015].

COSMIC Measurement Practices Committee, 2017. The COSMIC Functional Size

Measurement Method – Version 4.0.2 – Measurement Manual, Montréal: The

COSMIC Consortium.

Ebner, M., 2004. TTCN-3 Test Case Generation from Message Sequence Charts.

Göttingen, Germany,: In Workshop on Integrated-reliability with

Telecommunications and UML Languages (ISSRE04:WITUL}.

El Saddik, A., 2018. Digital Twins: The Convergence of Multimedia Technologies.

IEEE MultiMedia (Volume: 25 , Issue: 2 , Apr.-Jun. 2018), 25(2), pp. 87 - 92.

Engeler, E., 1981. Algebras and Combinators. Algebra Universalis, pp. 389-392.

Engeler, E., 1995. The Combinatory Programme. Basel, Switzerland: Birkhäuser.

Engeler, E., 2019. Neural algebra on "how does the brain think?". Theoretical Computer

Science, Volume 777, pp. 296-307.

ETSI European Telecoms Standards Institute, 2018. TTCN-3 Standards. [Online]

Available at: http://www.ttcn-3.org/index.php/downloads/standards

[Accessed 11 Dec 2018].

European Commission, 2010. Directive 2010/30/EU of the European Parliament and of

the Council of 19 May 2010 on the indication by labelling and standard product

information of the consumption of energy and other resources by energy-related

products. [Online]

Available at: https://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:P

- 152 -

DF

[Accessed 11 Dec 2018].

Fathi, B., 2017. Towards a Methodology for Performance Evaluation in Terminology

Planning. In: P. Faini, ed. Terminological Approaches in the European Context.

Newcastle upon Tyne, UK: Cambridge Scholars Publishing, pp. 328-347.

Fehlmann, T. M., 1981. Theorie und Anwendung der Kombinatorischen Logik, Zürich,

CH: ETH Dissertation 3140-01.

Fehlmann, T. M., 2003. Linear Algebra for QFD Combinators. Orlando, FL, International

Council for QFD (ICQFD).

Fehlmann, T. M., 2016. Managing Complexity - Uncover the Mysteries with Six Sigma

Transfer Functions. Berlin, Germany: Logos Press.

Fehlmann, T. M., 2019. Cloud Samples for ART. [Online]

Available at: https://web.tresorit.com/l#QtOlbhUCcQB-oVG7hSatSQ

[Accessed 04 08 2019].

Fehlmann, T. M. & Kranich, E., 2011. Transfer Functions, Eigenvectors and QFD in

Concert. Stuttgart, Germany, QFD Institut Deutschland e.V.

Fehlmann, T. M. & Kranich, E., 2012. Using Six Sigma Transfer Functions for Analysing

Customer’s Voice. Glasgow, UK, Strathclyde Institute for Operations

Management.

Fehlmann, T. M. & Kranich, E., 2014-1. Exponentially Weighted Moving Average

(EWMA) Prediction in the Software Development Process. Rotterdam, NL, IWSM

Mensura.

Fehlmann, T. M. & Kranich, E., 2014-2. Uncovering Customer Needs from Net Promoter

Scores. Istanbul, Turkey, 20th International Symposium on Quality Function

Deployment.

Fehlmann, T. M. & Kranich, E., 2017. Autonomous Real-time Software & Systems

Testing. Göteborg, s.n.

Gigerenzer, G., 2007. Gut Feelings. The Intelligence of the Unconscious.. New York, NY:

Viking.

Graz University of Technology, 2018. Meltdown and Spectre. [Online]

Available at: https://meltdownattack.com

[Accessed 11 Dec 2018].

Gunning, D., 2017. Explainable Artificial Intelligence (XAI). [Online]

Available at: https://www.darpa.mil/program/explainable-artificial-

intelligence

[Accessed 22 Mar. 2019].

Gunn, S., 1998. Support Vector Machines for Classification and Regression, Southampton:

ISIS Technical Report, University of Southampton.

- 153 -

IFPUG Counting Practice Committee, 2010. Function Point Counting Practices Manual

- Version 4.3.1, Princeton Junction, NJ: International Function Point User

Group (IFPUG).

Ishikawa, K., 1990. Introduction to Quality Control. Translated by J. H. Loftus;

distributed by Chapman & Hall, London ed. Tokyo, Japan: JUSE Press Ltd.

ISO 16355-1:2015, 2015. ISO 16355-1:2015, 2015. Applications of Statistical and Related

Methods to New Technology and Product Development Process - Part 1: General

Principles and Perspectives of Quality Function Deployment (QFD), Geneva,

Switzerland: ISO TC 69/SC 8/WG 2 N 14, Geneva, Switzerland: ISO TC 69/SC

8/WG 2 N 14.

ISO 26262-1, 2011. Road vehicles - Functional Safety - Part 1: Vocabulary, Geneva:

ISO/TC 22/SC3.

ISO 31000:2018, 2018. Risk management — Guidelines, Geneva, Switzerland: ISO/TC

262.

ISO/IEC 14143-1:2007, 2007. Information technology - Software measurement - Functional

size measurement - Part 1: Definition of concepts, Geneva, Switzerland: ISO/IEC

JTC 1/SC 7.

