Locate

JUNE

30, 2019

Get Route

/ Car User / GPS Tracks I | Routes Navigation J GIS Maps Weather Service Traffic Service

| I | | | | |

_ A 1.// Switch on " _ " " "
) g i | I I I
. = 2.//Request GPS tracks . . .
: ?3 // Return GPS track : ? I ! I
i ‘ etumn racks I <|> I I |
. . 4.// Request maj . .
! I I :| 5./ Get map 'I I I
<|>‘ | | 6./ Show map$ 1 1 1
$4 I 1 7.J/ Show position * | | |
*8.// Switch off | 1 . é | | |

. *9.// Enter destination || | _ é 1 1 1
1 1 l 10.// Search route : 1 1 1
I I I o 11.// Ask for route A I I
. . . 2.1/ Return possible routes 4 . .
I I I i{Retum possble routesq, I I
- - - 13.// Ask for weather forecast A -
| | | 2 i % |
" " " A o 147// Return weather forecast 4
I I I ‘e i ? |
- - - 15.// Ask for traffic density=
I I I ¢ | i <
. . . _ . 16 // Retumn traffic density.
| | | ? | ?
o . 17.// Show routes © . .
| | | | | I

18.// Show travel Time

O © . . .
| | | | | | |

AUTONOMOUS
REAL-TIME TESTING

TESTING ARTIFICIAL INTELLIGENCE AND OTHER COMPLEX SYSTEMS

THOMAS FEHLMANN

EURO PROJECT OFFICE AG

Zurich, Europe

WHY THIS BOOK?

Readers who worked through “Managing Complexity” (Fehlmann, 2016) - the previ-
ous book that appeared end of 2016 - may already have been waiting for its continu-
ation, addressing today’s deadlock around digitalization. Combining Artificial Intel-
ligence with autonomous vehicles and the Internet of Things creates new potential
products. While technology is here for building autonomous vehicles that are much
safer than human-driven cars, saving lives and eliminating traffic jams at once, society
is all but ready.

Autonomous cars will not it the roads because of liability concerns. Who is responsible
for incidents they cause? The supplier of software, or hardware, or the user sitting in
the passenger seat, or always the other, mostly unlucky, human involved?

And what if two autonomous cars crash into another?

Sure, nothing can avoid future incidents even with the best-equipped cars of the uni-
verse. However, precautions can be taken, and the most obvious precaution is testing
of the software that affects safety. Since one of the most intriguing safety issues is with
privacy violation, if data is stolen, or even malicious forces take over control, privacy
protection is among the most important requirements for software-intense products.
This book focuses on testing privacy protection and assessing safety risks

But today’s software testing is way behind the age of digitalization. No metrics exist
for test intensity that can compare different cars and manufacturers. Today’s software
tests cover code but not the full functionality needed to control autonomous vehicles.
While software changes continuously, with Continuous Integration / Continuous De-
livery, tests executed at release quality gates reflect the original state of delivery, in
isolated environments. But cars run through the real world, unfortunately.

This book is not an experience report but creates a vision. This vision opens the way
into future research to address the issues that arise with implementing continuous and
autonomous real-time testing for software-intense systems.

All examples shown are implemented in Excel in Microsoft Office 365 and freely avail-
able to readers of this book, including technical information. It suffices to send e-Mail
to info@e-p-o0.com with some evidence of purchase and a valid e-Mail address. Access

is personal, encrypted and protected. This is necessary since the examples contain
open VBA code that otherwise can be compromised.

- i1 -

mailto:info@e-p-o.com

ACKNOWLEDGEMENT

Important contributions originate from discussions and workshops with colleagues
from the Software Metrics and the Quality Function Deployment communities; espe-
cially, but not limited to, Silvan Fehlmann, Luigi Buglione, Eberhard Kranich and the
German QFD Institute.

- 11 -

TABLE OF CONTENTS

Chapter 1: =~ Why Autonomous Real-time Testing?............cccccccceivviniiiinininieccnnene. 1
1-1 INtrodUCtION.....c.oiiiiiiiiiii 1
1-2 What is Software Testing?..........ccccceviviniiiiiiiniiiiiciciccceeeeceeae 3
1-3 Representing Unlimited Knowledge...........ccocooiriiiinininiiiinininiiicicnn, 8
1-4 Autonomous Real-time Testing..........ccccoceevvevieniniiiiinininiiiiicccce, 11
1-5 OUIOOK ... 15

Chapter 2: Test MEtrICSccevuiiiiiiiiiiiieieeie st 17
2-1 INtrodUuCtioN........coiiiiiiiiii 17
2-2 Modeling SOftware............cceouiriiiiiiniiiiiiciceece e 18
2-3 A Short Primer on Six Sigma Transfer Functions...............cccccccooniiiinnn. 29
2-4 Measuring Testscccciviiiiiiiiiiii 34
2-5 Test Metrics for the Navigator Application............cccceoiviiiiiiiiiiiininnns 38
2-6 CONCIUSION......oiiiiiiiiic s 49

Chapter 3: Testing the Internet of Thingsccccocoiiiiiiiiiii 51
3-1 INErOdUCHION. ... 51
3-2 Testing the Internet of Things (I0T)........ccccccoiiiiiiiiiii, 53
3-3 Conclusions and NexXt Steps.........cceviririiiieniininieiicnteeccese e 63

Chapter 4: Testing Privacy Protection and Safety Risks............c.cccccceviiiiininnn. 65
4-1 INErOAUCHION. ... 65
4-2 Consumer MetriCs.........cccovuiiiiiiiiiiiiiii e 66
4-3 ART fOr ADAS ..o 75
4-4 CONCIUSION. ...t 86

Chapter 5: Artificial Intelligence for Testing.............ccccoeviiiiininiiiiiniiiice, 88
5-1 What is the Goal of Testing?cccooeiiiiiiiiiniiiiiccecce 88
5-2 Generating New Test Cases ..o, 90
5-3 The Test Case Generatorcccccceviiiiiiiiiiiiiiiii 95
5-4 Three Standard Testscccccooiiiiiiiiiiiiiiiiiie, 101
5-5 The DevOps Paradigm and Software Testingccccccoevviiiiiiininnnnnne. 103
5-6 Three Innovations needed.............ccccooiiiiiiiiiiiiiie, 103

-iv -

Chapter 6: Testing Highly Complex Technical Systems.............ccccceeverinienennene. 107
6-1 Testing Digital TWINSccccccoiiiiiiiiiiiiiiiiiiiccccee 107
6-2 The Fundamentals of Testing Complex Systemscccccevevininnennnne. 109
6-3 AHP £Or TESHING ...c.voviiiiiiiiiiiiicteeceee e 118
6-4 Open QUESHIONS.........ccciiiiiiiiiiiiiiii 127
6-5 CONCIUSION. ... 128

Chapter 7: Testing Artificial Intelligencecccccccoevinviiiinininiiiiniiicee, 129
7-1 INtroduction........ccociiiiiiiiiii 129
7-2 How to Test Artificial Intelligencecccccevinvieiiininiiniiinininiiicieee, 130
7-3 A Deep Learning Application as a Sample..........ccccceevevirvievieneniniecnennenne. 134
7-4 Next Steps, and a Preliminary Conclusion..........ccccceeeviviiciencninienennenne. 140
7-5 A Side NOte......oouiiiiiiii 141

Chapter 8: Agile Testing with the Buglione-Trudel Matrix............cccccceceeinn 143
8-1 INtrodUCtiON. ... 143
8-2 Story Cards with Test Stories.............ccccciiiiiiiiiiiiii, 145
8-3 Selecting Test Stories for Story Cardsccccoeoiiiiiiiiiiiiiiiiice, 147
8-4 Creating Test Stories by the Development Team.............ccccccoceiiiiiinnene. 148
8-5 Test Management............cccccooiiiiiiiiiiiiiiiii 148
8-6 CONCIUSIONS ...t 148

BIibLIOGIapRY ... s 151

Reference INAeX ... 157

CHAPTER 1: WHY AUTONOMOUS
REAL-TIME TESTING?

Autonomous Real-time Testing sounds somewhat like one of the many hypes
that currently come with digitalization. The strange effect originates from the
term “Testing” - something that sounds today somewhat outdated. Who is
interested in Testing? Agile Enterprise, Agile Management, DevOps, Industry
4.0, Disruptive Transformation are stirring more interest, today.

However, most products today are software intense. Such products, as any
product, might fail, and if such failure causes damage or loss of goods or life,
liability questions arise. Today’s Internet of Things (I10T), Advanced Driving
Assistance Systems (ADAS), Autonomous Drones for goods delivery or build-
ing industry, all are under the thread of failure caused by software and conse-
quently liability issues.

This book does not address hardware failure, or failure by mechanical design
or construction. The focus is on failure by software faults, and what else can
we do than software testing against failure? When should we do such testing?
At the end of software development? When does development stop with
DevOps? Should we probably add Continuous Testing to Continuous Integra-
tion and Continuous Delivery (CI/CD/CT)?

1-1 INTRODUCTION

The first topic to address is where did our famous software projects go that where
always too late, with cost overruns, and tests left to the first customers?

With DevOps, there are no more projects. DevOps is a paradigm for product manage-
ment by continuous software integration and software delivery. The end of develop-
ment is not before end of product life. While there is still product design and software
architectural thinking, new software is created by integrating open source software
with own coding. Software testing is difficult, and since testing refers to code, only the
part written in-house undergoes testing. Each build is fully unit tested, supported by
test automation tools to ensure code meets expectations. Test coverage refers to code;
necessarily only to that part of software written in-house. Technical debt is the com-
mon metrics for released code that requires rework, be it for maintainability or exten-
sibility. The metric describes the amount of effort needed to remove weaknesses and

is typically calculated by the code repository system, e.g., SonarCube (SonarSource
S.A, Switzerland - Open Source, 2017). The aim is to totally avoid technical debt.

Also, unit testing of code written by the team is normally done daily; and no code can
be checked-in that does not pass unit tests. Best practices ask for unit tests written
before any code. This is the Test-Driven Development (TDD) approach made famous by
the Poppendiecks (Poppendieck & Poppendieck, 2007).

Final release testing for the product is done where compliance issues exist that need
being verified. Otherwise, system testing is usually done together with customers;
most often, but not always, these customers are aware of acting as a “beta-tester”. Sys-
tem testing cannot be performed by the code testing tools used for unit testing where
code is not available. Test coverage remains guesswork even after intense and effec-
tively monitored beta tests with users. No test metrics exist beside unclear indications
like the number of bugs detected and recorded in some issue management tool. Since
bugs can neither be identified and located in code, nor separated from each other, the
number of bugs recorded is a useless count. Whether two bug entries refer to the same
defect or not remains open.

While for game software or entertainment, even office publishing, such a situation is
acceptable, it is clearly not for products based on software that carries liability. Home
banking software without defect density measurements is risky for banks. If office
software becomes a tool for team communication in enterprises, liability for its correct
functioning carries a significantly higher risk for the software supplier than document
publishing and spreadsheet calculating software. Software that controls the Internet of
Things (IoT), or even more for Advanced Driving Assistance Systems (ADAS) in cars or
autonomous vehicles might have disastrous effects if not working safely and correctly.
All these examples do not rely on code written by some single development team.
They are rather a patchwork of functionality delivered with the “thing” or system
component; whether code is available, is uncertain. The need for testing is apparent;
the need for test metrics that characterize the amount of testing and current defect
density is obvious. However, while casual testing might be done somehow by suppli-
ers and users of such software; metrics are not available and not agreed. Without met-
rics, such casual testing is near to useless.

Yet another problem lies with software borrowed as services from the cloud. For in-
stance, communication software might be vulnerable to data theft; social media and
team communication might be subject to unauthorized big data analysis violating pri-
vacy rights; assumptions for cloud service security might turn out to be overly opti-
mistic without testing and test metrics. Consequently, autonomous vehicles might
take the wrong route, or keep routes taken not private. This is the small side of the
problem; safety risks by untested software-intense systems constitute the big end.

While privacy and safety risks are not the full story related to digitalization, these two
topics embrace the most urgent need for systems testing in software-intense products.

1-2 WHAT IS SOFTWARE TESTING?

Software Testing means the process of defining Test Stories (or Test Scenarios) that each
contain Test Cases that can be executed. A Test Case is a structure consisting of Test
Data x4,x,, ...,x, and a Test Response y, where each test data item x; as well as the test
response is an Assertion. The assertion describes the state of the program under exe-
cution. Formally, a test case is expressed by the following Arrow Term:

{x1, %2, 0, X0} >y (1-1)
For the origins of arrow terms see Engeler 1981 (Engeler, 1981). For a more recent ap-
plication, how arrow terms define a neural algebra on “how does the brain think?”,
see Engeler, 2019 (Engeler, 2019). In our case, the assertions describe the status of the
software-intense system under test. A simple assertion describes the value, or value
range, of a software variable; it can also describe a certain status of the system, such
as listening to some device, waiting for confirmation or executing a database search,
or simply identify the starting point for some test case. With reference to Six Sigma,
the left-hard finite set of an arrow term is references as Controls, the right-hand single-
ton is the Response.

Assertions use the basic numerical operations between variables and constants such
as equality, greater than, or inequality. It is not necessary to combine assertions using
logical operations AND, OR, and NOT. The test data sequence acts as an AND; instead
of a OR two arrow terms describe the same. NOT is more complicated to substitute by
arrow terms: sometimes, negation is immediately available as with equality, some-
times, negated assertions split into two. The test response y is not necessarily unique;
several assertions might become true under identical test data assertions x4, x5, ..., X5,
for instance depending where the system under test is investigated for the test result.

A test case passes if we can run the software with valid test data assertions and the
assertion y for the test response is valid in the system under test. A test story passes
if all its test cases pass. Real-time Testing is the process of testing real-time systems and
its software, see Ebner (Ebner, 2004).

Assertions can contain stronger assertions. For instance, the assertion a = 20 is more
restrictive than a < 20. Test cases always contain weakest assertions; thus, inequali-
ties or range specification rather than sample numbers.

1-2.1 A STANDARD FOR REPRESENTING ASSERTIONS ABOUT TESTS

Since test cases are possibly something that shall be exchanged between different sys-
tems, even from different manufacturers, standardization is needed. If software from
different suppliers shall cooperate, standards must be agreed and implemented that
allow communication and cooperation. In the IoT and automotive area, such stand-
ards exist. For real-time testing, with focus on communication, an international stand-
ard for specifying test cases exists: Testing and Test Control Notation (ETSI European
Telecoms Standards Institute, 2018), now in its version 3 (TTCN-3). According Ebner
(Ebner, 2004), the test notation is useful for automatically generating test cases from
UML sequence diagrams, covering the base system. In our context, TTCN-3 is suitable
for stating assertions. However, TTCN-3 is much more than simply a framework for
stating test assertions such as fixing test data and test responses. It also contains the
necessary instructions for test instantiation and test automation.

Thus, using TTCN-3 for test assertions, software tests can be described by a standard
that is independent from the programming environment and from the supplier. Tests
can be interchanged between different actors related to software testing.

1-2.2 A REPRESENTATION FOR THE WORLD OF TESTS

However, software is dynamic. Trying to model software by static assertions is miss-
ing the dynamic behavior of a system. For this reason, we extend our definition of a
Test Case to include not only basic assertions but recursively other test cases as well.

Let L be the set of all assertions over a given domain. Examples include statements
about customer’s needs, solution characteristics, methods used, etc. These statements
contain no free variables; i.e. they are assertions about the business domain we are
going to model. A sample language £ is TTCN-3. However, since this book is written
for humans, not robots, we will use natural language, not TTCN-3, knowing that our
verbal assertions need being converted in machine language before being executed.

Denote by G(£) the power set containing all Arrow Terms of the form (1-1). The left-
hand side is a finite set of arrow terms and the right-hand side is a single arrow term.
This definition is recursive; thus, it is necessary to establish a base definition saying
that every assertion itself is considered an arrow term. The arrows of the arrow terms
are distinct from the logical imply that some authors also denote by an arrow. The
arrows denote cause-effect, not logical imply.

The formal, recursive, definition, in set-theoretical language, is given in equation (1-2):

go(L) =L

(1-2)
Gns1 (L) = Go(D) U {{ay, ..., an} = blay, . ap, b € Go(£),m =0,1,2,3 ...}

-4 -

G(L) is the set of all (finite and infinite) subsets of the union of all G, (£):

0 = J 60 (1-3

neN

The elements of G, (L) are arrow terms of level n. Terms of level 0 are Assertions,
terms of level 1 Test Cases. Sets of test cases are called Rule Set. (Fehlmann, 2016). In
general, a rule set is a finite set of arrow terms. Infinite rule sets we call Knowledge Base.
Hence, knowledge is a potentially unlimited set of rules about assertions about test
cases. This definition is recursive, as before.

A Test Story is a finite rule set and element of G, (£) that consists of level 1 terms only.
A test story comes with additional information relating to its business domain.

1-2.3 COMBINING TESTS

Let M,N be two rule sets, consisting of test cases. N is a set of test cases consisting of
arrow terms of the formb; = ({x1,x;, ..., x,} = ¥);. Then application of M to N is de-
fined by

M e N = {c|3{by, by, ...,b,,} > c € M; b; € N} (1-4)

In other words, if all b; executed in N with pass, the test story M can be applied to
arule set N as a set of test cases. This represents the selection operation that chooses
those rules {by, b, ..., by} = ¢ from test story M that are applicable to the rule set N.
Combining tests is a strong means to extend test stories up to the limit as needed.

Combinatory Algebra (Engeler, 1995) is the mathematical theory of choice for automat-
ically extending test cases from a simpler, restricted system, to test stories that fully
cover a larger, expanded system. The extension works only if software testing not only
is automated but measured. Metrics must be independent from current implementa-
tion and from actual system boundaries.

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose
computational power is Turing-complete, i.e., all programs that are executable by
computers can be modeled. This guarantees the best achievable test coverage. With
combinatory algebra, test cases extend from real-time tests, covering a base system, to
the actual, expanded system.

The definition (1-4) looks somewhat counter-intuitive. To apply one test case to an-
other, it is required that the result of application contains all the full test cases provid-
ing the response sought.

A more intuitive approach would only require arrow terms providing such a response
meeting the required controls. The existential quantifier would then guarantee that

-5-

there is a test case yielding such response. When accepting the axiom of choice in its
traditional form, that does not look like a problem. However, it is left to the interested
reader to prove that this seemingly more intuitive approach would immediately lead
to a contradiction to Turing’s halting problem (Turing, 1937).

Since we are computer scientists and not traditional mathematicians, we require the
intuitionistic, or constructive, variant of the axiom of choice. The existential quantifier
requires not only the existence as such, but construction instructions for the existence
of arrow terms. It means for test cases, that it is not enough to know the existence of
tests, but you need to know how to construct them. This is the reason why our formal
system for automated testing requires at least level 1 - arrow terms for applying one
test set to another - and this is possibly also the reason why test automation has
proven to be so hard.

And for those who consider such reasoning too theoretical, let’s provide a rather prac-
tical argument: programmers who want to set up test concatenation M ¢ N for auto-
matic testing, need access to the test cases in N that provide the responses needed
for M. Otherwise combining tests is unsafe or cannot be automated. Thus, with the
combinatory algebra of arrow terms, mathematical logic meets intuitionism and prac-
tical programming,.

1-2.4 ARROW TERM NOTATION
To avoid the many set-theoretical parenthesis, the following notations are applied:

e q; for a finite set of arrow terms, i denoting some finite indexing function for
arrow terms;

e q, forasingleton set of arrow terms; i.e. a; = {a} where a is an arrow term;
e @ for the empty set, such as in the arrow term @ — a;

e (a) for an (potentially) infinite set of arrow terms, where a is an arrow term.

The indexing function cascades, thus a; ; denotes the union of a finite number of m
arrow term sets

al-,j = Qi1 V) ai; U..uU al-'j U..uU aim (1-5)

With these writing conventions, (x; = y); denotes a rule set; i.e., a finite set of arrow
terms having at least one arrow. Thus, they are level 1 or higher.

With this notation, the application rule for M and N now reads

MeN = {c|3b; - c € M; b; c N} (1-6)

Or, in an abbreviated notation:
MeN = (bl - C) L (bl) (1_7)

Arrow terms are not only useful for representing test cases. Quality Function Deploy-
ment (QFD) is a well-known method for customer-oriented product development (ISO
16355-1:2015, 2015). Each element x; — y of (x; = y); denotes one Ishikawa diagram
(Akao, 1990), which is a cause/effect constituent of a QFD deployment and stands at
the origins of QFD in Japan. The matrix (x; = y); represents the QFD deployment.
This matrix obviously is a rule set within G(£). The union of all possible QFD matrices

is infinite and therefore a knowledge base in G(£).

Six Sigma Transfer Functions are constructively defined functions A used in the form
y = Ax, where y is the observable response, and x is the vector of unknown causes.
For a short primer on transfer functions see section 2-3. Each set of arrow terms rep-
resents a constructively defined Six Sigma Transfer Function. This was originally de-
scribed by Ishikawa (Ishikawa, 1990).

The Ishikawa Diagram (Ishikawa, 1990) describes the cause-effect relations between
topics and are considered the initial form of QFD matrices, and thus of linear transfer
functions. Converting a series of Ishikawa diagrams into a transfer function is straight-
forward, see Figure 1-1 below. Rules correspond to the cause/ effect correlations.

Figure 1-1. Representing Transfer Functions as Rule Sets

X = .
(l y)} - y,: Response 1
§ v,: Response 2 9 7
S y5: Response 3| [1] 5(3
Strong Dependency: [9] 7
Medium Dependency: &
Weak Dependency: >? o |~
EEHEHE
HEHE B
x,: Control 1 t:” ‘3 2’ t;
\ : Response 1
7 1R ‘ x;: Controls
x3: Control 3

{xpx3} > y1 € (x; > y);

Each element x; —» y of (x; > y); denotes one Ishikawa diagram (Akao, 1990), which
is a cause/ effect constituent of a transfer function. The matrix (x; - y); represents the
full transfer function. Transfer functions obviously are rule sets within G(£). The set
of all linear transfer functions is infinite and therefore a knowledge base in G(£).

Other elements of G(£) do not resemble linear transfer functions, such as

(=)~ 2), (1-8)

-7 -

This is a finite set of arrow terms whose left hands consist of finite rule sets. Another
such example isx; > (y; > z). This is a cascade of rules. The association for arrow

terms is to the right:

x; =y =z=x-(y;-z) (1-9)

1-2.5 TEST AUTOMATION

Tools used for implementing such an approach are test stories and test cases that use
a formal language to be machine-readable. The language is implemented as Arrow
Terms, see Engeler (Engeler, 1995), a model of combinatory algebra describing the gen-
eral Six Sigma approach, listing controls for observable responses of a system. Re-
sponses can be multi-dimensional, resulting in a Response Profile that is measurable
and thus can be compared to the expected response.

For the mathematical structures of Six Sigma Transfer Functions, see Fehlmann &
Kranich (Fehlmann & Kranich, 2011) and Fehlmann (Fehlmann, 2016)). Transfer func-
tions are used to uncover search response controls, for instance in Google search re-
quests, or technical solution that meet customer’s needs. In testing, transfer functions
indicate whether the goal of testing is achieved. The degree of achievement is called
Test Coverage. Test coverage can control automated generation of meaningful test cases
in a chosen context. Automatically generated test cases are selected only if they con-
tribute to the testing goal.

1-2.6 EXECUTING TESTS

Since arrow terms define test data up to an assertion, in ordered domains such as
numbers, test data may be defined only up to some range. Thus, when executing the
test, there is a choice which data exactly to select. If the range is limited, it is straight-
forward to select the limit, or possibly to explore the numerical precision of the limit.
Thus, the code implementing the test case may need more than one execution when
running the test case. However, we count the test case only once even if its execution
requires multiple runs.

1-3 REPRESENTING UNLIMITED KNOWLEDGE

Rule sets represent things that organizes themselves such as cars that drive automati-
cally, flying drones that find the way to its target, smart homes that save energy. These
things typically acquire knowledge while they are in operations. Predicting their

behavior is ultimately impossible without representing the knowledge acquisition
during operations.

Interestingly, agile software development works the same way: exact specifications
are unknown at the beginning. While software is developed together with the stake-
holders, more and more the ultimate result becomes apparent. Combinatory Logic
thus looks interesting as a framework for better understanding and modeling agile
software development.

1-3.1 PARALLEL COMPUTING

Rule sets are of unlimited size but well structured. Moreover, if the base set represent
transfer functions, they carry associated metrics, namely the Convergence Gap. Success-
ful software testing relies on measurable cause-effect relationship.

There are various measures that can be applied: functional size, security, safety, cost,
non-functional metrics such as ease-of-use. The IoT consists of things made intelligent
by software, connected by software, and acting autonomously by software. This is
called an IoT Concert. Organizing an IoT concert is called IoT Concertation. In IoT con-
cert is a valid paradigm for today’s software-intense systems. Its main characteristics
are it always grows, never being finished. Based on software metrics, two arrow terms
describing software can be compared with respect to size, to defect density and com-
pared with respect to behavior towards the same goal.

Behavior of an IoT concert changes when the environment changes - adding or re-
moving things might change, or even create totally new behavior. Totally unexpected
situations might emerge on streets driven by autonomous cars. The rule set is not com-
pletely known at any time; however, directed by metrics, a sufficiently good approxi-
mation can be built just when needed.

Implementing a rule set is by constructing an automaton that eventually produces all
its elements. The arrow term notation (1-1) describes the algorithm needed for the
automaton. The automaton produces arrow terms in parallel and in any order, with-
out knowing much from each other. To make them useful, the automaton needs guid-
ance through metrics-based heuristics.

1-3.2 THE RULE SET RADIUS AND VARIANCE

The trick is combining the strict and well-known structure of a rule set with the con-
vergence gap. The rule set can be constructed by an automaton that produces each
element eventually after some time. If that automaton can be directed to produce the
arrow terms closing the convergence gap, it is possible to do this in predictable time

(Fehlmann, 1981). The arrow terms arise from asking the components of an IoT concert
how they behave in some given circumstances. Asking the right question will do:

{(a; > b)jl[IB; — 7| < &} (1-10)

where t, is the Goal Profile, representing the target for the circumstances under in-
vestigation, and ||...|| represents the Euclidian Norm for vectors. For instance, t,
might represent the condition that the autonomous car avoids crash. Then, equation
(1-10) represents all crash-free conditions reachable by the autonomous car.

The controls to consider depend from the goal. It must be known what the goal of the
behavior is: doing no harm or minimizing it for autonomous cars, minimizing energy
consumption in intelligent homes, avoid crashing for flying drones. On the other
hand, testing aims at finding fault conditions.

Rule sets consist of solution topics vectors. The convergence gap against the goal re-
sponse vector can be computed, based on the achieved responses. This convergence
gap controls the automaton by producing the rule set that focuses on the goal profile
vector. Figure 1-2 demonstrates convergence gaps for three dimensions. Higher di-
mensions are more difficult to visualize but equally simple to calculate.

Let Ay, Ay, ..., A, be these differences, namely the convergence gaps between eigen-
vector and the solution topic vectors in the rule set. Then the formula resembles the
standard deviation 0 known from statistics:

Rule Set Radius = Max;j_q n (Ai)

(1-11)
Rule Set Variance =

Figure 1-2. Small and Large Rule Set Radius and Variance for Three Dimensions

Small Large
Rule Set Radius - Rule Set Radius
Goal Profile Vector
. v . _~" Goal Profile Vector N

\

Y 4

_ TestCase Vectors _ TestCase Vectors

- 10 -

The Rule Set Radius is the maximum of all the convergence gaps in a rule set, thus
acting as an envelope around them, serving as an indicator for total variations within
a rule set.

The rule set radius has a strange similarity with the Schurr Radius, used for assessing
consistency in AHP, see Schurr (Schurr, 2011) and Fehlmann (Fehlmann, 2016). What
it means, is yet an open question. Maybe the rule set radius is an indication for the
inconsistency of the test cases within a rule set?

1-4 AUTONOMOUS REAL-TIME TESTING

Testing becomes autonomous if test cases are no longer prepared a priori, but auto-
matically generated while the system extends by connecting with new components or
learning new things. This happens during normal operation. With the IoT, for in-
stance, when adding some new IoT component. If a car meets another car of different
making, or when different software releases meet, the system changes as well. Auton-
omous Real-time Testing (ART) means that new test cases are generated, and tests are
executed, all in real-time, before allowing the new components to join, or to have im-
pact. The time limit is needed for practical purposes. Systems supported by ART be-
have intelligent in the sense that they can anticipate the effects of actions even in pre-
viously unknown circumstances.

The base elements for autonomous testing are test stories, containing test cases, that
cover the initial base system. A set of test metrics is needed for assessing the test in-
tensity and defect density of the base system. According ISO/IEC 14143 (ISO/IEC
14143-1:2007, 2007), software metrics are independent from actual software imple-
mentations. Metrics must carry over from base tests to expanded automated tests cov-
ering the expanded system.

The main problem with testing the expanded system is how to generate new test sto-
ries that keep the focus on the relevant testing goals. Time and resources are limited.
Sometimes, only a few seconds are available for generating and conducting real-time
test runs. Measuring test intensity and predicting remaining defect density for the ex-
panded system is necessary to understand the effect of actions taken by the expanded
system. This compares the reliability of the expanded system with the original base
system.

Another major problem is computational speed. Test execution includes searching
suitable new test cases, executing them by asking the involved object, what they
would do in such a case, and calculating results. The generation of test cases for the
expanded system must deliver results in real-time. Autonomous real-time software
testing is impossible without suitable, implementation-independent test metrics.

- 11 -

The rich structure of arrow terms on top of TTCN-3 is the ideal framework for auton-
omous testing. Test rules are potentially infinite sets of test cases that can be exploited
for determining test cases suitable for enhancement. Autonomous testing always
starts with a normal test; thus, with a finite subset of test rules belonging to a test story.
Test cases can be added to such a test story, increasing test coverage and the capability
to detect defects. Or, two groups of test cases can be combined based on equation (1-3)
provided they belong to the same test story, i.e., they test the same business goal.

Setting up test rules for a software-intense system is now just the first step towards
continuous testing. The test rules can be made permanently available to users for the
entire life cycle of a product such that users can always verify that the product still
behaves as initially convened. This is autonomous testing by users who are not testers.
They can run the original test again and again. While this has some value already;, it
is not yet ART. The problem is that software is subject to the condition of the real
world. In particular, the real world is changing over time quite a bit. Each software
update that is downloaded has the capability to affect the behavior of the system. This
is especially important for IoT concerts, where adding or removing a component can
change the behavior, especially exposure to privacy intrusions or safety risks. But also,
cars that talk to the smartphone are affected; and even more, systems that communi-
cate with each other for instance to exchange traffic information. Since threats also
change, new test cases are needed to detect new threats.

If new defects are detected, the result of the autonomous real-time test is shared with
the software supplier for removal of the defect. Moreover, any such detection is shared
with other users of the product. Testing is no longer an isolated activity of some group
of testers that wait for a product to be ready for test; it becomes a community-based
activity and closely linked to support and marketing of software-intense products.

1-4.1 TESTING SOFTWARE-INTENSE SYSTEMS

Obviously, the complexity that users can handle when performing tests is limited. The
limit is closely related to the users’ needs when using a product. While technical per-
formance or other quality aspects are usually important when buying the product,
during normal and intended use, other needs become dominant. Continuous availa-
bility of the functionality purchased is expected, and often the user perceives lack of
functionality immediately. However, missing functionality related to communication
and traceability is typically seen too late.

Defects that consumers affect but are hard to detect are most often related to missing
privacy protection, or safety issues. Both, privacy protection and safety risk assess-
ments have become controversial and find today public attention. The fact that today
all physical movements are traceable by the smartphones’ build-in GPS, or the

- 12 -

navigation instruments in cars, or soon by public transportation, seems only a weak
violation of privacy compared to all the spying of what we look at, read or talk. It
seems that if it does not touch property, or money, we are inclined to weight the ben-
efits of all these chatty assistants higher than concern for privacy.

However, things change if one of these helpful service providers suddenly suffer a
data leak, as happens from time to time indeed. Then it turns out to be quite hard to
find out if own private data has been affected. Often, after a leak, it takes weeks if not
months to find out what data was compromised.

ART in turn is something that can be immediately triggered in case some service pro-
vider experiences a hack. That would allow consumers to get immediately notified
whether they need to take some action. Obviously, testing is not restricted to the local
components of some system; this is sort of unit testing anyway. Testing a software-
intense system today almost always involves testing services, typically located in the
cloud. ART can check whether such services still behave as expected or start exhibiting
strange behavior such as scanning the private device for passwords or opening new
backdoors.

Similar it is for safety. Often, safe behavior is easily detectable and distinguishable
from unsafe behavior. Continuous safe behavior even after software updates or
changes in the related cloud services is testable and consumers are interested in such
tests. Full security testing includes hardware and is not addressed in this book.

Sure, privacy and safety are not the only test-worthy characteristics of software-in-
tense systems, but they address the major concerns of most consumers. And indeed,
having privacy tests performed after each major software update even for a
smartphone would even now be a welcomed gadget. Or does anyone know for sure
what privacy risks all those glossy games and racy apps entail?

1-4.2 CONSUMER METRICS

Testing is not for free, and when it does not add value to the product, it possibly
should not be done. However, whether safety and security testing - among others -
add value to a product, is out of question. On the other hand, whatever adds value,
can be used as a discriminator in the market.

It is therefore paramount that tested software becomes visible to the consumer, and
the amount of testing becomes a metric communicated to consumers. Consumer
might have a choice between an extensive, well-tested product and a less tested, but
cheaper product. This works up to the point where liability issues force the product
supplier to perform extensive testing just to stay in the market.

- 13 -

For all this IoT-kind of products with extensible software, especially for Al, it is incon-
ceivable how suppliers should cope with liability if they do not have the possibility to
do ART during their products’ lifetime. The risk, that consumers add features or func-
tions to an IoT concert causing harm to safety or privacy of the product is significant.

1-4.3 IMPACT ON SOCIETY

Autonomous Real-time Testing (ART) will make an impact on product liability issues of
software-intense systems. Suppliers can reduce their liability risks when providing
sufficiently good and actual test rules for their products during the full life cycle. Oth-
erwise, owning or using an autonomous car - if they ever hit streets - will probably
become quite costly, at least in Europe. Otherwise, autonomous vehicles apart from
closed motorways face too many challenges; for instance, traffic in cities or villages
becomes safer at less cost by reducing speed. Communication between vehicles is a
big asset and could improve traffic flow even in urban areas; however, this means not
necessarily autonomous driving.

In any case, autonomous vehicles, vehicles that rely on intercommunication and even
driving assistance systems become socially more acceptable if they adapt their capa-
bilities over time to changed environments and prove this to the responsible owner.

The adoption of the Internet of Things (IoT) is far below expectations not only because
users wait for the faster and more performant 5G telecom network, but even more
because the target users cannot assess and manage their privacy risk. Connecting an
additional device to their existing IoT concert might result in an unnoticed privacy
break. Only experts may give it a try.

Lessening the liability burden to suppliers of software-intense products clearly speeds
digitalization up and make it more acceptable. Furthermore, since many of the new
software-intense products use Artificial Intelligence (Al), such products change behav-
ior during their life cycle and you cannot use Al in products without at least basic
ART, at least for safety-critical issues. Deep learning is also accompanied with forget-
fulness and even human neural disorder (van Gerven, 2017). Consequently, visual
recognition systems need constant testing for making sure they keep their initial ca-
pabilities. Neural networks that have previously proven to be capable of successful
learning suffer from strange effects (Szegedy, et al., 2014). Small alterations in images
or video, even when invisible to the human eye, can strongly impact their capabilities.

- 14 -

1-5 OUTLOOK

From this introduction, many open questions arise. First, how shall tests be measured
such that they can be assessed for intensity and defect density? Next, how to identify
relevant tests from the huge test rules set generated by combinatory algebra? While
having all tests at disposition in a structure helps, how to extract those tests that are
relevant for privacy and safety - or any other goal?

Testing works only if the goal of testing is known. What suitable means exist to define
goals of testing? What are the goals of security testing?

How exactly shall Al be used to generate new test cases when testing AI? When is
testing Al successful, what means “pass” for AI? Can we test Al by AI? How exactly
can we use Combinatory Logic for testing AI?

How does ART fit into DevOps? Who shall prepare test cases and how shall test re-
sults be communicated to the user of software-intense systems?

- 15 -

CHAPTER 2: TEST METRICS

Today’s software testing body of knowledge focuses on testing code. While
testing code is important, testing the full system’s functionality matters much
more for the digital society. Code metrics, mostly captured by automated test-
ing tools, are unfit for functionality tests for software-intense systems. Code
is often unavailable for e.g., cloud services. Moreover, systems often use only
parts of the total implemented functionality of some service. Then, testing the
unused part does not matter.

Test metrics should refer to functionality, not code. This means that lines of
code cannot be the reference for testing intensity; it must be functional size.
For functional size, models exist that allow determining size at defined gran-
ularity for any service in use. The models also work for services that are only
partially used. In the past, functional size models were used to predict cost of
software projects and thus were not in the focus of the testing community.
Testers were referring to code. Now, when testers face the challenge of digital-
ization, they have to learn metrics for testing that are independent from code.

2-1 INTRODUCTION

Today’s practices in software and system testing are quite strange. People count en-
tries in bug inventories and mistake this count for the number of defects. Test cases
refer sometimes to code and sometimes to the behavior of some unidentified piece of
software. It remains unclear to what piece of software a bug report refers to.

Common testing techniques, metrics and tools refer to code - notwithstanding that
code is often not available when testing software, and systems often rely on cloud
services. Moreover, code is subject to the programming language, programming en-
vironment, and sometimes not even open. It is not possible to define any reasonable
software metrics based on general code characteristics; you need always to be specific
about what kind of code you want to measure for testing. How to test cloud services?

When consulting the ISO/IEC/IEEE 29119 testing standard (ISO/IEC/IEEE 29119-4,
2015), it astonishes that part 4 identifies 23 different so-called Test Coverage Items. This
is already a step away from testing code. But tests primarily address software func-
tionality. It is unnecessary to define extra “Items” to undergo testing.

Functional models are available and are used since the past 40 years for sizing soft-
ware. Why shall test coverage items be something else than its model elements? Func-
tionality of software can easily be assessed and modeled. While the availability of code

- 17 -

is helpful because functional models can be generated automatically (Soubra, et al.,
2014), in general Functional User Requirements (FUR) are enough. The only thing you
need to know for testing software-based systems is what they are supposed to do.
Since functional requirements exist not only for code written on purpose - e.g., user
stories - for cloud services, or any standard software with proprietary code, they exist
as well.

While Non-Functional Requirements (NFR) also exist and are testable as well, such tests
cannot be automated and are not considered in Automated Real-time Testing (ART).

2-2 MODELING SOFTWARE

Any software can be modeled by its functional requirements. The ISO/IEC 14143
(ISO/IEC 14143-1:2007, 2007) defines what FUR exactly are and how to model them.
They key statement is that model elements must cover everything that is needed to
implement some FUR; thus, the ISO/IEC 14143 standard defines granularity. The
level of granularity is defined by the user view represented in the FUR. Sometimes,
general service considerations at the level of microservices are good enough; some-
times, code-level granularity is required, depending upon the “U” (User) in FUR.

The “U” in FUR is important: whatever functionality is modeled; it is important to
identify its user. A user can be a human, another application service, or another layer
in the system’s architecture. Some lines of code might implement multiple FUR for
different users; it is obvious that such a line of code can implement one or more FUR
imperfectly, or completely faulty, while other FUR behave correct. This consideration
alone demonstrates how misleading it is to link defects to code. To call today’s prac-
tices in software and system testing strange, is probably not appropriate. With today’s
testing practice, it is a miracle that not more software fails than does today. The mira-
cle is because software developers are perhaps the most responsible workers found
today. Testers in turn often enough fail to help them effectively.

