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WHY THIS BOOK? 

Readers who worked through “Managing Complexity” (Fehlmann, 2016) – the previ-

ous book that appeared end of 2016 – may already have been waiting for its continu-

ation, addressing today’s deadlock around digitalization. Combining Artificial Intel-

ligence with autonomous vehicles and the Internet of Things creates new potential 

products. While technology is here for building autonomous vehicles that are much 

safer than human-driven cars, saving lives and eliminating traffic jams at once, society 

is all but ready.  

Autonomous cars will not it the roads because of liability concerns. Who is responsible 

for incidents they cause? The supplier of software, or hardware, or the user sitting in 

the passenger seat, or always the other, mostly unlucky, human involved?  

And what if two autonomous cars crash into another? 

Sure, nothing can avoid future incidents even with the best-equipped cars of the uni-

verse. However, precautions can be taken, and the most obvious precaution is testing 

of the software that affects safety. Since one of the most intriguing safety issues is with 

privacy violation, if data is stolen, or even malicious forces take over control, privacy 

protection is among the most important requirements for software-intense products. 

This book focuses on testing privacy protection and assessing safety risks 

But today’s software testing is way behind the age of digitalization. No metrics exist 

for test intensity that can compare different cars and manufacturers. Today’s software 

tests cover code but not the full functionality needed to control autonomous vehicles. 

While software changes continuously, with Continuous Integration / Continuous De-

livery, tests executed at release quality gates reflect the original state of delivery, in 

isolated environments. But cars run through the real world, unfortunately. 

This book is not an experience report but creates a vision. This vision opens the way 

into future research to address the issues that arise with implementing continuous and 

autonomous real-time testing for software-intense systems. 

All examples shown are implemented in Excel in Microsoft Office 365 and freely avail-

able to readers of this book, including technical information. It suffices to send e-Mail 

to info@e-p-o.com with some evidence of purchase and a valid e-Mail address. Access 

is personal, encrypted and protected. This is necessary since the examples contain 

open VBA code that otherwise can be compromised. 

mailto:info@e-p-o.com


 

- iii - 

ACKNOWLEDGEMENT  

Important contributions originate from discussions and workshops with colleagues 

from the Software Metrics and the Quality Function Deployment communities; espe-

cially, but not limited to, Silvan Fehlmann, Luigi Buglione, Eberhard Kranich and the 

German QFD Institute. 



 

- iv - 

TABLE OF CONTENTS 
Chapter 1: Why Autonomous Real-time Testing? ..................................................... 1 

1-1 Introduction ....................................................................................................... 1 

1-2 What is Software Testing? ................................................................................ 3 

1-3 Representing Unlimited Knowledge ............................................................... 8 

1-4 Autonomous Real-time Testing ..................................................................... 11 

1-5 Outlook ............................................................................................................ 15 

Chapter 2: Test Metrics .............................................................................................. 17 

2-1 Introduction ..................................................................................................... 17 

2-2 Modeling Software.......................................................................................... 18 

2-3 A Short Primer on Six Sigma Transfer Functions......................................... 29 

2-4 Measuring Tests .............................................................................................. 34 

2-5 Test Metrics for the Navigator Application .................................................. 38 

2-6 Conclusion ....................................................................................................... 49 

Chapter 3: Testing the Internet of Things ................................................................ 51 

3-1 Introduction ..................................................................................................... 51 

3-2 Testing the Internet of Things (IoT)............................................................... 53 

3-3 Conclusions and Next Steps........................................................................... 63 

Chapter 4: Testing Privacy Protection and Safety Risks ......................................... 65 

4-1 Introduction ..................................................................................................... 65 

4-2 Consumer Metrics ........................................................................................... 66 

4-3 ART for ADAS ................................................................................................ 75 

4-4 Conclusion ....................................................................................................... 86 

Chapter 5: Artificial Intelligence for Testing............................................................ 88 

5-1 What is the Goal of Testing? .......................................................................... 88 

5-2 Generating New Test Cases ........................................................................... 90 

5-3 The Test Case Generator ................................................................................ 95 

5-4 Three Standard Tests .................................................................................... 101 