ISO/IEC 19761:2019, 2019. Software engineering - COSMIC: a functional size

measurement method, Geneva, Switzerland: ISO/IEC JTC 1/SC 7.

ISO/IEC 20926:2009, 2009. Software and systems engineering - Software measurement -

IFPUG functional size measurement method, Geneva, Switzerland: ISO/IEC JTC

1/SC 7.

ISO/IEC CD Guide 98-3, 2015. Evaluation of measurement data - Part 3: Guide to

uncertainty in measurement (GUM), Geneva, Switzerland: TC/SC: ISO/TMBG.

ISO/IEC Guide 99:2007, 2007. International vocabulary of metrology – Basic and general

concepts and associated terms (VIM), Geneva, Switzerland: TC/SC: ISO/TMBG.

ISO/IEC/IEEE 29119-4, 2015. Software and systems engineering — Software testing —

Part 4: Test techniques, Geneva, Switzerland: ISO/IEC JTC 1.

ISTQB, 2011. ISTQB - Certifying Software Testers Worldwide. [Online]

Available at: http://www.istqb.org/downloads/category/2-foundation-

level-documents.html

[Accessed 24 April 2017].

ISTQB, 2014. Agile Tester Extension Syllabus. [Online]

Available at: http://www.istqb.org/downloads/send/5-agile-tester-

extension-documents/41-agile-tester-extension-syllabus.html

[Accessed 24 April 2017].

Mazur, G., 2014. QFD and the New Voice of Customer (VOC). Istanbul, Turkey,

International Council for QFD (ICQFD), pp. 13-26.

- 154 -

Mazur, G. & Bylund, N., 2009. Globalizing Gemba Visits for Multinationals. Savannah,

GA, USA, Transactions from the 21st Symposium on Quality Function

Deployment.

Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. V., 2009. Response Surface

Methodology: Process and Product Optimization Using Designed Experiments. New

York, NY: John Wiley & Sons.

Poppendieck, M. & Poppendieck, T., 2007. Implementing Lean Software Development.

New York, NY: Addison-Wesley.

Pupale, R., 2018. Support Vector Machines (SVM)  -  An Overview. [Online]

Available at: https://towardsdatascience.com/https-medium-com-

pupalerushikesh-svm-f4b42800e989

[Accessed 28 Mar. 2019].

Reichert, A., 2015. Testing APIs protects applications and reputations. [Online]

Available at: https://searchsoftwarequality.techtarget.com/tip/Testing-APIs-

protects-applications-and-reputations

[Accessed 4 Apr. 2019].

Reichheld, F., 2007. The Ultimate Question: Driving Good Profits and True Growth.

Boston, MA: Harvard Business School Press.

Rouse, M., Burns, E. & Laskowski, N., 2018. Essential Guide. [Online]

Available at: https://searchenterpriseai.techtarget.com/definition/AI-

Artificial-Intelligence

[Accessed 12. Sep. 2019].

Russo, L., 2004. The Forgotten Revolution - How Science Was Born in 300 BC and Why It

Had to Be Reborn. Berlin Heidelberg New York: Springer-Verlag.

Saaty, T. L., 1990. The Analytic Hierarchy Process – Planning, Priority Setting, Resource

Allocation. Pittsburgh, PA : RWS Publications.

Saaty, T. L., 2003. Decision-making with the AHP: Why is the principal eigenvector

necessary?. European Journal of Operational Research, Volume 145, pp. 85-91.

Saaty, T. L. & Alexander, J. M., 1989. Conflict Resolution: The Analytic Hierarchy

Process. New York, NY: Praeger, Santa Barbara, CA.

Schurr, S., 2011. Evaluating AHP Questionnaire Feedback with Statistical Methods.

Stuttgart, Germany, 17th International QFD Symposium, ISQFD 2011.

Schwaber, K. & Beedle, M., 2002. Agile Software Development with Scrum. Upper

Saddle River, NJ: Prentice Hall PTR.

SonarSource S.A, Switzerland - Open Source, 2017. Documentation for SonarQube 6.3.

[Online]

Available at: https://docs.sonarqube.org/

[Accessed 21 April 2017].

- 155 -

Soubra, H., Abran, A. & Ramdane-Cherif, A., 2014. Verifying the Accuracy of

Automation Tools for the Measurement of Software with COSMIC – ISO 19761

including an AUTOSAR-based Example and a Case Study. Rotterdam, s.n.

Soubra, H., Abran, A. & Sehit, M., 2015. Functional Size Measurement for Processor

Load Estimation in AUTOSAR. Lecture Notes in Business Information Processing,

Volume 230, pp. 114-129.

Staimer, M., 2015. TechTarget Essential Guide. [Online]

Available at: https://searchdatabackup.techtarget.com/tip/Docker-data-

container-protection-methods-Pros-and-cons

[Accessed 15 Jan. 2019].

Steve Singh et.al., 2018. Docker overview. [Online]

Available at: https://docs.docker.com/engine/docker-overview/

[Accessed 9 April 2018].