The lack of proper testing is a threat to ICT as a profession as well as all the economic
churn put expectantly on ICT, digitalization for example.

2-2.1 METRICS FOR SOFTWARE

Before presenting the ways how to model software, let us introduce a related topic
that somehow seems half-forgotten in the metrics community. Metrics is nothing new;
since the beginning of civilization metrics have been indispensable for distributing
goods, resources, wealth, and organizing welfare and warfare. Most people know the
story how Eratosthenes calculated the size of the earth.

- 18 -

Citing Wikipedia: “Eratosthenes calculated the Earth's circumference without leaving
Egypt. He knew that at local noon on the summer solstice in Syene (modern Aswan,
Egypt), the sun was directly overhead. Syene is at latitude 24°05' North, near to the
Tropic of Cancer, which was 23°42' North in 100 BC. He knew this because the shadow
of someone looking down a deep well at that time in Syene blocked the reflection of
the Sun on the water. He then measured the Sun's angle of elevation at noon in Alex-
andria... From these measurements, he calculated the angle of the sun's rays. This
turned out to be about 7°, or 1/50t, the circumference of a circle. Taking the Earth as
spherical, and knowing both the distance and direction of Syene, he concluded that
the Earth's circumference was fifty times that distance.”

Eratosthenes built a model that was not perfectly accurate but good enough for the
purpose. He used a few simplifications, modeling the Earth as a perfect sphere, the
sun rays as parallel, putting Alexandria due north of Syene. Then he could perform
all necessary calculations on his model.

But how did Eratosthenes know the true distance between Alexandria and Syene?
Pharaonic bookkeepers measured the distance between Syene and Alexandria regu-
larly; an achievement that no civilization on Earth was able to repeat before France in
the 18th century (Russo, 2004).

However, you cannot measure such a distance by foot or - at the time - by camel only
in one go; you need to be able to measure parts of the distance and combine measure-
ments correctly, using trigonometrical adjustments because the straight line is blocked
sometimes.

This knowledge about the nature of metrics is the essence of the VIM and the GUM:

e The VIM: ISO/IEC Guide 99:2007, 2007. International Vocabulary of Metrology
(ISO/IEC Guide 99:2007, 2007) - Basic and general concepts and associated
terms (VIM);

e The GUM: ISO/IEC CD Guide 98-3, 2015. Evaluation of measurement data
(ISO/IEC CD Guide 98-3, 2015) - Part 3: Guide to Uncertainty in Measurement
(GUM).

Metrics must comply with the VIM and the GUM. Counting does not necessarily es-
tablish metrics. Counting points does not measure anything, unless the points mark
units on a measurement scale.

2-2.2 MODELS FOR FUNCTIONAL SIZING

We observed that testing should not be against code alone but against functionality.
For testing complex systems such as those powering autonomous vehicles, code is
only partially available, and safety-impacting functionality depends as much from

- 19 -

functions hosted in the cloud than from the local controls powered by embedded soft-
ware.

For measuring tests, it is therefore straightforward to size tests based on models for
the functionality of software. The size can be determined by counting model elements.
Sizing tests against code is inappropriate. For describing functionality, FUR according
ISO/IEC 14143 are the preferred kind of reference. Currently, four ISO standards exist
that conform to the concepts of ISO/IEC 14143. From those, the ISO/IEC 20926
(ISO/IEC 20926:2009, 2009), for long years maintained by the International Function
Point Users Group (IFPUG), is older and more widely used than all others.

2-2.3 THEIFPUG MODEL OF SOFTWARE

The IFPUG model (IFPUG Counting Practice Committee, 2010) defines a count for
functional size by counting model elements that are conceptually familiar to tradi-
tional mainframe software: Data Functions and Elementary Transactions.

Figure 2-1: IFPUG Model - Three Transactions: EI, EO, EQ; Two Data Functions ILF, EIF
User
o @ @
| /]| /]

lesl g gl

Software Boundary

The IFPUG model identifies five elementary types of data functions or transaction,
categorizing each model element as either low, medium, or high complexity, each
with a fixed size number associated. These categories depend from the amount of data
handled by each element, and the number of data references. Consequently, the cate-
gories define a jumping count.

Thus, with IFPUG, adding data elements can let the complexity assessment jump from
one level into another. Or, in contrary, adding new elements to the model sometimes
is not reflected in the count. Nevertheless, the IFPUG model can also be used to count
Test Points, a test effort counting method for predicting test effort, proposed by Tom
Cagley (Cagley, 2018).

For knowing how to count model elements in ISO/IEC 20926, it is necessary to know
the boundary for the complete system. The reason is that the total number of Files
Types Referenced (FTR) impact the size of the transaction-type model elements. Without
knowing the whole system, parts cannot be counted, if following the rules exactly.

- 20 -

Consequently, the IFPUG count is not a metric; it does not conform to the VIM and
the GUM. While it seems possible to adapt the IFPUG rules by allowing intermediate
results instead of the jumps, and it is arguable that for practical purposes the FTR
number is known well enough, namely from the transaction alone without regard to
the whole system, such an enhancement of the IFPUG count towards a metric is not
yet on the agenda of the IFPUG counting committee. This makes the IFPUG counting
method unattractive both for agile software development that needs to measure the
functional size of sprints, and for test metrics.

2-2.4 TRANSACTION MAPS

The following Figure 2-2 explains how to combine the model elements shown in Fig-
ure 2-1 to create a Transaction Map. Transaction maps are a way to visualize the IFPUG
model for a software system. Depending upon the architecture, more than one trans-
action map might be needed. Then, typically one transaction map describes an appli-
cation that manages an ILF, while others refer to the same elementary data element as
an EIF. This in turn induces double counting for such elementary data functions that

makes adding size for different applications unreliable

Figure 2-2: Transaction Map for the Navigator Piece of Software

Enter Destnaion Get Rouke 6PS Senvice Veaher Forecast Trafic Condions Conim Roue Modiy Roue
El €l €l €l El E £l
18/2 5/3 1213 18/3 5[4 12)4

Authorizaion Confrm Desiination equest Roue Request Weaher B oute Direcons Destnaion Reachex
oA b | o b | b | b | b | o b I

3 218
Session Key- Routes

L
' T |]

o
Weaher Servioe

IFP=153

The Navigator application shown in Figure 2-2 is a piece of software using micro-
services such as GPS tracks, GIS maps, weather forecast and real-time traffic infor-
mation to propose routes for a car; it is a simplified navigation system. The user can
enter destination and the system proposes one or more possible routes to take, de-
pending upon weather and traffic conditions. Favorite routes taken previously are not

- 21 -

taken into consideration; routes are not attributable to car users. A session key is used
to separate authentication from identification of the user.

Despite their failure to comply with the VIM and the GUM, transaction maps are ide-
ally suited for use with agile teams, for visualizing which elements of software are
touched in each sprint. The model elements are easily recognizable by businesspeople,
somewhat less by developers, but can be used for communicating work done in
sprints, at the same time providing its functional size.

Because of the said missing compliance to the VIM and the GUM, the sum of func-
tional sizes delivered in sprints is significantly higher than the total functional size;
however, this does not matter too much in practice. Counting functional size with
IFPUG is the better predictor for performance of an agile team that any other agile
metrics, including story points. Anyhow, agile teams need be conscious about distin-
guishing new functionality from reused or enhanced existing functionality, to avoid
unnecessary double counting in sprints.

Nevertheless, the transaction maps like in Figure 2-2 serve many more purposes than
just sizing functionality. Maps help to orientate and localize software elements. For
tests, a map should be useful to localize test cases by identifying the model elements
touched when running the test case. But with IFPUG, this is difficult. Test cases are
not easily identifiable within a transaction map. It is unclear what role the FTR have,
whether they belong to a test case or not. The missing compliance to the VIM and the
GUM create quite practical problems making it difficult to define test metrics based in
the IFPUG method. Consequently, test size compares not directly to functional size.

2-2.5 THE COSMIC MODEL OF SOFTWARE

In contrary to the IFPUG count, the COSMIC standard (ISO/IEC 19761:2019, 2019)
complies to the VIM and the GUM. With COSMIC, you can measure parts, and from
the parts one can construct the size of the compose. System boundaries are also de-
fined in the standard but do not affect the count.

The COSMIC standard identifies layers. The layers” boundaries detect the flow of data
moving from one object into another; however, the total count does not depend from
how boundaries are drawn. Communication between functional processes require
typically an Entry and an eXit, with a device in between that connects the two pro-
cesses. Fortunately, devices and other applications yield the same count, regardless
whether data movements cross an application boundary or not.

A Read or a Write moves data between functional processes and persistent data stores.
Every data movement transports a Data Group, identifying the data moved from one

- 22 -

object to another. Obviously, the content of those data groups matters for privacy pro-
tection; however, it also can affect safety up to some degree.

A data movement moves a Data Group. Data groups hold the information needed to
assess privacy protection needs, or safety risk exposure, of data. Two data movements
moving the same data group are considered only one model element.

Figure 2-3: The COSMIC Model, with Six Data Movements Entry, eXit, Write and Read

Tﬁgger
eXit

Functional

Process
1 Entry

............... > Device User Application User

Write + Read

Persistent Data

Nopiication measured

Software Boundary

The constituent element of the COSMIC model is a Functional Process. A functional
process is an object together with a set of data movements, representing an elementary
part of the Functional User Requirements (FUR) for the software being measured, that
is unique within these FUR and that can be defined independently of any other func-
tional process in these FUR (COSMIC Measurement Practices Committee, 2017, p. 42).

Modeling software takes two distinct steps:

e Creating a model for the software is based on analyzing data movements and
identifying the relevant objects of interest that are the origins and targets of such
data movements. This step is called Mapping and results in uncovering the rele-
vant functional processes.

e Creating just enough model elements to explain how to implement all FUR. Cre-
ate data movements only once per data group moved per functional process,
notwithstanding how many times they are being executed.

Now you can count the size of software by counting the number of data movements.
This is the way ISO/IEC 19761 COSMIC measures functional size.

In COSMIC, one data movement with a unique data group yields one Function Point.
Two or more data movements moving the same data group between the same objects
do not add to functional size.

- 23 -

There are four kind of data movements: An Entry to some functional process; an eXit
to some device or other application; Reading from and Writing into a permanent store.
Counting the number of data movements yields the Functional Size.

2-2.6 DATA MOVEMENT MAPS

Data Movement Maps are a way to model a piece of software by connecting objects of
interest, representing functionality, persistent stores, devices and other applications.
The connectors are called Data Movements. They have some resemblance to UML Se-
quence Diagrams (Bell, D., 2004) but with less detail, and sequencing is not prescribed.

Figure 2-4: Sample Data Movement Map

2 Entry (E) + 2 eXit (X) + 1 Read (R) + 1 Write (W) =6 CFP
j o o
~— Functonal Persistent
Processes Data Store
| | | |
1.// Data Movernent moving a Data Group 2
T *

Trigger Device Other Application

> O< |
~ 2./| Write Data into Store X

o % I I
~ 3.// Start Other Application” - X
¢ i i <
. X 4.// Get Results from Other Application 2
O t i \ 4
:' 5,/ Read Data from Store " | |
. 6.// Display Flnal Result . .
O ; < I

Data Movements always move a Data Group, which can be thought as a data record.
Its uniqueness is indicated by color-filled trapezes. Another move of same data group
between the same objects within a COSMIC functional process lets the trapeze blank.

2-2.7 OBJECTS OF INTEREST
For data movement maps, we distinguish four types of Objects of Interest:

e Functional Processes: Objects that perform functional processes in the COSMIC
sense. One such object can perform several functional processes. Thus, such an
object represents for instance one Virtual Machine (VM), or Electronic Control Unit
(ECU) performing different calculations rather than a single functional process
in the sense of the COSMIC manual (COSMIC Measurement Practices
Committee, 2017, p. 42);

o Persistent Store: Objects that persistently hold data. Contrary to the COSMIC
definition, they provide data services to several different functional processes;

e Devices: a device can be a system user or anything providing data;

- 24 -

e Other Applications: other applications use functional processes the same way
as devices do; however, they typically represent other software or systems that
can be modeled the same way using data movement maps.

Triggers usually indicate the starting data movement of one COSMIC functional pro-
cess. Thus, one functional process object can have several triggers.

- 25 -

2-2.8 THE NAVIGATOR APPLICATION AS COSMIC MODEL

Figure 2-5 models the Navigator application as a data movement map:
Figure 2-5: Data Movement Map for the Navigator Application

12 Entry (E) + 17 eXit (X) + 4 Read (R) + 3 Write (W) =36 CFP

[oo
—
Session . CarUser / GPS Tracks ‘ Routes Navigation J Users GIS Maps Weather Service Trafic Service
3 | | | | | | | |
- 1.// Request credentials " - . - - - -
® T <@ | | | |
R R R ~ 2.// Get credentials | R R R
| | | Q% | | |
. . . ~ 3./ Record session key . . .
(a8 I I I D I I I
~— . , , 4./ Confrm session A | | | |
i i &
Locate . . . o
& 1 1 5.// Session rejected N 1 1 1 1
2 6./ Swich on . . . | | | |
»& 1 1 S | | | |
1 1 1 | 7./ Get session key | 1 1 1
1 é | 8.//Request GPS tracks A 1 1 1 1
| L 9.// Return GPS tracks | ¢ | | | |
. @
| | | L 10.// Request map | $ | |
. . . ~ . . .
1 1 1 é 1 11.J/ Get map L 1 1
. . . T A 4 . .
| 1 1 12, Show map L 1 1 1 1
T T 23
| | I 43/ Show posiion | | | | |
e 3
— L1 swich o ! ! ! ! ! ! !
A d
Get Rove I I I | 15.// Revoke session ke ! I I I
QITENE SN Y,
| o | | 1 | | |
o 16.// Enter desfination
| | . ? | | | |
. . Il Search route
| | I ? | | | |
. . . & 18.1/ Ask for route - . .
| | | T | ? | |
- A 19.// Return possible routes 2 - -
I I I < T ¢ I I
- - - 2.20.// Ask for weather forecast - A -
| | | ¢ T T < |
- - - . N 21.J/ Return weather forecast 2 -
1 1 1 % T T) 4 1
. . . ~22./1 Ask for trafic_density . . .
| | | 1% tyl i i <&
- + 23/ Return traffic_density o
y— | | I - - - o sy
— . . . 24./ Show routes A | | | |
i i 14
Set Route - - - ot - - - -
& 1 1 25./ Show travel ime N 1 1 1 1
26.// Select route
> - 1 & 1 1 1 1
1 1 | 27.J Record route ‘ 1 1 1 |
¢ 1 1 28.// Confirm route + 1 1 1 1
| ¢ 1 29.// Request GPS tracks A | | | |
. . %
1 130/ Return GPS racks | J> 1 1 1 1
- A 4 0] - - - -
| 1 1 31.// Monitor route l 1 1 1 1
e - - >
— | | | 32.// Routing directions l 1 1 1 1
O
Rert ! ! ! 33.// Destination_reached i ! ! ! !
| | | | | | | |
34.// Incident
I I I i I I I I
. . 35.// Get route
| | | | | |
. . 36.// Alert
N 1 1 T | | | |

Data movement maps serve as graphical visualization of COSMIC models. The maps
have lifelines just like UML sequence diagrams. The objects in a data movement map

- 26 -

represent either functional processes, persistent store, devices, or other applications.
The difference to Figure 2-3 is that a lifeline belonging to a functional object can host
more than one COSMIC functional process. Triggers are needed according COSMIC
rules to initiate each functional process. As shown in Figure 2-5, more than one trigger
can exist in a data movement map pointing to the lifeline of a specific object of interest
representing functional processes. Thus, triggers pointing to an object of interest iden-
tify functional processes within this object.

Triggers also connect functional processes to user stories. A user story specifies a user
triggering some functionality. This corresponds often to one COSMIC functional pro-
cess; however, a user story might need more than one functional process to get com-
pletely implemented.

The Navigator application shown in Figure 2-5 consists of a mapping service, con-
nected to routing and positioning, usually by the Global Positioning System GPS. Such
an instrument is standard in today’s cars, although we use a simplified model. It has
the same functionality as the transaction map in Figure 2-2; however, the data move-
ment map shows more details how the application technically works.

A route once chosen is used to tell the driver where to turn right, left, or around after
missing the way completely. The Navigator relies on four external service applications:
GPS, maps, weather, and traffic service. One functional object is enough; it uses two
permanent stores, one for recording routes, the other one for recording users and their
credentials. The relation between these two stores is critical for the ability of the Nav-
igator to keep routes taken as private, in the ownership of the car user.

There are six different functional processes, all hosted by the Navigator functional ob-
ject. The first functional process authenticates the user and creates a session, identifi-
able by a session key. The second uses that session key to locate the car on a map. The
third functional process proposes routes to a destination chosen by the car user, based
on weather and traffic conditions. The fourth functional process consists of selecting
among different routes, if available, and storing the chosen route for further pro-
cessing by the Navigator application, in case the Traffic Service application issues a traf-
fic alert, or weather conditions change the expected travel time. This process continues
with giving directions to the car user until the destination is reached. The fifth func-
tional process informs the car user in case of a traffic incident that might cause choos-
ing another route. The car user then must try to get another route.

There is no functionality provided here that for instance uses recorded routes to iden-
tify user preferences, avoiding privacy issues that arise from collecting routes chosen.

Counting the data movement yields 36 CFP since each data movement moves a dif-
ferent data group.

- 27 -

2-2.9 AUTOMATICALLY CREATING DATA MOVEMENT MAPS

The code given, creating automatically a model for functionality is easy for the COS-
MIC model, for most programming languages. All one must do is identifying the ob-
jects of interest. In most programming languages, these are declared as objects. The
only difficulty is to decide whether such an object is visible to the user and thus could
correspond to a FUR. Then, once the objects are known, the data movements between
the objects are easily identifiable. The effort is comparable to building a compiler.

Moreover, if different functional users can be identified, the same code may exhibit
more than one data movement model. This is typical for a layered architecture, where
the front-end functional user requires different data movements from different objects
located in the middle layers or data layers, compared to what the end user requires
from the front-end.

Sometimes, automatically creating a data movement map is without any effort. With
today’s Microservice architecture, constructing the model is directly possible from a
Kubernetes network builder (The Kubernetes Authors, 2018). Kubernetes is a portable,
extensible open-source container-orchestration platform for automating deployment,
scaling and management of containerized applications. Kubernetes connects micro-
services by message pipes; for the respective granular view, this defines uniquely the
functional size of a microservice architecture.

While IFPUG describes software functionality from a static viewpoint, COSMIC ad-
dresses dynamic aspects. Since testing also is dynamic, COSMIC might be better
suited for sizing tests than IFPUG also from that perspective.

2-2.10 STRENGTHS AND WEAKNESSES OF SOFTWARE METRICS

Counting Requirements. Software metrics count Functional User Requirements (FUR).
This makes them independent from implementation details and allows comparing
different solutions. Moreover, one does not need a finished product for counting its
functional size. If functional size controls development cost, a functional count can be
used to predict development cost. Also, it allows managing the scope of a project, e.g.,
for dealing with deadlines, and controlling budget.

Today’s agile software development process has no clearly defined final set of require-
ments. Requirements are likely to change. However, as soon as there is a backlog, this
is easy to count. You can track agile development by counting the backlog in sprints.

Repeatability. Software metrics should be independent from the actual counter.
Counters are properly educated and certified for the method. A user community
maintains a counting practice manual, and provides examination for certified profes-
sionals, making it easy to decide whether a count is correct or not.

- 08 -

The problem with that approach is that automatic counting is in principle not possible.
Nevertheless, automatic counting methods exist but are approximations to the origi-
nal manual count.

Independent from Implementation. Software metrics do not model implementation
details. Functional size is the same for a single-user, closed application as for a mobile
app using cloud services if the same is being calculated.

The concept of counting data movements in COSMIC matches the way modern soft-
ware is build. Connecting Docker container service (Steve Singh et.al., 2018) can be
modeled as a sequence of data movements between containers.

Independent from Algorithmic Complexity. Functional size models do not model
mathematical algorithms, if they are not covered by the granularity of the FUR. Thus,
if the FUR says, use some very complicated and computing-intensive algorithm that
you can find maybe in a mathematical library, or you must implement manually.
Without stating all the details of the algorithm, its complexity does not impact func-
tional size.

Independent from Non-Functional Requirements (NFR). Functionality does not de-
pend neither from performance, nor from how much parallelism is implemented for
load balancing. Nevertheless, such NFR might in turn require additional functionality,
by turning into FUR on the respective granularity level. Performance improvements
might require cache, and the functional cache user sees FUR and related functional
size; load balancing also requires a load balancing functional process when looking at

it from some internal layer. Functional size is indeed dependent from the viewpoint.
This is the essence of the ISO/IEC 14143 international standard (ISO/IEC 14143-
1:2007, 2007).

2-3 A SHORT PRIMER ON SIX SIGMA TRANSFER FUNCTIONS

Readers of the previous book by the author (Fehlmann, 2016) can skip this section, or
quickly read through it as a refresher.

2-3.1 UNCOVERING HIDDEN CONTROLS

For decennials, Quality Function Deployment (QFD) is the discipline to uncover hidden
customer needs for creating successful products (ISO 16355-1:2015, 2015). The main
task is to capture the Voice of the Customer (VoC). Many proven methods and tools exist
to understand the VoC and turn it into a prioritization profile.

QFD uses the concept of linear Transfer Functions in the form y = Fx, where y is the
vector representing qualitative or quantitative user needs, and x the vector of

- 29 .-

quantitative parameters related to the technical solution. Since F is linear, it can be
represented as a matrix (Fehlmann, 2003). It has many similarities to Six Sigma root
cause analysis, where y is the observable response and F the matrix of measure-
ments that correlate each vector dimension of x with each vector dimension of y. For
measuring these correlations in Six Sigma, the Design of Experiments technique (Myers,
et al., 2009) provides guidance how to get a sufficiently well-defined transfer function
matrix for identifying main causes for an observed effect.

In both QFD and Six Sigma for manufacturing, finding the right controls for the vector
x is the difficult part. Because of the non-decidability of first-order logic, there is no
automated method possible to devise the “correct” instances of x, not even its dimen-
sions - otherwise we would have a general problem solver and could let computers
develop new technologies and new products. The main difference between Six Sigma
in manufacturing and QFD is that, in QFD, proper measurements are often not possi-
ble. Classical QFD for product design replaces measurements by team consensus;
thus, measuring expert judgment rather than physical evidence.

Measuring the response y in QFD involves techniques to understand the VoC that
often rely on social science or involve not only mathematics but also psychology (such
as AHP). Methods and techniques for the acquisition of the voice of the customer
make up about two third of the ISO 16355 series of standards.

Since finding the transfer function and assessing the right topics and dimension of
x is a challenge with mutual dependencies, QFD is a very creative but disciplined pro-
cess. As for any transfer function, it is possible to validate any pair of F and x by ap-
plying F to x. Theresult, Fx is a vector with the dimensions of the original response
y, in QFD the voice of the customer, and because of the measurement errors and the
uncertainty of expert judgements, it will not be the same.

The vector difference between Fx and y is called the Convergence Gap. This is an in-
dication how well F and x together explain the response y, or in other words,
whether a product or technology based on the quantitative parameters x and provid-
ing the transfer function F are capable to deliver the qualitative requested user needs
y, thus validating the approach but not able to exclude the existence of other ap-
proaches.

Let x be the vector x = (x4, x5, ..., X)), ¥ = V1, V2, -, Vim) and F = (fij) the transfer
function as a matrix, then the convergence gap is defined as the Euclidian distance
between the m-dimensional vectors y and Fx = (Y, fi1X; , X fiaXi » s 2 fimXi)

by~ Fxll= | (3= fixi) 1)

- 30 -

The convergence gap can be used to optimize controls by iteration, using domain ex-
pertise, or by any other numerical optimization method. In fact, in Six Sigma the pre-
ferred method is the Eigenvector method because it settles and flattens variations that
originate from measurement errors or opinion blur, as observed by Saaty, and used
for the Analytic Hierarchy Process (AHP) (Saaty, 2003).

2-3.2 THE HOUSE OF QUALITY

For decades, QFD has been identified with, and partially misunderstood as, the so-
called House of Quality (HoQ). In the HoQ, the vector y is the profile of customer
needs, as found by some suitable voice of the customer process, and x is the profile
of the qualities required for the technical solution. Thus, QFD allows selecting opti-
mum solutions, avoiding unnecessary gadgets that only add cost to the new product.
For this, the HoQ is still ideal; however, the HoQ is only a small portion out of the
QFD method. Nevertheless, it is the best-known part of the method, and popular
among Six Sigma Black Belts and Marketing managers alike.

2-3.3 THE HELP DESK IMPROVEMENT EXAMPLE

For a HoQ example, assume, a Help Desk operator wants to improve its service. The
help desk is a traditional one, with humans answering questions and helping custom-
ers who are not yet able to help themselves with the tools provided through the Inter-
net. Humans sometimes can improve doing their jobs by receiving training, while ma-
chines undergo deep learning.

A simple pairwise comparison - a basic AHP session - identified the following prior-
ity profile y for a typical Help Desk customer:

Figure 2-6: Pairwise Comparison for the Help Desk House of Quality

AHP Priorities

Customer's Needs

y1 Friendliness
y2 Responsiveness

Weight

« nN | Ranking

y1 Friendiness 1 2 1 4% 0.69
y2 Responsiveness 17 1 2 33% 0.56
¥3 Accuracy 1 12 1 26% 045 W

Profiles and weight follow the definitions used for AHP (Saaty & Alexander, 1989):
the sum of the percentages is 100% while the profile represents a three-dimensional
normalized vector of length 1, i.e., the sum of the squares of the coefficients yields 1,
the unit vector length. From Saaty (Saaty, 1990) it is known that the solution profile y
of an AHP square matrix A4 is its Principal Eigenvector; thus, Ay = y holds up to some
limit of exactitude caused by the numerical algorithm. The eigenvector balances the

- 31 -

inconsistencies out caused by human judgements in pairwise comparisons. Geomet-
rically, an eigenvector points in a direction that is stretched by the transformation.

Profiles and weight percentages always transpose into each other. This is only a matter
of convention. However, it is well known that you cannot add or subtract weight per-
centages, because this will no longer yield percentages, and even when recalibrating
the result of addition, if the weights are out of balance, the resulting bias can become
substantial. For comparing results from AHP, you must use profiles. Because of their
nature as vectors, they allow addition and subtraction, and can be compared to each
other, if they represent directions in a vector space only. The sum of two profiles yield

another profile, as soon as normalized to length one.

Figure 2-7: The Priority Profiley for Customer Needs

AHP Priorities
. Customer's Needs Topics || Attributes || Weight Profile
y1 Friendliness Remains cool Always friendly 41% 0.69 B |
y2 Responsiveness Understands the problem Finds a way to solve 33% 0.56 |
y3 Accuracy Complete information Compelling 26% 0.45 a

We investigate the following pair of quantitative parameters x and transfer function

F for improving the Help Desk service:
A team of experts might now come up with the following House of Quality (HoQ):
Figure 2-8: The Transfer Function F (HoQ)

Critical To Quality Critical To Quality
Deployment Combinator o)
=3 (7] =
g 2 3
2 £ 8 8|3
S ©] < o
<2 £ = o |3
HEIEEIELE:
GlE Q@ &8 =<
Customer's Needs = NIRRT
y1 Friendliness 0.69| 9 0.67H
y2 Responsiveness 0.56 v 6 0.58-
y3 Accuracy 0.45 6 3 0.46-
Solution Profile for Critical To Quality: | 0.65 0.41 0.41 0.49 |Convergence Gap

0.03 @
34 Total Effort Points

0.20 Convergence Range

0.20 Convergence Limit

The matrix correlates customer needs with effects originating from Critical to Quality
controls. Solving the transfer function with the Eigenvector method explained below
(2-3.4) for the controls x yields an Achieved Profile Fx near enough to Goal Profile y.

- 32 -

For transforming the profile into percentages, consult Figure 2-9. Here the bottom pro-
tile of Figure 2-8 is turned by 90° to display horizontally.

Figure 2-9: The Technical Solution Profile x — Critical to Quality

Priority
Critical To Quality Topics ||Attributes Weight Profile |
x1 Training Behavioral Training With Stress Test Must make fun 33% 0.65
x2 ICT Infrastructure Customer ldentification High Performance High Reliability 21% 0.41 \
x3 Salary & Bonus NPS related Predictable 21% 0.41 J
x4 Work Place Ergonomic Individual High Performance 25% 049 | .
|

This means that the following distribution will provide best value for money: by in-
vesting 33% of the total budget into x1: Training, 21% into x2: ICT Infrastructure, 21%
into x3: Salary & Bonus, and 25% into x4: Work Place. The percentages indicate how the
budget for improving the Help Desk services is allocated best.

Tradition restricted the cell values adopted in QFD transfer function matrices to 0, 1,
3, 9; with 9 as the highest correlation value. This was found suitable for expert team
judgement; however, from a mathematical viewpoint any scale is permitted if the scale
is a Ratio Scale; i.e., 9 = 3 X 3.

2-3.4 SOLVING A TRANSFER FUNCTION BY THE EIGENVECTOR METHOD

There are various mathematical or empirical methods available to solve y = Fx, given
the vector dimension of x and some matrix F. A cute way of solving is by using the
AHP Eigenvector method which has the advantage to flatten out measurement errors.
Such errors are unavoidable especially if a team of experts is setting up the transfer
function matrix. For this, we tilt the m X n matrix F over its diagonal into its n X m
transpose F' and multiply F with F'; this yields a m x m positive-definite square
matrix that has m Eigenvectors.

Figure 2-10: Solving the y = Fx problem with Eigenvectors

T

F: F': FF':
9 2 9 I 85 21
7 6 v 85 18
1 6 3 R 6 21 18 46

6 3
Jacobi Iterative Method

for Finding Eigenvalues: Eigenvectors: y: T Diff:
99 0 0 0.67 -0.65 -0.35 0.69 0.67 0.02
0 85 0 0.58 0.76 -0.30 0.56 0.58 -0.02
0 0 32 0.46 -0.00 0.89 0.45 0.46 -0.01
99 85 32 Convergence Gap: 0.03

The solution relies on the theorem of Perron-Frobenius, saying that positive determined
square matrices have a principal Eigenvector T which is all positive. For a short proof

- 33 -

of this theorem, see e.g., Cairns (Cairns, 2014). The Eigenvectors are calculated using
the Jacobi Iterative Method (Volpi & Team, 2007), or any other suitable solution method.
Then, setting x = F't solves Fx = F(F't) = FF't = 7, because 7 is an Eigenvector. If
it happens that y = 7, i.e., the goal vector y is near enough to an Eigenvector, the so-
lution y is an approximative solution to the problem y = Fx, up to convergence gap.

2-4 MEASURING TESTS

A Test is a finite collection of test stories. Test Stories are finite collections of test cases,
characterized by some common business value delivered. Test stories are often related
to user stories but typically not the same. Test stories can address more than just one
user story.

Test cases are represented as arrow terms, starting with a set of preconditions (test
data) and yielding some response. In a data movement map, it is straightforward to
identify those data movements that are executed if running a test case. The initial data
movements are those whose data group last meets the assertions made on test data;
the last data movement first meets the response assertion. Moreover, objects of interest
can be expected to provide test stubs; this means that such objects can provide test
data without executing all the data creation functionality that under normal opera-
tional conditions is needed. If there is some hardware in the loop, test stubs are needed
anyway to simulate the sensors’ or actuators’ data supplied into the test.

2-41 TESTSIZE

Test Size thus is the minimal number of data movements needed to execute some test
case to produce the test response. As with COSMIC in general, moving the same data
group is counted only once for size. However, since a test story consists of many test
cases, a specific data movement is executing many times within a test, typically with
different test data. All test cases within a test story must be different from each other.
Attributes contained within test cases must specify test data all different, otherwise
the test cases are considered equal.

Test Intensity in turn is an average number characterizing how many times on average
a data movement becomes part of test case. Since high test intensity does not rule out
that not all data movements are executed at least once in a test, Test Coverage remains
an important indicator, specifying the percentage of data movements not covered with
one test case in some test story; see Figure 2-29: Test Status Summary.

The total size of a test story is the sum of all size of the test cases executed within a test
story, thus increasing test size when executing more test cases.

- 34 -

https://en.wikipedia.org/wiki/Jacobi_method

In statistics, test distribution indicates the degree to which test intensity differs within
one test story, or within the full test. For practical purposes, such a metric seems not
very telling, since it does not replace test coverage. It is rather expected that high busi-
ness value increases test intensity while data movements moving irrelevant data are
well tested with a few test cases only. Thus, test intensity depends from business value
and is not and is not normally distributed. Therefore, test distribution is not a mean-
ingful indicator.

2-4.2 TEST WALK

The data movement maps can be used to visualize tests cases. You can walk the tests,
similar, but less in detail, to walk through code. Such visualization might help in
crowd testing for identifying bugs found. The tester sees selected sequences in the
data movement map; he can “walk” the data movements when planning or executing
tests. This makes functionality visible to the development team, localizes defects that
impact functionality, and supports communication between testers, users, and devel-
opers. Figure 2-11 shows how Data Walker walks four data movements of a test case
and detects a bug at the fourth data movement.

Figure 2-11: Test Walk on Data Movement Maps; one Bug Found in Forth Walk

Functional Other Some | Other Functional Other |/ Some ; Other
Process Application ! Deyice ! Device Process Application ! Device /" Device
I I - I I I I I
! I 8./ Move some ddtg N I ! I 8./ Move some datal ? .
N] T I N] T f
. : * 9./ Move some data o . : * 9./ Move some datg ©
T v T v
610.// Move some data é 1 1 61 0./ Move some data é 1 1
1 1 1 1 1 1 1 1
11.// Move some data . . 11.// Move some data . .
; , | | ; , | |
Functional Other / Some . Other Functional Other / Some i Other
Process Application ! Device ! Device Process Application ! Device I Device

I I I I I I I I

! I 8. Move some data l ! ! I 8./ Move some data l !

N I T I ¢ I T I
¢ : * 9./ Move some data o . : *_9.J/ Move some data o
g T T v T T v
.// Move some data é | | 610]/ Move some data | |

1 1 1 1 Iﬂ 1 1
11.// Move some data . . /I Move some d| . .

@ , 1 1 1 1

A Bug is defined the traditional way for testing: a test case that returns an unexpected

response. Because our Data Walker can detect only one bug at a time, we are able to
count defects unambiguously and thus define what defect density is. We count a max-
imum of one defect per data movement executed within a specific test story. The

- 35 -

maximum number of defects per test case is its test size. However, if the Data Walker
detects bugs for different test stories in the same data movement, he can only count
one defect per test story.

2-4.3 DEFECT DENSITY

What is a defect? A defect relates to requirements, specifications or expectation re-
garding the behavior of a system. If test cases are available, a defect means that the
response does not meet the assertion of the response in the respective arrow term. It
is therefore obvious that a defect relates to a test story. It refers to some data movement
that exhibits the defect. Counting defects for each failed test case makes no sense if it
refers to the same data movement.

Thus, counting defects become a limited task. You can count a maximum of one defect
per data movement per test story. Defect Density is therefore a percentage of the total
of defect opportunities. This definition opens the possibility to apply the usual Six
Sigma techniques to defect density and defect distribution. Traditional defect counts
obtained from counting the number of entries in a bug repository are not suitable for
applying Six Sigma.

2-4.4 TEST COVERAGE

The key point for test metrics is Test Coverage. The problem with test coverage is that
it has to do with users’, or customers’, values. It is useless to test pieces of software
that deliver nothing visible to the user, or nothing that has any value. Test coverage
has to do with FUR, with functionality, and nothing with code. Code implements
functionality, and tests cover functionality, not code. Functionality can origin from
anywhere, the cloud, other services. Code might provide other things that functional-
ity.

For defining test coverage, functionality needs evaluation in view of customer values.
It is obvious that just counting whether any given piece of functionality is covered by
tests does not yield and useful metric, because users see value in respective function-
ality differently.

2-4.5 CREATING A CUSTOMER NEEDS PROFILE

The usual way of valuating functionality is by prioritizing user stories. Agile team set
priorities when selecting user stories for a sprint; however, the methods used for set-
ting priorities are not standardized. Since product owner is the most difficult role in
agile development, especially with Scrum (Schwaber & Beedle, 2002), it is helpful to
use a method dedicated to developing a product towards customer needs. The method

- 36 -

is taken from Quality Function Deployment (QFD) (Fehlmann, 2016, p. 16). The Naviga-
tor Application explains it.

The methods of choice is the Analytical Hierarchy Process (AHP), proposed by Saaty
(Saaty, 2003) and used in Fehlmann (Fehlmann, 2016, p. 21), based on calculating Ei-
genvector solutions. Our preferred alternative, combined with AHP, is the Net Pro-
moter® Score (NPS) approach (Fehlmann & Kranich, 2014-2). The applicable ISO stand-
ard (ISO 16355-1:2015, 2015) lists many more excellent alternatives, e.g., (Mazur, 2014)
and (Mazur & Bylund, 2009). Net promoter is a method of evaluating surveys, avoid-
ing large questionnaires by focusing on the Ultimate Question only (Reichheld, 2007).
The ultimate question is how likely it is you would recommend a product or service
to closely related persons. The second, related, question is why. Then, it is possible to
evaluate the responses by classifying answers into candidate business drivers - or cus-
tomer needs - and calculating importance and satisfaction using transfer functions.
The transfer functions try to uncover the customers’ values for importance of, and
satisfaction with, the candidate business drivers by trying to explain the observed NPS
score with the solutions of the respective transfer functions. That will not always work
but if it does, it is much more reliable than directly asking customers.

2-4.6 EFFECTIVENESS OF THE IMPLEMENTED SYSTEM

With customer needs established, user stories can easily be prioritized with a transfer
function that maps user stories onto customers’ needs. The transfer function uses the
frequency of data movements needed for implementing the user stories. The resulting
profile for the user stories can be used in agile development for prioritization.

In turn, mapping test stories onto user stories, again using the frequency of data move-
ments used in test cases, defines Test Coverage. The matrix looks familiar; tester use it
to assess coverage of code by tests. But usually they are not aware of the convergence
gap. If the test cases in a series of test stories cover the user stories, and the transfer
functions yields a satisfactory convergence gap, this shows how well the test stories
cover customer needs.

The test coverage matrix represents a transfer function providing assurance that the
test stories verify the correct implementation of the user stories. The convergence gap
is the metric that tells how well correctness can be proved by these tests.

Obviously, these tests do not prove anything else than the requirements expressed in
the user stories have been correctly implemented. Adding user stories requires adding
test stories. And as ever with transfer functions, there is no way of proving that the
selected test stories are the only selection that works, not even the minimal one. The
selected test stories work sufficiently well if the convergence gap closes. But that is
enough for test automation, eliminating test stories that are not needed.

- 37 -

2-5 TEST METRICS FOR THE NAVIGATOR APPLICATION

Before continuing with theoretical statements, we look at a practical example: the nav-
igation device application already encountered in Section 2-2.8: The Navigator Applica-
tion as COSMIC Model.

2-5.1 CusTOMER NEEDS, THE CAR USERS" VALUES

Customer needs are in our case rather the values of the car user, because it is unclear
whether the car user is the same as the car owner and, even if so, if this is the direct
customer of whoever offers the navigation device service. Also, car users are not nec-
essarily car drivers; the car could drive autonomously.

We use two approaches:

e The Analytical Hierarchy Process (AHP)
e A Net Promotor Survey (NPS)

and combine the resulting profiles for the car users” values.