5-5 The DevOps Paradigm and Software Testing ............................................ 103 

5-6 Three Innovations needed ............................................................................ 103 



 

- v - 

Chapter 6: Testing Highly Complex Technical Systems ....................................... 107 

6-1 Testing Digital Twins ................................................................................... 107 

6-2 The Fundamentals of Testing Complex Systems ....................................... 109 

6-3 AHP for Testing ............................................................................................ 118 

6-4 Open Questions ............................................................................................. 127 

6-5 Conclusion ..................................................................................................... 128 

Chapter 7: Testing Artificial Intelligence ............................................................... 129 

7-1 Introduction ................................................................................................... 129 

7-2 How to Test Artificial Intelligence .............................................................. 130 

7-3 A Deep Learning Application as a Sample ................................................. 134 

7-4 Next Steps, and a Preliminary Conclusion ................................................. 140 

7-5 A Side Note.................................................................................................... 141 

Chapter 8: Agile Testing with the Buglione-Trudel Matrix.................................. 143 

8-1 Introduction ................................................................................................... 143 

8-2 Story Cards with Test Stories ....................................................................... 145 

8-3 Selecting Test Stories for Story Cards ......................................................... 147 

8-4 Creating Test Stories by the Development Team ....................................... 148 

8-5 Test Management .......................................................................................... 148 

8-6 Conclusions ................................................................................................... 148 

Bibliography ................................................................................................................... 151 

Reference Index .............................................................................................................. 157 

 

 





- 1 - 

CHAPTER 1: WHY AUTONOMOUS 

REAL-TIME TESTING? 
Autonomous Real-time Testing sounds somewhat like one of the many hypes 

that currently come with digitalization. The strange effect originates from the 

term “Testing” – something that sounds today somewhat outdated. Who is 

interested in Testing? Agile Enterprise, Agile Management, DevOps, Industry 

4.0, Disruptive Transformation are stirring more interest, today.  

However, most products today are software intense. Such products, as any 

product, might fail, and if such failure causes damage or loss of goods or life, 

liability questions arise. Today’s Internet of Things (IoT), Advanced Driving 

Assistance Systems (ADAS), Autonomous Drones for goods delivery or build-

ing industry, all are under the thread of failure caused by software  and conse-

quently liability issues. 

This book does not address hardware failure, or failure by mechanical design 

or construction. The focus is on failure by software faults, and what else can 

we do than software testing against failure? When should we do such testing? 

At the end of software development? When does development stop with 

DevOps? Should we probably add Continuous Testing to Continuous Integra-

tion and Continuous Delivery (CI/CD/CT)? 

1-1 INTRODUCTION 

The first topic to address is where did our famous software projects go that where 

always too late, with cost overruns, and tests left to the first customers? 

With DevOps, there are no more projects. DevOps is a paradigm for product manage-

ment by continuous software integration and software delivery. The end of develop-

ment is not before end of product life. While there is still product design and software 

architectural thinking, new software is created by integrating open source software 

with own coding. Software testing is difficult, and since testing refers to code, only the 

part written in-house undergoes testing. Each build is fully unit tested, supported by 

test automation tools to ensure code meets expectations. Test coverage refers to code; 

necessarily only to that part of software written in-house. Technical debt is the com-

mon metrics for released code that requires rework, be it for maintainability or exten-

sibility. The metric describes the amount of effort needed to remove weaknesses and 
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is typically calculated by the code repository system, e.g., SonarCube (SonarSource 

S.A, Switzerland - Open Source, 2017). The aim is to totally avoid technical debt. 

Also, unit testing of code written by the team is normally done daily; and no code can 

be checked-in that does not pass unit tests. Best practices ask for unit tests written 

before any code. This is the Test-Driven Development (TDD) approach made famous by 

the Poppendiecks (Poppendieck & Poppendieck, 2007). 