Szegedy, C. et al., 2014. Intriguing properties of neural networks. [Online]

Available at: https://arxiv.org/abs/1312.6199

[Accessed 8 March 2018].

The Kubernetes Authors, 2018. Kubernetes. [Online]

Available at: https://kubernetes.io

[Accessed 15 Dec 2018].

The National Transportation Safety Board, 2018. Preliminary Report Highway

Hwy18mh010. [Online]

Available at: https://www.documentcloud.org/documents/4483190-

NTSBuber.html

[Accessed 13 Mar. 2019].

Theodorou, A., Wortham, R. & Bryson, J., 2017. Designing and implementing

transparency for real time. Connection Science, 29(3), pp. 230-241.

Tilghman, C., Li, M. C. & Zemore, M., 2014. Software Safety Analysis Procedures. St.

Louis, MO, International System Safety Training Symposium.

Turing, A., 1937. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

42(Series 2), p. pp 230–265.

van Gerven, M., 2017. Computational Foundations of Natural Intelligence. [Online]

Available at:

https://www.frontiersin.org/articles/10.3389/fncom.2017.00112/full

[Accessed 27 March 2018].

van Gerven, M. & Bothe, S. eds., 2018. Artificial Neural Networks as Models of Neural

Information Processing. Lausanne, Frontiers Media.

VDA, 2008. Teil FMEA Band 4, Berlin: Verband der Automobilindustrie.

- 156 -

Volpi, L. & Team, 2007. Matrix.xla. [Online]

Available at: http://www.bowdoin.edu/~rdelevie/excellaneous/matrix.zip

[Accessed 11 Dec 2018].

Wikipedia, 2018. Blockchain. [Online]

Available at: https://en.wikipedia.org/wiki/Blockchain

[Accessed 17 April 2018].

Wikipedia, 2019. European Train Control System. [Online]

Available at:

https://en.wikipedia.org/wiki/European_Train_Control_System

[Accessed 13 Feb. 2019].

- 157 -

REFERENCE INDEX

Achieved Profile, 32
Advanced Driving Assistance System, 2,

38, 66
Analytic Hierarchy Process, 54, 109, 111,

113
Analytical Hierarchy Process, 37
Arrow Term, 4
Artificial Intelligence, 14, 39, 128, 130
Assertion, 3, 5
Autonomous Cars, 66
Autonomous Driving, 66
Autonomous Real-time Testing, 11, 14,

101, 131
Bug, 35
Buglione-Trudel Matrix, 143
Car Driving Function, 70

Cellar, 143
Combinatory Logic, 109
Computer Vision, 130
Controls, 3
Convergence Gap, 9, 30
Critical to Quality, 32
Data Functions, 20
Data Group, 22, 24
Data Movement, 24
Data Movement Maps, 24
Data Movements Covered, 47
Data Walker Test, 35, 45, 101
Defect Density, 36, 47, 92
Deming Chain, 48
Design of Experiments, 30
Digital Twin, 104
Digital Twins, 52
Effort Points, 43
Eigenvector, 31
Electronic Control Unit, 24
Euklidian Norm, 10, 89
European Train Control System, 108
Explainable AI, 134
Function Point, 23

Functional Effectiveness, 118
Functional Effectiveness, 42, 43
Functional Size, 24
Functional User Requirements, 88
Goal Profile, 32
Hierarchy Comparison, 113, 118
House of Quality, 31, 32
Internet of Things, 2, 14, 49, 53
IoT Needs, 53
Jacobi Iterative Method, 34
Kubernetes, 28
Lidar, 70, 80
Microservice, 28
Navigator, 27
Net Promoter® Score, 37
Neural Network Engine, 70

Non-functional Requirements, 29
Non-Functional Requirements, 18
Objects of Interest, 24
Perron-Frobenius, 33, 95
Privacy Index, 75, 102
Privacy Needs, 67, 74, 101
Privacy Protection, 67
Product Owner, 143
Profile, 89, 113
Quality Function Deployment, 7, 29, 37,

111
Ratio Scale, 33
Response, 3
Rule Set Radius, 11, 61
Safety Impact, 73, 101
Safety Index, 75
Safety Risk Index, 102
Satisfaction Gap, 41
Schurr Radius, 11
Six Sigma Transfer Functions, 7
Story Card, 143
Sundeck, 143
Support Vector Machine, 138
Terminology Broker, 112

- 158 -

Terminology Management, 112
Test, 34
Test Automation, 104
Test Case, 3, 4, 5

Test Case Generator, 95
Test Coverage, 34, 36, 37, 47, 89
Test Coverage Items, 17
Test Data, 3
Test Intensity, 34, 47, 92
Test Manager, 148
Test Response, 3
Test Size, 34, 47
Test Story, 3, 5, 34
Test Stub, 104

Test-Driven Development, 2, 148
Testing Blockchain, 91
Testing Chain, 91
Topic Set, 5

Traffic Services, 49
Transaction Map, 21
Transfer Function, 29
Ultimate Question, 37
UML Sequence Diagrams, 24
Verbatim, 39
Virtual Machine, 24
Visual Recognition System, 134
Voice of the Customer, 29, 41
Web of Things, 53