2-5.2 THE ANALYTIC HIERARCHY PROCESS

The AHP consist of pairwise comparisons between the following five potential values:

Figure 2-12: Car Users” Values

AHP Priorities
Customer's Needs Topics | |Attributes Weight Profile
y1 Find a Route Fast Secure No jams 17% 0.37 |
y2 Know Arrival Time Reliable Flexible 23% 0.51 |
y3 Avoid Jams Minimum traffic ~ Fast Prediictability 14% 0.31 |
y4 Avoid Blockers Incidents Events Bad weather 17% 0.36 a
y5 Drive Safe Road conditions ~ Avoid road works ~ Avoid populated areas 28% 0.61 1

The navigation device cannot slow down a car if needed; that would be part of auton-
omous driving, or of an Advanced Driving Assistance System (ADAS) connected to the
Navigator.

The AHP in Figure 2-13 puts the value y5: Drive Safe highest by assigning equal value
as for y1: Find a Route but double the pairwise comparison weights against the other
three proposed weights in the AHP matrix. The second in ranking is y2: Know Arrival
Time which is obviously closely linked to value y5. However, this is difficult to find
out by asking the user directly. The car user will rather pretend y1, y3 and y4, finding
the fastest route and avoiding jams and other blocking obstacles have highest priority.

- 38 -

Only pairwise comparison detects the true needs.

Figure 2-13: Analytic Hierarchy Process for Five Potential Car Users” Values

©
E
=
s
E
3
g
x
=N

2 ., £
g 5 & 8 >
o pifi = EE £ 2
AHP Priorities |F= z z & s B
Car Users' Values <, Q X 9 Weight o< a
y1 Find a Route 3 1037 W
y2 Know Arrival Time 2 051 Wl
v3 Avoid Jams 5 (031
y4 Avoid Blockers 4 1036 W
y5 Drive Safe 1 10.61 a

2-5.3 NET PROMOTER® SCORE

Reichheld, Bain & Company, and Satmetrix Systems, Inc. have introduced and trade-
marked Net Promoter® Score (NPS) as a measurement method for customer loyalty
(Reichheld, 2007). Because such considerations look somewhat odd, it is appropriate
to ask the users of a car by means of a survey. Avoiding the useless direct question,
we rather rely on the NPS methodology asking the car user whether he or she recom-
mends our Navigator application, yielding the NPS score, and why she or he probably

give this score - named the Verbatim.

The result looks as follows:

Figure 2-14: Response to NPS Survey by Three Segments of Car Users

Survey Results Overall NPS: ml
Customer Segments | |Attributes NPS Profile NPS
NPS1 Business People ||Meeting Time Pressure Planned 0.61 29% 1
NPS2 Professionals Appointments Predictable 0.72 33% |
NPS3 Leisure Shopping Sightseeing Likes driving 0.33 15% '_l

A total NPS of 25% is nice but does not necessarily guarantee product success. For
more detail on NPS, see (Reichheld, 2007), and for the methodology how to interpret
it for VoG, see (Fehlmann, 2016, p. 104) and (Fehlmann & Kranich, 2012).

The verbatim responses were categorized into references to the five values listed in
Figure 2-12. Counting the frequency of mention yields the importance given to these
values; also considering the positive or negative value of the mention yields the satis-
faction. Satisfaction can be used as a corrective to importance; however, since satisfac-
tion be negative, namely dissatisfaction, it not always gives clear guidance on the rel-

ative importance of the five values.

The method is a typical application of Artificial Intelligence (Al) techniques. It combines
classification with counting. Classification means to cluster words into notions de-
scribed with these words, omitting subtle differences, and counting means simply to

count how many times they appear in verbatims.

-39 -

It should be noted that the term Al does not imply any of the concepts related to mind-
fulness, reasoning and understanding that other languages - such as German - con-
nect to the terms derived from the Latin “intellegere”. The Latin origin intellegere means
read, or infer, between the lines, or other objects. Intelligence, in English, has a slightly
other meaning. It is used to describe the activity of collecting data and turn it into
knowledge by counting similarities found in such data. Secret Intelligence Service is
exactly that. Artificial intelligence does not aim for reason, not even inducing appro-
priate behavior. But transfer functions can reveal the possible causes, even the most
likely causes if used with due domain expertise.

We got the following two transfer function matrices:

Figure 2-15: Importance Transfer Function Figure 2-16: Satisfaction Transfer
Function
Car Users' Values Car Users' Values Car Users' Values
Importance e o 2 o
Transfer Function = 4 3 = 2 3
ole T 4, £ a 2|2 B 9, 2 o
5|3 € E 8 2|3 53 € E 8 £|3
gL < S @ 3 S x| £ < S @ 8 £
nl|ls 2 B B o3 nwl|lgs 2 B B o3
a2 2/8 ¢ | & a2 2/ 8 ¢ 2| &
2 oL ¥ < < O w 2| ¥ < i< O w
Customer Segments i ie T e = |2 Tie
NPS1 Business People 06116 5H 3 5 §|058 J 061 5 9 9 1045 ;
NPS2 Professionals 07216 6 8 5H 9|07 . 07211 1 9 6 8|08 1
NPS3 Leisure 033 4 7 1 2 4|03 ‘ 0332 4.2 3 1|02 }
Solution Profile for Car Users' Values: | 0.45 0.46 0.38 0.31 0.59|Convergence Gap 0.23 0.21 0.53 0.47 0.64|Convergence Gap
007 @ J
79 Total Effort Points
0.15 Convergence Range
0.30 Convergence Limit w ﬂ ﬂ

The value y5: Drive Safe wins again; however, the second rank is not so clear. Obvi-
ously, satisfaction is high with the ability of our Navigator to avoid jams.

Combining importance and satisfaction transfer function profiles for the car users’
values yields:

Figure 2-17: Combining Importance and Satisfaction from the NPS Survey

3
(O]
8 S
S B L
£E g NPS Priority
Car Users' Values Attributes 5 1|z Weight Profile
y1 Find a Route Fast Secure No jams 2230060 202 | 22% || 0.48 B
y2 Know Arrival Time ||Reliable Flexible 2301063 292 | 22% 0.49 B
y3 Avoid Jams Minimum traffic Fast Predictability 1.891029| 26 | 17% 0.37 |
y4 Avoid Blockers Incidents Events Bad weather 1.56 10.34| 159 | 15% 0.32 })
y5 Drive Safe Road conditions Avoid road works Avoid populated areas |||2.95|0.22| 31¢ | 24% || 0.54 B

- 40 -

The Satisfaction Gap is useful as a corrective. The satisfaction gap weights negative
statements exponentially; it thus stretches the importance profile in case of dissatis-
faction. If customers are dissatisfied with an unimportant topic, the satisfaction gap
remains nevertheless small and does not affect the profile (Fehlmann, 2016, p. 117).

In our case, the ranking is almost the same as with the AHP. Since satisfaction has not
been very reliable, looking at the convergence gap, it is considered as a corrective only,

with weights five (5) against one (1), in favor of the importance profile and ranking
(Figure 2-17).

2-5.4 VOICE OF THE CUSTOMER

There exist many more methods to measure the Voice of the Customer (VoC). Among
these are such simple things as voting. We can also draw a vote amongst car users’
what matters to them most, and a possible result could be as shown in Figure 2-18:

Figure 2-18: Sample Vote of Car Users on their Values

. Car Users' Values Topics | |Attributes Weight Profile

y1 Find a Route Fast Secure No jams 1M 16% 0.32 1

y2 Know Arrival Time Reliable Flexible 274 40% 0.79 1
y3 Avoid Jams Minimum traffic ~ Fast Predictability 149 22% 0.43 a

y4 Avoid Blockers Incidents Events Bad weather 74 11% 0.21 |

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 75 11% 0.22 . 1

Combining AHP, NPS, and VoC car users’ profiles yields:
Figure 2-19: Combined Profile from AHP, NPS, and VoC for Car Users” Values

Combined Profile

- |QfdNavigatorAhpPriority
~ |QfdNavigatorNpsPriority
= |QfdNavigatorVocPriority

Targets Attributes % Weight Profile
Y.a Target Group Ay1 Target 1 | |Attribute 1.1 Attribute 1.2 Aftribute 1.3 0.23]0.640.34 17% 030 |1
y2 Target 2 | |Attribute 2.1 0.821.500.79 43% 0.78 |
Y.b Target Group Bly3 Target 3 | |Attribute 3.1 Attribute 3.2 0.47(1.07|0.45 28% || 050 |1
y4 Target4 ||Attribute 4.1 Attribute 4.2 Attribute 4.3 ||{0.23]0.43]0.23 12% || 022 |1

Here, in Figure 2-19, the NPS survey has been given double the weight than the AHP
and the VoC, because NPS did ask more people at once than AHP or the VoC survey.

- 41 -

2-5.5 THE USER STORY PROFILE - FUNCTIONAL EFFECTIVENESS

With help of the car users’ profile, the user stories can easily be prioritized by help of
a transfer function. The transfer function for Functional Effectiveness originates from
the data movement map. Do the data movements cover all needs of the customer, as
expressed by the FUR, or user stories?

Functional effectiveness is easily measurable; it simply means assessing which data
movements contribute to what goal target, and then compute the convergence gap. A
software is functionally complete and effective, if the convergence gap closes.

Functional effectiveness has practical value. While missing functionality hints at
missed business values, sometimes functionality is required that does not contribute
to some of the values; maybe other reasons call for it. Then the convergence gap closes
only if those other requirements are part of the value profile.

Figure 2-20: User Stories for the Navigator Application

User Stories Topics ||Asa... |wantto...[getsomethingdone] such that...[quality characteristic] so that... [value or benefit]
1) Q001 Authentication Car User authenticate myself I can use the Navigator | remain anonymous for the Navigator
2) Q002 Get Route Car User getthe fastest route | arrive at the predicted time | can make arrangements for work and leisure
3) Q003 Safe Route Car User arrive safely the predicted driving time remains valid | arrive at the predicted time
4) Q004 Avoid Jams Car User use a route around traffic jams | arrive at the predicted time | can make arrangements for work and leisure
5) Q005 Avoid Storms Car User avoid bad weather conditions larrive at the predicted time | can make arrangements for work and leisure
6) Q006 Use Routes Car User knowmy Driving Assistant where togo | can use it without hesitation the Driving Assistant knows where to go
7) Q007 Locate Car User knowmy position | know where | am the Navigator can calculate travel time
8) Q008 Set route Car User decide which route to take | can exhibit my preferences the car takes my preferred route
9) Q009 Navigate Car User know which direction to go I can rely on my Navigator I reach the destination directly

Thus, the question is interesting in both cases: why some software is functionally ef-
fective or not. In practice, checking for functional effectiveness is a means to detect
both missing functionality and excess functionality; consequently, it is a metric of high
interest for Lean Six Sigma practitioners.

To assess functional effectiveness, it suffices to count how many data movements sup-
port some specific car users’ value. However, such an assessment is not straightfor-
ward; sometimes it can be disputed whether a data movement carries specific im-
portance for one of the car users’ values. Since we use that information later for test
coverage, the importance should be derived from the criticality of proper functioning
of such data movement.

- 42 -

Figure 2-21: Get Route supporting y1: Find a Route

The technique used for identifying such data movements is extracting the user stories
from the data movement map. E.g., from the Navigator map in Figure 2-5, the Q002:
Get Route user story supports the y1: Find a Route value for the car user with the fol-

Car User

Navigation

2 16.// Ask for a route A

¢

¢

~18.// Ask for route

GIS Maps

T
I
<

8./(Return possible routes '
:' 24.// Show routes '
:' 25.// Show travel ime "

lowing five data movements shown in Figure 2-21.

Doing that for all combinations of user stories and car users’ values yields the Func-
tional Effectiveness transfer function that again has a convergence gap of 0.05 indicating
that the Navigator application is indeed a valuable implementation of the car users’

need for a valid navigation device.

Figure 2-22: Functional Effectiveness for the Navigator Application

Car Users' Values User Stories
Deployment Combinator | o

518 ¢ 5 E £ & 2 2|38

Sl 2 &€ 328 s 3 B|s

S| 3 8 228 8 8 s 3|5

Ol © & £ £ o S o z|<

S 8 8 2 8 8 5 8 2
Car Users' Values 5§ &§ &8 8§ 8§ 8 & 38 3
y1 Find aRoute 04| 8 5 5.9 4 9 |o4
y2 KnowAmival Tme 0.56 65 6 6 2 2 92 8|08
y3 Avoid Jams 0.37 3 65 4 4 3 [0.38
y4 Avoid Blockers 0.41 36 4 5 4 4 0.38F
y5 Drive Safe 047, 6.7 5 5 515 0.52F‘
Solution Profile for User Stories: | 0.19 0.31 0.42 0.42 0.32 0.25 0.42 0.21 0.36 |Convergence Gap

157 Total Effort Points

0.10 Convergence Range

0.20 Convergence Limit

The cells in the functional effectiveness transfer function (Figure 2-22) count the num-
ber of data movements supporting each of the car users’ values. Since the application
has 36 CFP only but the total count - called Effort Points - is 157, it is obvious that
many data movements support more than just one of the five car users’ values. This

0.06'

is a sort of classification we need for later applying Al to automate testing.

- 43 -

Functional effectiveness proves that the software is meeting exactly customer needs
and expectations; however, it is not always possible to close the convergence gap.
However, if not, there is a risk of not providing enough functionality, or excess func-
tionality that is expensive to test but has no value for the customer.

2-5.6 TEST COVERAGE FOR THE NAVIGATOR APPLICATION

Creating test stories covering the user stories for the Navigator application is rather
straightforward, based on the few user stories selected to fit into a book.

Figure 2-23: Thirteen Test Stories for the Navigator Application

Test Cases
Test Story Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A Identity A.1 SessionKey ||A1.7 {Useringood standing, User known} Session key issued A1.2 {Userdidn't pay, User known} Session key denied

A.2 Session Ends | |A.21 {Session key valid} Session key revoked A2.2 {Session Timeout} Session key revoked

A.3 User Identity ||A3.1 {Match session key with user data} No match A3.2 {Login user twice} Session Key issued
B Routing B.1 Destination B.1.1 {Valid destination} Route proposed B.1.2 {Invalid destination} Destination rejected

B.3 Shortest B.3.1 {No obstacles, route is free, weather fair} Shortest route proposed |B.3.2 {Traffic jam detected} Bypass proposed

B.4 Safest B.4.1 {No obstacles, route is free, weather fair} Avoids populated areas |B.4.2 {Bypass proposed} Avoids populated areas

B.5 Obstacle B.5.1 {Build-up of traffic jam} Alert! B.52 {Storm detected} Alert!

B.6 Alternate B.6.1 {Alternate route recommended} Alternative proposed B.6.2 {No alternative available} Inform

B.7 Incident B.7.1 {Sudden traffic obstacle} Alert! B.7.2 {Incidence ahead} Ask destination

B.8 Select B.8.1 {Proposed routes, travel times, alerts} Ordered proposals B.8.2 {Select route} Show chosen travel time
C Navigate C.1 Direction C.1.1 {Arriving at crossing} Show direction C.1.2 {Traffic jam detected} Alert!

C.2 Track C.2.1 {Onmap} Show position C.2.2 {Lost GPS} Alert!

Figure 2-24: Thirteen Test Stories for the Navigator Application (cont.)

Test S tory Case3 Test Data Expected Response |Case4 Test Data Expected Response |Case 5 Test Data Expected Response

A Identity A.1 SessionKey ||A13 {User unknown} User redirected A14 {Switch on} Show map & postion
A.2 Session Ends | |A23 {Trycredentials more than 3 times} ~ Session key denied ~ |A.2.4 {Switch off} Route deleted

A.3 User Identity ||A33 {Exchange session key} Session ends A34 {2ndsession} Both continue A35 {User credentials, Get Location} blocked
B Routing B.1 Destination B.1.3 {Match List, Completed Entry} Valid destination B.1.4 {Session expired} Get new session key

B.3 Shortest B33 {Storm detected} Bypass proposed

B.4 Safest B4.3 {User preference} According preferences

B.5 Obstacle

B.6 Alternate

B.7 Incident B.7.3 {Incident, Request driving track} Activity track

B.8 Select B83 {Select route} Show on map
C Navigate C.1 Direction C.1.3 {Destination not set} Showmap only

C.2 Track C.23 {Usertrack} No user found C.24 {Switch off} Revoke session key

For instance, the four test cases for test story B.1: Destination are:

e B.1.1: {Valid destination} — Route proposed
e B.1.2: {Invalid destination} — Destination rejected

e B.1.3: {Match List, Completed Entry} — Valid destination

- 44 -

e B.1.4: {Session expired} — Get new session key

The third case refers to an entry completed by matching destinations from a list. The
corresponding data movement maps are:

Figure 2-25: Test Case B.1.1: {Valid destination} — Route proposed

Car User Navigation Users GIS Maps Weather Service Traffic Service

| | | | | |
- . 7./l Get session key 2 - - -
I ‘e e I I I
. 16.// Enter desfinaton X - < - - -
\ ¢ 0% I - I I I

' ~ 18.// Ask for route i ' '
I < i < I I

. . 19.// Return possible routes .
I (S T L 4

[[
: ~20.// Ask for weather forecast . :
| % T i & |
: . : 21.// Return weather forecast o .
[(o2 } i [

I 022.// Ask for trafic density : 1 X S

. . ; ; .23.// Return trafic_densi .
| O : : : Yo
0 24./| Show routesc I I I I
0 25.// Show travel ﬁme¢ 1 1 1 1

Figure 2-26: Test Case B.1.2 Figure 2-27: Test Case B.1.3

Car User Navigation GIS Maps Car User Navigation GIS Maps

| | | | | |
2 16.// Enter destination - | 2 16.// Enter destination A -
' ; , ? |
- 2 18.// Ask for route . - J/ Return possible routes 4
I <@ < . B4 Retn possile rouesq,
A 24.// Show routes A .
<> >

We visualize test flow by letting a Data Walker walk data movements, for instance in
Figure 2-25, and count how many bugs he encounters; he’s allowed to count only one
bug per data movement and test story. Thus, he classifies data movements into those
executing a test story correct, and those moving faulty data. This rule limits the total
number of defects within an application that can be found by testing.

The two smaller test cases use only a part of the data movements needed to propose a
route. The last one (B.1.3) tests a part of the process of entering a destination. Entering
a destination shall be made easy by completing partial entries of a destination’s name.
For instance, you can enter the two or three initial characters of a valid destination and
press the Enter key - or close entering data by any means suitable for the input device
used - and the system will select the unique match from a list of valid destinations
known to the GIS Maps application or, for more than one match, propose selecting

- 45 -

from all valid matches. This ease-of-use functionality is considered part of “all that is
needed to complete the “16) Enter destination” data movement”. Our data walker on
Figure 2-25 has just left this data movements, after checking with 7) Get session key,
continuing on 18) Ask for route searching for defects.

Consequently, it is possible to count all data movements that belong to test story B.1:
Destination. The total count is 50 - the sum of its column in Figure 2-28; however, only
14 of these data movements aim at user story Q002: Get Route. These 14 data move-
ments are those shown in Figure 2-25 except 7) Get session key.

The resulting test coverage matrix in Figure 2-28 has a favorable convergence gap of
0.12.

Figure 2-28: Test Coverage Transfer Function Showing Good Test Coverage

Test Coverage Test Stories
Deployment Combinator ® °
e e
Slg & z . S
3 X ju 5 2 [} [} = 8
cle &§ 2 B 8 . 3 8 B 4 2 3
T|%2 2 3 % 3 £ 258 % 3% 8 %%
O|lw »w D aolvw v O/ < £ o O F|<
) X < < o o o o o o 2 2 9
User Stories o8 5l b 6 s 5. 2 = ¢
Q001 Authentication 019111 12 30 6 4 4 3 |014 1
Q002 Get Route 031 | 157 9 69 1 11 4 1 |o22 -
| o ‘ ~ |
o0 Seefoe 02|13 41313110 16 12 11 19 17 7 jee 7,
: o | . ‘ B |
oo Avoidams |01 3465 14 111111111514 18 8 |02 1
Q005 Avoid Storms 032 3416 8121110 7 11 1213 S |03 -‘
Q006 Use Routes 025 | S8 9 7 9 811 9 3|oz -
Q007 Locate 0428 6 16 8 1015 4 8 8 17 12 11|o38 -_.
Q008 Set route 0.21 . 5 8 91779 '8 10 9 3|02 -
Q009 Navigate 0.36 3070617 619 9 25 9 |o3s 1
Ideal Profile for Test Stories: | 0.08 1 0.10 0.19 0.26 0.31 0.31 0.31 0.27 0.34 0.40 0.44 0.21|Convergence Gap
012 @
854 Total Test Size | | | | |
0.15 Convergence Range [
0.25 Convergence Limit

Again, the cells of the matrix contain the frequency of executing data movements by
the test stories. We use the knowledge from Functional Effectiveness for assigning data

movements to user stories in the row of the matrix.

Thus, the test coverage matrix results from the selected test cases automatically; no
further assessment of data movements is needed.

Real-world test coverage matrices have the dimensions of the number of user stories:
a few hundred up to thousands, and test stories typically even more than user stories.

- 46 -

Automatically generated test coverage matrices, measured with the convergence gap,
are indeed indispensable for making the approach feasible and attractive.

Real-world applications also have a few hundreds to several thousand CFP functional
size; thus, without machine-collectable data, and automated testing, test metrics re-
main theoretical stuff.

The test statistics for our Navigator application looks as follows:

Figure 2-29: Test Status Summary for Navigator

Total CFP: 36 Test Size in CFP:| 854
Test Intensity:| 23.7
Defects Found in Total:| O Defect Density:| 0.0%

Defects Pending for Removal:| 0 | Data Movements Covered:| 100%

2-5.7 KEY FIGURES FOR TESTING

The total Test Size depends from the number of test stories in place, as typically every
data movement is tested several times in view of other FUR, or user stories. It counts
how many data movements are executed by test cases, in total.

The Test Intensity tells how many times in average. This is test size divided by func-
tional size; its dimension is the ration between functional size, in CFP, and test size,
also in CFP. Thus, it is dimensionless.

The percentage of data movements covered by tests is what used to be called Test
Coverage; however, test coverage is a matrix, not a key figure. The key figure that mat-
ters indicates Data Movements Covered; it is in memory of the traditional Code Lines
Covered by tests that is still in use with testers, although it is not a metric and mean-
ingless for cloud services.

In any case, Defect Density should be zero for safety-critical software, or near to zero
in all other cases. Real-world applications are likely not to remain without defects;
nevertheless, users would dearly like to know how many. Statistical methods exist to
predict the residual defect density after the testing process; nevertheless, predictions
are not actual measurements. The important point with defect density measured by
COSMIC according ISO/IEC 19651 is, that the total number of possible defects is
known, considering that defects count only once per data movement and per test
story.

Consequently, it is well known when a software is so buggy that every data movement
is faulty; also, if it passed all tests without a single bug detected. However, even in this
favorable case, adding more test stories might result in detecting previously unde-
tected bugs. Because of the test coverage transfer function, this is likely to cause more
user stories to appear; that is, new functionality added to a software causes new

- 47 -

defects to appear, even in well-tested code. This is the reality developers experience;
users and customers rather find it difficult to understand why their need for such
functionality has not been detected much earlier.

However, key figures are not here to express feelings, or frustration. They shall reflect
the reality, and for this reason we need to say goodbye to the familiar pseudo-metrics
used in software testing, still declared as best practices nowadays, see (ISTQB, 2011)
& (ISTQB, 2014).

2-5.8 DEMING CHAIN OVERVIEW FOR TESTING

The most important precondition for automated testing is to know the goals of testing.
Without the goals there is no way to help a robot or algorithm to decide whether it
does the right kind of testing.

The following Deming Chain might serve as graphical overview for the method used:
Figure 2-30: Deming for Tests

CN— VoC

Voiceofthe | =| — Reahzatlon
Customer (VoC) - h——
[} S

#NPS, #AHP
Functional Effectiveness Test Coverage
USt— CN
.. N — —
DeCISIon Custor(%e'\z) eeds L = HI —
TSt— USt
User Stories N
- 4|

#CFP

I

Test Stories
(TSt)
#CFP

2-5.9 AUTONOMOUS REAL-TIME TESTING FOR THE NAVIGATOR?

There is not much interaction of the navigator with the real world. GPS delivers the
location on a map, but the map is not maintained by the Navigator application. The
map changes over time; also, road construction sites impose new obstacles, but all this
is not done within the navigation device. Therefore, there is little to test after release,
and nothing that cannot be tested when releasing updates.

- 48 -

Safety by a navigation device is not a big concern. Privacy is somewhat more chal-
lenged: while tracking cars is important for the Traffic Services application for predict-
ing jams and detecting obstacles, such tracks should remain anonymous. Identifying
car users might be useful for personalized advertisement based on the geographical
location; however, for this navigation services is less useful than other devices such as
a smartphone that can point its user immediately to shops and attractions. It is there-
fore safe to assume that privacy violations by navigation devices is rather limited and
not subject to change over time.

Nevertheless, privacy checks during the operating lifetime of a navigation system may
at least prove the validity of such an assumption.

2-6 CONCLUSION

Test metrics are of low interest for consumers that do not care for any risk connected
to software. The Navigator is an example of an interconnected software-intense system
that has no immediate need for more testing after released to the public. Even real-
world larger-size systems with more than just skeleton functionality do not pose
threats to safety, and rather few for privacy. Sharing routes taken, after all, is what
most people gladly do without hesitation.

Nevertheless, under certain special conditions people do not like to share location and
routing to everyone. In this case, privacy protection might become essential even for
a simple navigation service.

The need for consumers to understand how well their privacy is protected exists even
for such harmless services, and if consumers do not care, then it is because they fail to
understand the impact of big data and the ability of Al-driven software to steal their
privacy.

The fourth chapter exhibits a general proposal how privacy protect, and safety risk
exposer, shall be made visible to the public. However, before that we look at the Inter-
net of Things (IoT) requiring ART.

- 49 -

CHAPTER 3: TESTING THE
INTERNET OF THINGS

The Internet of Things (IoT) has become very famous recently and a break-
through is expected when the new 5G standards in mobile internet coverage
become widespread. Testing the IoT meets the challenge that the system under
test is unstable; simply, because it is extensible. You can always add another
intelligent thing to the IoT concert and expand the system.

How do you test expandable software systems?

3-1 INTRODUCTION

Combinatory Algebra (Engeler (Engeler, 1995)) is the mathematical theory of choice for
automatically extending test cases from a simpler, restricted system, to test stories that
fully cover a larger, expanded system. The extension works only if software testing
not only is automated but measured. Metrics must be independent from current im-
plementation and from actual system boundaries.

Metrics for testing are based on the international standard ISO/IEC 19761 COSMIC.

3-1.1 METHODOLOGY

Figure 3-1 shows a Data Movement Map (Fehlmann, 2016) for a simple data retrieval
application, with a total functional size of 5 CFP according ISO/IEC 19761 COSMIC
(ISO/IEC 19761:2019, 2019).

Figure 3-1. A Data Movement Map for Data Retrieval

Trigger } User Search Process I

| | |
2 1./ Search Criteria

9 0% I
i : 2./l Get Result '
:' 3.// Show Result ' |

i :' 4./ Nothing Found "
:' 5./ Show Error Message ll |

- 51 -

The map identifies objects of interest — here a user device, a functional process for
search, and a persistent data object - and the data movements (or UML messages)
between them. The data movements” count represents the functional size of an appli-
cation. The number of data movements moving a unique data group determines func-
tional size in COSMIC Function Points (CFP). The exact conditions when and how to
count data movements according ISO/IEC 19761 is documented in the COSMIC
measurement manual (COSMIC Measurement Practices Committee, 2017).

3-1.2 REAL-TIME TESTING

Real-time testing is the process of testing real-time systems and its software (Ebner
(Ebner, 2004)). Real-time does not mean anytime, but it means in limited time within
a freely selectable and adjustable time frame.

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose
computational power is Turing-complete, i.e., all programs that are executable by
computers can be modeled. This guarantees the best achievable test coverage.

With combinatory algebra, test cases extend from real-time tests, covering a base sys-
tem, to the actual, expanded system.

3-1.3 AUTONOMOUS TESTING

Autonomous testing is automated testing; however, without the need of simultaneous
presence of a responsible test manager, or tester. The system executes tests autono-
mously, by connecting to some test case database, downloading the test cases as
needed, executing the tests, and recording responses.

This requires the software be equipped with test stubs capable of accessing the test
case database, and able to supply test data instead of a user device, or another appli-
cation that accesses the system under test.

Test stubs can be present in any object; however, most test stubs reside in device and
application objects. Such a system of test stubs replacing actual sensors, actuators and
other hardware-in-the-loop are called Digital Twins. A Digital twin refers to a digital
replica of potential and actual physical assets (physical twin), processes, people,
places, systems and devices that can be used for various purposes. For a recent dis-
cussion of digital twin’s technology, see El Saddik (El Saddik, 2018).

-5 -

3-2 TESTING THE INTERNET OF THINGS (IOT)

The Internet of Things is a collection of sensors, actuators, and services that connect
these hardware elements to software that reacts on events or collects data for further
analysis. Such services are often hosted in some cloud, and the term Web of Things
commonly refers to this. The IoT impacts the physical world over actuators, such as
motors, locks, braking and steering controls.

The IoT changes scope and behavior with every sensor added or removed. Autono-
mous cars are a relatively simple example of an IoT since within a container; as soon
as they start talking to each other, for instance to find out where the other approaching
car is heading to, the scope of the IoT is changing. Smart homes are intrinsically more
complex since they are subject to external controls such as power plants optimizing
the power supply over time.

Most IoT components remain small and tiny and have no great complexity by them-
selves. A temperature sensor reports actual temperatures on a continuous but limited
scale; an actuator might lock doors or continuously dim light as needed. Their state is
relatively easy to describe by terms over the physical world, called Assertions. Asser-
tions describe test cases and test responses. This is an immediate application of com-
binatory logic.

Test cases have the structure of arrow terms. The arrow terms represent tests; in a; -
b, the a; describe the test data and b the test response. Responses can be as simple as
the amount of impact on the actuators in an IoT orchestra.

The necessity for test cases produced automatically in IoT is apparent. There are no
testers present when users connect a new sensor to their smart home network, or two
autonomous cars meet each other for the first time. Behavior of the newly connected
system still must remain safe.

3-2.1 A SIMPLE IOT TESTING CASE

The mechanism in place are shown with a simplified IoT network. Consider a simple
data retrieval application. The application meets two functional (FUR) and two non-
functional (NFR) requirements with the following goal profile. The requirements and
their profile represent Customer Needs, found by suitable Voice of the Customer tech-
niques, see Figure 3-3. For our sample loT application, we call them IoT Needs.

- B3 -

Figure 3-2: Analytic Hierarchy Process for IoT Needs

AHP Priorities
loT Needs

y1 Extensible
y2 Open

y3 Reliable
y4 Fast

y1 Extensible
y3 Reliable

16 1/9

& =« N | Ranking

S

For an explanation of the Analytic Hierarchy Process (AHP) and the tool used here to
calculate, see (Fehlmann, 2016) or the original literature, e.g. (Saaty, 2003)

Figure 3-3: IoT Needs Priority Profile

AHP Priorities
loT Needs Topics | |Aftributes Weight Profile
FUR y1 Extensible Easytoextend loT Device independent ~ Flexible 28% 053 | R
y2 Open Open Source Open Interfaces 24% 045 |
NFR y3 Reliable Always correct Always secure Safe 1 36% | 068 B |
y4 Fast No waiting 0.22 '!

Only three user stories are needed to cover these requirements:
Figure 3-4: User Stories covering IoT Needs

1)
2
3

User Stories Topics

Asa...[functional user] |wantto ...[get something done]

such that...[quality characteristic] so that... [value or benefit]

Q001 Search Data
Q002 Answer Questions
Q003 Keep Data Safe

Search Data App User find data matching my search criteria
Search Data App User know whether some data exists
Search Data App User ~ make sure my data is safe

| know when data exists
| know when data doesn't exist
I can retrieve it if necessary

Its attractive
answers are correct
it cannot be deleted

For user stories, we use the four-tailored Fagg & Rule form, see (Fehlmann, 2016, p.

158). The data movement map in Figure 3-1 with five data movements implements

these three user stories.

This yields the following priorities for user stories, see Figure 3-5:

Figure 3-5: User Stories” Priority Profile for Simple Data Retrieval

Priority
User Stories Topics Weight Profile
1) Q001 Search Data 32% 055 |
2) Q002 Answer Questions 40% 068 |
3).Q003 Keep Data Safe 29% 049 |

This profile is found at the bottom of the following transfer function (Figure 3-6) that
computes functional effectiveness with these five data movements yields:

- 54 -

Figure 3-6. IoT Needs Coverage by Data Movements

loT Needs User Stories
Deployment Combinator @)
S e | &
ols § 3|8
518 3 £|3
a5 s | 0O 3
S|8 & &%
=] 3 2 3 S
O | »w < X <
s 8 8
loT Needs S 8 &
y1 Extensible 0.53(3 0.50 B
y2 Open 0.45 4 0.48 B
y3 Reliable 0.68 31070 -
y4 Fast 0.22 0.18 -
Solution Profile for User Stories: | 0.55 0.68 ' 0.49 | Convergence Gap
0.06 @
18 Total Effort Points
0.10 Convergence Range
0.20 Convergence Limit

The priority profile reflects the number of data movements needed in the software to

cope with the user requirements expressed in user stories.

The user stories priority profile is a consequence of the customer needs profile in Fig-
ure 3-3. The total functional size according ISO/IEC 19761 COSMIC is 5 CFP, i.e., six
data movements only; thus, this is a very small and simple application. The user sto-
ries’ profile reflects IoT Needs as shown in Figure 3-3 by transfer functions (see section
2-3: A Short Primer on Six Sigma Transfer Functions). User stories’ priority profile is
calculated by counting the number of data movements needed per user story to meet
the IoT Needs’ priority profile.

The test stories in turn are simple. Basically, the tests verify that data is kept safe and
not altered when reading. Moreover, an invalid search string - whatever that means
- is rejected and not used for searching the database. Missing data is shown as not
available in the database, and repeatedly entering the same equation returns identical

answers.

Figure 3-7: Test Stories with first Test Cases

Test Story Case1 Test Data Expected Response
A Prepare A.1 Retrieve Responses |A.1.1 {Search String; Valid} Return (known) answer
A.2 Detect Missing Data |A.2.1 {Search String; Valid; No Search Result} No response available
B Response B.1 Validate Responses |B.1.1 {Search String; Valid} Correct responses
B.2 Data Stays Untouched |B.2.7 {Query; Repeated} Return identical Answer

Instead of full test case assertions we use an abbreviated form that just indicated what
test data should be specified here. Data can be specified as anything that matches a
predicate such as x < b, or a < x < b. In view of section 1-2.2: A Representation for the

- 55 -

World of Tests care must be taken that in order to execute any such test, a mechanism
must exist that selects an appropriate test data sample x; once more explaining why
computer scientists must master intuitionistic mathematics, not traditional analysis.
Every programmer knows how much can go wrong with such test data predicates
that do not exactly specify how to pick an appropriate sample for executing the test.

The remaining test cases, for two of the test stories are shown in Figure 3-8
Figure 3-8: Test Stories with remaining three Test Cases

Test Story Case 2 Test Data Expected Response |Case 3 Test Data Expected Response

A Prepare A.1 Retrieve Responses |A.1.2 {Combined Query; Valid} ~ Return (new) answer |A.1.3 {Combined Query; Invalid} ~ No response available
A.2 Detect Missing Data

B Response B.1 Validate Responses |B.1.2 {Search String; Invalid} Invalid search string
B.2 Data Stays Untouched

The data movements executed for the first test case of the first test story A.1.1
A.1.1: {Search String; Valid} — Return (known) answer
consists of the first three data movements:

Figure 3-9: Test Case A.1.1

User Search Process Database

| | |
2 1.// Search Criteria A

i ' 2.// Get Result '
<'> 3.// Show Result <> :
Thus, its test size is three. Moreover, the User device needs test stubs allowing him to

get pairs of combined queries and known answers to execute this test case.

In general, every device object in a data movement map needs the ability to access test
data and expected responses for executing tests. Some functional and data processes
might need this as well, depending upon which test stories are defined. This is an

additional task that developers must accomplish when making their software fit for
ART.

Completing the count for test sizes across all seven test cases yields the test coverage
matrix (Figure 3-10):

- 56 -

Figure 3-10. Test Coverage for Simple Data Retrieval Application

Test Coverage Test Stories
H el
Deployment Combinator olg ol g % °
S|z &8 ¢ 3g|¢
e =3 [=)) <3 z g
8) = @» o o
[7] > (&)
2l £ x 2|3
3 o = o =2 Y
Sls g 8 2|2
/3 8 5 8|8
Ol o > a|<
~— N ~ N
. < < o o
User Stories = 8 &5 F
Q001 Search Data 05| 6 4 3083 -
Q002 Answer Questions 0.68(7 3 4 |o6o o
Q003 Keep Data Safe 049 % 3 4 |o60 -
Ideal Profile for Test Stories: | 0.79 0.20 0.39 0.43 |Convergence Gap
013 @
46 Total Test Size
0.15 Convergence Range
0.20 Convergence Limit

The test coverage transfer function in Figure 3-10 is defined by the number of data
movements in a test story delivering user stories. Coverage is fine with a convergence
gap of 0.13 in this transfer function, the total number of tested data movements per
cell never exceeds seven. Total test size is 46, for a functional size of 5. Better conver-
gence gaps are difficult to reach because of the small numbers.

3-2.2 CONNECTING IOT DEVICES TO THE DATABASE

Connecting IoT devices to a simple data retrieval application adds not only a contin-
uous flow of searchable data but also considerable complexity. By adding one type of
sensor and one type of actuator, the functional size almost triples and becomes 21 CFP.
Security and safety risks increase with every data movement added to the IoT concert,
as they can be misused or hacked, or cause unwanted and unsafe behavior.

- 57 -

Figure 3-11: IoT Concert After Adding a Sensor and an Actuator

jioo

Search f e Search Process I / Sensor | Data Collecton \ Actabr | Response
: : ! I I T T
- 1/ Search Criteria _ *
” Q | 1 | I :
. - 2] Get Result
| Q@ I I | :
. . 3.// Show Result 1
(= G s : , : | |
= : "4/ Nohing Found -
Sen.sors ~ 5./ Show Error Message !
: = : | : | : :
_ 6.// Enable Sensors ! !
12 2 T i $ >> I I
: . . ~_ 7./ Switch Sensor on . . .
| | | O+ ¢ I |
I " . _ 8.// Sensor Data R . .
| | 1 S - I |

i . . 9J/Daa Recording ’

O | i | |
o I I ¢104// Sensor Stafistics i I I

Actuators

O } } } 11.// Dashboard > I I
12,/ Enable Acuiaiors . : : : :

2 4 - - - : } >
| | 1 1 | ¢ 13.// Switch Acuators on ¢

| | ¢14.// Read Sensor Data 1 1 6

| | | 1 | A 15/ Calculate Response .

| | | | | 16/ Acknowledge Tas A
| | | | 1 e 17.// Error Message &

| | ¢4 1 1 1 18.// Record Task*

I I 19/ Task Sisics 1 1 1 »&

| | | | | 20.// Dashboard *

A

A

& : : : :
¢ | | | | I 21 Error Messanes$
|

i | | I | |
3-2.2.1 ADDING MORE DATA MOVEMENTS

In practice, adding an IoT device goes with little or no programming. The additional
devices come with software already prepared and use standard interfaces to connect
with the database in our simple search module.

Nevertheless, there are a couple of new objects that require test stubs, making it obvi-
ous that ART is not something already there yet. Software suppliers need to cooperate
to prepare their pieces for ART. In Figure 3-11, both the Sensor and the Actuator need
such test stubs.

For the purpose of demonstrating ART, we keep the number of user stories and con-
sequently of test stories, thus concentrating still on the same requirements while ig-
noring any additional requirements that could govern the use of sensors and actua-
tors. Consequently, actuators and sensors will not be tested, as is probably realistic

- 58 -

since we buy products ready for plug-in. If the application domain is rather safety-

critical, such an assumption is potentially dangerous.