Final release testing for the product is done where compliance issues exist that need 

being verified. Otherwise, system testing is usually done together with customers; 

most often, but not always, these customers are aware of acting as a “beta-tester”. Sys-

tem testing cannot be performed by the code testing tools used for unit testing where 

code is not available. Test coverage remains guesswork even after intense and effec-

tively monitored beta tests with users. No test metrics exist beside unclear indications 

like the number of bugs detected and recorded in some issue management tool. Since 

bugs can neither be identified and located in code, nor separated from each other, the 

number of bugs recorded is a useless count. Whether two bug entries refer to the same 

defect or not remains open. 

While for game software or entertainment, even office publishing, such a situation is 

acceptable, it is clearly not for products based on software that carries liability. Home 

banking software without defect density measurements is risky for banks. If office 

software becomes a tool for team communication in enterprises, liability for its correct 

functioning carries a significantly higher risk for the software supplier than document 

publishing and spreadsheet calculating software. Software that controls the Internet of 

Things (IoT), or even more for Advanced Driving Assistance Systems (ADAS) in cars or 

autonomous vehicles might have disastrous effects if not working safely and correctly. 

All these examples do not rely on code written by some single development team. 

They are rather a patchwork of functionality delivered with the “thing” or system 

component; whether code is available, is uncertain. The need for testing is apparent; 

the need for test metrics that characterize the amount of testing and current defect 

density is obvious. However, while casual testing might be done somehow by suppli-

ers and users of such software; metrics are not available and not agreed. Without met-

rics, such casual testing is near to useless. 

Yet another problem lies with software borrowed as services from the cloud. For in-

stance, communication software might be vulnerable to data theft; social media and 

team communication might be subject to unauthorized big data analysis violating pri-

vacy rights; assumptions for cloud service security might turn out to be overly opti-

mistic without testing and test metrics. Consequently, autonomous vehicles might 

take the wrong route, or keep routes taken not private. This is the small side of the 

problem; safety risks by untested software-intense systems constitute the big end. 
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While privacy and safety risks are not the full story related to digitalization, these two 

topics embrace the most urgent need for systems testing in software-intense products. 

1-2 WHAT IS SOFTWARE TESTING? 

Software Testing means the process of defining Test Stories (or Test Scenarios) that each 

contain Test Cases that can be executed. A Test Case is a structure consisting of Test 

Data 𝑥1, 𝑥2, … , 𝑥𝑛 and a Test Response 𝑦, where each test data item 𝑥𝑖 as well as the test 

response is an Assertion. The assertion describes the state of the program under exe-

cution. Formally, a test case is expressed by the following Arrow Term: 

 {𝑥1, 𝑥2, … , 𝑥𝑛} → 𝑦 (1-1) 

For the origins of arrow terms see Engeler 1981 (Engeler, 1981). For a more recent ap-

plication, how arrow terms define a neural algebra on “how does the brain think?”, 

see Engeler, 2019 (Engeler, 2019). In our case, the assertions describe the status of the 

software-intense system under test. A simple assertion describes the value, or value 

range, of a software variable; it can also describe a certain status of the system, such 

as listening to some device, waiting for confirmation or executing a database search, 

or simply identify the starting point for some test case. With reference to Six Sigma, 

the left-hard finite set of an arrow term is references as Controls, the right-hand single-

ton is the Response. 

Assertions use the basic numerical operations between variables and constants such 

as equality, greater than, or inequality. It is not necessary to combine assertions using 

logical operations AND, OR, and NOT. The test data sequence acts as an AND; instead 

of a OR two arrow terms describe the same. NOT is more complicated to substitute by 

arrow terms: sometimes, negation is immediately available as with equality, some-

times, negated assertions split into two. The test response 𝑦 is not necessarily unique; 

several assertions might become true under identical test data assertions 𝑥1, 𝑥2, … , 𝑥𝑛, 

for instance depending where the system under test is investigated for the test result. 

A test case passes if we can run the software with valid test data assertions and the 

assertion 𝑦 for the test response is valid in the system under test. A test story passes 

if all its test cases pass. Real-time Testing is the process of testing real-time systems and 

its software, see Ebner (Ebner, 2004). 