Functional effectiveness for the IoT concert is now expected to change (Figure 3-12),
while the user stories and their profile remain. There are now many more data move-
ments that impact user stories. Basically, these are the Read and Writes to the Database
from both the functional processes that manage the sensor and the actuator. Note that
the Actuator also records the tasks it performs, adding more data than just sensor data

to the database.
Figure 3-12: Functional Effectiveness after Adding an IoT Concert

loT Needs User Stories
Deployment Combinator 2 o
=] QL =
o|ls & S|&
5|8 S £|3
a |5 s 0O 3
= 2 = =% =
o S 2 3 S
[G] n < X <
~ N o
o o o
loT Needs S & &
y1 Extensible 0531 8 11 9 0.52-
y2 Open 045 7 10 5 0.40-
y3 Reliable 068|110 13 16 0.72_
y4 Fast 0221 5 4 4 0.23-
Solution Profile for User Stories: | 0.48 0.63 0.60 | Convergence Gap
0.06 @
102 Total Effort Points
0.10 Convergence Range
0.20 Convergence Limit

Since the user stories remain unchanged, the only interest is in verifying extensibility,
openness, reliability, and access speed of the data already existing, or stored by the
new sensor and the new actuator in the data base.

The IoT Needs deployment combinator for the full IoT data retrieval concert now takes
more data movements into consideration, and consequently the user stories” profile
changes (Figure 3-13).

The goal profile for IoT Needs remains the same - not necessarily in all cases; however,
no additional IoT Needs arise in this context with the full IoT concert, because it still

does data retrieval, see Figure 3-13:

Figure 3-13. User Stories” Priority Profile for Full IoT Concert

User Stories Topics | Weight Profile
1) Q001 Search Data 28% 0.48 R |
2) Q002 Answer Questions 37% 0.63 R |
3) Q003 Keep Data Safe 35% 0.60 |

- 59 -

3-2.2.2 EXTENDING TEST CASES

Functional size increases from 5 CFP (Figure 3-1) to 21 CFP (Figure 3-11) because of
the added sensor and actuator and their respective functional processes for sensor
data collection and for creating a response through the actuator. Also, user stories re-
main the same, although data now refers not to static but to dynamic data and the
priority profile now changes towards higher importance for Q003: Keep Data Safe. Test
stories too remain the same but must cover many more data movements between de-
vices, database, sensors, and actuators. Consequently, the IoT Needs profile (Figure
3-3) remains valid while the user stories’ priority profile (Figure 3-5) changes after
connecting the database to the IoT concert. Figure 3-5 transforms into Figure 3-13 with
more focus on Q003: Keep Data Safe.

Figure 3-14: Extended Test Cases for the Full IoT Concert

Test Story Case 1 Test Data Expected Response |Case 2 Test Data Expected Response
A Prepare A.1 Refrieve Responses | |A1.1 {Enter valid Search String} Return (known) answer |A.1.2 {Combined Query; Valid} Return (new) answer
A.2 Detect Missing Data A2.1 {Search String; Valid; No Search Result} ~ No response available |A.2.2 {Sensor Off} No data available
B Response B.1 Validate Responses B.1.1 {Search String; Valid} Correct responses B.1.2 {Search String; Invalid} Invalid search string
B.2 Data Stays Untouched | |B2.7 {Query; Repeated} Return identical Answer |B.2.2 {Transmission Interference} Data Rejected
Case 3 Test Data Expected Response |Case4 Test Data Expected Response |Case5 Test Data Expected Response

A1.3 {Combined Query; Invalid} ~ No response available |A.1.4 {Sensor Readings} Retrieved in Database |A.1.5 {Transmission Error} No Data available

A2.3 {Sensor Off} Dashboard Indication |A.2.4 {Actuator Off} Dashboard Indication |A.2.5 {Invalid Actuator Data} No Action
B.1.3 {Actuator Set} Actuator does it
B.2.3 {Transmission Interference} ~ Dashboard Indication |B.2.4 {Actuator Off} Dashboard Indication
Case 6 Test Data Expected Response |Case7 Test Data Expected Response |Case 8 Test Data Expected Response
A.1.6 {Actuator Enabled} Dashboard Indication |A.1.7 {Actuator Off} No Action A.1.8 {Actuator Response} ~ Stored in Database

A2.6 ({Invalid Actuator Data} Dashboard indication

Consequently, test cases increase in number. For instance, to keep data safe (Q003:
Keep Data Safe), data transmissions to sensors and actuators must be tested against loss
of data, or data transmission interference, e.g., by hackers. This increases test size but
not the number of test stories.

Because of adding sensor and actuator, the number of test cases increases by all the
new combinations of reading and writing into the database. Additional test cases be-
come necessary to test these assertions, such as test case A.1.4:

A.1.4: {Sensor Readings} — Retrieved in Database

The corresponding test case uses the following data movements:

- 60 -

Figure 3-15: Test Case A.1.4

User I ! Sensor Data Collection

2 6.// Enable Sensors - : S
¢ T T %
i | : 7.1/ Switch Sensor on '
i | ' 8.// Sensor Data :
: R : 9.// Data Recording

[O+ . ‘o

;10.// Sensor Stfstics : .

O 1 1 1101 Dashboard‘

The resulting test coverage (Figure 3-16) remains like Figure 3-10 although test size
increases considerably. This means that many more data movements are now under
test; however, with the same test stories. The knowledge for testing the IoT is inherited
from the original tests for the simple data retrieval test scenario.

Figure 3-16. Test Coverage for Full IoT Concert

Test Coverage Test Stories
Deployment Combinator sle s o § o
€le 8 & g|¢
218 = 58 |8
o) = Q5 o
o 4] » B » | ©
gl £ x =
] o = @ pos Q®
3 85 8 9|3
T|lE & =2 s|=
sl &8 £ 8|<
ARG I R
<< <C m m
User Stories = 8 s =
Q001 Search Data 048(32 15 121053 -
Q002 Answer Questions 0.63[41 17 14065 —
Q003 Keep Data Safe 060134 15 11054 -
Ideal Profile for Test Stories: | 0.85 0.37 0.21 0.30 | Convergence Gap
. 0.0 @
217 Total Test Size
0.10 Convergence Range
0.20 Convergence Limit

Clearly, both transfer functions for both test coverages remain within a safe Rule Set
Radius. Adding more types of IoT devices causes the cell counts grown in the test cov-
erage matrix while the convergence gap remains within the rule set radius limits
thanks to additional test cases. This is what combinatory logic predicts. Thus, the orig-
inal data retrieval application test serves as a model for the full IoT test. Only one rule
set has been applied so far: (x3 = y)3, representing the transfer function for test cov-
erage (Figure 3-16).

If the IoT concert covers more user stories, say j, then this becomes (x3; - y);; whatin
turn most likely requires i more test stories: (x; - y);. The importance of the original
three test stories changes between the data retrieval application and the full IoT con-
cert, like seen in Figure 3-5 and Figure 3-13.

- 61 -

Table 3-17. Test Priority Change when Adding Full IoT Concert

Data Retrieval Full IoT Concert

Test Story Weight Profile Weight Profile
A Prepare A.1 Retrieve Responses 44% 0.79 49% 0.85
A.2 Detect Missing Data 1% 0.20 22% 0.37
B Response B.1 Validate Responses 21% 0.39 12% 0.21
B.2 Data Stays Untouched 24% 0.43 17% 0.30

Main focus remained on A.1: Retrieve Responses but secondary changed from B.2: Data
Stays Untouched to A.2: Detect Missing Data. This reflects the addition of tests that de-
tects the failure of writing data from sensor or actuator into the database. This reflects
the additional effort that is required to protect data movements between sensors and
database from interferences, e.g., data loss or even privacy violations, reflecting the
higher focus on Q003: Keep Data Safe,

The following table (Table 3-18) shows a comparison of test sizes between the original
data retrieval application test, and the full IoT concert test.

Table 3-18. Data Retrieval Test Size vs. IoT Test Size

Data Retrieval Full IoT Concert
Test Size inCFP: 46 Test Size inCFP:| 217
Test Intensity:. 9.2 Test Intensity:) 10.3
Defect Density: | 40.0% Defect Density:| 19.0%
Data Movements Covered:| 100% Data Movements Covered:| 100%

The key indicator for tests is the Test Intensity, the ratio between Test Size and Func-
tional Size. Defect Size in turn is the percentage of defective data movements in the
software. Size measurements follow the international standard ISO/IEC 19761 COS-
MIC (ISO/IEC 19761:2019, 2019). There are no limits for neither functional size nor
test size.

3-2.3 AUTOMATED TEST CASE GENERATION

Thanks to the test priority goal profile, derived from the original IoT Needs and car-
ried through user stories to test stories, it is possible to generate test cases automati-
cally. The convergences gap serves as the heuristics which test cases to add to the test.
The principle behind artificial intelligence are heuristics; i.e., metrics telling which
search branches to follow and which to avoid.

Because of the heuristics, artificial intelligence adds only test cases that pertain to the
functionality of the implemented user stories, notwithstanding whether the IoT con-
cert now features additional but untested functionality. The data retrieval approach
does not cover additional requirements that might come with the IoT concert, such as
in a smart house, whether window stores close when the sun is shining strong, or

- 62 -

when it is necessary to avoid car collisions. The model extends, for instance, from the
simple, well-controllable and well-tested application to something more sophisticated
such as a smart home, or autonomous cars. Then, combinatory logic extends the test
suite from the original model to the full-blown system.

3-3 CONCLUSIONS AND NEXT STEPS

Automated testing is a must for [oT systems, especially for autonomous cars. But au-
tomation is not enough. Autonomous testing means that new test cases are generated
when software is updated or cloud services change. This requires a sound theory how
to generate test cases and intelligence for selecting the relevant test cases for test exe-
cution.

The time for actual testing can be very small. For instance, in case of an encounter with
another car from a different manufacturer that wants to connect and whose behavior
is hardly predictable, testing time allowance might be reduced to a few milliseconds.

We demonstrated with an example how testing scenarios carry over from simple ap-
plications to complex IoT concerts, using the original test cases as testing patterns for
automatically extending the test to the full IoT application. Using combinatory logic,
testing scenarios designed for the original model carry over to its extended IoT imple-
mentation, and this is already an important saving, enabling safe IoT concertation.

Combinatory logic paves the way to testing complex IoT concerts and networked sys-
tems, based on the solid ground of existing testing experiences. The quality of testing
can be maintained even after moving to automated testing. For testing the IoT, this
approach offers significant savings; however, the full potential of combinatory logic
in organizing knowledge is significantly greater.

Adding more “things” to that system requires additional testing that prove safety and
security, other qualities, and functionalities of the expanded system. Such systems,
serving as proof of concept, seem within easy reach for the currently available tools
and can be used to study the legal basis for future, even more intelligent and autono-
mous things.

- 63 -

CHAPTER 4: TESTING PRIVACY
PROTECTION AND SAFETY RISKS

Privacy protection has become a major concern since we noticed that Google
always knows where we are - because of the location services switched on in
our Smartphones. And because we find it so attractive to know where we are,
to see which restaurants are open around us, what they offer, and investigate
the shops’ offers already before visiting them.

Maybe all this loss of privacy is not indispensable but who cares? On social
media, we give even more insights in all aspects of our private life, and we
know that a dozen characteristics are enough to match a person’s identity even
without the consent of people to disclose their names.

Unfortunately, privacy protection has more than just luxury. If software-
intense products become popular, it is easy to use them for stealing relevant
information, concerning money, property, or simply turn such products into a
threat for your health or even life.

Privacy protection and safety risk assessment by Autonomous Real-time
Testing (ART) is much more than just luxury. It is the foundation of digitali-
zation. Or, what do you think will happen after the first incidence of the sort
that your smartphone threatens you with causing an accident by misguiding
your car? Unless you pay immediately some ransom fee? By bitcoin? Unfortu-
nately, you downloaded a new, cool, app that tells your car’s Advanced Driv-
ing Assistance System (ADAS) where to go...according your preferences, they
said...

4-1 INTRODUCTION

While test intensity certainly is important, it is not a consumer metrics by itself. Con-
sumers value more to know the degree of protection against perceived dangers.
Among them, physical safety matters most when sitting in an autonomous vehicle,
but privacy is another major concern. Not only is it sometimes not convenient if the
public knows where the car was directed, but other aspects of privacy might be
equally important. For instance, who overhears private conversations in a car? Who
has access to the credit card used to refuel the car, or reload batteries? Some might be
worried of hackers that might gain control over the car (Andy Greenberg, 2015).

- 65 -

Privacy protection is not a new requirement. For centuries, privacy was easy to protect
but hard to break because you had to personally overhear talking, not targeted at the
public, or steal physical things such as letters or notepads. Nowadays, Alexa can over-
hear you while you think you privately chat to friends and family, listening to music,
or laptops can use their cameras watching you, and anyway, whatever you like, com-
ment or disgust in newspapers and other social media is immediately known to almost
everybody, be it the Russian secret service, the FBI, or Amazon and Google.

Nevertheless, you own the data that you produce and most of your listeners require
permission to track you. Some services track you but anonymously; for instance, car
drivers are traced and monitored by whatever map service they are using, not only
for placing advertisement nearest to their location, but also to learn about traffic inter-
ruptions and jams.

While location is not so much a concern for most people, some people feel less at ease
with the continual location tracking, be it when conducting secret visits for business
talks or personal affairs, or simply when robbing a family home. Switching off your
smartphone is a means of protecting your privacy; however, then Figure 4-1: Sample
you cannot use any of the features offered and since we all depend EU Energy Label

from our smartphones, you don’t do it easily.
phones, y - [GERcgs

More serious is that hackers use personal data such as credit card

numbers or passwords or both for stealing more tangible things
such as money. Or they block entry into your well-protected IoT-
controlled family home, asking you for ransom money before un- |rr—

locking, eventually. Similar things can easily happen to your car,
for instance by taking control over your Advanced Driving Assis-

tance System (ADAS). If ever the dream of Autonomous Driving
would come true, it could turn into a nightmare if the protection of

privacy were insufficient.

4-2 CONSUMER METRICS

The EU has set a good example in the European Union energy label; see the Directive
2010/30/EU (European Commission, 2010) and Figure 4-1. A graphical representation
is certainly better than presenting pure numbers. Thus, consumers can easily orient
themselves.

If you want to get consumers to do tests, then you must think of something about how
to present the results of such tests. James Watt had to explain how to compare the
output of steam engines with the power of draft horses. The “Horsepower” is a unit
of measurement of power - the rate at which work is done. It was later expanded to

- 66 -

include the output power of other types of piston engines, as well as turbines, electric
motors and other machinery.

The “Horsepower” unit of measurement became very popular, later, and still is, alt-
hough it is at odds to the metric system.

We propose a graphical representation that uses similar colors and resembles the fa-
miliar FMEA diagram used in automotive, using two dimensions; see Figure 4-2:

e Privacy Needs - the level of protection needed, the worthiness of protection;
e Privacy Protection - the means used to protect data against theft or sniff.

Both dimensions use a zero-to-five scale, indicating the need for privacy protection
and the means used to protect. While the privacy protection scale might be stable over
time, the adopted means of privacy protection clearly are not and need consensus for
acceptance. New protection schemes are easily fit into the zero-to-five scale.

The bubble marks where the system is placed in the grid in terms of privacy needs
and privacy protection. The privacy index is the distance from the upper right corner
- the worst case - to the bubble. Bubbles placed on the circles have the same index.
The grid is skewed for accommodating bubbles that represent maximum protection
even though they do not need it.

Figure 4-2: Proposal how to Assess Privacy Issues for Technical Systems

Privacy Needs Privacy Protection
Value = 0: No privacy. It's public. Value = 0: No protection. It's public.
Value = 1: Disclosure is inconvenient Value = 1: Weak protection
Value = 2: Disclosure can be harmful Value = 2: Strong protection
(Value = 3: Disclosure costs money Value = 3: Two-way protection
Value = 4: Disclosure makes guilty Value = 4: Blockchain protection
Value = 5: Disclosure sets life at peril Value = 5: Container-internal data
£0
/
<) 2.6

Privacy Index 2.6 =
Distance to bubble
at position <2,3>

0 1 2 34 5
=¥ Privacy Needs

More than one bubble can be placed on the grid. This is useful if parts of the systems
exhibit a different privacy behavior than others. The size of the bubble can then be
used to indicate which one is predominant. If so, it is recommended to label the dif-
ferent bubbles indicating for what they stand for.

- 67 -

Privacy protection can be excellent if no privacy is needed because data is public. Pub-
lic data does not need protection. It depends from the context. Container-protected
data remains within a virtual machine and is not exposed to the environment. In view
of the possibility of attacks to hardware - for instance Spectre and Meltdown - even
container-internal data in containers that share one kernel is not entirely safe (Graz
University of Technology, 2018). For consumer metrics, this limitation is acceptable.

Measuring privacy is basically the product of privacy value for the user times the de-
gree of public exposure. If one of them is near zero, there is no privacy, or no privacy
needed. Highest privacy protection is if there is data worth protecting, and protection
is effective.

The formula for the privacy index is given in (4-1) where Needs and Protection are the
distances in the grid from the worst-case point, and thus must be counted inverse for
the Needs. It is simply the Euclidian distance, somewhat distorted by allowing for the
green bottom row.

Much more elaborate schemes exist for characterizing privacy protection, distinguish-
ing up to seven dimensions of protection, and for safety risk assessments, see e.g.,
Tilghman (Tilghman, et al., 2014) for warfare applications. While such specialized
high-tech applications doubtless would benefit from autonomous real-time software
testing, seven dimensions of protection indices seems far away from a privacy protec-
tion index representation acceptable to the general public.

Consumer metrics do not replace sound technical assessments but help engineers
identify weak points - at least those that impact consumers” perception. For a sound
privacy protection and safety risk assessment, the traditional methods are still
presumed; they remain indispensable. Moreover, some of the consumers’ assessment
criteria cannot be answered without knowing the technical background. For instance,
container protection depends from the implementation details and is not replaceable
by consumer metrics.

We recommend limiting the number of bubbles shown to consumers. For instance, the
many bubbles in Figure 4-6 are not helpful. One, or two, plus the maximum risk
bubble are enough. The tools support limiting the number of bubbles. However, a
general recommendation cannot yet be given.

4-2.1 ACCEPTABILITY OF CONSUMER METRIC FOR SAFETY & PRIVACY

There is obviously a need to provide these representations also for handicapped, e.g.,
color-blind people; however, this is a standard task today and is not covered in this
paper. Black-and white versions are provided for the print version of this paper; colors
are used for the online version.

- 68 -

There are important obstacles to overcome for such consumer metrics. The first one is,
that suppliers of autonomous vehicles are not very eager of getting measured by any-
one, and if doing measurements, to keep results under disclosure. Another one is that
customer organizations, forget lawmakers, have not yet fully understood the impact
of digitalization and, of autonomous vehicles on the society.

Nevertheless, users of laptops and smartphones would already today welcome such
indicators after downloading new apps or an operating system update, or after new
attacks on their privacy have been publicly communicated. Whoever comes first pro-
posing such consumer metrics might gain a significant competitive advantage, forcing
the automotive industry to follow up.

An open question remains whether assessing privacy and safety on data movements
alone is good enough for all domains. While this choice has merits for cloud systems,
the Internet of Things (IoT) (Fehlmann & Kranich, 2017), and embedded software in
autonomous vehicles, it is unclear whether it also suffices for mobile applications, or
traditional web applications and stand-alone software.

4-2.2 THE PROPOSED MEASUREMENT PROCESS

More difficult obstacle is that the proposed measurement process uses models for
large and complex software systems that are far from widespread practice. While the
IFPUG model is popular for early cost estimation, and the COSMIC model is used for
estimation of memory load prediction in automotive (Soubra, et al., 2015), it is gener-
ally difficult to get an accurate model after completion of the software, or for any soft-
ware in operation.

For institutionalizing consumer metrics for software, the software deployment pro-
cess — aka DevOps toolchain - needs being enhanced to provide such models. Luckily,
at least for the ISO/IEC 19761 COSMIC model, automated model creation, suitable for
model-based testing as well as for consumer metrics, are in the making (Soubra, et al.,
2014). However, although net analyzers exist, for cloud service it is still unclear how
to automatically create valid software models. If automated measurement tools are
not yet available, models can still be created manually, as for predicting cost; however,
this is costly, and getting updated models for new releases are even more challenging.

4-2.3 PRIVACY PROTECTION

When is privacy protection good enough? Privacy protection can be excellent if no
privacy is needed because data is public. Public data does not need protection. It de-
pends from the context.

- 69 -

Privacy is basically the product of privacy needs for the user times the degree of public
exposure. If one of them is near zero, there is no privacy, or no privacy needed. High-
est privacy protection is if there is data worth protecting, and protection is effective.

The sample ADAS service we use to demonstrate the principlesis a simple Car Driving
Function starting a visual recognition system (Camera driven by a Sensor Bus) and a
Neural Network Engine interpreting images. A Lidar - a device that measures distances
with a pulsed laser light - delivers distances and allows the neural network engine to
assess the safety risks that originate from the object on the image analyzed. Sequences
of images serve for determining the objects movements and direction.

The Car Driving Function asks the Recommender for advice and Acts in accordance with
the selected route that the navigation system stored in the Remember Routes persistent
database. This is a simplified ADAS for instructional purpose only; it possibly can
power a model car. But it is a model car equipped with camera, Lidar, and sensors for
slippery roads. And it uses a Navigator service to find a route. However, we out-
sourced both the recommender and the Visual Recognition System (VRS) which do most
of the work. Both services are likely implemented as neural network engines. Never-
theless, for a real-world ADAS, there is a lack of redundancy.

Figure 4-3: Look & Act in ADAS

Car Driving
Functon

Car Steering

Visual Recognition Sensor Bus Camera App Lidar -
Devices

Look Car User Recommender Remember Routes

I I I I I I

I I

i | l #1.// Trigger Sensor Q | i | i

i | | | <'>2.// Start Cameras Q | | I

I I I I Q‘MM’ I I I

— . . . | <'>4.// Request Distance | Q | |

A J I I I | . 5./ Lidar Distance o . .
A:d I I I R 6.// Analysis Reques1<'> | I I

| |

<&
7./l Analysis Resu\l;
2% 2 4 | I

1 1 1 1 1 1 8./ Chosen Route

~ 91 Ask for Actons «
& &>

|' 10,/ Recommended Ag’t)é)

|

i i i i . i .

i I I I I | I

| I &*»”Aﬂ ! ! ! ! <'> I

& I 12 g i i i i I I

i | | 1 1 1 1 | 1
Privacy is best measured by looking at the data movements between objects, under
the assumption that the application objects do no other data movements than those
listed in the model. Compliance to the ISO/IEC standard 14143 ensures exactly this
(ISO/IEC 14143-1:2007, 2007). Then privacy protection is measurable by the protection

level of the data movements between those objects.

- 70 -

Figure 4-4. Privacy Needs vs. Privacy Protection for Look & Act

S ¢
8 Minimum Privacy
& @ Low Privacy Index
) » Medium Privacy Index
21 o
= @ High Privacy Index
@ Good Privacy Index

2

3

DD 41

5

0 1 2 3 4 5

Privacy Needs

These data movements can be open to the public, encrypted, or secured by two-way
authentication scheme, by blockchain, or be transported on physically isolated and
protected cables. Data groups moved within a container, or processor, are among the
latter. Data protection within containers cannot be taken for granted but can be as-
sured with reasonable effort. For the technology behind such protection, see e.g.,
Staimer (Staimer, 2015).

Protection methods in turn are implementation dependent - and the labels chosen
arbitrary. Protection technology will change, and encryption might be appropriate in
many cases to protect data movements when transporting data through Internet, but
there exist many industrial bus systems that require different categories with different
labels. Also, encryption is not the only way protecting data against hackers. Encryp-
tion is best against man-in-the-middle attacks, but many more attack vectors exist and
many other effective protection schemas. Again, only the level matters.

Table 4-5: Privacy Assessment Categories

Privacy Needs Privacy Protection

Value = 0: No privacy. It's public. Value = 0: No protection. It's public.
Value = 1: Disclosure is inconvenient Value=1: Weak encryption

Value = 2: Disclosure can be harmful Value=2: Strong encryption

Value = 3: Disclosure costs money Value=3: Two-way encryption
Value = 4: Disclosure makes guilty Value = 4: Blockchain protected
Value = 5: Disclosure puts life at peril Value = 5: Container-internal data

These categories can be used in a table for recording the assessment.

- 71 -

The Table 4-5 above shows five categories of privacy needs on the left and five degrees
of privacy protection methods on the right. Privacy needs can be directly assigned to
data groups in COSMIG; this is a model property. The labels chosen are unimportant,
the level matters.

For a graphical representation, we propose a square representation. This also explains
why we consider two dimensions only; for consumer metrics, this is already
challenging.

Distance of the bubbles in the grid (Figure 4-4) is measured from the starting point
(0,0). The Privacy Index is in range 0 - 5. Five (5) is the index for maximum privacy;
Zero (0) privacy means public data; no privacy granted, or no privacy needed.

The Privacy Index should provide equal length for equal protection; thus, Euclidean
distance yields the following, square root of sum of squares, formula:

2 2
Privacy Index = Max (\[((5 — Needs) * 5/5) + (Protection * 6/5) ,5> (4-1)

The Needs coefficient must be inversed by 5 because the bubble distances are calcu-
lated from the upper right edge of the graph area. The maximum function in equation
(4-1) ensures that the index is bounded by a maximum of five. The size of the bubbles

indicated how many data movements yield that index. The minimum privacy - here
0 - is highlighted

Stretching the Protection by 6/ 5 has the effect that if no privacy is required, the pri-

vacy index remains high (upper left square in Figure 4-4).

The size of the bubbles represents the number of data movements that lie within this
privacy index range. The graphical representation in Figure 4-4 is intuitive because
distance from the upper right square conforms to the level of privacy, which is best
at the down-right square. It has some resemblance to the FMEA Criticality Matrix of
the German Verband der Automobilindustrie (VDA) (VDA, 2008, p. 64) and thus is
also acceptable to automotive security engineers.

4-2.4 SAFETY RISK

Safety risks are less difficult to represent. According classical risk management theory
(ISO 31000:2018, 2018), risks can be assessed by

e Identifying the risk catalogue
e (lassify impact, usually on a scale 0 - 5

e Assigning the probability of risk incurrence

- 72 -

For identifying safety risks in road vehicles, the series of international standards ISO
26262, see (ISO 26262-1, 2011), provide guidance. recently, the new SOTIF! version of
the ISO/IEC 26262 has been released. These standards can be used for assessing risks
of critical parts; not only mechanical, but also data movements moving critical data
groups.

Since we avoid fake assessment precision, we use the same scale 0...5 for probability
as well, thus only allowing for 0%, 20%, 40% risk probability. Moreover, probability
is something difficult to find in software; we use frequency instead, namely the fre-
quency of executing a certain data movement. Frequency is an implementation char-
acteristic and cannot be assessed uniquely in the model. The risk of Safety Impact on
the other hand depends from the content of the data group and is a model property,
like the privacy needs in privacy protection assessment.

The safety risk graphical representation for consumers looks as follows:

Figure 4-6. Safety Risk Exposure for Look & Act

5
z Maximum Safety Risk
3 @ Major Safety Risk
& High Safety Risk
o 4 2% =
g ® > @ Medium Safety Risk
E @ Low Safety Risk

0 1 2 3 4 5
Incurrence Frequency

The Safety Index is calculated as follows:

Safety Index =

Min (\/((5 — Probability) * 5/5)2 + ((5 — Impact) * 6/5)2) 5> (4-2)

For the graphical representation, we propose the formula (4-2), which looks similar to

(4-1), also using Euclidian length, for the positioning of the bubbles. Because distance

1 SOTIF = Safety of the Intended Functionality

- 73 -

in the risk grid is measured starting from the (5,5)-Point, both grid indices will be

mirrored at the grid size value 5, and colors should remain the same for the consumer.

Table 4-7: Safety Assessment Categories

Incurrence Frequency Safety Impact

Value =0 (0%): No risk. It’s safe. Value = 0: None
Value =1 (20%): Seldom Value = 1: Low
Value =2 (40%): Sometimes Value = 2: Little
Value =3 (60%): Medium Value = 3: Medium
Value =4 (80%): Often Value = 4: Quite
Value =5 (100%): Very frequent Value = 5: High

The safety risk graph yields different information, showing that the various data
groups in Look & Act move data of unequal impact on safety. The most impact (Maxi-
mum Risk Index 2.8) originates from data movement 10) Analysis Result; by lack of re-
dundancy - or lack of check by another “intelligent” module - its frequency is 1: Sel-
dom and its impact 4: Quite. Reducing impact to 2: Little could be achieved with adding
a cross-check against serious impact, or using two independent Recommenders that
agree on actions.

4-2.5 PERFORMING THE ASSESSMENTS FOR PRIVACY & SAFETY

The assessment is part of the COSMIC model and can be recorded directly in the table
for data movements. Privacy Needs are represented by the effects of privacy disclosure.

Figure 4-8: Assessment of Look & Act Data Movements

Data Movements

Private Data
Disclosure
Privacy
Protection
movement

Data Movement Sub-Process Description

E002
X001
E001
W001
X015
E015
W002
R001
X006
E003
R005
X003
E004
X004
X005

Trigger Sensor
Start Cameras
Supply Images
Save Images
Request Distance
Lidar Distance
Lidar Captures
Collect Images
Analysis Request
Analysis Result
Chosen Route
Ask for Actions
Recommended Action
Act

Inform

Tell the sensor who is ready for capturing data

|Ifnecessary, activate the sensor

Supply sensor data, e.g., images

| Keep mages for further references

‘Request distance measurement against a selected object
‘Returns distance against selected object

'Save Lidar captures for future references

' Collectimages and Lidar captures pertaining to some selecte
‘Requestanalysis by Visual Recogniton System

|Result of analysis

| The actual route chosen for driving

1 Trigger the Recommender, supplying sensor information
‘Based on ifs intelligence, recommend action

‘Execute recommended action

‘Inform the Car User

| Add Row [l s Row I Del Row il Vaidze il Exract INEEVT

- 74 -

5: Internal
5: Internal
5: Internal

5 Internal

5 Internal

Privacy Index:
Minimum Privacy:

4: Blockchain
4: Blockchain
4: Blockchain |
4: Blockchain
4: Blockchain |

4: Blockchain

4: Blockchain
4: Blockchain
4: Blockchain
4: Blockchain

1: Low
1: Low
2: Litle
2: Litle
4: Quite
4: Quite
4: Quite
2: Litle
2: Litle
4: Quite
1: Low
4:Quie -
3: Medium
3: Medium
3: Medium

Safety Index:
Maximum Risk:

Figure 4-4 and Figure 4-6 have enough similarities to help consumers understanding
the meaning of both indices, such that they can look at both representations together
and get a correct impression.

The question is how the Privacy Index (4-1) and the Safety Index (4-2) should combine
for all data movements assessed. We prefer the Median against Average because the
median is less subject to the effect of outliers. However, one outlier is always import,
namely minimum privacy and maximum risk. They mark the weakest points in the
system, and consequently the likeliest violation locations. Nevertheless, outliers are
bad representative for the whole system.

4-3 ART FOR ADAS

The full ADAS application for our model car consists of four more parts:

e Find Route, e.g. by help of a navigation system, or according car user’s preference;
e Locate, compare current location with actual route;

e Check Route, used to compare different possible routes in terms of traffic,
weather, any other obstacles or fitting car user’s preferences;

e Amend Route, after conditions changed under way it can become necessary to
propose another route.

4-3.1 ADAS FUNCTIONALITY

Finding a route is usually based on some Navigator service (see section 2-2.7) that can
propose a route between current location and some known destinations.

Figure 4-9: Find Route using Navigator and GPS Services

<)
Navigation Car User Recommender Routing Remember Routes Navigator GPS Service

| | | | | |
2 1./ Enter Destination - . - - -

>¢ T > I I I
- - ~) 2./l Get Location 2
I I s 1

- 2 4
i | <'>3.l/ Request Route | Q |
i I <->: l 4.// Recommend Route ’ |
i i o/ Record Rove i !
i <> 6.// Set Route <> | | |

&> ; 7./l Propose Route N I [[

Thus, it is necessary to keep the car user informed in case no route is selected.

- 75 -

Location service is used to show the user where the car is driving:
Figure 4-10: Location using GPS

joo

Locate /' CarUser Recommender C:Lr?éjzrg Routing i | GPS Service
] I I I ! :
: : =Y: | | 1./l Update Location ?
i | ¢: 2./ (iompare with Actual Route ’ |
i Q 3.// Update Locaﬁon<'> | | |
I (4l Recabuie Roue »S : :
i | : 5 Adapt Route & I
. . . 6.// Inform < . .

< : : I I
Checking the route involves rejecting a proposed route and selecting another one - or
none if none is left. If none is left, the ADAS eventually cannot continue and manual
driving is necessary. Because the Look & Act part requires knowing where to go, the
ADAS is significantly less useful without a route selected. The complete ADAS is
shown in Figure 4-13; results of joining Figure 4-3 with Figure 4-9, Figure 4-10, Figure
4-11, and Figure 4-12.

The car driver may want to select another route, or the Navigator offers a selection of
possible routes:

Figure 4-11: Approve or Modify Route

Check - Car User Routing I Approve Route

| | | |
2 1.// Check Route

9 i i >
| I | 2./l Get Route Q
<'>4 | | 3.1/ Show Route ’
;41/ Approve Route l l > <>
3 Modiy Roe : : N

: : :' 6./ Change Route |'

: Tl Changed Route :

A Bl Infrm | |

| | | |
If a problem occurs with the selected route while driving, it can become necessary to
amend the chosen route. We assume the Navigator service to be capable of alerting in
case of any change on the chosen route - which includes that the Navigator knows
about the chosen route, eventually violating privacy of location.

- 76 -

The car driver is still entitled to choose yet another route, using Figure 4-11. The Alert
proposes another route or amend at least the driving time prediction.

Figure 4-12: Alert on Chosen Route

2)
Alert Car User Routing Remember Routes Navigator

| | | |
. 1.// Routing Alert 2

I % T 4
i . 2./l Recall Route ' |
: ~ ° 3./ Recalculate Route 4
| (% | 4

. 4.J/ Change Route R :
| Q;;’O |

5| Propose Route Change - . .
Y frop 2 I I

The full data movement map in Figure 4-13 is the concatenation of these five parts.

4-3.2 TESTING THE ADAS

Now, in order to test all these services with regard to the assessed privacy protection
and presumed safety risk exposure, one has to provide an Automated Real-time Testing
(ART) application providing the necessary tests, such as verifying the encryption level
per data movement as stipulated, and data group content according the assumption
done in Figure 4-8. Note that the Navigator app provides not only routes but also driv-
ing conditions; part of the data group moved by the data movement Routing Alert.

This piece of software first prepares the setting - collecting car specifics, test cases,
extending them - then executes testing first the neural network engine, then the rec-
ommender, finally the Lidar and the camera.

The testing software resides local, on the car, but the test data originate from a repos-
itory called Testing Cloud common to all cars undergoing the same tests. Test cases
originate there, and the Testing Al engine also works on this cloud service. The ADAS
of the car could upload images taken for adding those to the testing cloud; however,
this is neither reflected in the part of the ADAS shown before, nor in Figure 4-14. Only
test results are recorded in the testing cloud, upon approval by the car user, the owner
of the test results.

On the following page, Figure 4-14 shows the data movement map for Automated Real-
time Testing (ART) for some Model of an Advanced Driving Assistant System (ADAS).

- 77 -

Figure 4-13: The Complete ADAS Model

i . S
Look ’- Car User Recommender ‘ iy Drllvmg Visual Recognition | Sensor Bus Camera App Lidar ’-M"Q | Routing emember Route: ‘ Approve Route Navigator HPS Service
Function J Devices

I 1 I 1 I 1 1 1 I I I 1 I

: N N 1.1/ Trigger Sensor A . . - -

T T T ¢ s 1 1 1 1 1 1 1 1

N N - N 2 2./l Start Cameras X N - - - - - .

1 1 1 1 1 1 1 1 1 1 1

. 3.4/ Supply Images =

1 1 1 1 N 2 d 1 1 1 1 1 1 1

~= N N N N A 4./l Request Distance * A N N N N N N

() 1 1 1 1 D 1 1 1 1 1 1

— N N N N A 5./ Lidar Distance 2 N N N N N N

- 1 1 1 1 < T ® 1 1 1 1 1 1

N N N " 6./ Analysis Request . N - - - - N N -

1 1 1 < 1 1 1 1 1 1 1 1

N N A 7./l Analysis Result 2 N N N - - - N -

t t 1 1 1 1 1 1 1 1

| | i N . N . * 8//Chosen Roue | : . .

1 1 t t t t t t —< 1 1 1

A . 9./ Ask for Actons . N N - -

1 Qe 1 1 1 1 1 1 1 1 1 1

| 'I 10/ R ded Agion . -

1 ecommended Agion, 1 1 1 1 1 1 1 1 1 I

= | | At A X

L} L} <& t t t t L} L} L} L} L}

Navigaton : ; 124/ Inorm 1 1 | i i I I i i i

¢13.// Enter Desfinaon 1 N N N N & 1 1 1 1

1 1 1 1 1 1 1 1 & 1 1 1 14.J/ Get Location .

i i i i i i i i ‘I 15.// Request Route ; ; 55 i

1 1 1 1 1 1 1 1 ¢ L 1_16.// Recommend Rou'el 1

/,.7. 1 1 1 1 1 1 1 1 | 17.// Record Route é 1 1 1

i 1 ¢ 1 1 1 1 [l [l 18.// Set Roubé 1 1 1 1

Aert . 1 B B B B B B

é 1 1 1 1 1 1 1 19.// Propose Route, I 1 1 1 1

1 1 1 1 1 1 1 1 A 1 1 20/ Rouing Alertg 1

1 1 1 1 1 1 1 1 A 21.J/ Recall Route . 1 1 1

,"—. 1 1 1 1 1 1 1 1 é 1 | _22.J Recalculate Route | 1

— 1 1 1 1 1 1 1 1 | 23/ Change Route 6 1 1 1

Locale & 1 1 1 1 1 1 240 Propose R Charge 4 1 1 1 1

1 1 e 1 1 1 1 1 1 1 1 | 25/ Update Location l

| 1 é 1 1 1 1 1 26.// Gompare with Actual Route. 1 1 1

I I Update Locaton | I I 1 1 1 1 1 | | |

I A28/ Recalculate Route | | 1 1 1 1 \J) | | | |

1 1 1 1 1 1 1 1 I 29.// Adapt Route é 1 1 1

Check & 1 1 1 1 1 1 1 | 1 1 1 1

30.// Inform

1 31/ Check Route 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 32,1 Get Roue & ! !

1 1 1 1 1 1 1 1 1 I susovroe) ! !

II 34./ Approve Route ! | | ! 1 1 1 1 I 1 I I

II 35/ Modly Rove ! ! ! | | 1 1 1 1 1 ! !

! ! ! ! ! ! ! ! ! ! 36.// Ccnirm‘ ! !

! i ! ! ! ! ! ! ! | st e, ! !

! I I I I I I I :I 38./ Changed Route 'I I I I

! ! ! ! ! ! ! ! 39./ Inform : ! ! ! !

1 1 1 1 1 1 1 1 1 1 1 1 1

Assistant System (ADAS)

riving

(ART) for some Model of an Advanced D

ing

ime Test

Automated Real-t

Figure 4-14

ﬁl- User /

Testing Cloud |

Test Updater J

Test Cases

J

,L Test Timer /

Sensor Test J

Lidar

Camera App |

)

Visual Recognitor
Test

Visual Recogniion

Recommender Tesj

Recommender

Autonomous
Tesi
I

Car Specifics
I

Expand

2.// Add Test Case 1

2 3./ Collect Car Specifics *

Il Collect Car Specifics *

T
2 5./l Collect Car Specifics *

%6,/ Record CarSpedﬁcs+

7./l Get Test Cases +

¢

¢

= 8./ Get Car Specifics

10.// Scan for Test Cas

A 9./ Extend Test

1
e

11.// Upload Test Ca

R R R R R R R R R R
5
<
H
e @ m O = - -
K
kg 3
= =
Y]
£l E]
8|]
i i}
S S
€]
O @ | e el el e
3
8
3
2
s %
g 2
| o
s ¢
S
d
c Qo e — . -
g g
3 2
8 8
= =
s s
> &
I =
Ed &
bl
5§
g
L4 ']
22
8l &
3| s
2 8
- O P O - == -
8
3
fud
3 =
-
S
==
2
£
3
S S
k3
2
o
8
3
E
3 3
— W -
‘o '8
£ &

3
= §
3 8
3 o
]
2l 3

3|
nw o
8 8
&l 8

¢

424.1/ Yield Result

Sensor Test

Y

27.J/ Start Tesfing ?

3
©
2

3

3

8

=
[}
S
&

s
g
¢

8
©
B £
S8
= &
gl =
& =

2|
£
=]
&)

31.// Load Tests

2 32.// Yield Result

33.// Store Result

3
8
3§
o
2
2
3
o
3
3
o
g
— O
3
g
3
o
2
2
3
o
3
3
£
2 .
¥
4

= O

36.// Collect Res onses+

' 37.// Record Resgon§gs?

38.// Display Test Results

39.J/ Acknowledge Test Results

1
1
42.// Upload Test Re: %}

41.// Scan forTest Resul

40.// Record Test Res I?

- 79 -

Figure 4-14 consists of test preparation, execution of tests for the Neural Network, the
Recommender, and the Visual Recognition Systems including the Lidar, plus a test result
recording and test result presentation for the tester testing the ADAS. It represents an
application by itself, with user stories and the need for testing. However, since the
main concern is getting the right kind of test cases that can be executed automatically,
we keep the focus on testing ADAS (Figure 4-13).

4-3.3 THE CAR USERS" NEEDS

Using the AHP, we identify the following major values for users of the ADAS:
Figure 4-15: Car Users” Needs

AHP Priorities
Car User Needs Topics | |Attributes Weight Profile |

Y.a Drive Fast y1 Agile Driving Arrive safe Do notblock other traffic ~ Have fun 16% || 036 |

y2 Smooth Driving Drive predictibly Do not break unnecessarily 15% 03 |NR

y3 Arive in Time Arrive predictibly Avoid obstacles 2% || 05 | R
Y.b Drive Safe y4 Avoid Incidences Drive foresightful Know what's ahead Knowmyway ||| 27% || 058 |

y5 No Surprises Communicate Never surprise anybody Give signs 19% 0.42 J

|

The AHP process is used to analyze these needs and produce a profile for its relative
importance. The profile for the car users’ needs is based on the following pairwise
comparison, shown in Figure 4-16. This is again a basic AHP:

Figure 4-16: AHP for ADAS

y4 Avoid Incidences

y1 Agile Driving
y2 Smooth Driving
y3 Armive in Time
y5 No Surprises

g e
AHP Priorities = 5
Car User Needs c &
y1 Agile Driving 4 1036 W
y2 Smooth Driving 5 (032 W
y3 Amive in Time 2 |05
y4 Avoid Incidences 1 1058
y5 No Surprises 31042 W

The needs of human drivers in today’s traffic might be individually quite different;
however, in view of an ADAS, characteristics linked to safety and avoidance of dis-
turbance are dominant. You use an ADAS because you need something that helps
through dense urban traffic, avoids jams and incidences, and makes driving experi-

ence smoother.

An ADAS is less suited for people who drive cars just for fun. They eventually turn it
off. Their needs are not investigated by that AHP; an AHP for such people likely
would produce a different car users’ needs profile.

- 80 -

The data movements are those of the joint ADAS data movement map Figure 4-13.

The user stories for ADAS are summarized in Table 4-17:

Table 4-17: ADAS User Stories

Label Asa .. Twantto .. Such that ... So that ...
Populated Car let my car reduce speed my car can my car is not causing
Area User safely stop delays by an incidence
Obstacle Car let my car avoid obstacles ~ my car can my car is not stopping
User drive around unnecessarily

Know my Car let my car take appropriate my car avoids I know when I'll arrive
Way User routes blocked routes

and traffic jams
Amend Car optimize my route when no incidence I still can predict when
my Way User needed blocks my way I'll arrive
Check my Car approve or disapprove the Icantakemy I feel in control
Way User car's choice for routing preferred route
Able to Car have my car break soon it can avoid It recognizes obstacles
Stop User enough dangerous ahead

situations
Check my Car approve or disapprove the Icantakemy I feel in control
Way User car's choice for routing preferred route

The user stories remain on a high epic level without specifying the details how the
ADAS should behave in specific cases. With these user stories, the functional effec-
tiveness matrix yields a satisfying rationale for the user stories (Figure 4-18):

Figure 4-18: Functional Effectiveness for ADAS

Car User Needs User Stories
Deployment Combinator ©
© > > =
2 § g g g o nE.
=l s > = 2| 5
ele @ Zz E E 9|9
a | s S T < 2 2
5/83 8 3 & 8 2%
S|& & &£ = & 2|=<
~— N [a2) < [Ye) ©
o o o o o o
Car User Needs S &8 .8 8 35 &
y1 Agile Driving 0361 6 3 3 5 [0.34 -
y2 Smooth Driving 0821 4 1 3 5 5 0.34 a
¥3 , Arrrlverln'l'?me” - 050 7 | 3, _[, 7 1| (), 0.52-‘
y4 Avoid Incidences 058| 6 4 3 6 6 8058 R
y5 No Surprises 0.42 33 8 9 0.41 -
Solution Profile for User Stories: | 0.46 1 0.30 0.33 0.54 0.33 0.43 |Convergence Gap
0.04@
123 Total Effort Points
0.10 Convergence Range
0.20 Convergence Limit

- 81 -

It means that the data movement map implements the user stories completely and

without any wrong focus.

As before, the functional effectiveness transfer function maps the user stories onto the

car users’ needs by counting how many data movements contribute to the user stories.

This yields the cause-effect relation between functionality and requirements; also, it

assigns data movements to at least one user story.

4-3.4 THE TEST STORIES

The test stories tell more about the details how to implement ADAS functionality; see
the following Table 4-19:

10)
11)

1)
2
3
49
5
6)
7)
8
9
10)
11)

Table 4-19: Test Cases for ADAS

Test Story Case1 Test Data Expected Response Case 2 Test Data Expected Response
A People Around ‘A.1 People around A1.1 {Playball Populated Area} Get ready to break A1.2 {Person; Moving; Towards street} Stop before collsion!
B Obstacle B.1 Obstacle ahead B.1.1 {Obstacl ahead} Stop before collsion! B.1.2 {Obstacle; At roadside} Drive around
C Knowmyway C.1 Getroute C.1.1 {Valid destination} Select best route C.1.2 {Invalid destination} Select route home
(.2 Change route C.21 {Alert: Atternative available} Propose new route C.2.2 {Alert; No alternative available} No better route available
C.3 Update position C.3.1 {Current position} Recalcuate arrival time C.3.2 {Route; Change} Recalcuate arrival time
D Chooseway D.1 Approval D11 {Route; Approval} Confirm this route D.1.2 {Route; Reject Propose another one
E Arrival E.1 Arival time E11 {} Show expected arrival time E1.2 {Newconditions # Route condltions} ~ Change expected arrival time
E.2 Leamings E21 {Route; Fast} Prefer them E22 {Route; Slow} Avoid them
F Stop F.1 Keep under control | [F.1.1 {} Car can stop within sensor's reach |F.1.2 {Route condltions = bad} Lower speed
F.2 Brake action F.2.1 {Dry road condition} Short braking distance F.2.2 {Route conditions = wet} Medium braking distance
F.3 Avoid stops F.3.1 {Under all conditions} Listen to actual road condition F.3.2 {Route; Traffic jam} Try another route
Case3 Test Data Expected Response | Case4 Test Data Expected Response | Case 5 Test Data Expected Response
A.1.3 {Person; Looking; At traffic} Lower speed A1.4 {Person; Motionless} Go ahead
B1.3 {Obstacle; Light} Drive around B.1.4 {Route; Obstacle} Change route
C.1.3 {Location = Home} "Destination reached" |C.1.4 {Route} Show risks C.1.5 {Location} Show posttion
C.23 {Route; Modification} Show risks
€33 {Null GPS} Continue current route |C.3.4 {Route; Changed; Approved} ~ Change currentroute |C.3.5 {Location} Show position
D13 {} Choose proposed route |D.1.4 {Route; No alternatives} Choose proposed route
E1.3 {Changed route} New arrival time E1.4 {Route; New alert} New arrival time
E23 {Route conditions} Adapt speed
F.1.3 {Route weather = badl} Reduce speed F.1.4 {Route; Rain} Reduce speed
F.2.3 {Slippery road) Long braking distance |F.24 {Speed = low} Short braking distance |F.2.5 {Speed = medium} Medium braking distance
F.3.3 {Redlight ahead} Lower speed F.34 {Route; modification} Show risks

etc.

Read these test cases in Table 4-19 with an arrow — between test data and expected

response. There are three more test cases for test story 10) F.2: Brake action:

F.2.6: {Speed = high} — Long braking distance

F.2.7: {Must brake; curve} — Normal braking distance

F.2.8: {Must brake; Descent} — Normal braking distance

- 82 -

Thus, for test story 10) F.2: Brake action we have a maximum of eight test cases, where
the other test stories only have five test cases or less, according Table 4-19.

This yields the following test coverage:

Figure 4-20: Initial Test Coverage

Test Coverage Test Stories
Deployment Combinator @ °
(<)) — >
o [o
Sle B 5 g g
S5 ¢ 2 = o S ¢ L8
3|8 5 2 8 8 _ B o & 2 Bl
¢ | & @ = ® T = 2 8 w| @9
12 8 8 2 £ 8 % E a ¢ B8
@ s > = 4 S =
§18 883555588838 2|3
- -l = - N @
D D R IR Y I
User Stories =S 8 65 T b 6l < B 5 2
Q001 Populated Area 046|195 22 9 7 119 10 8 12 141042 -
~ 6 ~ ~ ~ 1 .
Q002 Obstacle 030110 1513 5 15 7 11 9 13 16 10|036
Q003 Know my Way 0% 2 5 17 6 1512 9 6 7 9 9|z W
Q004 Amend my Way 05424 19 141921 9 25 9 17 15 21jos
Q005 Check my Wiy 06|16 13 6 5 7 23 12 8 20|03 =
Q006 Able o Stop 043(26 25 5 2 10 4 6 8 10 8 13[os ™
Ideal Profile for Test Stories: | 0.44 0.41 0.25 0.20 0.32 0.24 0.32 0.19 0.25 0.20 0.36 |Convergence Gap

768 Total Test Size

0.15 Convergence Range

0.20 Convergence Limit

011 @

With a convergence gap of 0.11 we are within convergence range - set a bit wider than

in usual transfer functions.

4-3.5 EXTENDING TEST CASES

Extending test cases within the same test stories yields more reliable results, and a
higher test intensity; see Figure 4-23. In this example, extension works in two stages:

e Adding test cases that refer to bad weather forecast. If the Navigator reports rain

on the route, driving speed and arrival forecast must be adapted;

e Even more test cases are added after the Navigator reports stormy weather caus-

ing eventually a change to the chosen route.

ART detects these new test cases because the data group received from the Navigator
contains a weather forecast, as part of the route description; see Figure 4-12. New test

cases are created starting from the existing ones, by variation of test data, considering
other all data received from data movements. Obviously, weather forecast changes
the driving time prediction. Among the many test cases that can be created, ART keeps

the convergence gap within limits, using this as selection process.

- 83 -

The following matrices (Figure 4-21 & Figure 4-22) show the results after each of the
two steps outlined above:

Figure 4-21: After Adding Bad Weather Forecast Test Cases

Test Coverage Test Stories
Deployment Combinator ® ®
g E g
S|le B 5 5 s
2| e @ o = o o
o 5 < s | B © pus S o | ©
32 & o €18 _ E o« 8 % 8|3
o | © @ = > w = > < S = o
~ @ =] 3 s @ s Z £ 5 © 2] >
- | a S e c = o © c a o T |2
S|l8 2 5 &£ 82 8 £ § § % 2|5
Ol O © © o < < 8 ¥ o Z|<
N ™
, prRN I IDE D) S D DS VT I I Il T T
User Stories o 8 5 5 6 6 & &8 &5 2 <
Q001 Populated Area 046139319 7 119 10 8 12 14 |046 :
Q002 Obsiacke 02| 1618 13 5 |15 7 11| 9 1316 10[oss ™
Q003 Koow my Way 0% {617 61512 96 7 9 9ozt W
Q004 Amend my Way 054138 26 14 19 21 9 25 9 1% 15 21056 -
Q005 Check my Way 03312419 6 H 7 23 12 8 2()|0.35 :I
Q006 Able 0 Stop 0434032 5 2 10 4 6|8 10 8 13oss
Ideal Profile for Test Stories: | 0.59 1 0.47 0.20 0.16 0.26 0.20 0.26 0.16 0.21 0.16 0.30|Convergence Gap
0.13@
859 Total Test Size
0.15 Convergence Range
0.20 Convergence Limit | ™ | | | 1T 1™ |

Figure 4-22: After Changing Routing due to Stormy Weather

Test Coverage Test Stories
Deployment Combinator ® ®
j<> — >
g S &
13 % ERE o 5 & 2|2
2|8 2 2 2 8 5 E g 8 % &%
Fle 8 3 & & 3 s £ 2 o =|3
- (I] = c [+] <4 Y c o | 2 2| =
S|lg &8 vz & 82 8 E § & 8 2|5
(U] o o o (&) o) < << — X m << <
N o
, prRN I IDEE D) S I DS NI I I Il T T
User Stories = 8§ls 5§ 6 6 &8 5 2 <
Q001 Populated Area 046139 31 16 11 11'' 9 10 8 12 16044 5
Q002 Obsack 03| 16 1818 9 15 7 11/ 9 13120 11[os &
Q003 Knowmy Way 0%s| £ 6 23101512 9 6 7 13 11[o2e N
Q004 Amend my Way 05438 26 2529 21 9 25 9 17 25 220
Q005 Check my Way 033[24 19 14 5 7 123 12 S 28035 :I
Q006 Able fo Sop 043(40 32 6 2 10 4 6 8 10 10 14[oe0 N
Ideal Profile for Test Stories: | 0.54 0.43 0.31 0.23 0.25 0.19 0.24 0.15 0.20 0.22 0.32|Convergence Gap
011 @
954 Total Test Size
0.15 Convergence Range
0.20 Convergence Limit ‘ ‘ | | | | ‘

Total test size is growing, and convergence gap is stable, or shrinking. The additional
test cases improve reliability and accuracy. ART finds such extensions by scanning
data groups of the data movements involved. Since the chosen route is not fix but
changes on receiving an Alert from the Navigator, the VRS learns that conditions such
as rainy and stormy weather can exist.

ART detects these new test cases because the data group received from the Navigator
contains a weather forecast, as part of the route description. New test cases are created
starting from the existing ones, by variation of test data, considering other all data
received from data movements. Obviously, weather forecast changes the driving time
prediction. Among the many test cases that can be created, ART keeps the conver-
gence gap within limits, using this as selection process. Total test size is growing, and
convergence gap is stable, or shrinking.

4-3.6 HOW CAME THE WEATHER FORECAST INTO ART?

The additional test cases improve reliability and accuracy. ART finds such extensions
by scanning data groups of the data movements involved. Since the chosen route is
not fix but changes on receiving an Alert from the Navigator (Figure 4-12), ART learns
that conditions such as rainy and stormy weather can exist and generates suitable test
cases.

The data group moved by the data movement Routing Alert from Navigator application
to the Routing functional process contains all sort of alerts, including traffic jams and
bad weather conditions. The ART mechanism extending test cases considers weather
as a reason to change driving. Thus, when replacing other reasons for choosing a
route, the Chosen Route data movement in Look & Act (Figure 4-3) tells the Car Driving
Function about the changed weather conditions. This attribute is now selectable by
ART for generating new test cases, also for the Visual Recognition System (VRS). Thus,
it will be added as another test case for VRS, sooner or later. And because the new test
case fits well with the car users’ needs, rather sooner than later.

ART thus must find images showing people, or other vehicles, in the rain, or in a
storm, to produce the same results in the test stories A.1: People around; B.1: Obstacle
ahead; C.1: Get route; and C.2: Change route.

Weather is one thing that can be considered. But there is much more before autono-
mous cars can hit the road. For instance, a tendency, or the need in certain social en-
vironments, to use bikes for transporting bags, affects safety and must impact behav-
ior of the ADAS. ART tests such behavioral change, dynamically, adapting to change.

-85 -

4-3.7 SUMMARY VIEW

The summary view on the original and the two extended test suites reveals, as ex-
pected, that test size and intensity increased.

Figure 4-23: Initial Test Suite, and two Extensions

Total CFP:|39 Test Size in CFP:| 768
Test Intensity:| 19.7
Defects Found in Total:| O Defect Density:| 0.0%

Defects Pending for Removal:| 0 | Data Movements Covered: 100%

Total CFP: 39 Test Size in CFP:| 859
Test Intensity:| 22.0
Defects Found in Total:| O Defect Density:| 0.0%

Defects Pending for Removal:| 0 | Data Movements Covered: 100%

Total CFP:| 39 Test Size in CFP:| 954
Test Intensity:| 24.5
Defects Found in Total:| O Defect Density:| 0.0%

Defects Pending for Removal:| 0 | Data Movements Covered: 100%

Functional size remained stable: CFP 39, while increasing test size also increased test
intensity. Contrary to the IoT case, the functional size of the model ADAS remains the
same.

Thus, improving testing is always possible by simply extending the test cases by sim-
ilar ones, provided test coverage keeps the convergence gap narrow enough. ART
provides value without increasing functional size. In this example, it was enough to
trace back data movements that could contribute data to tests. Thus, the data move-
ment map is paramount for automatic test case generation.

For testers, it is enough to provide an initial test suite (Table 4-19: Test Cases for ADAS).
The rest is left to automatisms. You can increase test intensity as much as you like.
More tests certainly increase opportunities for detecting defects that can be removed.
Thanks to the test coverage transfer function and its convergence gap, those additional
tests remain relevant. Moreover, since tests are generated randomly, there is no bias
blocking certain test cases, although extending test cases along some application cases
such as weather or route change might allow for targeted test extensions.

4-4 CONCLUSION

Testing Privacy and Safety is an ongoing task, that not only needs continual repeat
but also extension in scope. What once was appropriate is within short time obsolete.
Consumers have the right and the duty of keeping themselves informed about the
actual status, and ART is delivering such updated and actual notification.

- 86 -

In the next chapter, we take a deeper look in how ART generate new relevant test cases
within given test stories. In the end, ART uses methods from Al, and uses them to test
Al In some sense, ART applies the design ideas behind Al to the field of software

testing.

- 87 -

CHAPTER 5: ARTIFICIAL
INTELLIGENCE FOR TESTING

Artificial Intelligence for Testing provides test cases for extending test
suites. The intelligence relies on finding variations of given test cases for a
test story and selecting the right ones from these variations.

Using the data movement maps as a guide, generating new test cases can be
accomplished by extending existing test cases by similar ones. The data group
yields the relevant information in which direction to extend.

Such a process can be conducted with no limit. Nevertheless, for Autono-
mous Real-time Testing (ART), we also have the term “Real-time”, and this
means that we must be able to make selection small enough to fit into some
available time allowance. This requires having some limiting function telling
the Al robot when it is done.

Al for testing is expected to look at the software and to add test cases that
prove the software’s ability to achieve certain goals. To do this, goals of test-
ing must be known, and the Al robot must be able to judge whether a test
response is correct or not. The latter can be achieved by learning but also re-
quires some understanding for the domain addressed by the software. For ex-
ample, if the software drives a vehicle, a model must exist that allows the
robot to decide whether an action proposed by the software under test is ap-
propriate to achieve its goals.

5-1 WHAT IS THE GOAL OF TESTING?

As we have already seen, there is no automated testing without knowing the goals of
testing. The goals must be available as a profile, clarifying priorities among the func-
tionalities defined by user stories, or other means of expressing Functional User Re-
quirements (FUR). The normalized form of a profile is a n-dimensional vector of length
one; the n vector coefficients indicating the direction of the vector in the n-dimen-
sional vector space of topics.

The primary topic is something characterizing customer needs, or business driver, that
the software under test shall deliver. From this, a profile for the user stories can be
derived using a transfer function. This derived profile is the goal of testing.

- 88 -

Let y = (y1,¥2, ..., ¥n) beavector in the n-dimensional vector space of topics. A topic
can be anything that is in use when talking about software, especially user require-

ments, or business values, or customer needs.

The vector y is a Profile, if the equation (5-1) holds:

n
Ivll = > vt =1 6-1)
=0
As before, the double-bar ||...|| indicates the Euklidian Norm for vectors. Any vector

x # 0 can become a profile by dividing it through its length */ Il

The advantage of profiles is they can be compared. Also, profiles can be added or
subtracted; however, then they lose the property of having length one unless you re-
calibrate the resulting vector on length one.

Assume two profiles y = (y;, ¥, ..., ¥n) and z = (zy, 2, ..., z,), then its difference is:

Y—2= (Y1 —2,Y2 — Z3, e, Yn — Zn) (5-2)

The difference is not a profile; however, equation (5-3) makes another profile out of
the difference, provided the difference is not equal to zero. This profile points into the
same direction as the difference vector but with a length of one:

y—z (V1= 21, Y2 — Z3) o) Y — Zn)
— - 2
lly — Il to(yi—7)

(5-3)

The ability to compare profiles is the key to automated testing. Provided you have a
goal profile, you can compare this goal to what you are planning to test. This compar-
ison allows selecting test cases such that test effort remains limited, but the goal of
testing is reached within acceptable limits.

5-1.1 TRANSFER FUNCTIONS FOR TEST COVERAGE

The transfer function that defines the test stories needed to test a certain user story
profile is called Test Coverage. Test coverage has a convergence gap that tell how well
coverage is with regards to user stories. Since real-world user stories for software
count for a few hundred rather than the half dozen shown with this book, test stories
have similar dimensions.

However, since transfer functions can be computed quite effectively nowadays, this is
not so much a concern. The test coverage matrix is automatically filled as soon as the
functional effectiveness transfer function is established. The functional effectiveness

- 89 -

matrix links data movements to certain requirements. However, since functional ef-
fectiveness has a convergence gap, the data movements” assessment can be validated.

5-1.2 WHAT MEANS TEST COVERAGE?

Test stories and user stories complement each other. While the user stories explain
what must be achieved, test stories often specify how this must be achieved. Thus, the
test coverage matrix is a classical QFD matrix, matching the “how” to the “what” as
explained in the respective ISO/IEC standard (ISO 16355-1:2015, 2015). If the conver-
gence gap is small, it means that the test stories “implement” the user stories good
enough. Or, in other words, the test stories test what the user stories require but noth-
ing more.

It also means that nothing else than the user stories can be taken for granted. Proper-
ties not mentioned in user stories might hold or not; they remain untested.

The transfer function constitutes of the test sizes per user story. Each cell in the matrix
contains the number of data movements executed by some test case in a test story that
pertains to some user story. The functional effectiveness matrix is decisive for that.
Because the assignment of data movements to user stories is sort of arbitrary, test cov-
erage depends from which data movements are considered important or supportive
for certain user stories.

5-2 GENERATING NEW TEST CASES

Artificial Intelligence (Al) is not a well-defined notion. According TechTarget, Al is the
simulation of human intelligence processes by machines, especially computer sys-
tems. These processes include learning (the acquisition of information and rules for
using the information), reasoning (using rules to reach approximate or definite con-
clusions) and self-correction (Rouse, et al., 2018). While Al is around for decennials,
recently it has gained attention and is commercially exploited for all kind of “intelli-
gent” services. It has become a buzzword that obscures reality.

Intelligence has to do with data acquisition and the ability to interpret it; critical rea-
soning is not required. How test cases shall be generated without reasoning seems
rather incomprehensible.

However, Al in testing can do what Al always does: collect and exploit data, classify
it and interpret it in view of known pattern. Al does not replace skilled testers, it is not
capable of finding new insights or cool new ways of validating software, but Al can
industriously generate and compare test cases where people fail because of the hard-
ship. Generating test cases needs the additional help of combinatory algebra.

- 90 -

5-2.1 TESTING BLOCKCHAINS

We have seen in Chapter 1: Why Autonomous Real-time Testing? how test cases can be
represented by the combinatory algebra of arrow terms. We left there with the general
statement that arrow terms (1-1) represent test cases, provided the base language £
consists of assertive statements about test cases. The basic arrow terms have an arbi-
trary but finite number of test data left and a test response on the right. Arrow term
can be combined (1-4), quite similar as test cases also can be combined.

For test automation, it is best to use arrow terms as a combination of elementary arrow
terms, each representing one data movement only, and combine them for each object
of interest that is touched by some specific test case. Thus, instead of applying equa-
tion (1-4), we use a sequence of arrow terms that, when combined, together yield the
test case within a test story. Such a sequence of arrow terms is called Testing Chain. If
all objects of interests touched by the test case are considered separately in an arrow
chain, none ignored, the chain is called Testing Blockchain. Because, as a matter of fact,
this represents a blockchain (Wikipedia, 2018); only, it links data groups - blocks -
within a test case instead of encryption keys. A testing blockchain is sort of white-box
test: if you execute a test case and trace it with the objects as debugging points, you
get the testing blockchain.

Remember the definition of arrow term application in section 1-2.4: Arrow Term Nota-
tion. The testing blockchain is - after application - the left-hand side of the original
arrow term. Thus, a testing blockchain contain more information than the resulting
arrow term, or test case, after concatenation using equation (1-6). It contains the trace
of the test case.

5-2.2 MEASURING TEST SIZE

Arrow terms represent test cases, and test cases can be combined. It is straightforward
to represent testing blockchains as a sequence of arrow terms of level one; each block
contains one data movement within a test case. The total test size of the test case there-
fore is equal to the number of blocks within its testing blockchain.

The size of an arrow term is defined such that it still reflects test size. For this, it is not
useful to count recursive elements, but only those elements that relate to the base pred-
icate elements, and thus represent executable, testable terms.

As before, let L be the base language consisting of assertive statements about test
cases.

- 91 -

la| = {64, ...,0,} = pl,ifa = {6, ...,6,} = p,wherep,§; € L

| b; = a| = ZI b;| + |a|,for all a, b; € G(L)
7 (5-4)

(b=)y =) 15~ al,
J

The size of a test does not increase with the level. It describes the executable size.

Data movements that appear in more than one test case are multiple counted. Test size
depends from the number of test stories, the number of test cases per story, and thus
is much larger than the software’s functional size. The ratio between test size and func-
tional size is the Test Intensity; see section 2-5: Test Metrics for the Navigator Application.

Increasing test size is the best way of finding additional defects; however, it does not
guarantee it. If there is no customer need, or compliant user story, that let us classify
a feature of the software as unwanted, as a “defect”, no test will eventually recognize
it. Defect Density in turn is not affected by increasing test size, because defect density
is the number of defects divided by functional size, not test size.

5-2.3 DATA MOVEMENT MAPS AND TESTING BLOCKCHAINS

Let a;,a,,...,a, be a testing blockchain and let a,;® a,e ...e a, = a be its combina-
tion. Then, a is an arrow term that represents a test case of size n. This is an immedi-
ate consequence of equation (5-4). Testing blockchains thus are something like the
“natural” representation of the test case, also encoding the objects of interest that the
test case needs to execute in the data movement map.

For instance, assume a test case for the ADAS example has the form (Figure 5-1):

Figure 5-1: Test Case for Testing Route Alert

Car User Routing I Navigator
|

| | |
20.// Routing Alert »

1 1
. 21.// Recall Route .
| ; ? |

. AL = 22.J Recalculate Route 2
I ‘e | *
- = 23.// Change Route . -
[¥ % [
24¢Proposed Route Change A

t))

Test cases can split and join in the data movement map. Nevertheless, a test case is
closely linked to its data movements and therefore also to the data groups and objects
of interest. Test cases can be uniquely traced in a data movement map when executed.

-9 .

Since ISO/IEC 19651 defines the same measurement rules for functionality as for test,
we have the necessary metrics framework for test automation.

The relevant test assumptions for the whole test case are the three arrow terms (5-5):

{Traffic Jam} - Proposed Route
{Icy Road} — Proposed Route (5-5)
{ Heavy Rain} - Proposed Route
Then the corresponding testing blockchain consists of all test assumptions that can be
made for the data movements needed to execute these tests (Figure 5-2):

Figure 5-2: Testing Blockchain for the Alert Test Case

Navigator Remember Routes Navigator Routing Remember Routes Car User
| 1 1

]
$20./ Routing Alert ! I 1
I {Traffic Jam} > Alert I
|
I
I

{Icy Road} — Alert
{Heavy Rain} - Alert
! :
;21.// Recall Route :

| {Stored Route, Alert} > Actual Route |

.22.// Recalculate Route A
{Duration Change, Alert} - Changed Route

I
I
I
I
I
I
I
I
I
I
I
{Bypass Obstacle, Alert} -» Changed Route |
I

I
I

I

I

I

I

I

I

I

I

I

I

. . I
‘23.// Change Route & I
{Changed Route} — Stored Route I
| I I

by

&24.// Proposed Route Change 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I {Changed Route, Alert} — Proposed Route
: . ;

I
I
I
I
I I

| I

| I

I I I I
| I

I I

| 1 1 | |

It can easily be verified that the concatenation of elements from these five groups of
blockchain arrow terms yields the original three test cases. However, you can combine
them in different ways and thus get either traffic jam alerts causing a changed route,

or weather conditions doing the same. Response might become different depending
upon the cause of the alert.

5-2.4 USING DATA MOVEMENTS MAPS TO GENERATE NEW TEST CASES

Testing blockchains have a unique relationship to some path through the data move-
ment map. This makes it possible to use the data movement map for searching varia-
tions of existing test cases. Variations can be made as follows:

-93 -

A-1 Replacing existing test data by a variation of that test data; thus, exploring limits
for the controls;

A-2 Tracing back data movements that contribute to some of the data groups ad-
dressed in the arrow term; thus, replacing fixed test data by calculated data; add-
ing additional controls, or replacing existing controls.

In both cases it is unclear whether the response of the test case changes as well; exe-
cuting the test case possibly yields another response. The testing system must learn
whether this response is acceptable or not.

For learning, the system has various choices:

B-1 One is by simulating the physical impact the response has. If the response is
speed, acceleration or breaking, the simulation can predict the possible impact
against obstacles;

B-2 Another is using a risk function. If the risk increases above a threshold level, the
response is inacceptable;

B-3 Yet another is asking a human tester. Since generation and evaluation of new
test cases happens under supervision, not autonomous, humans can decide
about the response.

Learning requires that a testing system has a model of the domain under test that al-
lows to judge about the suitability of a response. Such models are sometimes available
- e.g., for car driving, accelerating and braking - but sometimes they require human
expertise. A car driving in mixed traffic depends not only from its own controlled
actions, but also from the perception other road users get. Today, pedestrians look car
drivers in the eye to see if they have been noticed. With autonomous cars, this is im-
practical; car users sitting in the car and playing games or texting have no immediate
impact at what the car does next. The best way of learning is to train a neural network
for situations, where the car should lower speed at an early stage to make it clear that
it grants the right of way, against other situations where denying it is safer. A horn
signal would then be more appropriate as a response.

However, with training a neural network we run into another problem of testing: the
neural network changes its behavior while learning. If it learns “on the road”, it can
unlearn as well. Without continuous testing, the autonomous car, or the ADAS, might
unexpectedly fail on challenges that it used to master, initially.

Combining the points A-1 and A-2 with the variety of responses as outlined in B-1 to
B-3, yields the following framework for automatic new test case generation, see Table
5-3. The controls are the test data; the response is the test result.

There are infinitely many test cases that can be generated using Table 5-3; thus, we
need a mechanism to limit and guide growth of the test suite.

- 94 -

Table 5-3: Automatically Generation of Additional Test Cases

C-1 Level 1: Parametrization of same Existing test cases without changing logic,
controls x;, X, ..., X,; same responsey changing test data only

C-2 Level 2: New controls New controls with new test data but
X1, X2, e Xp, Xp41, SAME TESpoNse y response as before

C-3 Level 3: Same controls x4, x5, ..., X, Same controls with new test data generate
new response y’ new response

C-4 Level 4: New controls Same controls with new test data generate
X1, X3, e X, Xn41, NEW TESPONSE Y’ new response

5-2.5 MONITORING THE TEST COVERAGE MATRIX

The mechanism to limit and guide growth of the test suite is monitoring the conver-
gence gap on the test coverage matrix.

Whatever new test case is selected, it is entered in the test coverage matrix and affects
the convergence gap. This is the laborious part of the learning: adding a test case alone
almost certainly open the gap, while adding two or more test cases at different cells
might well improve the gap.

Thus, there is nothing than try and error, except if some sensitivity analysis for the test
matrix exists that allows predicting where to look for additional test cases. However,
since we have enough time to improve our test suite, we will try and select new test
cases as needed to improve the convergence gap. Since the content of all cells are data
movement counts, the more cells a matrix has, the more finely the convergence gap
can be adjusted.

However, this is only true if the test stories and the user stories are not linearly de-
pendent. If the functional efficiency matrix does not provide enough distinction for
the data movements, the test coverage matrix might contain linearly dependent row
vectors, or column vectors, and thus not be able to close any gap. Such situations are
detectable with linear algebra. Since all matrix cells contain positive integers only, the
matrices usually meet the conditions for the Perron-Frobenius theorem and the princi-
pal eigenvector exists.

5-3 THE TEST CASE GENERATOR

Remember that test cases are arrow terms containing testing blockchains in their left-
hand side. Thus, the Test Case Generator has access to the full testing blockchain, and
it needs that information. The following data movement (Figure 5-5) map designs a
test case generator. We comment on the six functional processes.

-95 .

Figure 5-4: Start Creating a New Test Case

P
L -]

e

' . Select New Functional
‘ Date Clougs Valdator | ‘ Test Case / Eflectiveness

Data Movement

Testing Blockchain Map

' Generate New f
Start }- Tester / B o J ‘ Test Cases
| | |
=1 Strt : .
e 4 0% |
I '2_.l/ Exisng Test Cases |

~ 3./l Request DM

¢

PORIC IR

4.// Data Movements

5.// Data Group ’

6.// Use Blockchain

7./l Request User Sto
o> q ry

Grmt s =t ==

S

8.// Return User Story ‘
9.// Try new Test Data
& >

10.// Valid Response ‘

Se

*11.// TC Matrix

v

N % &

*1 2./l Create Test Case

5 13.// Show Test Case l

il ol ikl o n o i R s e et

el il il ek i il el s J

- 96 -

Figure 5-5: The Test Case Generator as a Data Movement Map

Srt ;,_;m, / | G".;‘:;a:az‘:"’ ‘ ‘ Test Cases I | Identiy Bkmkmaln] ‘ 'Tesq’ng Blockch ,* peeiMaverer Data Groups | Validator | s.re.;“c::‘ / | Test Coverage] E::;‘:;’::'ss | |1asx Case Se{smr] Reiectiges‘ | | ART Cloud])-—Am'— /
T 1 T 1 T T T T 1 T 1 T 1 T
! 1/ Sert

T I I I I I I I I I I I I
. 2./ Exising Test Cases
I I I I I I I I I I I I I
. 3/ Request DM
| | | | <I> | | | | | | | | |
. 4.1 Data Movements
! i ! ! ! ' ssomons) ! ! ! ! ! ! ! !
ad
1 i I 1 o)use Bookcnan | 1 1 1 1 1 1 1 1 1
! L7/ Request User siory | ! ! ! ! ! ! ! ! ! ! ! !
<
1 $ 1 1 1 1 1 1 1 | 8.//Rewrn User sory L 1 1 1 1
1 1.9/ Trynew TestData | 1 1 1 1 1 1 1 1 1 1 1
I 1 1 1 1 I 10/ Valid Response L I I I I I I I
1 A1/ TC Matrix 1 1 1 1 1 1 3) 1 | | | | |
— 1 A 12/l Create TestCase | 1 1 1 1 1 & 1 1 1 1 1 1
Bogoin . 7 Y
; 13./ Show Test Case, 1 1 1 1 1 1 1 1 1 1 1 1 1
| N N N N N N | 14/ Request Test Case o I I I I I I
N .15/ Read Test Case _ | | | | | | | | | | |
I S < I I I I I I
. . 16/ Run Test Case . N | | |
I I < I I I I
- - . - 17.4/ Identfy DMs 2 - - - -
1 1 < g 1 1 1 1
- - - 18./ Create Blockchain - - - - -
| | | | | | |
Get co . . + 19,/ Confrm Blockehain - - - - x .
| 1 1 1 1 1 'S 1
! 420/ Add Test Case
1 1 1 1 1 1 i T 9 1 1 1 1 1
. . 211 TC Matrix
I I T I I I I I I <|> I I I I I
.22-// Get Impact of DM, <>
! ! ! ! ! ! ! ! ! T i o] ! ! ! !
5 5 5 5 5 5 5 5 | pas comvrgar cap) 5 5 5 5 5
1 1 1 1 1 1 1 1 [cap) 1 1 1 1 1
| 1 1 1 1 1 1 1 26}/ Show C: Gap L | | | | |
| 1 1 1) [} |} |}) 1 27.4/ Select? 1 1 J} | | |
1 1 1 1 1 1 I 1 é 1 1 28.1/ Select! 1 1 1 1
I I I I I I I I & 1 1 291 Reject & I I I
| | | | | | | | 30/ Selecied TC | | | | |
i . & . ' . L ! 1 311 Updated TC 4 1 1 1 1 1
I I I I I I I 1 1 PRt + + 1 I
I I I I I I I I I I I I I
. 341 Undated GG . N . . .
I I I I I I I I QeSS I I I I I
Search 361 Inproved C Gap.
| < T T T T T T T T g 1 1 1 1 1
i *36.1/ Request Speciic TC &
I oY T T T T T T T I I I I I I
. X - - + 37/ Get Suiable DM 4
| <F 1 1 1 T | | | | | | | | |
. - . . - 38/ Get Suiable DG 4
| ? | | | | T | | | | | | | |
. . .39/ Use Blockchain
| ? | | T | | | | | | | | | |
. 40/ Try new Test Data
I T I I I I I I I I I I I I I
. 41/ Valid Response
1 1 4276 warix 1 1 1 1 1 1 1 1 1 1 1 1 1
Pubish 1 143 Now Tost Case | 1 1 1 1 1 1 1 1 1 1 1 1
| L 44.11 Publish 1 1 1 1 1 1 1 1 1 1 1 1 J) |
| | Aasic Gap | 1 1 1 1 1 1 1 1 1 £> |
é 1 1 1 1 1 1 1 1 1 1 1 46./ Show TC Matrix with CG A 1
Q>
é 1 1 1 1 1 1 1 1 1 1 1 1 471 APPmVWé I
481 !
&8/ Approve! 1 1 1 1 1 1 1 1 1 1 1 1 & 1
1 1 1 1 1 1 1 1 1 1 1 1 1 A9 Publsh. &
' ' ' ' ' ' ' ' ' : : 450/ Confirm Publication |
+ + + + + + + + + + + + <>

- 97 -

5-3.1 START GENERATING A NEW TEST CASE
The first step (Figure 5-4) is by using the testing blockchain to create a new test case.

First, get the existing test cases for all test stories involved. Next, collect the data move-
ments executed by that test case. This yields the candidate data movements for the TC
matrix.

The data groups are needed to build the testing blockchain. By recombining the arrow
terms inside the testing blockchain, several new test cases can be generated. However,
their response is not given; it must be asserted by some validation application that
might involve human judgement. As a result, the test case has now a valid response;
otherwise it is rejected. The functional process ends with announcing new test cases
to the device that selects those test cases which have the potential to lower the conver-
gence gap in the respective TC matrix.

This functional process uses information from Functional Effectiveness as heuristics
which test cases to generate. This allows to generate test cases that support certain
user stories; for instance, those that lack support in the TC matrix. Such a functionality
speeds up the test case generator but also can block finding useful other test cases that
are not obvious. A random generator must ensure the necessary fuzziness.

5-3.2 CALCULATE THE CONVERGENCE GAP

Calculate the convergence gap for an updated test suite, creating the TC matrix and
using equation (2-1).

Figure 5-6: Calculate Convergence Gap

Tester Test C. Selc ek Test Coverage ozl
Get CG estiCases Test Case 9 Efieciveness
i | | | | |
: - . 1J/Add TestCase . X :
I I s 4 0% I
. ~ 2.// TC Matrix . R .
| <@ i »> |
I I I <>3.// Get Impact of DM S
I I I A 4.// Impact of DM .
1 1 é 5./ Convergence Gapé 1
| 64 | 6.//Convergence Gap A |
. ' . v .
é | 71/ Show Convergence Gap é |

Calculating the convergence gap is straightforward. As before, calculation considers
functional effectiveness for counting the impact of each cell in the TC matrix. A TC

- 98 -

matrix is represented by selecting relevant test cases within the test stories. Many can-
didate TC matrices will be needed for the selection step (5-3.3), coming next.

5-3.3 SELECT THE NEW TEST CASE FOR INCLUSION INTO TEST COVERAGE

Select the new test case for inclusion in the TC matrix, based on the convergence gap
of the TC matrix. This step selects or rejects test cases for inclusion into the test suite,
and consequently the TC matrix. The decision depends from the convergence gap,
computed before. The Tester remains informed.

Figure 5-7: Select a New Test Case for Inclusion into Test Coverage Matrix

Select New

Rejected Test
Select? Tester Test Cases Test Case Test Coverage Test Case Selector G,

: | | | | | |
. . * 1./ Select? : o .

1 1 0 4 1 % I

: - A - 2./l Select! -

I I <& 1 < I

. . R : 3./ Reject! - .

1 1 < i % 1

: : 4 Selected TC . : :

| | D O | |

. . . 5./ Updated TC . .

| < i | |
I I I <>6.// Reject! } » >

i | | | : 7.1/ Reconsider l

I I 0 8.// Updated CG¢ I I

é | 9./ Improved Convergence Gap¢ | |

! ! ! ! ! !
The device Select New Test Case is an information exchange bus, triggering the neces-

sary steps to create and select a new test case, and decide whether to include it into
the TC matrix and thus the test suite.

5-3.4 SEARCH FOR A NEW TEST CASE

The TC matrix might not be satisfactory. Sometimes, it is necessary to search for a new
test case that adds impact to specific test stories or user stories, based on specific data
movements that add weight to some weakly supported user story. This functional
process is called when needed.

- 99 .

Figure 5-8: Create New Test Case Executing Specific Data Movement

-]
— Generate New T) Data Movement M ' | Select New |
Search . I esing Blockchain Map I Data Groups Valstelon " TestCase |
| | | | | |
- - " 1./l Request Specific TC 2

:;: T | T 1 ’
<.}= l 2.J/ Get Suiable DM ’ I I I
<.}: | | 3.// Get Suitable DG ’ | |

': 4./ Use Blockchain .I I I I I
é&// Try new Test Data i i i <> |
' . : : : 6.// Valid Response ’ |
TLTC Mati " " " " DN

;8.// New Test Case | | | | N 0
| | | | | |
As before, the Validator application is needed to validate the response in the test case.

The device Select New Test Case remains in control for the enhancement of the TC ma-
trix, and thus the total amount of test cases per test story.

5-3.5 PUBLISH TEST SUITE

If the tester is satisfied with the result, she or he publishes the new test suite to the
cloud for use by all connected ART clients.

ART users can now download the test suite, execute the tests and upload the test re-
sults. These results might be consulted in case of failure or incident, to assess respon-
sibilities of software suppliers, or at least to learn how to make the software better.

Control is given back to the (human) Tester.

Figure 5-9: Publish Test Suite to the Cloud

Puish | Teser | I ART Cloud | ART

| | | |
2 1.// Publish

g T 0% I
- 2 2./l Convergence Gap _ ~ -
I QTR G I

3./ Show TC Matrix with CG .

O T < |
<.>: | 4./ Approve? <> I
;5.// Approve! l R <> |
I I o511 Pubsh &
Se {74/ Confim Publicaion & :

- 100 -

5-4 THREE STANDARD TESTS

In preparing Autonomous Real-time Testing (ART), three standard tests are used to pro-
tect a software-intense product against privacy violations and the consequential safety
risks:

e The Data Walker Test (DWT) consists of visiting all objects, listing their published
methods and assessing their privacy protection status. Data groups, retrieved
from the model, are used to detect hidden interfaces, by checking whether those
data groups appear in other objects. If they are not, there must be data move-
ments that are not listed in the model.

e Each data movement is assessed in view of its privacy protection needs whether
it is effectively protected. This yields the privacy protection index and is called
the Data Movement Test (DMT).

e The Sniffer Dog Test (SDT) is one layer below the application and watches data
communication traffic. Each data package must be assignable to some data
group of the model.

5-41 THE DATA WALKER TEST

The DWT is basically a static test, if source code is available. Interface specifications
are good enough. If not available, the DWT walks the data movement map model,
trying to visit each identified object of interest. If the software supplier provided for
such testability, a list of public methods is offered that can be used to execute the visit.
If not, effective DWT testing depends on the ability of the tester to model the function-
ality with a suitable data movement map, plus how well those objects of interest ef-
fectively can be visited. For the visit, they need to exhibit some programmable inter-
face. Else the DWT is difficult and eventually the privacy index cannot be determined.

However, in those times of open source computing, the DWT test can quite often be
executed, and it should be a normal requirement for an Original Equipment Manufac-
turer (OEM) that he needs to provide equipment that is DWT-testable.

The test runs as follows:

1) Identify all Data Movements that go out or into the object;
2) Determine the Data Groups
3) Compare with the Privacy Needs for these data groups
4) Compare with the Safety Impact for these data groups
The privacy needs and the safety impact are attributes to the COSMIC model as ex-

plained already in section 4-2 and 4-2. In short, the left-hand part of the privacy as-
sessment and the right-hand side of the safety risk assessment. The test detects typical

- 101 -

failures such as data movements moving data groups without privacy needs attribute,
or without safety impact attributes.

To some extent, the DWT is a model validation test. However, analyzing the code or
the behavior of the object of interest does also detect data movements that are not part
of the model; for instance, for technical reasons. Some data movements remain invis-
ible to the functional user. They are not required by a FUR. Thus, not all findings of
the DWT are automatically data leaks, but they should be investigated whether they
have such potential.

Obviously, it is also possible that the model is not complete, or not all functional users
have been taken in due consideration. In both cases, the results of the DWT might
cause rework and fixes, be it to code, to the embedding container, or to the model
itself.

5-4.2 THE DATA MOVEMENT TEST

The DMT is the logical continuation of the DWT: all data movements found by the
DWT are tested against effective protection. This is a dynamic test. Usually it is ex-
pected that data is encrypted according some one-way or two-way protection scheme.
Although this could be a static test, if code is available, normally such a test must be
executed dynamically, looking at the data moved whether it is readable without en-
cryption key or not, and where the key originates.

The most efficient way to execute a DMT is by executing the software in some stand-
ard environment and tracing each data movement executed. The frequency of execu-
tion is also measurable; thus, it serves as well for assessing Incurrence Frequency. From
its results, both the Privacy Index and the Safety Risk Index can be calculated.

The DMT does not validate the model but its implementation.

5-4.3 THE SNIFFER DOG TEST

The SDT is a black box test looking at the dynamic execution of the software. It moni-
tors all communication channels that are used by the software. It expects each data
communication matching one or more data groups identified in the model. If some
data communication does not fit into the model, it might indicate an illegitimate data
movement, or a shortcoming of the model.

The SDT needs access to keys used for encryption and therefore can be executed in
combination with the DWT, and thus complements model validation.

- 102 -

5-5 THE DEVOPS PARADIGM AND SOFTWARE TESTING

The DevOps paradigm requires that software development interacts with operations,
and it is not called DevTstOps. Testing is part of product development or not done at
all. That the tendency is for “not done at all” is more than obvious. Untested software
publishes today’s newspaper, runs train systems, and delivers organizational sched-
ules, making every aspect of our life more and more adventurous.

Thus, modern software testing must become part of the operation of software, not
only part of software development. This means, software must be able to test itself at
any time and occasion. Automated tests must be built into the software, and available
for execution to both consumer and supplier.

Agile software development had developed a branch called Test-Driven Development
(TDD) that creates unit tests before delivering any functionality. Unfortunately, and
unnecessarily, these unit tests usually become not part of the delivered code, possibly
for fear of decreasing performance. But performance is not a major issue nowadays
and is only affected when the software starts testing itself while it should be available
for performing its primary purpose. Obviously, a software-based system can cope
with such a constraint.

Test stories and test cases can be stored in any software and can be executed at any
time that the workload permits. Hence testing must be fully automated. This is still
difficult but state-of-the-art. And if performance still matters, missing computing
power can be borrowed from cloud systems.

5-6 THREE INNOVATIONS NEEDED

The current art of testing is outdated. As already stated, the ISO/IEC/IEEE 29119 test-
ing standard (ISO/IEC/IEEE 29119-4, 2015), part 4, identifies 23 different so-called
Test Coverage Items, but not software functionality. As if software functionality were
not items in software that can be well distinguished and handled.

While non-functional software characteristics exist that can be tested, dynamic test is
per se functional; otherwise it would be static testing. While static testing, e.g., code
analysis, is highly important for technical debt and for safety and security assess-
ments, static testing never suffices to ensure proper functioning of mission-critical
software.

But dynamic testing of complex systems inclusion artificial intelligence requires three
innovations.

- 103 -

5-6.1 FIRST INNOVATION - TEST AUTOMATION

The first innovation needed refers to Test Automation. Traditionally, tests were suc-
cessful when they produced reproducible responses. Reproducible responses cannot
be the goal of testing in learning systems. We therefore propose a new method of spec-
ifying test cases using Combinatory Logic. This is a system that maps preconditions to
postconditions expressed by formulas. It classifies similar test cases. A test is passed
when the response formula is found to be true. Determining whether a response is
valid or not might be delayed until running the test.

For autonomous cars, such test conditions and test responses fit well. Things like
speed limit, speed range, acceleration and breaking effectiveness can be better ex-
pressed with formulas, referring to some thresholds, rather than by fixed test data,
referring to known, expected and correct responses. Varying road conditions or truck
load loads can influence the correct answer in a way that is hard to predict.

For test automation, we refer to Data Movement Maps that describe a software in terms
of data groups being moved from one object of interest to another. These objects, be it
functional process, device, other application, or persistent store, all need being
equipped with Test Stubs. Test stubs are the pieces of code that emulate a device, or
other application, in a physical environment. Persistent stores and functional pro-
cesses also need test stubs; in cases where some fixed behavior is expected in the test

case. In case of hardware in the loop, we effectively call for a Digital Twin (El Saddik,
2018).

Simply speaking, test automation means programming test stubs such that they exe-
cute certain test cases. This is what makes ART possible, at the end.

5-6.2 SECOND INNOVATION - TEST METRICS

The second innovation needed refers to Test Metrics. Test metrics must be independent
from implementation, especially from code, as code for certain services needed by the
system under test are often not available, and code size is irrelevant. Test metrics like
test size, test intensity, test coverage and defect density must compare with functional
size. It is the functionality that’s being tested, not code. Moreover, test metrics must
be understandable by consumers using a software-intense system, like ecolabels for
today’s products.

Consequently, test metrics must refer to functionality in use, and not to obsolete re-
quirements or specifications. Test metrics cannot refer to code, as code is usually not
available for measurement, be it that functionality originates from cloud services or
proprietary code.

- 104 -

Moreover, certain code today is self-correcting and usually not responsible for func-
tional failures. Code is not the object of testing; it is the systems functionality.

Test metrics must use the same measurement method as functional size metrics. We
can use the same data movement maps for representing pieces of functionality as we
use for tests.

5-6.3 THIRD INNOVATION - ART

More challenging is adapting test stories and test cases continuously, by new experi-
ences made by the software, changing the behavior of the complex system. The soft-
ware might modify itself, or modify data that controls its behavior, or the system
might encounter new situations in changed environments. For instance, an autono-
mous car that encounters new traffic situations and learns from them might cause the
controlling software to behave differently than before. Test cases, and even test stories,
must adapt. An automated test repository is needed that grows with the changes to
the software, and with additions to the system. This is the essence of Autonomous Real-
time Testing (ART).

This is the major innovation that we propose to software testing. To make it work
requires even more innovations. Future software contains its own testbed that users
can run anytime when needed and see the result. Moreover, the software can run the
tests autonomously, for instance when encountering new situations with an autono-
mous car, or when adding or removing system components such as an IoT device, or
when adding a new truck member to a truck platoon, or when commissioning a new
software-intense train system. Even when establishing communication with another
car or road user, a short test might be appropriate to establish trust into the new rela-
tionship and the communication means. ART also regularly checks existing software
for newly introduced software faults, vulnerabilities, changed features, or hardware
wear such as breaking effectiveness.

- 105 -

CHAPTER 6: TESTING HIGHLY
COMPLEX TECHNICAL SYSTEMS

The problem with complex technical systems is testing. Testing is utterly
complex and sometimes not feasible because of the many subsystems involved.
People cannot devise enough test cases because they cannot test everything
against anything.

Moreover, if your functional size exceeds, say, a million - this is easy for
airplanes or spacecraft or even for autonomous vehicles or trains - you need a
test size of ten to hundred million for achieving a reasonable test intensity.
Men cannot deliver that. We need machines to do this.

6-1 TESTING DIGITAL TWINS

Whenever testing software-intense systems, testing with hardware-in-the-loop can be
quite demanding. The hardware needs to put in a state that produces the wanted test
data. In many cases, this is impossible or very costly to keep the hardware in the loop
while testing large, complex systems.

As already explained, we rather test Digital Twins, where hardware components, sen-
sors, and actuators are emulated rather than tested in the loop. Digital twins today are
available for all kind of hardware component build into software-intense systems.

6-1.1 THE DOUBLE-TIDDLEMUTZZ EXAMPLE

The Double-Decker Tilting Long-Distance Multiple Unit Trainset (D’TLDMUTS) serves as
an example to explain the new concepts. D2TLDMUTS is pronounced “Double-Tiddle-
mutzz”, with a sharp “zz” hiss at the end. It refers to a large Intercity multiple unit
trainset, able to run on international railway traffic as a double-decker with restaurant,
with children’s corner, offering space for people with disabilities, featuring roll com-
pensation for faster driving around a curve, comfortable enough for three to six hours
of daytime train riding.

It has been ordered by a European railway operator, originally targeted for 2013 but
now, in spring 2019, finally being commissioned. Commissioning started in February
2018 and will last well into 2020. Normally, commissioning a train takes three to six
months; assuming, it is a commuter train with mostly standard components. But this
train is utterly complex. After the first year of commissioning, the number of bugs

- 107 -

found, and problems encountered, piled higher than ever. Suppliers and train service
operator realized that they are only half-way through before letting the D2TLDMUTS
run operational services. Such kind of failure is common not only with train operators;
several similar cases occurred in the last few years in aircraft industry as well and is
likely to happen with autonomous cars.

The problems encountered with the D?TLDMUTS are basic: it is virtually impossible
for humans to create complete test suites for such a complex, software-intense system.
Consequently, commissioning such a train set takes very long, much longer than ever
planned. Defects touching across the various systems are detected in this trial period
only. This is very late, because every modification of train software requires an extra
re-certification and a new admission procedure.

6-1.2 COMMISSIONING REPLACES TESTING

Key of testing complex systems is understanding the needs (or values) of the train
operator, in our case, or the needs of the customer, in general. The needs of the train
operator are the key means for distinguishing relevant test cases from unnecessary
tests, allowing test case automation and finally Autonomous Real-time Testing (ART).

Commissioning such a software-intense system takes an unpredictable amount of
time. Not only due to the difficulties of designing such a multi-purposed system -
even if the supplier did an excellent engineering job - but far more in the commission-
ing of its software. Either instrumentation and control fail, or the door control stops
working, or you cannot connect to the European Train Control System ETCS (Wikipedia,
2019). If the software somewhere fails, the only remedy is to switch everything off and
then reboot the train. This takes ten to twenty minutes. In rail networks like in Swit-
zerland, the Netherlands or Japan, after such a reboot, the timetable is out of control;
nationwide. A software breakdown during train operation must never happen; this
constraint is absolute.

It is unknown how big the software is; probably, even the supplier does not know.
Today, publishing software size seems nothing aimed at the public, and train manu-
facturers still do not behave as a software house, although they are.

However, if we assume 500000 CFP, we might still underestimate the complexity of
a D’TLDMUTS, with instrumentation and control, with information and ticketing ser-
vices for the public riders, incorporating services needed to control and minimize en-
ergy consumption, comfort services controlling all the technical installations on board,
including heat control and air circulation, and all the recording needed for the big
amount of data. It is not a simple commuter train, or a locomotive hauling trailers, the
D?TLDMUTS is a multiple unit railcar with restaurant, children playing area and
space accommodating a thousand passengers, including people with disabilities.

- 108 -

It is impossible to let testers set up enough test cases, manually. Too many systems
interact. It is a typical case for Combinatory Logic. Test cases must be created automat-
ically, combined from test stories with basic test cases. Such tests can run, searching
for weaknesses and bugs, before commissioning the train, or put the system into ser-
vice.

Testing such a system involves several steps. Note that we do not need textual speci-
fications. Although in theory specifications would be helpful to set up test stories and
the related test cases; in practice, specifications are meddling up the important with
the marginal and thus of limited value. In any case, specifications without priority
profiles are near to useless. No written document can describe adequately the com-
plexity of our D2TLDMUTS train system in full.

6-2 THE FUNDAMENTALS OF TESTING COMPLEX SYSTEMS

Traditionally, the customer needs are what matters and defines the goals of testing.
However, when buying train sets, the customers are not primarily the train riders but
the train operators. It is the train operators’ interest that the trains run on schedule
and its riders come back again, remaining loyal customers of the train operator. While
train riders and operators might share common values, in some other respects they
differ. Train riders do not care much about the costs of running the trains reliably; in
turn, operators do. Operational cost must remain below older trains.

Figure 6-1 shows The Complete Analytic Hierarchy Process for the D2TLDMUTS. The lists
the Operator’s Needs regarding the new D*TLDMUTS is hierarchically grouped and
analyzed using the Analytic Hierarchy Process (AHP). This time AHP in full, with one
level of hierarchy. The hierarchy reflects those subsystems of the D?TLDMUTS that
we intend to test. For testing, each group will need its Operator’s Needs for defining the
goals of tests. All group tests combine for the full DZTLDMUTS tests, letting ART fill-
ing the test gaps in between groups.

- 109 -

Figure 6-1: The Complete Analytic Hierarchy Process for the D2TLDMUTS

Operators' Needs
The Double-Tiddlemutzz
Operators' Needs Weight Profile
A ETCS 'A01 ETCS Reliability 1% | | 007
‘A02 Human Interface 6% 028
‘A03 ETCS Redundancy 2%
‘A04 ETCS Stability 3%
A05 ETCS Independence 5%
B Instrumentation BO1 Sensor Robustness 3%
B02 Sensor Independence 4%
‘B03 Sensor Redundancy 3%
C Traction :C01 Needs Prediction for Traction 2%
C02 Efficient Traction 3%
'C03 Safe Traction 5%
D Electricity ‘D01 Electricity Sensing 3%
‘D02 Power Management 2%
D03 Energy Saving 4%
E Comfort EO1 HeatLevel 2%
'E02 Moisture Level 2%
'E03 Cabin Acceleration 1%
‘E04 Accessibility
F Doors 'FO1 Door Sensing
‘F02 Anti-Trap Sensing
‘F03 Door Closure Safety
G Terminology ~ GO1 Audio Clarity
:G02 Visual Clarity
'G03 Data Interpretation
-G04 Consistency
H Maintenance HO1 Predictive Maintenance

'H02 Wear Sensors
‘HO03 Alarming
'HO04 Maintenance Controlling

AHP Priorities
The Double-Tiddlemutzz

A ETCS

D Electricity
E Comfort

=
=
S

=
=
o

B Instrumentation

G Terminology
H Maintenance

k=] G Terminology

kv H Maintenance

The Hierarchy Comparison

Weight

'ii'i""i"""""""""-(

AHP Priorities

A01 ETCS Reliability
A02 Human Interface
A03 ETCS Redundancy

A04 ETCS Stability
k=] A05 ETCS Independence

©

A01 ETCS Reliability
A02 Human Interface
A03 ETCS Redundancy
A04 ETCS Stability

A05 ETCS Independence |9

Weight

Profile

N @ & = o Ranking

D Electricity

D01 Electricity Sensing
D02 Power Management
D03 Energy Saving

DO1 Electricity Sensing

13

AHP Priorities

B Instrumentation

B01 Sensor Robustness
B02 Sensor Independence |9
B03 Sensor Redundancy

BO01 Sensor Robustness

B02 Sensor Independence

B03 Sensor Redundancy

Weight
27%

N> — w| Ranking

o g & | Profile

D02 Power Management

Weight
32%
24%
44%

b D03 Energy Saving

~ @ N Ranking

AHP Priorities
F Doors

FO1 Door Sensing
FO02 Anti-Trap Sensing
F03 Door Closure Safety

FO1 Door Sensing

5] F02 Anti-Trap Sensing
F03 Door Closure Safety

N> = | Ranking

S WA NI GN Ranki"g

AHP Priorities

HO1 Predictive Maintenance
HO04 Maintenance Controlling

HO02 Wear Sensors

H Maintenance
HO1 Predictive Maintenance

i= HO3 Alarming

Weight

& N =« | Ranking

CO01 Needs Prediction for Traction

C02 Efficient Traction

AHP Priorities g e
s
C Traction < nE.
C01 Needs Prediction for Traction 3 |03
C02 Efficient Traction 2 (050
C03 Safe Traction 11081
5
s ©
3 3 =
T 2 8 3
2 5 £ %
i 3§ 2 5 8 2
AHP Priorities £ = 8§ 2 £ 2
= 8 2 3 s §
E Comfort @ O @ O Weight JECSENY
EO01 HeatLevel 3 (047 T
E02 Moisture Level 2 |0.56
EO03 Cabin Acceleration | 1/3 4 (028 W
E04 Accessibility 1 (062 T
ks
)
z I
5 g
o £
2 = >
AHP Priorities 2 a s g
— @ =
G Terminology 3 3 I AE.
GO01 Audio Clarity 15 4 0081
G02 Visual Clarity 3 10231
G03 Data Interpretation 2 1044 W
G04 Consistency 1 1086

With a few more textual attributes to explain what is intended by the Operators’
Needs for the D?TLDMUTS (Figure 6-2):

Figure 6-2: Operators” Needs for the D2TLDMUTS

Operators' Needs

A ETCS

A0

A02

ETCS Reliability
Human Interface

Attributes

Safety for humans
Communicate clearly

Safety for instrumentation
With operators and pssengers

:A03 ETCS Redundancy All ETCS equipment is redundant If results differ, alert!
'A04 ETCS Stability Unambiguous status Consistent
‘A05 ETCS Independence Each subsystem is autonomous Can close or fail

B Instrumentation B01 Sensor Robustness Legibility Completeness

‘B02

Sensor Independence

Save energy

Use energy wisely

:B03 Sensor Redundancy Have two sensors where applicable Compare sensor data

C Traction -C01 Needs Prediction for Traction | |Predict knowing train load Predict knowing weather conditions
:C02 Efficient Traction Optimize acceleration Minimize energy consumption
'C03 Safe Traction Safety for humans Safety for instrumentation

D Electricity ‘D01 Electricity Sensing Sensing the power supply Adaption traction
:D02 Power Management Distribution of power in train Laptop plug supply
‘D03 Energy Saving Extract relevant data Keep data for analysis

E Comfort ‘EO1 Heat Level Convenient for passengers Both women and men
'E02 Moisture Level Convenient for passengers Enough dry
'E03 Cabin Acceleration Convenient for passengers
‘E04 Accessibility Entrances Toilets

F Doors ‘FO1 Door Sensing Door knows who's inside
:F02 Anti-Trap Sensing Doors must not close by force Avoid dangerous conditions
‘FO3 Door Closure Safety Each subsystem is autonomous Can close or fail

G Terminology GO01 Audio Clarity Understandable Also for the hearing impaired
:G02 Visual Clarity Legibility Completeness
:G03 Data Interpretation Doors must reopen when needed People mst never get trapped

-G04

H Maintenance

‘HO1

:H02
‘HO3
iH04

Consistency

Predictive Maintenance
Wear Sensors

Alarming

Maintenance Controlling

Consistent Messages

Alert well in time

Put sensors near wearing equipment
Timely alarms

Make sure maintenance is effective

Adaptive terminology

Before failure

Have sensors for all wear & tear
Alert in case of uncertainty
Also check efficiency

6-2.1 THE HIERARCHY OF OPERATOR’S NEEDS FOR THE D2TLDMUTS

Each new, complex, system requires training, adaptation of operational processes and
new standard procedures for operations and maintenance. For instance, older electric
traction gear only needed a switch being turned off for putting them out of service,
while modern equipment has many functional processes that need being shut down
in an orderly manner. A train software feeding a data base might cause database cor-
ruption when turned off unexpectedly; restarting software plus database might take
a long time because the database needs being repaired. Locomotive engineers might
not be used to such thinking; thus, they need training and instruction to understand
new technologies. On the other hand, software engineers that program instrumenta-
tion and control are probably not aware of the operational conditions and constraints.
Thus, they take things for granted that are not. The standard approach to such a prob-
lem is addressed by Quality Function Deployment (QFD).

The method of choice to find priorities is the Analytic Hierarchy Process (AHP). It makes
sense to do the pairwise comparison once per needs’ group and combine their profiles.
The result is quite surprising. While HO2: Wear Sensors, F02: Anti-Trap Sensing for

- 111 -

doors, and H03: Alarming clearly dominate other needs; the need for unambiguous
communication G04: Consistency wins over all. This is a clear indication where the
software problems arise: lack of consistent communication between the many elec-
tronic and software components in the train sets.

For a train set that assembles components of various suppliers with software devel-
oped during different ages, consistent communication is not something for free, but
something that requires decent consideration and dedicated work. The components
of the D°’TLDMUTS originate from different ages and suppliers; regulations have
changed over time and with regulation terminology, the meaning of terms.

6-2.2 TERMINOLOGY MANAGEMENT

These requirements are relatively new. However, since a few years the discipline of
Terminology Management has evolved responding to the needs of the European Union.
This suggests developing a Terminology Broker that not only controls, but also consoli-
dates and levels out the different messages obtained from instrumentation and con-
trols with those from the signaling system and from traction. Such a terminology bro-
ker also enables testing and has a few more advantages (Cabré Castellvi, et al., 2017).
Setting up a learning system that learns how to interpret the thousands of messages
coming in from the various components is probably the simplest way to create a ter-
minology broker for such a complex software intense system.

For many readers, it might not be clear what a terminology broker is. Basically, it is a
message broker that “understands” messages and can translate a term from one envi-
ronment into the correct term in a different environment, translating the meaning un-
ambiguously. Terminology Management is a relatively new language science (Fathi,
2017) aiming at providing a platform for technical and societal communication among
members of different communities such as within the European Union. Terminolo-
gists establish the terms specific to a field of activity, define them, and then find equiv-
alents in another language. They also define the terms in use for businesses, databases,
glossaries, dictionaries and lexicons for the purposes of standardization.

6-2.3 THE ANALYTIC HIERARCHY PROCESS

The effect of this AHP (Figure 6-1) is stunning; it is an eye-opener. While everybody
probably would agree, without hesitation, to the principle that Al could help with
complex technical systems, the idea that Al could provide a terminology broker func-
tionality is a somewhat surprising consequence from the 29 different operators’ needs.
While these needs look complicated enough to handle, this sample size still is quite

- 112 -

below reality and we do not try to make it more detailed; otherwise, it would not fit
into this book’s format.

On the other hand, while quality or marketing managers are tempted to concentrate
on the 7 + 2 most relevant needs (Gigerenzer, 2007), technical people must concede
that needs not carried forward into programming probably will also not be tested.
Thus, complex software-intense systems clearly require other teaching methods than
examples in a traditional book.

For people not familiar with the Analytic Hierarchy Process (AHP) we give a short ex-
planation how to read Figure 6-1. The basic principle of AHP is pairwise comparison
among comparable criteria. Therefore, the evaluator must compare each criterion with
each other. However, to reliably compare 29 criteria with each other is difficult if not
impossible.

Saaty therefore introduced the AHP. The AHP uses Euclidian vector space metrics -
the direction of unit vectors that we call Profiles - to compare two evaluations. This
allows splitting these comparisons into smaller groups according a hierarchy. Because
the result of comparisons are profiles rather than linear weights, you can combine such
profiles simply by multiplication. Profiles, as already explained in section 2-3, define
a direction within an event, or in this case a decision room and combining directions
is possible without introducing a bias for some of them. The Hierarchy Comparison
AHP matrix defines by its solution profile how to combine the priorities of the indi-
vidual part pairwise comparisons for the full AHP. The components of this profile are
used as weights when combining the various part solution profiles from the part pair-
wise comparisons.

More on AHP can be found from its inventor (Saaty, 1990), or in the precedent book
of the author (Fehlmann, 2016, p. 33ff).

6-2.4 THE SOFTWARE UNDER TEST

It is not possible to include data movement maps for the full D2TLDMUTS in this book.
However, we have construed the AHP hierarchy in such a way that it maps the part
software applications of the D2TLDMUTS. This is obviously always possible, and we
can set up user stories and test stories for each of the eight parts; although, we are still
oversimplifying. User stories and test stories yield test coverage matrices for each part
application. Each part application has its own data movement map, although these
applications do talk to each other; thus, have data movements connecting them. The
initial test coverage matrix for the DZTLDMUTS is then simply the combination of all
nine test coverage matrices, weighted by the profile of the pairwise comparison AHP
matrix that governs the hierarchy combination. Multiplying matrices by a linear pro-
file component is a standard operation in linear algebra and yields a linear

- 113 -

combination of the other nine test coverage matrices. The combined response profile
then matches the profile of the 29 operators” needs, up to some convergence gap.

However, for testing, leaving all the interactions out that occur between the nine soft-
ware applications would introduce an unbearable safety risk. The gaps can be filed in
manually, but better this is addressed by ART. ART does not work on the nine soft-
ware applications alone but on the whole system; thus, filling up the empty space.

This means for instance that ART adds test cases to test stories that for instance refer
to door closure, connecting it to ETCS status. Exactly such dependencies have hit the
actual D’TLDMUTS’ commissioning. Thanks to ART, such tests can be done before
the train operator is involved; and, what is even better, they are generated by a struc-
tured, almost “intelligent” algorithm. It does happen according the test generator
rules when some data movement exists that connects ETCS information - e.g., free
track ahead - with door closure control software.

The details when the D2TLDMUTS can depart or let passengers disembark are mod-
elled in the Door Control part application but this application depends in many re-
spects from other part applications - such as Traction and ETCS. Testing Door Control
is not complete without taking these interferences into account. But things become
complicated with that many interrelated systems; setting up test stories and finding
relevant test cases becomes a tedious task.

Below we show two of the part applications - Door Control in Figure 6-3 and Terminol-
ogy in Figure 6-4. The Combination application has data movements that connect al-
most all the part applications with each other. This can be used to generate testing
blockchains for ART, connecting all different parts of the D?TLDMUTS system to ex-
tend test coverage. The Combination application is already too large to fit on a book
page. Readers interested in these details can study all related data in the shared cloud
data accompanying this book (Fehlmann, 2019).

However, the extract shown in Figure 6-5 is enough to demonstrate the mechanisms
of ART with complex technical systems. By data movements, the Combination applica-
tion connects all other part applications to collect a comprehensive status of the
D?TLDMUTS. This part is shown. For constructing the testing blockchains needed to
test status, these are the essential data movements.

- 114 -

Figure 6-3: The D2TLDMUTS door control application — opening, closing and locking doors

Vs
-
| Door Opening

(jpen)—TrainEng'neef / Door Opening])— T Comort |)— Sensors / Door Closing])‘_Dc:;‘(;l:;rg Antirap])—Doorsmxs / Door Analyfics.])—DoorBloek / Door Repair] Door Status. |
i I I I I I I I I I I I I I

|

B DI I B o i i

14.J/ Door Status 2

I
I
I
I 5.// Keep Trying
- 16.// Close Door 3
I Y ?
17.JI Al Doors Closed, l-

S S

18.// Door Functional? |

i 20.// Door Responsive?, -I

-I 21.// Block Door

4 22.// Block Door

3.// Report Blocked Door '

= 1.J/ Unlock doors . - . -

2 g < 1 1 1 1 1 1 1 1 1

- 2 2.// AC ready? - 2 . -

1 D EE—— 1 1 1 1 1 1 1

- A " 3./ Pressure lowered 2 -

1 ST ¢ 1 1 1 1 1 1 1

y— N 2 - 4.J/ Press Open 2 N N N N N N

0o 1 ® 1 1 1 1 1 1

—) N 2.5.// Open Doors A . -

. 1 e % 1 1 1 1 1 1

~__ 6.// Show Open Doors 2

NI ¢ 1 1 1 1 1 1

27,/ Close Doors

< 1 1 1 1 1

— 2 8.// Close Doors 2 . . - .
p

.o e 1 1 1 1

2 9./ Try Closing 2 . . - .

S aEEE— 1 1 1 1

10.// Show Close Doors 2 -

1 1 1 1 1

11.J/ Door Closed? . = . . .

T g 1 1 1

A 12.// Keep Open 4 . - .

g N g 1 1 1

A 13.// Door Status 2 - .

1 |

1 1

1 1

1 1

1 |

1

S ded

19.// Repair Status '

—y = -

24.// RepairDoor

25.// Report Repair I
' 26.// Report Repair <?

._..<>._..<>._._._._._..<>._._._._._._..<>._._..T
R S

B D e R i L L. 2 R Lt

- 115 -

Figure 6-4: The D2TLDMUTS Terminology Application - Test Case Generator as a Data Movement Map

= Locomoiive A Connecing - I Terminology Terminology - Terminology Terminology -
Audo i / Audo Converer] Announcements | | Loudspeakers / Network Slis | g nbinment I Train Posiion | Ongoar sysen| Seeon |nnmonf Conbinaton App | ' Terrinology SVM | o / o ! T Dan murprmJ Deta Reposiory
| T T T T T T T T T T T T T T T
L i Message Index 1
10 SEEE——d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N ~ N N N N N 2/ Priority Message 2 N N N N
1 < T T T T T T T T * 1 1 1 1 1 1 1 1
. ! ~ 3 Prory Mesage -
1 1 1 1 1 1 1 1 < T * 1 1 1 1 1 1 1 1
. 4l Messag Sveam.: . . . !
1 Qe @ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
: - : : : : : : 5./ Terminology : :
1 t t t t t t t t t t t t g 1 1 1 1
. _ 6./ Message Compositon |
1 o' ge Composion , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 1 Drect
@l Drec Nessage ., 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
| oY Direct Message | | | | | | | | | | | | | | |
9 Wessage Confrmaton 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
— 1 6101/ Audio Stream 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Stn . 7 . . ¥
1 1 1 1 1 1 1/ Audo Message | A 1 1 1 1 1 1 1 1 1 1
: o . . . ° . 7 . .
 — : : : 6 ! ! ! ' ' ! ' ! ! ! ' ' '
&3/ Bock Inblainment_| 1 1 1 1 1 1 & 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 & 1 1 1 1 1 1 1 L t4nTermnoogy g 1 1 1 1
1 1 1 1 ¢5 /| Request Location Info ‘ 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 jolocaion o, 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 L7 Locaton o | 1 1 & 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 18.J/ Block Inbiainment é 1 1 1 1 1 1 1 1 1 1 1 1
= 1 1 1 1 1 1 118/ Block Inominment_| i\ 1 1 1 1 1 1 1 1 1 1
Infainment 1 1 1 1 1 1 20,1 Connecton Timetabid 1 1 1 1 1 1 1 1 1 1 1 1
. ! ! ! ! L2t/ Locaton Inbiainemert ! ! ! ! ! ! ! ! ! ! ! ! !
1 1 1 1 1 L 221t npsorsy) 1 1 1 1 1 1 1 1 1 1 1 1
! ! ! ! ! ! | 23.// Unblock \nbtsmsﬂsnl ! ! ! ! ! ! ! ! ! ! !
! I ! ! ! I 24.J/ Get Infotainement ! ! ! ! I ! I ! I ! ! !
1 1 1 1 1 1 1 Uy s mpmnenent | 1 1 1 1 1 1 1 1 1
. QB nement
1 1 1 1 1 1 1 1 2. ey Messages 1 1 1 1 1 1 1 1 1
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 [1 [[[[[[
. 28.// Save Datla
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? T
. 29,/ Priority Report,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ?
- 30.// Check Term o .
o 1 1 1 1 1 1 1 1 1 1 1 1 s 1 1 1 1 T 1
-~ . . 431/ Confrm Term .
1 1 1 1 1 1 1 1 1 1 1 1 g T T T 1
Term 32 Prioriy Repoort s .
| 1 1 1 1 1 1 1 1 1 1 T T T T T T 1
i N N 4 33.// Ask for Term - - -
T T T T T T T T T T * 1 1 1 1 1 1 1
N N N A,34.// Request Term A N N
1 1 1 1 1 1 1 1 1 1 1 HiTEE & 1 1 1 1 1 1
- N N N A 35.// Clarify Term 2 N N
oo 1 1 1 1 1 1 1 1 1 1 1 Ge—elcumi Temg, 1 1 1 1 1 1
o © 36 Semdard Term -
) 1 1 1 1 1 1 1 1 1 1 QT Y 1 1 1 1 1 1 1
cam . . ! . . .
37.J/ Standard Term
i 1 1 1 1 1 1 1 1 1 1 1 ® t 1 1 1 1
| e Tam
t t t t t t i t 1 t t t t 1 1 1
. - o S T ! .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 QP L 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 + Aol Leam Termg, 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 : : dtliGet Temsgs, 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 il Sandard Tem 4 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Sillhpprove? & 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 44.) Standard Term, 1 1
451 Lg Te
! ! ! ! ! ! ! ! ! ! ! ! & ! ! S ! ! !
1 1 1 1 1 1 1 1 1 1 1 1 1 1 46 Leared Term, 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 & | 47JLeamed Term} 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 48./ Learned Term ¢ 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- 116 -

Figure 6-5: Extract from the Combination Application Combining Other Part Applications of the D2TLDMUTS

oo
L;zl"n::q / ETCS | | Tracfon Control J Instrumentation | Tracfon | Tracfon Track Electricity | Comfort | | Comort Control J Doors | ‘ Door Control J Terminology | Maintenance | ‘ Alerfs J Data Interpretaion | | Status J ,-Gm:s Report /
1 I I I I I I I I I I I I I I I I
a1l Sert . A :
. v ~ . .
~ 1 1 1 1 1 1 1 1 1 1 1 1 &y AT Mert confrmed o 1 1 1
48./1 Alert Saved
= ! ! ! ! ! & ! ! ! ! ! ! ! 4 ! ! !
é 1 1 1 1 1 1 1 1 1 1 1 1 4./ Nlert Shown é 1 1 1
150/ Request Status | 1 1 1 1 1 1 1 1 1 1 1 1 1 é 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 51.J/ Request Status ‘ 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 52/ Confirm Status <I> 1
1 1 1 1 1 1 1 1 1 1 1 1 | 1 I sy Request Sﬂml 1
! ! ! ! ! ! ! ! ! ! ! ! sonmons ! ! ! !
<
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 55/ Request Status .
1 1 1 1 1 1 1 1 1 1 1 ? 1 1 1 1
. _a56.// Confrm Status
} } } } } } } } } } } T } } } }
. N - 57J/Request Status x .
1 1 1 1 1 1 1 1 1 % I I I I I h g 1
. - 58/ Confirm Stalis -
1 1 1 1 1 1 1 1 1) SE— T T T T % 1
. * 50/ Request s | .
1 1 1 1 1 1 1 % (i (i (i (i (i (i (i ' 1
. * 60/l Confirn S
1 1 1 1 1 1 1 S t t t t t t 1
1 1 1 1 1 1 & 1 1 1 1 1 1 1 1 61.// Request Status > 1
1 1 1 1 1 1 62.// Confrm Status 1 1 1 1 1 L 1 1 & 1
1 1 1 1 & 1 1 1 1 1 1 1 1 1 |___63//Request Sﬂmsé 1
1 1 1 1 ISAIIConirm Sews | 1 1 1 1 1 1 1 1 1 ¢ 1
1 1 1 é 1 1 1 1 1 1 1 1 1 1 I 65/ Request Status L 1
} } } | 66/ Confrm Satus | 1 1 1 1 1 1 1 1 1 1 1 }
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 671 Request S : !
1 " 1 1 1 1 1 1 1 1 1 1 1 1 1 } 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 69./ Status Report
| | | | | | | | | | | | | | | I |
. - - - 70.// Status Report .
? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 71/ Status Report & .
1 1 1 1 1 1 1 1 1 1 1 1 1 Y g 1

- 117 -

6-3 AHP FOR TESTING

It has already been noted that testing is not very effective without reference to the
goals of testing, the needs of the customer, or user. The AHP is the method of choice
to analyze and prioritize needs of the customer. However, when used in its full, hier-
archical form, AHP is even more helpful. The hierarchy typically addresses system
parts; parts can be tested independently, and their test coverage matrices combined
the same way as the part AHP. This is quite straightforward but allows managing
large test coverage matrices, when combined with ART.

6-3.1 USING THE AHP HIERARCHY FOR SETTING UP TEST STORIES

Let A;,A4,, ..., Ax be a sequence of AHP pairwise decision matrices with solution pro-
tiles y1,ys, ... yx respectively; k€EN; k>0. Thus, up to some numerical imprecision,
A;y; =y, for i =1, .., k. because there are no algebraic solutions for Eigenvectors.

Let 4 be the Hierarchy Comparison with the solution profile . 4 isa k x k square ma-
trix; thus ¥ = (J, J2, ..., Jx,) is the solution profile for A.

The combined solution profile for the full AHP is shown in equation (6-1):

k
v=Z§/iyi, i=1,.. kkeNKk>0
i=1 (6_1)

v
Full AHP Solution Profile = i
Note that equation (6-1) denotes a sum of profile vectors, divided by its Euclidian
length; thus, making the result ¥/ vl Vet another profile.

According Saaty, this is the mechanism how a hierarchy of decisions should be han-
dled. The key point is using vectors of normalized length that can be added, sub-
tracted, and multiplied by scalars. Intuitively, this represents the direction to take in
the decision space, and that is what AHP is all about.

6-3.2 TESTING THE PARTS

Now, each of the A; pairwise decision matrices describe the needs of the customer
with respect to its part, be it ETCS, door control, communications. It is easy to describe
the functionality required to fulfil these needs by data movement maps, and verify
effectiveness of the implementation by the Functional Effectiveness transfer function E;.
E; maps the user stories onto customer’s needs, by counting data movements needed

- 118 -

to implement certain user stories, and thus assigns data movements to user stories.
These transfer functions are described by matrices that are not square; typically, many
more user stories are needed to implement needs of the customer, than needs itself.

For the user stories, a profile results that describes the importance of the functionality
described by the user story to the customer in view of the stated needs y;. Let u; de-
scribe this profile. Its dimension is the number of user stories needed to implement

the topics decided with A4;.

For each of these sets of user stories with profile u;, an initial set of test stories is
needed to cover the user stories with tests, together with an initial sample starting set
of test cases. The resulting test coverage matrices F; map test stories onto user stories,
again based on the data movements executed in the respective test cases. In turn, its
solution profile we denote by s;. By definition, F;s; = u; holds up to the convergence
gap. This nearly equality ensures test coverage for each of the i hierarchical part ap-
plications, referring to the A; pairwise decision matrices for the initial needs of the

customer per part application, for i = 1, ..., k.

6-3.3 DOOR CONTROL

The creative task is inventing such test stories and test cases that effectively test the
implemented functionality. The initial needs of the customer help managing the com-

plex system and its setup.

Figure 6-6: Pairwise Comparison for Door Control

‘2\
o> 2
f=s ©
> 2 %
Q. (=}
s £ 0O
— g8 = 8 2
AHP Priorities a < o s 2
= S S
F Door Controls S 2 8 weight IS
FO1 Door Sensing 1 15 1 19% 3 (037 A
FO2 Anti-Trap Sensing |5 1 1 50% 1 |os1
FO03 Door Closure Safety |1 1 1 31% 2 0.5 .

Figure 6-7: User Stories for Door Controls

User Stories Asa... | want to ... [get such that ...[quality so that ... [value or
Topics [functional user] something done] characteristic] benefit]
1) Q001 Stop Train Operator ~ open all doors passengers can leave the exchange is fast
train and new passengers
can bord
2) Q002 Start Train Operator close all doors no passengers are startis fast and
trapped in a door according schedule
3) Q003 Safety Train Operator ~ getan alertforany door [can block defectdoors passengers recognize
left open or needing when stopping door that are out of
repair operation
4) Q004 Pressure || Train Operator lower the air condition doors do not produce air cabin pressure does not
pressure blow when opened interfere with door
opening

- 119 -

These four user stories explain the basic functionality of door controls and implement
the Door Control operators” needs effectively, as shown in Figure 6-8:

Figure 6-8: Functional Effectiveness for Door Controls

Door Controls User Stories
Deployment Combinator @

o s

S o

= (<4 [

a > 2| 2

|8 &8 & 8|5

S |lH b B al<

S 8 8 2
Door Controls I<ER<BR<-BRs|
FO1 Door Sensing 0311 4 4 921037 -
FO2 Anti-Trap Sensing 081 6 8 3 6|08 1
FO3 Door Closure Safety 0.50| [G 4 |048 -I
Solution Profile for User Stories: | 0.58 0.53 0.35 0.50 | Convergence Gap

007 @

48 Total Effort Points
0.10 Convergence Range ’
0.20 Convergence Limit

With functional effectiveness, we know which data movement is assigned to which
user story and therefore we can calculate test coverage, give a suitable set of test sto-
ries, just by looking at the data movements executed by the test cases defined per test
story:

Figure 6-9: Initial Test Coverage for Door Control

Test Coverage Test Stories
Deployment Combinator ® °
f=] >
o S
S 3 o | 2
Sl s 2 5 g ERECERS
S8 25 8§ 2 g2 2|8
— = 7] [o o o o . 2
s|g8 &8 8 8 8 = 8 8|%
O|lO0O o O o o < =Z2 ao|<
AR IS T B BT BT B A Bl
3 < < o m m m O O
User Stories = 8 &8 ¥ 6 © < ©
N 1
Q001 Stop 0.58]| 10 27 19 7 8 4 4 |o63 0
Q002 St 0| 7 1211917 7 4 5 5o
Q003 Safety 05 6 6 3 1019 17[esr ™
Q004 Pressure 05| 61001615 6| 3 | 4 4 |o46 -‘
Ideal Profile for Test Stories: | 0.23 0.23 0.66 0.52 0.20 0.21 0.23 0.22 |Convergence Gap
0.08 @
280 Total Test Size ‘ |
0.10 Convergence Range
0.20 Convergence Limit

Figure 6-9 explains how to test door controls (the data movement map shown in Fig-
ure 6-3). For the details of the initial test cases for the eight test stories addressing door
control functionality, we refer again to the shared cloud data accompanying this book

(Fehlmann, 2019).

- 120 -

6-3.4 TERMINOLOGY

Note that locking doors has another meaning when looking at door control from the
traction or ETCS standpoint than from door control itself. Locking doors - and some-
times even side-specific door locking — is a precondition for the train departing. Unlocking
when stopping at stations is necessary for letting passengers disembark.

Thus, terminology plays a role when door control talks to ETCS or traction, and this is why we
chose the Terminology Application as next part of the D°’TLDMUTS software; see Figure

6-4 for the data movement map.

Figure 6-10: Pairwise Comparison for Terminology

AHP Priorities

G Terminology

G01 Audio Clarity
G02 Visual Clarity
G03 Data Interpretation |5
G04 Consistency

G01 Audio Clarity
G02 Visual Clarity
G03 Data Interpretation
G04 Consistency

= N « & | Ranking
P

Six user stories are needed for implementing the Terminology priorities:

Figure 6-11: User Stories for Terminology

User Stories As a...[functional |wantto ... [get such that ...[quality so that ... [value or
‘Topics user] something done] characteristic] benefit]
1) Q001 Audio Train Operator have an audio stream | can transmit audio they understand and are
‘ messages to passengers advised
2):Q002 Information Train Operator have freely I can transmit all necessary passengers are informed
programmable video information to passengers about connections and
| information screens train statuses
3) Q003 Entertainment | | Train Operator use video screensfor passengers can followthe they know where they are
i ads and news train ride and where they about fo
‘ go
4)3Q004 Train Status | |Train Operator see the status of all | can perceive component train failure can be
! systems running the failure early enough avoided
‘ Double-Tiddlemutzz
5) Q005 Terminology | |Train Operator address all components each SW components | can combine part
in their own language receives the information it~ systems of various ages
! understands and generations
6) Q006 Training Train Operator train the terminology communication improves wear and tear can be
| broker over time combated

Functional Effectiveness is calculated the way same as before. Note the strong focus

on G04: Consistency:

- 121 -

Figure 6-12: Functional Effectiveness for Terminology

Terminology User Stories
Deployment Combinator ©
. IR
5 s £ £ B =
b =S s °
S, E g > 2 2ls
Zls & 2 § E 5%
| £ d F | <
S 8 8 & 8 ' 8
Terminology S 8. 8. 8 35 5
GO01 Audio Clarity } 21959 0.11J
,GOZ, VVisggl Clrarityr - - 9 |l 9 5 , 028)
G03 Data Interpretation 9 6 117 6 0.46
G04 Consistency 1011 1313 7 16/os83
Solution Profile for User Stories: | 0.37 1 0.43 0.47 0.48 0.29 0.38 |Convergence Gap
0.07 @
141 Total Effort Points
0.10 Convergence Range
0.20 Convergence Limit

With 13 test stories, we can cover the six user stories for Terminology:

Figure 6-13: Initial Test Coverage for Terminology

Test Coverage Test Stories
Deployment Combinator o
[aa (]
> > > >
S8 2 . s & B o §
3|1 2 8 8 s & EF £ o | 3
Slg s 552 ¢85 &< ¢ B8
2|2 g 4 € 2 = 8 g8 £ 2 £ & £|°8
Sl 85 & ¢g28 8% 852 58
&) E 2 B & 8 §5 £ % = = = o | =
8|5 34 2 && 3 8243838 3|2
_ 295353358 8w e
User Stories R R SRR =
Q001 Audio 037(93 14 992 55 9 8 8 2 6 9o j
Q002 formaton 061015/ 6 1 9 1110 9 9 1414 2 7|oss B
Q003 Ertetanment 07|13/ 9 15/13 18 10 10 16 11 6 12 §|os0 =
Q004 Tran Staus 06 8 1014 7 17 8 1014 11 6 12 6 |os &
Q05 Terminology 029 40610 2 2 16 14 13 15|02 5
Q006 Teining 0% 4 4 8 4 8 12 4 6 14 6 25 17 W
Ideal Profile for Test Stories: [0.31 0.28 0.26 0.20 0.32 0.21 0.29 0.30 0.25 0.31 0.31 0.21 0.30|Convergence Gap
0.05 @
682 Total Test Size
0.10 Convergence Range
0.20 Convergence Limit

Again, the details are left to the reader using the cloud data accompanying this book

(Fehlmann, 2019).

- 122 -

6-3.5 THE HIERARCHY COMPARISON

The hierarchy comparison not only serves for connecting part comparisons but relies
itself on software connecting the part solutions. It therefore has a data movement map
describing functionality of its own that in turn must be effectively implement how
parts interact. The data movements also play a role when extending initial test cases
with ART; the test assertions travel along the data movements to extend test cases

within existing test stories.

The pairwise comparison for the hierarchy comparison defines another operators’
needs profile that serves as the goal profile for user stories describing the functionality
of combining all the various D’TLDMUTS services into one train steering and control
functional working place. Thus, we can again analyze and test this piece of software
using the other applications as services - assuming already tested services.

The hierarchy comparison AHP is shown in Figure 6-14:

Figure 6-14: Pairwise Comparison for the Hierarchy

AHP Priorities
Hierarchy Comparison

A ETCS 3
B Instrumentation 1
C Traction 13 3
5

1

B Instrumentation
C Traction

D Electricity

E Comfort

G Terminology
H Maintenance

D Electricity 19
E Comfort 1/5
F Doors 1 113
G Terminology
H Maintenance

_N WA N GN Ranking
(<}
N
~

The following user stories (Figure 6-15) implement these operators” needs:

Figure 6-15: Functional Effectiveness for Combining the Hierarchy

;Topics

‘User Stories
1) Q001 Traction

2) Q02 Comort
3) Q003 Stop

4) Q004 Monitor

Asa...
[functional user]

Train Obefafor '
Train Operator

Train Operator

Train Operator

| want to ... [get
something done]

have the train running

smoothly

to ensure convenient
conditions for
passengers

make passengers exit
and enter the
Tiddlemutzz

know the wear & tear
status of all components

such that ...[quality
characteristic]

all Systérhs work tbgethéf
comfort is maintained

exchange is fast

failures can be prevented

so that ... [value or
benefit]

energy consumption is

minimized
passengers feel well in
the Tiddlemutzz

train stops can be kept
short

maintenenace can be
scheduled as needed

This is a typical case of combining services. Many services are needed to fulfil basic

functional needs.

- 123 -

Figure 6-16: Functional Effectiveness for Combining the Hierarchy

Hierarchy Comparison User Stories

Deployment Combinator o
=
° S
5 =
e c = o
T |5 5 S| 3
HEBIEIEE:
G|l O &» = | <
5 8 8 3
Hierarchy Comparison S 8 8 &
A ETCS 8 7 8 11fov/
B Instrumentation 379 0.243
C Traction 4 7% 0.243
D Electricity 4 92 4 0 0.221
a
E Comfort 0.24
£ Gomot § 9 7|0
F Doors 8 14 0.333
G Terminology 1113 7 0.435
H Maintenance 9 2 4 99]05 |
Solution Profile for User Stories: | 0.50 0.56 | 0.37 = 0.54 | Convergence Gap
005 @
193 Total Effort Points
0.10 Convergence Range
0.20 Convergence Limit

Test coverage is calculated the same way as before (Figure 6-17):

Figure 6-17: Initial Test Coverage for Combining the Hierarchy

Test Coverage Test Stories
Deployment Combinator ® °
(=2} f=]
g g
3 g
Sls § &§ 5 s z & 8
b7 = 3 = = o4 3 °
S/ £ 8 2 28 8B & 2 5 £ 5|85
Gl © ¥ € 6o & D o < O o<
-
_ T2 2 % a5 0 5 oa wd
User Stories = 8§ 5 T 6 o < & &5 2 <
Q001 Traction 050(22 8 14 9 1627 18 16 22 15 10|04 3
Q002 Comfort 086(11 9 7 21 6 26 17 20 29 36 1 |05 5
Q003 Siop 07|28 1419 1625 15 5 8 3| 6|0 W
: R -+ : ’ e
Q004 Monior 05415/ 10 7 178 20 5 2 2 38 57jo
Ideal Profile for Test Stories: | 0.33 0.18 0.20 0.23 0.20 0.44 0.24 0.20 0.28 0.46 0.39 |Convergence Gap
0.06 @
683 Total Test Size
0.10 Convergence Range
0.20 Convergence Limit | | l ‘ ‘

Combining the previous test coverage matrices yields an initial test coverage matrix
for the complete D’TLDMUTS (Figure 6-18):

- 124 -

Figure 6-18: The D2TLDMUTS Initial Test Coverage Matrix, with the Combination App and the first two Part Apps - for Terminology and Door Control

Test Stories Test Stories Test Stories

2 2

g o | & g

3 o £ E g 228 . 2 o - o

©ls &§ & § s =& 2 22 5 28 8 5 £ 5 3 . 2 2. g 3 @ 5 8

Il 8¢ 5 €3 2 5 218 8 3 g ¢ 2 2 8 £ 5 &5 5|8 o 8 83 » & 2

cls § &8 5 £ & & 2 2 /=2 8 2 £ 2 = 8 & £ 8§ 8 2 |8 5 o g & & x 5§

|8 2 3 © 8 g 8 ¢ £ E g8 £ £ 5 885 5 5 g 22 &5 28 8 8 85 8 2 % s

s|8 &§ 8 £ € & ® B & = 3|L£ &5 =T & & L g s & 8 & g |8 o © 8 8 = 8 8

Ol O £ <« oo o D o < o o|laoa o &»n £ [= P R Z »n g DO ia O o Ao < = (=

- — -~ N - — — ~ N - N — — —
, 2 2 2 3 @ 66 a6 oYY IS Ed s 0 0o e W e el 3N 3 E 300

User Stories = 8 5 . 6 & & & &5 2 Tl 8dls S 6 &6 s &5 2 - ¥ 228 5 F 6 6 < &
Q001 Traction 050(22 8 14 9 16 27 18 16 22 15 10 048 :
Q002 Comiort 0511 9 7 21 6 26 17 20 29 36 1 Y
Q003 Stop 037|128 14 19 162515 5 8 3 6 037 ﬂ
Q004 Monitor 05415 10 7 17 8 20 5 2 2 38 57 0.59 I
Q001 Audio 0.37 23 14 9 2. 5/5 9 88 2 6 9 036 5
Q002 iormaton 043 1015 6 4 9 1110 9 9 1414 2 7 03
Q003 Eneriainment 048 14 9 16/1519 11 1016 11 6 12 8 0i
Q004 Tran Siaus 047 S 1014 717 S 1014 11 6 12 | 6 Y
Q005 Terminology 0.29 4610 2 216 14 13 15 0.29 j
Q06 Training 0.38 44,8 48 12/ 4 6 14 6 2517 0.38 ﬂ
QO01 Stop 0.58 10 M19 7 8 4 4 0.63 -I
Q002 Start 0.53 v 121917 7 4 5 5 054 :
Q003 Safety 0.35 6 6 3 10 19 17 031 j
Q004 Pressure 0.50 6 101615 6 3 4 4 0.46 q

Ideal Profile for Test Stories:

- 125 -

6-3.6 THE FULL TEST COVERAGE MATRIX

To build the full test coverage matrix F, it is not good enough to add the sequence of
test coverage matrices F;, because the parts are of unequal importance for the cus-
tomer. However, when multiplying each of the matrices E; and F; by the respective
component of the solution profile y; for the hierarchy comparison, the profiles remain
the same and adding these matrices together yields a transfer function from all test
stories into all user stories, thus the full coverage matrix. Additionally, its convergence
gap remains small because the convergence gaps of the part matrices were already

small.
Kk
F=Z§71Fi, i=1..,kkeN;k>0 (6-2)
I=1

The matrix F is sparsely filled: no test cases exist outside of the diagonal part matri-
ces F;. This means that no test cases cover the interactions between different part ap-
plications required by the A;. However, such interactions exist and are essential for
proper functioning of the whole complex system. Also, the initial set of test cases con-
tains enough test stories that suggest test cases linking different part applications. In
the D?TLDMUTS case, suitable test cases use the Combination application and even-
tually the Terminology application to move data across the other part applications.

Finding the relevant test cases for these test stories seems not difficult at all; except
that there are quite a few. The real D2TLDMUTS has not only eight hierarchy levels
but many more, and its part applications contain much more than just a few dozen
functional size units. Consequently, the matrix becomes quite unhandy - for humans.

6-3.7 EXTEND THE TEST CASES

Not so for ART. Automatically extend the test cases in the white space requires noth-
ing else than the application of the testing blockchain algorithm. The terminology ap-
plication is paramount for combining test cases from various applications. Combining
test cases from different parts of the diagonal also does the job, using combinatory
logic.

The essence is that when selecting relevant test cases, the convergence gap must stay
small while test intensity increases. The selection process depends from the effects on
the convergence gap, just as with any other instance of ART.

This process of generating test cases and selecting those that keep the convergence
gap small is not limited except by practical considerations how many tests eventually
can be executed.

- 126 -

6-3.8 DO THE TESTS

Because the next step is executing the tests. If tests fail, fix defects found and re-execute
the tests again with more test cases. These tests run on digital twins, if possible. It is
not necessary to use a physical D’TLDMUTS; although a mockup would be helpful to
test the wiring technology - which might be less that state of the art - and sometimes
the networking technology is stone-age in real train systems.

Tests executed in the mockup can take as much time as needed; the ‘real-time” adjec-
tive is optional now. Nevertheless, given that time is always precious, setting a time
limit to extensive testing as still a valid idea. Testing can stop if no defects can be found
anymore. There exist techniques that allow predicting the number defects not found
yet; e.g., by using the exponentially weighted moving average as a sort of dynamically
calculated control chart, proposed by Fehlmann & Kranich (Fehlmann & Kranich,
2014-1). Moreover, testing intensity - the average number of times a data movement
is executed for testing - is another metric that allows determining when to stop testing.

6-3.9 PUT THESE COMPLEX SYSTEMS IN SERVICE

Now it is time to build these wonderful new railway cars - this needs a considerable
amount of time, anyway - and try the complex new software-intense systems in the
real world. There will be problem:s still, especially if the design was not excellent; how-
ever, these will rather not be software problems. There is reasonably good hope that
ART already uncovered such problems and developers had time to fix it before the
D?TLDMUTS goes into commissioning with the train operator.

6-4 OPEN QUESTIONS

One of the things that would be of highest interest is knowing which cell values must
be increased to close a convergence gap. Such a sensitivity analysis seems not impos-
sible since the coefficients are linear and thus increments as well. However, the prob-
lem lies in the Eigenvector. It is well known that this kind of solutions have jumps; the
primary eigenvector jumps from one position into the other. While small increments
still might behave linearly, the jump from one principal eigenvector to another can
happen anytime and is difficult to predict. The solution profile also has jumps and
does not behave smoothly. We have no solution yet for this problem. For this reason,
trying to identify the behavior of a certain cell is probably as hard as calculating the
whole matrix.

- 127 -

6-5 CONCLUSION

Extending tests by artificial intelligence becomes surprisingly simple once the under-
lying combinatory algebra is considered.

Note that these techniques can be applied even if little is known about how the part
applications have been programmed. All that is really needed is a good investigation
into what are the needs of the customer, e.g., the train operator.

Is this technique possibly useful for testing Artificial Intelligence (Al) itself? Remember,
Al is basically a program whose algorithmic design is unknown; part of the training
that the SVM received instead of the traditional programming.

- 128 -

CHAPTER 7: TESTING ARTIFICIAL
INTELLIGENCE

Autonomous cars rely on visual recognition systems that use Artificial In-
telligence (Al) for recognizing objects; for instance, an ADAS. They can be
trained but they can also unlearn.

Testing image recognition systems requires creating new test images that
can be used for Autonomous Real-time Testing (ART) of Advanced Driving As-
sistance Systems (ADAS) and autonomous vehicles. This is achieved with a
data movement map according ISO/IEC 19761, serving as a model for image
recognition.

7-1 INTRODUCTION

The death of Elaine Herzberg (August 2, 1968 - March 18, 2018) was the first recorded
case of a pedestrian fatality involving an autonomous car, following a collision that
occurred at around 10 PM Mountain Standard Time (UTC -7) in the evening of Sun-
day, March 18, 2018 (The National Transportation Safety Board, 2018). The following
narrative is extracted from the said source.

Herzberg was pushing a bicycle across a four-lane road in Tempe, Arizona, United
States, when she was struck by Volvo XC90 taxi outfitted with a sensor system, oper-
ated under test conditions by Uber. Since 2015, Uber conducted tests with various lev-
els of automation in Arizona. The car was operating in self-drive mode with a human
safety backup driver sitting in the driving seat. Following the collision, Herzberg was
taken to the hospital where she died of her injuries.

According Uber, the accident was largely caused by the software that decides how the
car should react to objects it detects. The car’s sensors detected the pedestrian, who
was crossing the street with a bicycle. Uber’s software first registered Elaine Herzberg
on lidar six seconds before the crash — at the speed it was traveling, that puts first
contact at about 115 m away. As the vehicle and pedestrian paths converged, the self-
driving system software classified the pedestrian first as an unknown object, then as
a vehicle, and then as a bicycle with varying expectations of future travel path. The
software decided it did not need to react right away. Like other autonomous vehicle
systems, Uber’s software can ignore “false positives,” or objects in its path that are not
an obstacle for the vehicle, such as a plastic bag floating over a road.

- 129 -

Then, 1.3 seconds before impact, which is to say about 24 m away, the self-driving
system determined that an emergency braking maneuver was needed to mitigate a
collision. According to Uber, emergency braking maneuvers are not enabled while the
vehicle is under computer control, to reduce the potential for erratic vehicle behavior.
The vehicle operator is relied on to intervene and act. The system is not designed to
alert the operator. The Volvo model’s built-in safety systems — collision avoidance
and emergency braking, among other things —were also disabled while in autono-
mous testing mode.

The self-driving system data showed that the vehicle operator intervened less than a
second before impact by engaging the steering wheel. The vehicle speed at impact was
62 km/h. The operator began braking less than a second after the impact. The data
also showed that all aspects of the self-driving system were operating normally at the
time of the crash, and that there were no faults or diagnostic messages.

The dead of Elaine Herzberg raises one major question: Why were the visual recog-
nition systems tested in real life situations, instead of under labor conditions?

7-2 HOW TO TEST ARTIFICIAL INTELLIGENCE

Computer Vision and Artificial Intelligence (Al) overlap. Al is different from ordinary
software by its capability to learn. This means, Al can adapt to new environments,
data, images and videos. While Al can be used for other tasks, computer vision is con-
cerned with the theory behind artificial systems, extracting information from images.
Areas of Al deal with autonomous planning or deliberation for robotical systems to
navigate through an environment. A detailed understanding of these environments is
required to navigate through them. Information about the environment could be pro-
vided by a computer vision system, acting as a vision sensor and providing high-level
information about the environment and the robot.

Al and computer vision share other topics such as pattern recognition and learning
techniques. Consequently, computer vision is sometimes seen as a part of the Al field.
Testing Al in computer vision obviously is not so straightforward; mainly, because it
is not possible to predict what is the correct outcome. The test case might produce
different responses, and all are correct at a given state of experience collection.

Recall that Al basically is sorting data into categories based on previous learning, or
sample sets. The Uber car did exactly that when its Lidar, and ten visual cameras,
recognized the object moving towards the car’s driveway (The National
Transportation Safety Board, 2018). The difficulty was to find the right category. Hu-
mans encounter the same difficulty, when a biker enters the road from the pedestrian
sidewalk. Expecting a pedestrian, they rapidly must adapt categories to a bicycle that

- 130 -

moves differently and follows different traffic rules than a pedestrian. Things become
even more complicated if suddenly the pedestrian conjures up a skateboard, or a
scooter. Traffic rules for the latter two conveyances are unknown, or do not exist. Hu-
mans are disturbed, and so are visual recognition systems.

Since the important contribution of the visual recognition system is categorization, it
should be tested whether categories detected by the visual recognition system remain
the same over its lifetime. But that is not enough. Behavior on certain sample image
sequences should also remain stable - except if new learnings tell it otherwise. Obvi-
ously, tests must adapt to learnings. On the other hand, learning systems can become
neurotically disturbed - sick, like humans (van Gerven & Bothe, 2018). Thus, this is a
case for Autonomous Real-time Testing (ART). For using Al in safety-critical environ-
ments, testing Al is required anytime, autonomous, without human intervention.

7-2.1 BASELINING
You start testing Al as any other software

e Identify the software under test
e Identify the goals of testing
e Draw a data movement map that explains the user’s view on its functionality
e Calculate functional effectiveness to make sure it does what users expect
e Adjust scope of testing until goal and functional effectiveness converge
e Prepare the test stories:

o Identify new test stories

o Fill test stories by test cases

o Calculate test coverage
e Repeat above three steps until test coverage converges
e For each test story, generate more test cases:

o Apply the test case variation rules defined in Table 5-3

o Thus, generating even more test cases

e Repeat generating more test cases per test story until test coverage converges

Perform the tests and validate test stories and test cases. Identify defects and remove
them, or mitigate them, until your system is defect-free.

7-2.2 EXTENDING TEST CASES

Use the algorithm explained in section 5-2: Generating New Test Cases to expand the
test suite. Consider the Al domain when expanding the testing blockchain. For

- 131 -

instance, for traffic vehicles, use video sequences form traffic scenes to add to new test
cases. Use video sequences that have been used for deep learning and other who were
not. You must manually classify the videos for the category of traffic it represents; it
is therefore the same kind of work for testing as for learning,.

As always with ART, you keep the test stories from the initial test suite stable while
adding more test cases to improve test intensity and to detect more defects. For visual
systems, the primary source for new test cases are new images and videos.

Keeping test coverage good enough is somewhat easier than in other ART instances,
since you only exchange test data. You do not change the aim of testing; not even
incrementally.

7-2.3 INTERPRETING TEST RESULTS

In fact, it does not matter if you take all learning videos for testing or not. It is unlikely
that you get a higher degree of trust in your Al system whether you show him only
all tests in advance. Unlike humans, who might remember learning videos but need
extra effort to verify their learning, machine intelligence always can recall what they
once have seen before; but the question is whether they still put those videos in the
same categories as in the beginning.

The aim of Al testing is to verify stable behavior in categorization as previously
learned. This is different from human learning where humans should be able to inter-
fere correct evaluations from their skills. As already mentioned, there is nothing intel-
ligent with Al Testing machine intelligence means verifying that the software keeps
identifying the same categories and does not change them. Testing Al remains simple
while no new categories are added.

If something else is being tested than categorization, interpreting test results can be-
come quite difficult. Remember that test results should be known in advance. Al be-
havior is not known before.

Evaluating test results is therefore a manual task, supported by Al but delegating re-
sponsibility back to the humanin case the response of the test case is something else
than one of Al’s established categories.

Adding another category to Al is connected to re-learning from scratch. You must
supply all given evidence again and accept that the category borders move. In such
cases, testing Al also starts from the beginning with establishing a new baseline.

- 132 -

7-2.4 NEVER STOP TESTING - REPEAT TESTING FOREVER

Not only learning data changes, categories themselves are not except from change.
Certain categories such as legal behavior in traffic are also subject to change and must
be adapted to new environments and facts. Testing Al will detect such changes.

Therefore, for the lifetime of the Al system, testing must repeat. Al systems consist not
of stable, always repeatable software but depend from their environment. If the Al
system fails to reproduce correct answers, it might indicate a shift in the learning data
and probably learning must restart from the beginning. Such restarts are typically re-
quired, for instance in traffic, if new conveyors appear, such as scooters, electro-scoot-
ers, electro-bikes, and if rules change, for instance if fast electro-bikes are no longer
admitted on cycle paths.

Testing Al happens typically if the Al system is idle. Only in rare cases a test that
interrupts and competes with actual operations might be useful, for instance when
encountering unexpectantly a new environment. If a car unexpectedly meets local traf-
fic that is typical for urban areas, and the car believes it is overland, then it might
indicate the need for retesting the map services used. When map service problems can
be excluded, the car might run through a newly developed housing area - or a squatter
habitation - and inform its map services about this. The map service can then decide
from this and similar notifications whether it needs adjourning the map.

7-2.5 LOCALIZATION

There are also other geographical factors. For instance, in certain countries a pedes-
trian moving towards a pedestrian crossing causes car traffic to stop. Pedestrians have
priority. In certain other countries, if you stop your car to let a pedestrian strip, you
risk a rear-end collision. Other road users would be surprised. Such differences in the
practices adopted in road traffic can exist despite quite similar road traffic regulations.

This makes ART not simpler. To use the same test suite for different locations involves
the risk that such local practices are not reflected. In such cases, an autonomous car
that “learned” driving in one country is not easily acceptable on other roads.

7-2.6 - WHEN TO TEST ARTIFICIAL INTELLIGENCE?

We already mentioned that Al must be testable “anytime”. Nevertheless, no system is
anytime available for testing. The typical times a system does ART are when idle.
Since idling can be stopped anytime, running tests too must be able to stop immedi-
ately. This is possibly not so easy if sensors and actuators are involved that first need
being reset before use.

- 133 -

Users of Al systems therefore must be able to see when their system is running tests.
It is also recommendable that users see results of tests. Section 1-4.2: Consumer Metrics
proposes a standard how to represent test results for consumers. It is obvious that
such representations are complimentary to the full test suite records that are probably
of more interest to the system supplier than to the consumer.

7-3 A DEEP LEARNING APPLICATION AS A SAMPLE

We take our first example from Chapter 4: Testing Privacy Protection and Safety Risks and
use it now to demonstrate how to test the Look & Act in ADAS as shown in Figure 4-3.

7-3.1 XAI - EXPLAINABLE ARTIFICIAL INTELLIGENCE

However, we must go deeper into the details without really knowing how the Visual
Recognition System (VRS) works. Interestingly, we do not need to know how the VRS
was implemented. It does not matter whether the VRS uses programmed algorithms
or whether a neural network has learned to behave correctly.

An automatic generation of the data movement map is not possible without code. But
we can draw a data movement map that delivers what we want, using our under-
standing of the VRS. The ISO/IEC 19761 standard and the data movements maps en-
able software measurements without code.

Explainable Al addresses this problem - how can you understand and comprehend
decisions of an Al-enabled device that probably used deep learning to learn correct
decisions? Such devices are now omnipresent and gradually replacing older decision
algorithms that proved considerably less reliable but have code that can be assessed
and eventually understood. Nevertheless, regulators ask for explanations.

Theodorou provides a robust definition of transparency as a mechanism to expose the
decision making of a robot (Theodorou, et al., 2017). The Defense Advanced Research
Projects Agency (DARPA) conducts since 2017 a project providing explainable deci-
sion models and enable humans to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners (Gunning, 2017).

A data movement map explains any Al device consistently and effectively, the con-
vergence gap of the test coverage transfers function guarantees relevance. Regulators
would better ask for test coverage than whatever an Al device may produce as “ex-
planation”. Remember that it is quite easy for an Al system to learn what kind of ex-
planations humans accept. Whether those explanations guarantee correct decisions is
not part of the question asked.

- 134 -

7-3.2 THE GOAL OF TESTING

As before, we need the goal profile to do testing. These goals are not the same as the
car users’ needs for ADAS, and obviously we need dedicated user stories. First, the
user of the visual recognition system is not the car user, but the car itself, represented
by the car’s ADAS. Second, we focus on the visual recognition system and how it vis-
ually understands and interprets the environment using its cameras and Lidar. For
modeling this different viewpoint on testing (or explaining) the VRS, we clearly need
more data movements and thus we need to look deeper into the VRS app in Figure
4-3: Look & Act in ADAS.

Although this is an arbitrary viewpoint, we expect that three levels of decisions are

taken, and monitored, when executing the VRS app:

e A top-level decision: Is the object hard, soft, or possible a blur only? Sometimes,

fogs look like a cat, empty plastic bags simply fly around.

e The next level is whether the object moves actively, or passive, or not at all. This

requires sensing wind, rain and other weather events.

e The third level is assigning it a traffic category such as pedestrian, bike, other

car, or fixed installations such as a signal, a post, or curbstone.

With our preferred method for prioritization, the pairwise comparison or simple AHP,

we get the following profile (Figure 7-1):

Figure 7-1: The Visual Needs

AHP Priorities

Visual Needs Topics | |Attributes Weight Profile |
y1 Recognize Objects Distinguish from background ~ Movable Rolling or not 13% 032 |
y2 Impact Category Hard Soft 18% 046 || R
y3 Reaction Category Active Passive None atall 13% 03 (1R
y4 Traffic Category Cars Bikes Pedestrians 10% 025 | R
y5 Movement Direction Speed Variability 2% || o057 |I R
y6 Blur Resilience Minimum outline Fog Snow or rain 8% 019 |
y8 Distance Lidar measurements 16% 040 | R

The decisions originate from the following AHP (Figure 7-2):

AHP Priorities
Visual Needs

Figure 7-2: The Visual Needs Priority AHP

y1 Recognize Objects

y1 Recognize Objects

y2 Impact Category

y3 Reaction Category

y5 Movement

y4 Traffic Category

y6 Blur Resilience

y8 Distance

y2 Impact Category

3 Reaction Category

p] 1Y

i) y4 Traffic Category
5 Movement

< [

i y6 Blur Resilience

y8 Distance

@ N = o o~ | Ranking

It is not surprising that y5: Movement and y2: Impact Category are highest in ranking.
These are the most important visual needs for driving a car. On the other hand, y6:
Blur Resilience, the ability to recognize objects even in fog or precipitation, is a precon-
dition for the others, but by itself it is not dominant. Consequently, this strengthens
the point that an ADAS needs a Lidar; otherwise, recognizing objects and thus move-
ments and impact category is difficult to achieve if cameras only rely on signals in the
visible range. As usual, already the AHP points at some relevant technical challenges.

7-3.3 USER STORIES FOR THE VRS

The application modeled in Figure 7-4: Data Movement Map for the Visual Recognition

System (VRS) implements the following eight user stories (Table 7-3):

Table 7-3: Visual Recognition User Stories

Label Asa .. Iwantto .. Such that ... So that ...

Identify Car understand objects I donot hitany of Icanhavea

Objects ADAS around me them smooth drive

Identify Car understand which objects I can calculate my Icanhavea

Movements ADAS move and where they free way smooth drive

move

Identify Car distinguish objects from I get no false I do not stop

Dangers ADAS background environment alarms unnecessarily

Predict Car understand whether an I can predict I can adapt my

Reactions ADAS object moves actively or where it's moving route

passively

Identify Car identify traffic I can predict their I can adapt my

Traffic ADAS participants speed route

Collect Car extract relevant I understand my I can use

Images ADAS information from images environment experiences for
later learning

Blur Car have vision despite fog I can drive Bad weather does

Independence ADAS and precipitation despite limited not stop me

visibility
Plausibility Car be sure the VRS returns a I can rely on its I won't get
ADAS valid object catalog findings disturbed

The data movement map in Figure 7-4 on the following page implements these user

stories.

- 136 -

Data Movement Map for the Visual Recognition System (VRS)

Figure 7-4

H 3D Model I

Plausibilty
Check
I

‘ ‘mgers & Disnnoei

‘ Frevious Dscision* I Top Layer] ‘ ‘Topcasgoriesl I Middle Layer J ‘ ‘Middle Cangoriesl l Botom Layer] ‘ ‘Bomm Cabgor\s* lMOVGWEﬂlDSBCbI']

',/

| Decision Organlzer]

2.// Record Images
2 3./ Remember Images

<
¢

Il Provide Images

T
¢

2 4./ Call Top Layer

5./ Start Top Layer

6.// Compare Top

s| &
3 R
ol O
8|
R
2
gl 2
2l 2
X o
g3
==
RS P
S
%
g
g
£
s
O
>

14.// Get 3D-Model

1

1

13.J/ Get Distance :
. I

)
<]
=
=
4
S
o
o
]
=
B
3
El
=]
2
=
]
»
]
T
3
2o
]
=
=
=
o
s

15.'// Record Middle Categon |

16.//lSeIeced Middle Category |

17.// Confinue? !

1 1 1
18.// Call Botiom L.
all Botom Layer, .
1 19.// Start Botiom Layer. !
&

20./ Compare Botom |

21.// Get Distance. 1

22,/ Get 3D-Model L

23 Record Botom Category 4

24./ Belected Botom Categon

$

25.// Confinue?

Moving?

26.// Moving Objects? J>

27.// Does it move?

28.// Compare,

29./ Moving Objects,

30.// Moving Objects

°
s
©
[$]
B
°
2
]
)

32.// Plausible_Objects? é

Plausible?

./ Check Plausibili

are 3D

34.J/ Cor

/1 Get Top Decisions |

36.// Get Middle Decisions,

37.// Get Botiom _Decision:

S

&

are

38.// Co

39.// Create 3D-Model

40.// Valid Objects,
3 41.// Save Valid Objects,

42.J/ Valid_Objects,

H
£

44.// Save Image Analysis,

- 137 -

Deploying the user stories against the visual needs yields the transfer function shown

below in Figure 7-6. Not surprisingly, Q004: Predict Reactions is the most important of

our eight short user stories.

Figure 7-5: User Story Priority

Priority

User Stories Topics Weight Profile |
1) Q001 Identify Objects 8% 0.23 R |
2) Q002 Identify Movements 11% 0.30 1
3) Q003 Identify Dangers 14% 0.38 |
4) Q004 Predict Reactions 19% 0.52 |
5):Q005 Identify Traffic 14% 0.37 P |
6) Q006 Collect Images 10% 0.26 R |
7) Q007 Blur Independence 8% 0.21 p |
8) Q008 Plausibility 16% 0.45 R |

Remember that we had no clue how our VRS determines the list of valid objects that

it recognizes. Possibly a Support Vector Machine (SVM) is used; see Gunn (Gunn, 1998),

and more recently Pupale (Pupale, 2018). However, we use our data movement map

model from Figure 7-4 to assess functional effectiveness with the later goal of testing.

Figure 7-6: Functional Efficiency — User Story Deployment based on Figure 7-4

Visual Needs User Stories
Deployment Combinator ® o
. 2 2 § . £ 2
2|8 2 & % &€ & ¢ &
5|8 2 8 & & E § Z|3
Slzlzlz sz 5|2 2|8
S| &5 8 8 8 s 5 =3|%
o | = = = o = (&) m o <<
~ N o oy Yol © ~ [e}
o o o o o o o o
Visual Needs S 8 &5 &85 8 &5 & &
ize Obj O 6 56 L
¥1 , VRVecorgrnr|ze Objects , 0.73727 4 2 ()7 51 6 , v I 4 0\?4 ‘
y2 Impact Category 046l 4 68 6. 6 8 6 7 0.48-
y3 ReactionCategory 032 4 4 (19 0.29-
y4 Traffic Category 025 4 3 6 6 6 0.28-
y5 Movement 0.57 6 612 8 6 6 9 0.55-
y6 Blur Resilience 0191 2 3 6 8§ 3 0.18.
y8 Distance 0401 6 6 2 : 06 06 11 0.39-
Solution Profile for User Stories: | 0.23 0.30 0.38 1 0.52 0.37 0.26 0.21 0.45|Convergence Gap
0.05 @

248 Total Effort Points
0.10 Convergence Range

0.20 Convergence Limit

There is a clear focus on predicting reactions and check distances for plausibility in

the data movement map. This is what we expect from a VRS but do not know how it

is implemented by the SVM or any other neural network. The functional effectiveness

matrix identifies the data movements that implement a specific user story.

- 138 -

Test Coverage is calculated from the following fourteen test stories:

1)
2)
3
4
5)
6
7)

8

9

10)
11)
12)
13)
14)

2

Figure 7-7: Test Stories with two Test Cases

A Objects

B Prediction

C Identification

D 3D-Model

Test Story
A.1 Object Contour
A.2 Object Move
B.1 Predict Move
B.2 Predict Collision
B.3 Predict Reaction
C.1 Identify People
C.2 Identify Child
C.3 Identify Car
C.4 Identify Truck
C.5 Identify Bike
C.6 Identify Blur
C.7 Identify Position
D.1 Use 3D-Model
D.2 Verify 3D-Model

Case 1 Test Data Expected Response |Case 2 TestData Expected Response
A1 {Object; Background} Contour exact A1.2 {Object; Fog; Background} Contour somehow
A2.1 {Object; Move active} Move Vector A2.2 {Object; Move passive} Move Vector

B.1.1 {Object; Move; Identity} Move Vector B.1.2 {Object; Move; Unknown} Move Range
B.2.1 {Object; Move Vector; Identity} Collision Point B.2.2 {Object; Move Vector; Unknown} Collision Range
B.3.1 {Identity} Move Vector B.3.2 {Object; Move Vector; Unknown} Action Range
C.1.1 {Pedestrian; Walking} Move Vector C.1.2 {Pedestrian; Stagnant} Action Range
C.2.1 {Child; Playing} Collision Range C.2.2 {Child; Watching} Action Range
C.3.1 {Car; Move Vector} Collision Range C.3.2 {Car; Braking slow} Collision Range
C.4.1 {Truck, Move Vector} Collision Range C.4.2 {Truck; Braking slow} Collision Range
C.5.1 {Bike; Move Vector} Collision Range C.5.2 {Bike; Stopping} Collision Range
C.6.1 {Object; Blur; Move Vector} Identify C.6.2 {Blur; no object} Identify

C.7.1 {Objects; Identified; Move Vectors} Move Model C.7.2 {Objects; Identified; Stagnant} Position Model
D.1.1 {3D Position, Identified, Move Vector} Move Model D.1.2 {3D-Model; Identified; Stagnant} ~ Position Model
D.2.1 {Move Model, Move Vector} 3D-Position D.2.2 {Objects, Stagnant} Position Model

There are many more than two test cases per test story; however, not

Based on this, we get the following test coverage (Figure 7-8):

Figure 7-8: Baseline Test Coverage

shown here.

Test Coverage Test Stories
Deployment Combinator ® °
> >
g ‘ ‘ ‘ g
S|s 5§ 8 @ &5 5 B3
S|€ ¢ 2 2% 82,5253 888
282028&‘&00%;5 oo = A3
5|12 2 8 8 8B 5 5 5 5 5 5 5 38 5|5
G0 0 ada a & 8B 2 T 3 3 3 =8 35 2|<
R R R R R R R T I sl B D I
) <|< d m m o O o o D = — =
User Stories S8 8§ 6 6 8 5 2 - 82 3
Q001" Identy Objects 023/36 21 1318 2211519 18121 16/ 15 13 22 15|02 .
Q002 Identfy Movements 030{421 21 20/ 13 23 14 13 23125 24|35 26 21 185|028 !
Q003 Identy Dangers 038| 1820 1624 34 28 36 23 27 2229 25 40 20|03 .‘
Qo4 PredictReactons(02{ 47 33129 27 44 36 46 34 31 33 24 24 84 3902
0005 identy Trfic 0| 0 |92 1821 42 3846 26 15 23 12 14 72 32[os1 W
Q006 Collect mages 02| 1116/ 1412025 19 26/ 18| 1819/29 20 31 19|07 &
Qw7 Bhrdependerce (021 7 141 16 112822 22 20| 1320 28 20 40 20[ozz B
Q008 Plausibility 04523 26 21 19 3729 30 23 16 2520 20 73 42041 !
Ideal Profile for Test Stories: | 0.24 1 0.22 0.18 0.19 0.32 0.26 0.31 0.23 0.21 0.23 0.22 0.19 0.51 . 0.26 | Convergence Gap
009 @
2838 Total Test Size
0.10 Convergence Range |
0.20 Convergence Limit ‘ ‘

The main test focus receives Q004: Predict Reactions; as expected. This can be seen

when enhancing the highest frequency cell by color, or bold type, display. Also, user
story Q008: Plausibility receives support by all tests; this is because results always flow
into the decision repository fueling later plausibility checks.

- 139 -

The need for the test stories D.1: Use 3D-Model and D.2: Verify 3D-Model became ap-
parent after it proved impossible to reach a convergence gap below 0.10 (10%) with
only the twelve test stories directly addressing ADAS functionality. Thus, the assump-
tion of the tester, that the VRS uses a kind of three-dimensional model to take in-
formed decisions, is supported by the ART testing algorithm. Whether the “intelli-
gence” inside the VRS does it this way, or another way, remains open but is irrelevant.

The total test size statistics looks as follows:

Figure 7-9: Baseline Test Status Summary

Total CFP: 44 Test Size in CFP:| 2838
Test Intensity:| 64.5
Defects Found in Total:| O Defect Density:| 0.0%

Defects Pending for Removal:) 0 | Data Movements Covered: 100%

An initial test intensity of 64.5 is not bad; it looks we have mapped enough data move-
ments to reach the necessary granularity that allows explaining and testing the ex-
pected qualities of the VRS, including plausibility checks and categorization of the
various traffic participants.

At least, we have an idea how to test a VRS before it hits the roads.

7-4 NEXT STEPS, AND A PRELIMINARY CONCLUSION

Clearly, a visual system needs more tests than those shown in this chapter. We use
ART to generate more test cases out of the fourteen test stories to increase test inten-
sity. However, at the current stage of research, we have no clue what test intensity is
enough for a VRS in an autonomous car.

Applying ART means adding more test cases, more image sequences, always with
respect to the convergence gap, aiming at improving it towards less than 0.1. The con-
vergence gap of less than 0.1 indicates that the current test suite misses the goal profile
by less than 10% (Fehlmann, 2016, pp. 13,31). This limits combinatorial explosion, as
it allows selecting relevant test cases only.

The basic idea how to deal with “untestable” neuronal networks and deep learning
SVMs is to create a model. This model describes what we think how it should work,
and then we use API Test Automation (Reichert, 2015) to ask the right questions to the
intelligent device, as indicated in the test cases. Obviously, this requires the ability of
the device to answer more questions that those primarily intended.

- 140 -

7-5 A SIDE NOTE

SVM, Perceptron, Combinatory Logic are all inventions of the first and second third
of the 20t century. The original SVM had been described by Vladimir Vapnik at times,
where he possible never had the opportunity to touch a computer except huge main-
frames without nominal computing power. The original combinatory logic algorithm
for generating new test cases - or formulas about tests - has been implemented in 1980
on a DEC-10 at the Center for Interactive Computing of the ETH Zurich, by the author
(Fehlmann, 1981).

There is nothing new about Al; it had been rediscovered and put to work because
finally computing power is available almost for free. And again, there is nothing in-
telligent about Al It is all about searching big data, and classifying vectors describing
objects of the real world.

Preparing the reference vectors for deep learning is hard work by intelligent, insight-
ful people. The same is true when preparing test stories and initial test cases for testing
Al The rest of the work is ephemeral: big calculations with much data elaborating on
the rationale of skilled humans.

However, the real beauty of all these stories is: all the ingredients are here, only need-
ing rediscovery. We only had to put old threads in a new way together.

- 141 -

CHAPTER 8: AGILE TESTING WITH
THE BUGLIONE-TRUDEL MATRIX

While functional effectiveness is enough to calculate test coverage automat-
ically, focusing in development on functional effectiveness alone does not
guarantee developing a product continuously towards increased customer sat-
isfaction. Customers might have other requirements than functionality alone.
Developers thus need to keep an eye on both, functional effectiveness and on-
functional customer needs.

This chapter describes modern software development that harvests on the
teams’ experience and expertise to continuously provide world-class customer
experience using the Buglione-Trudel Matrix introduced in the “Managing
Complexity” book of 2016 (Fehlmann, 2016).

Autonomous real-time testing is also useful for continuously observing and
measuring customer experience.

8-1 INTRODUCTION

Readers of the previous book (Fehlmann, 2016, p. 200ff) remember how the Buglione-
Trudel (BT) Matrix helps agile teams to organize themselves, elicit requirements and
adapt easily to changed goals in product development. The crucial point is to use the
value seen by customers also in a transfer function that is possibly not equal to the
functional effectiveness. The BT matrix complements functional effectiveness by tak-
ing non-functional requirements into account and develop work along the lines of
value perceived by the customer. The customer and its values are typically repre-
sented by the Product Owner. The BT matrix is basically an interactive story board for
agile teams where the story cards are valuated against the customer’s needs. The Story
Cards represent those parts of a user story that is selected within a given sprint. Often,
a user story splits into a functional story card, implementing functionality, and one to
several non-functional story cards, implementing quality characteristics that also need
time and effort.

For this, we distinguish the Sundeck and the Cellar of the BT matrix. Both are transfer
functions, mapping user stories, respectively its story cards, to customer needs. How-
ever, the sundeck is interactively designed by the development team, while the cellar
remains much more stable. The functional requirements in general are more stable
and less influenced by the development team than the quality, or non-functional,

- 143 -

requirements. However, all is subject to new learnings and change of environment;
the transfer functions adapt themselves and possible need rework to keep the conver-
gence gap low.

Figure 8-1: Deming Chain for Agile Software Development and Software Testing

CN — VoC
Voice of the = — Real’zat’on
Customer (VoC)] —
[| p—
#NPS, #AHP
Customer Needs Coverage Functional Effectiveness Test Coverage
StC — CN USt — CN
Y Customer Needs
Decision B — SINE— HHL
TSt— USt
Story Cards User Stories
Sty [T > (UsY) — ‘ ' | [
#Business Impact #CFP

|

Test Stories
(TSt)
#CFP

Formally, the Customer Needs Coverage and the Functional Effectiveness transfer function
look similar, since both rely on user stories. However, since the first uses the valua-
tions of the customer and the second the functional size for the matrix cells, its results
can diverge, and most often they do.

Since automatic testing is possible for functionality only, we can rely on the functional
effectiveness for assessing test coverage, while some of the quality aspects - if not
linked to any functionality - cannot be tested automatically. Whether some output
screen is readable and convenient to users, looking attractive, only users can tell, un-
less we can test its layout against certain ergonomic rules and regulations.

On the other hand, development must follow the customer’s priorities and provide
value. Such value can be other than functionality; for instance, does adherence to cor-
porate identity rules provide high value but no functionality.

- 144 -

8-2 STORY CARDS WITH TEST STORIES

To deal with these constraints and requirements, we use functional and non-func-
tional story cards, plus a mix of both. Story cards can have functionality to implement,
or simply call for adding value by adding quality features that affect things such as
ease-of-use, or appearance, or information presentation to humans; even to machine

users.

Thus, a story card describes one of the tasks needed to implement a user story, refer-
ences the functionality affected by such work, ideally as a data movement map, and
identifies the business value of this task. Thus, it might be that the business value does
not so much originate from the functionality but from other aspects such as establish-
ing credibility and trust among users of a software.

We use the ADAS example from section 4-3 and distribute its user stories on four
sprints. This yields a story card table as shown in Figure 8-2:

Figure 8-2: Story Table for ADAS

StOI'y Cards Requirement Responsible Scheduled for Effort Size

Card ID Label Description User Stories Developer Sprint StP CFP
Look Operate the Sensors Populated Area - Overture
Analyze Ask for Recommended Actions Populated Area - Overture
Understand Build 3D-model for Actual Environment Populated Area - Allegretto
Act on Obstacle Act on Obstacle Ahead Obstacle - Overture
Test Recommender |Write Test Cases for Recommender Obstacle - Overture
Inform Car User Design Car User interface Obstacle - Allegretto
Test Actuator Write Test Cases for Actuator Obstacle - Allegretto
Obstacle Recognition | Teach Recommender how to Distinguish Obstacles on the Obstacle - Finale
Locate Inform about Actual Position Know my Way - Allegretto
Navigate Connect to Map Services Know my Way - Allegretto
Inform Car User Design Car User Interface Know my Way - Overture
Test Navigation Write Test Cases for Navigation and Location Services Know my Way - Scherzo
Change Route On Alert, Propose Another Route Amend my Way - Scherzo
Test Routing Write Test Cases for Routing Decisions Amend my Way - Finale
Approve Change Let the Car User Decide which Route to Take Check my Way - Scherzo
Leam from Past Compare with Previous Experiances Check my Way - Scherzo
Adjust Speed Connect Route Information to Recommender Able to Stop - Allegretto
Inform Car User Show Car User the Car Driving Strategy Decisions Able to Stop - Scherzo
Arrival Time Keep the Arrival Time Updated Able to Stop - Finale
Total Story Points (StP) / Function Points (CFP): 176

StPfor FUR: 126

N 2NN 2NN =2 B0 20RO =W =

w

For instance, the user story Q001: Populated Area is implemented with three story
cards, spanning over two sprints:

e (Q001-01Q Look Operate the Sensors (StP: 8; CFP: 6)
e (Q001-02Q Analyze Ask for Recommended Actions (StP: 13; CFP: 4)
e (Q001-03Q Understand Build 3D model for Actual Environment (StP: 8; no CFP)

- 145 -

Looking at the three story cards that implement user story Q001: Populated Area, we
see one (Figure 8-3) that implements main functionality by accessing the sensors and
collecting data from them. The next story card (Figure 8-4) analyzes the situation and
provides recommendations for the ADAS. This story card has highest business value
as this is what the car user expects from the ADAS. The third story card is about how
the functional process FO01: Car Driving Function asks for action. To do this, it creates
a 3D model of the actual road situation, with predictions what the other vehicles and
people on the road are likely to do next, that it can submit to the A003: Recommender.

Figure 8-3: Q001-01Q: Look - Operate the Sensors

Story Card for Q001: Populated Area Story Points: 8 | Name: Susi | TS R AT A g A
Functional Size: 6 | Sprint: #01 - Overture P 0 0 0) 0
Q001-01Q: Look - e
| Business Impact: y1:2_ y2:2 y4:3 |
As a Car User, | want to Ietlmy car requce speed, such.thzlat my car can i T Cgmg VeRTY el e [T — m oo
safely stop, so that my car is not causing delays by an incidence : 4 ; B 4 4 : ; :
' ' ' ' 62'” Start Came@s ' ' | '

3J(Sypply Images ,
o5/ RequestDisince o
| | | 1 64/ Lidar Distance,
Operate the Sensors ! ! : .1 Bl Roauest ; ; ‘
28./Updete Locatong

| 29/ Compare it Acual Route, ;
i i A

A A

i é
%0 pganLosson
31/ Recaloulale Route ! ! ! : o

i
> i
32.// Adapt qgg
f

: 33//\nbrm<‘>
Figure 8-4: Q001-02Q: Analyze - Ask for Recommended Actions
Story Card for Q001: Populated Area Story Points: 13 | Name: _Heidi | Ready Rt e TR AP T
Functional Size: 4 | Sprint: #01 - Overture | D D D | D

’ Q001-02Q: Analyze

_ |Business Impact: yt:3 y4:6 |

Car Driving {
Recommender Eunotion Visual Recognition member Rout

- ? 10.// Analysis Result ' -
Ask for Recommended Actions | |
- A = 11.//Chosen Route 4
I T | ?

A 12.// Ask for Actions A
Y T

As a Car User, | want to let my car reduce speed, such that my car can
safely stop, so that my car is not causing delays by an incidence

@

| |
13.//Recommend: tion - -

The third story card has no extra functionality, since constructing the 3D model is
contained in the functional process FO01: Car Driving Function. It does not require extra
data movements - except if we change focus and granularity and ask how the various
functional users in the functional process FOO1: Car Driving Function perceive the steps
needed for car driving.

Thus, the last story card shown in Error! Not a valid bookmark self-reference. pro-
vides no new functionality in terms of data movements but implements the algorithm

- 146 -

needed to let the VRS make a recommendation. It is left open whether the mentioned
3D model is built by an algorithm or learned by an SVM or neural network. Most
likely, according today’s technology, it is the latter. In any case, the external applica-
tion A001: Visual Recognition (VRS) provides a suitable 3D model that can be used to
make recommendations for steering and acting by the ADAS. The actual recommen-
dation originates from another external application A003: Recommender.

Figure 8-5: Q001-03Q: Understand - Build 3D model for Actual Environment

Story Card for Q001: Populated Area Story Points: 8 | Name: _Paul Restle praftie Roview Final Appro- fung
Functional Size: 0 | Sprint: _#02 - Allegretto | | | |
Q001-03Q: Understand . .
’ Business Impact: y:2 y4:3

As a Car User, | want to let my car reduce speed, such that my car can
safely stop, so that my car is not causing delays by an incidence

Build 3D-model for Actual Environment

8-3 SELECTING TEST STORIES FOR STORY CARDS

He back of the story cards contains the applicable test stories. Since the user story
QO001: Populated Area is quite prominent for ADAS functionality, ten of the eleven test
stories (see section 4-3: ART for ADAS) are listed. Thus, the developers know against
which test stories their functionality will be tested. Test stories clarify requirements.
However, the aim is two ways: the developers are encouraged to write additional test
cases that they think relevant.

The selection of test stories on the back of story cards is automatic: all test stories that
contain a test case testing one of the data movements occurring in the user story are
listed. Thus, the story card Q001-03Q: Understand - Build 3D model for Actual Environ-
ment also features all ten test stories that affect user story Q001: Populated Area even if
the story card is not referring directly to any data movement. Nevertheless, it might
make sense since testing any of the non-functional quality characteristics involves
some functionality - otherwise, it would not be a test, rather a static assessment.

As you always need functionality to implement non-functional characteristics, you
always need functional tests for testing quality characteristics.

- 147 -

8-4 CREATING TEST STORIES BY THE DEVELOPMENT TEAM

Since our cards use “intelligent paper” - i.e., they are distributed and available elec-
tronically - adding test cases is a matter of harvesting developers intelligence for cre-
ating relevant tests. Thus, the test suite grows while the product evolves.

Obviously, tests run as soon as enough functionality is available. This is the same kind
of automated test runs that is usually in place for unit tests delivering the “green bar”
needed for the daily build.

Harvesting skills and intelligence of the development team - this is the reason why
we institutionalize collection of test stories and test cases while developers look at the
details of implementing user stories.

The back of the story cards is not immutable but is used to collect test stories and test
cases. Initially, when development starts, the test stories might even be missing, and
it is up to the development team to propose them. If every developer proposes tests,
it needs a Test Manager who collects these proposals, identifies when the same test
story is proposed twice, or a test case is assigned to the wrong test story. The test
manager arranges the back of the story cards.

8-5 TEST MANAGEMENT

Test management is probably the most important task in ART. That testing starts at
the beginning of any product development, is already clear. Most agile software de-
velopment uses Test-Driven Development (TDD) (Poppendieck & Poppendieck, 2007),
as already mentioned. ART extends TDD based on existing test cases and can be used
to increase test intensity already while developing the product.

Setting up the test stories goes in parallel with the user stories and controlling evolu-
tion of knowledge all through the development stages and sprints by functional effec-
tiveness and test coverage transfer functions starts at the very beginning of product
development. Especially, if the product is complex or safety critical.

8-6 CONCLUSIONS

Thanks to the ongoing controlling of convergence gaps in all transfer functions in-
volved, developing software even for safety critical application such as automatic
driving, for artificial intelligence, or for complex software-intense systems becomes
feasible.

- 148 -

Technology advances cannot become successful without developing suitable control
mechanisms as institutionalized with software testing. The dream of autonomous ve-
hicles seems nowadays, by mid-2019, remaining a dream. Whether ART alone can put
the dream into reality is not sure. ART detects defects and avoids fatal failures but
does not solve the problem how to drive through Naples or Delhi. There human-to-
human communication between car drivers is much more important than sensors and

car-to-car communication.

Nevertheless, the future is with software-intense systems; but the future still lacks
ART. Developing tools for ART is probably right now the most urgent task for the ICT

community.

While it is not sure whether ART helps avoiding catastrophic failures, ART creates an
open space, the combinatory algebra of arrow terms, where unthinkable test cases
have a well-defined place. While Al, as already stated, is not intelligent, Al can help
people to think much farther than ever and anticipate consequences of their new tech-
nology that they are going to develop and impose on society.

- 149 -

BIBLIOGRAPHY

Akao, Y., ed., 1990. Quality Function Deployment - Integrating Customer Requirements
into Product Design. Portland, OR: Productivity Press.

Andy Greenberg, 2015. Hackers Remotely Kill a Jeep on the Highway — With Me in It.
[Online]
Available at: https:/ /voutu.be/ MK0SrxBC1xs
[Accessed 15 March 2018].

Bell, D., 2004. UML basics: The Sequence Diagram - Introductory Level, Armonk, NY:
IBM DeveloperWorks.

Cabré Castellvi, T. et al., 2017. El multilingiiisme en blanc i negre. 1 ed. Barcelona:

Catedra Pompeu Fabra-Universitat Pompeu Fabra.

Cagley, T., 2018. Using Size to Drive Testing in Agile. s.1.:Webinar - Verbal
Communication.

Cairns, H., 2014. A short proof of Perron’s theorem. [Online]

Available at: http:/ /www.math.cornell.edu/~web6720/Perron-
Frobenius Hannah %20Cairns.pdf
[Accessed 25 August 2015].

COSMIC Measurement Practices Committee, 2017. The COSMIC Functional Size
Measurement Method - Version 4.0.2 — Measurement Manual, Montréal: The
COSMIC Consortium.

Ebner, M., 2004. TTCN-3 Test Case Generation from Message Sequence Charts.
Gottingen, Germany,: In Workshop on Integrated-reliability with
Telecommunications and UML Languages (ISSRE04:WITUL}.

El Saddik, A., 2018. Digital Twins: The Convergence of Multimedia Technologies.
IEEE MultiMedia (Volume: 25, Issue: 2, Apr.-Jun. 2018), 25(2), pp. 87 - 92.

Engeler, E., 1981. Algebras and Combinators. Algebra Universalis, pp. 389-392.

Engeler, E., 1995. The Combinatory Programme. Basel, Switzerland: Birkhduser.

Engeler, E., 2019. Neural algebra on "how does the brain think?". Theoretical Computer
Science, Volume 777, pp. 296-307.

ETSI European Telecoms Standards Institute, 2018. TTCN-3 Standards. [Online]
Available at: http:/ /www.ttcn-3.org/index.php/downloads/standards
[Accessed 11 Dec 2018].

European Commission, 2010. Directive 2010/30/EU of the European Parliament and of
the Council of 19 May 2010 on the indication by labelling and standard product
information of the consumption of energy and other resources by energy-related

products. [Online]

Available at: https:/ /eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=0]:1.:2010:153:0013:0035:EN:I?

- 151 -

DF
[Accessed 11 Dec 2018].

Fathi, B., 2017. Towards a Methodology for Performance Evaluation in Terminology
Planning. In: P. Faini, ed. Terminological Approaches in the European Context.
Newcastle upon Tyne, UK: Cambridge Scholars Publishing, pp. 328-347.

Fehlmann, T. M., 1981. Theorie und Anwendung der Kombinatorischen Logik, Ziirich,
CH: ETH Dissertation 3140-01.

Fehlmann, T. M., 2003. Linear Algebra for QFD Combinators. Orlando, FL, International
Council for QFD (ICQFD).

Fehlmann, T. M., 2016. Managing Complexity - Uncover the Mysteries with Six Sigma
Transfer Functions. Berlin, Germany: Logos Press.

Fehlmann, T. M., 2019. Cloud Samples for ART. [Online]

Available at: https:/ /web.tresorit.com/1#QtOlbhUCcQB-oVG7hSatSQ
[Accessed 04 08 2019].

Fehlmann, T. M. & Kranich, E., 2011. Transfer Functions, Eigenvectors and QFD in
Concert. Stuttgart, Germany, QFD Institut Deutschland e.V.

Fehlmann, T. M. & Kranich, E., 2012. Using Six Sigma Transfer Functions for Analysing

Customer’s Voice. Glasgow, UK, Strathclyde Institute for Operations
Management.

Fehlmann, T. M. & Kranich, E., 2014-1. Exponentially Weighted Moving Average
(EWMA) Prediction in the Software Development Process. Rotterdam, NL, INSM
Mensura.

Fehlmann, T. M. & Kranich, E., 2014-2. Uncovering Customer Needs from Net Promoter
Scores. Istanbul, Turkey, 20th International Symposium on Quality Function
Deployment.

Fehlmann, T. M. & Kranich, E., 2017. Autonomous Real-time Software & Systems
Testing. Goteborg, s.n.

Gigerenzer, G., 2007. Gut Feelings. The Intelligence of the Unconscious.. New York, NY:
Viking.

Graz University of Technology, 2018. Meltdown and Spectre. [Online]

Available at: https: / / meltdownattack.com
[Accessed 11 Dec 2018].

Gunning, D., 2017. Explainable Artificial Intelligence (XAI). [Online]
Available at: https: / /www.darpa.mil/program/explainable-artificial-
intelligence
[Accessed 22 Mar. 2019].

Gunn, S., 1998. Support Vector Machines for Classification and Regression, Southampton:

ISIS Technical Report, University of Southampton.

- 152 -

IFPUG Counting Practice Committee, 2010. Function Point Counting Practices Manual
- Version 4.3.1, Princeton Junction, NJ: International Function Point User
Group (IFPUG).

Ishikawa, K., 1990. Introduction to Quality Control. Translated by J. H. Loftus;
distributed by Chapman & Hall, London ed. Tokyo, Japan: JUSE Press Ltd.

ISO 16355-1:2015, 2015. ISO 16355-1:2015, 2015. Applications of Statistical and Related
Methods to New Technology and Product Development Process - Part 1: General
Principles and Perspectives of Quality Function Deployment (QFD), Geneva,
Switzerland: ISO TC 69/SC 8/WG 2 N 14, Geneva, Switzerland: ISO TC 69/SC

8/WG 2N 14.

ISO 26262-1, 2011. Road vehicles - Functional Safety - Part 1: Vocabulary, Geneva:
ISO/TC 22/SC3.

ISO 31000:2018, 2018. Risk management — Guidelines, Geneva, Switzerland: ISO/TC
262.

ISO/IEC 14143-1:2007, 2007. Information technology - Software measurement - Functional
size measurement - Part 1: Definition of concepts, Geneva, Switzerland: ISO/IEC
JTC1/SC7.

ISO/IEC 19761:2019, 2019. Software engineering - COSMIC: a functional size
measurement method, Geneva, Switzerland: ISO/IEC JTC 1/SC 7.

ISO/IEC 20926:2009, 2009. Software and systems engineering - Software measurement -
IFPUG functional size measurement method, Geneva, Switzerland: ISO/IEC JTC
1/SC7.

ISO/IEC CD Guide 98-3, 2015. Evaluation of measurement data - Part 3: Guide to
uncertainty in measurement (GUM), Geneva, Switzerland: TC/SC: ISO/ TMBG.

ISO/IEC Guide 99:2007, 2007. International vocabulary of metrology — Basic and general
concepts and associated terms (VIM), Geneva, Switzerland: TC/SC: ISO/ TMBG.

ISO/IEC/IEEE 29119-4, 2015. Software and systems engineering — Software testing —
Part 4: Test techniques, Geneva, Switzerland: ISO/IEC JTC 1.

ISTQB, 2011. ISTQB - Certifying Software Testers Worldwide. [Online]

Available at: http:/ /www.istgb.org/downloads/category /2-foundation-

level-documents.html
[Accessed 24 April 2017].
ISTQB, 2014. Agile Tester Extension Syllabus. [Online]
Available at: http:/ /www.istgb.org/downloads/send /5-agile-tester-

extension-documents/41-agile-tester-extension-syllabus.html
[Accessed 24 April 2017].

Mazur, G., 2014. QFD and the New Voice of Customer (VOC). Istanbul, Turkey,
International Council for QFD (ICQFD), pp. 13-26.

- 153 -

Mazur, G. & Bylund, N., 2009. Globalizing Gemba Visits for Multinationals. Savannah,
GA, USA, Transactions from the 21st Symposium on Quality Function
Deployment.

Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. V., 2009. Response Surface
Methodology: Process and Product Optimization Using Designed Experiments. New
York, NY: John Wiley & Sons.

Poppendieck, M. & Poppendieck, T., 2007. Implementing Lean Software Development.
New York, NY: Addison-Wesley.

Pupale, R., 2018. Support Vector Machines (SVM) - An Overview. [Online]
Available at: https:/ /towardsdatascience.com/https-medium-com-
pupalerushikesh-svm-f4b42800e989
[Accessed 28 Mar. 2019].

Reichert, A., 2015. Testing APIs protects applications and reputations. [Online]

Available at: https: / /searchsoftwarequality.techtarget.com/tip/ Testing-APls-

protects-applications-and-reputations
[Accessed 4 Apr. 2019].
Reichheld, F., 2007. The Ultimate Question: Driving Good Profits and True Growth.
Boston, MA: Harvard Business School Press.
Rouse, M., Burns, E. & Laskowski, N., 2018. Essential Guide. [Online]
Available at: https: / /searchenterpriseai.techtarget.com/definition/ Al-

Artificial-Intelligence
[Accessed 12. Sep. 2019].

Russo, L., 2004. The Forgotten Revolution - How Science Was Born in 300 BC and Why It
Had to Be Reborn. Berlin Heidelberg New York: Springer-Verlag.

Saaty, T. L., 1990. The Analytic Hierarchy Process — Planning, Priority Setting, Resource
Allocation. Pittsburgh, PA : RWS Publications.

Saaty, T. L., 2003. Decision-making with the AHP: Why is the principal eigenvector
necessary?. European Journal of Operational Research, Volume 145, pp. 85-91.

Saaty, T. L. & Alexander, J. M., 1989. Conflict Resolution: The Analytic Hierarchy
Process. New York, NY: Praeger, Santa Barbara, CA.

Schurr, S., 2011. Evaluating AHP Questionnaire Feedback with Statistical Methods.
Stuttgart, Germany, 17th International QFD Symposium, ISQFD 2011.

Schwaber, K. & Beedle, M., 2002. Agile Software Development with Scrum. Upper
Saddle River, NJ: Prentice Hall PTR.

SonarSource S.A, Switzerland - Open Source, 2017. Documentation for SonarQube 6.3.
[Online]
Available at: https:/ /docs.sonarqube.org/
[Accessed 21 April 2017].

- 154 -

Soubra, H., Abran, A. & Ramdane-Cherif, A., 2014. Verifying the Accuracy of
Automation Tools for the Measurement of Software with COSMIC - 1SO 19761
including an AUTOSAR-based Example and a Case Study. Rotterdam, s.n.

Soubra, H., Abran, A. & Sehit, M., 2015. Functional Size Measurement for Processor
Load Estimation in AUTOSAR. Lecture Notes in Business Information Processing,
Volume 230, pp. 114-129.

Staimer, M., 2015. TechTarget Essential Guide. [Online]
Available at: https: / /searchdatabackup.techtarget.com/tip/Docker-data-
container-protection-methods-Pros-and-cons
[Accessed 15 Jan. 2019].

Steve Singh et.al., 2018. Docker overview. [Online]

Available at: https:/ /docs.docker.com/engine/docker-overview /
[Accessed 9 April 2018].

Szegedy, C. et al.,, 2014. Intriguing properties of neural networks. [Online]
Available at: https:/ /arxiv.org/abs/1312.6199
[Accessed 8 March 2018].

The Kubernetes Authors, 2018. Kubernetes. [Online]
Available at: https:/ /kubernetes.io
[Accessed 15 Dec 2018].

The National Transportation Safety Board, 2018. Preliminary Report Highway
Hwy18mh010. [Online]
Available at: https: / /www.documentcloud.org/documents /4483190-
NTSBuber.html
[Accessed 13 Mar. 2019].

Theodorou, A., Wortham, R. & Bryson, J., 2017. Designing and implementing

transparency for real time. Connection Science, 29(3), pp. 230-241.

Tilghman, C., Li, M. C. & Zemore, M., 2014. Software Safety Analysis Procedures. St.
Louis, MO, International System Safety Training Symposium.

Turing, A., 1937. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42(Series 2), p. pp 230-265.

van Gerven, M., 2017. Computational Foundations of Natural Intelligence. [Online]
Available at:
https:/ /www .frontiersin.org/articles /10.3389 /fncom.2017.00112 / full
[Accessed 27 March 2018].

van Gerven, M. & Bothe, S. eds., 2018. Artificial Neural Networks as Models of Neural
Information Processing. Lausanne, Frontiers Media.

VDA, 2008. Teil FMEA Band 4, Berlin: Verband der Automobilindustrie.

- 155 -

Volpi, L. & Team, 2007. Matrix.xla. [Online]
Available at: http:/ /www.bowdoin.edu/~rdelevie/excellaneous/ matrix.zip
[Accessed 11 Dec 2018].
Wikipedia, 2018. Blockchain. [Online]
Available at: https: / /en.wikipedia.org /wiki/Blockchain
[Accessed 17 April 2018].
Wikipedia, 2019. European Train Control System. [Online]
Available at:
https:/ /en.wikipedia.org/wiki/European Train_ Control System
[Accessed 13 Feb. 2019].

- 156 -

Achieved Profile, 32
Advanced Driving Assistance System, 2,
38, 66

Analytic Hierarchy Process, 54, 109, 111,

113
Analytical Hierarchy Process, 37
Arrow Term, 4
Artificial Intelligence, 14, 39, 128, 130
Assertion, 3,5
Autonomous Cars, 66
Autonomous Driving, 66
Autonomous Real-time Testing, 11, 14,

101, 131
Bug, 35
Buglione-Trudel Matrix, 143
Car Driving Function, 70
Cellar, 143
Combinatory Logic, 109
Computer Vision, 130
Controls, 3
Convergence Gap, 9, 30
Critical to Quality, 32
Data Functions, 20
Data Group, 22, 24
Data Movement, 24
Data Movement Maps, 24
Data Movements Covered, 47
Data Walker Test, 35, 45, 101
Defect Density, 36, 47, 92
Deming Chain, 48
Design of Experiments, 30
Digital Twin, 104
Digital Twins, 52
Effort Points, 43
Eigenvector, 31
Electronic Control Unit, 24
Euklidian Norm, 10, 89
European Train Control System, 108
Explainable Al, 134
Function Point, 23

REFERENCE INDEX

- 157 -

Functional Effectiveness, 118

Functional Effectiveness, 42, 43

Functional Size, 24

Functional User Requirements, 88

Goal Profile, 32

Hierarchy Comparison, 113, 118

House of Quality, 31, 32

Internet of Things, 2, 14, 49, 53

IoT Needs, 53

Jacobi Iterative Method, 34

Kubernetes, 28

Lidar, 70, 80

Microservice, 28

Navigator, 27

Net Promoter® Score, 37

Neural Network Engine, 70

Non-functional Requirements, 29

Non-Functional Requirements, 18

Objects of Interest, 24

Perron-Frobenius, 33, 95

Privacy Index, 75, 102

Privacy Needs, 67, 74, 101

Privacy Protection, 67

Product Owner, 143

Profile, 89, 113

Quality Function Deployment, 7, 29, 37,
111

Ratio Scale, 33

Response, 3

Rule Set Radius, 11, 61

Safety Impact, 73, 101

Safety Index, 75

Safety Risk Index, 102

Satisfaction Gap, 41

Schurr Radius, 11

Six Sigma Transfer Functions, 7

Story Card, 143

Sundeck, 143

Support Vector Machine, 138

Terminology Broker, 112

Terminology Management, 112
Test, 34

Test Automation, 104

Test Case, 3,4, 5

Test Case Generator, 95

Test Coverage, 34, 36, 37, 47, 89
Test Coverage Items, 17

Test Data, 3

Test Intensity, 34, 47, 92

Test Manager, 148

Test Response, 3

Test Size, 34, 47

Test Story, 3, 5, 34

Test Stub, 104

- 158 -

Test-Driven Development, 2, 148
Testing Blockchain, 91

Testing Chain, 91

Topic Set, 5

Traffic Services, 49

Transaction Map, 21

Transfer Function, 29

Ultimate Question, 37

UML Sequence Diagrams, 24
Verbatim, 39

Virtual Machine, 24

Visual Recognition System, 134
Voice of the Customer, 29, 41
Web of Things, 53