Assertions can contain stronger assertions. For instance, the assertion 𝑎 = 20 is more 

restrictive than 𝑎 ≤ 20. Test cases always contain weakest assertions; thus, inequali-

ties or range specification rather than sample numbers. 
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1-2.1 A STANDARD FOR REPRESENTING ASSERTIONS ABOUT TESTS 

Since test cases are possibly something that shall be exchanged between different sys-

tems, even from different manufacturers, standardization is needed. If software from 

different suppliers shall cooperate, standards must be agreed and implemented that 

allow communication and cooperation. In the IoT and automotive area, such stand-

ards exist. For real-time testing, with focus on communication, an international stand-

ard for specifying test cases exists: Testing and Test Control Notation (ETSI European 

Telecoms Standards Institute, 2018), now in its version 3 (TTCN-3). According Ebner 

(Ebner, 2004), the test notation is useful for automatically generating test cases from 

UML sequence diagrams, covering the base system. In our context, TTCN-3 is suitable 

for stating assertions. However, TTCN-3 is much more than simply a framework for 

stating test assertions such as fixing test data and test responses. It also contains the 

necessary instructions for test instantiation and test automation.  

Thus, using TTCN-3 for test assertions, software tests can be described by a standard 

that is independent from the programming environment and from the supplier. Tests 

can be interchanged between different actors related to software testing. 

1-2.2 A REPRESENTATION FOR THE WORLD OF TESTS 

However, software is dynamic. Trying to model software by static assertions is miss-

ing the dynamic behavior of a system. For this reason, we extend our definition of a 

Test Case to include not only basic assertions but recursively other test cases as well. 

Let ℒ be the set of all assertions over a given domain. Examples include statements 

about customer’s needs, solution characteristics, methods used, etc. These statements 

contain no free variables; i.e. they are assertions about the business domain we are 

going to model. A sample language ℒ is TTCN-3. However, since this book is written 

for humans, not robots, we will use natural language, not TTCN-3, knowing that our 

verbal assertions need being converted in machine language before being executed.  

Denote by 𝒢(ℒ) the power set containing all Arrow Terms of the form (1-1). The left-

hand side is a finite set of arrow terms and the right-hand side is a single arrow term. 

This definition is recursive; thus, it is necessary to establish a base definition saying 

that every assertion itself is considered an arrow term. The arrows of the arrow terms 

are distinct from the logical imply that some authors also denote by an arrow. The 

arrows denote cause-effect, not logical imply. 

The formal, recursive, definition, in set-theoretical language, is given in equation (1-2): 

 
𝒢0(ℒ) = ℒ 

𝒢𝑛+1(ℒ) = 𝒢𝑛(ℒ) ∪ {{𝑎1, … , 𝑎𝑚} → 𝑏|𝑎1, … 𝑎𝑚 , 𝑏 ∈ 𝒢𝑛(ℒ),𝑚 = 0,1,2,3… } 
(1-2) 
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𝒢(ℒ) is the set of all (finite and infinite) subsets of the union of all 𝒢𝑛(ℒ): 

 𝒢(ℒ) =⋃  𝒢𝑛(ℒ)

𝑛∈ℕ

 (1-3) 

The elements of 𝒢𝑛(ℒ) are arrow terms of level 𝑛 . Terms of level 0 are Assertions, 

terms of level 1 Test Cases. Sets of test cases are called Rule Set. (Fehlmann, 2016). In 

general, a rule set is a finite set of arrow terms. Infinite rule sets we call Knowledge Base. 

Hence, knowledge is a potentially unlimited set of rules about assertions about test 

cases. This definition is recursive, as before. 

A Test Story is a finite rule set and element of 𝒢𝑛(ℒ) that consists of level 1 terms only. 

A test story comes with additional information relating to its business domain.  

1-2.3 COMBINING TESTS 

Let 𝑀,𝑁 be two rule sets, consisting of test cases. 𝑁 is a set of test cases consisting of 

arrow terms of the form𝑏𝑖 = ({𝑥1, 𝑥2, … , 𝑥𝑛} → 𝑦)𝑖. Then application of 𝑀 to 𝑁 is de-

fined by 

 𝑀 • 𝑁 = {𝑐|∃{𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 ∈ 𝑀; 𝑏𝑖 ∈ 𝑁} (1-4) 

In other words, if all 𝑏𝑖 executed in 𝑁 with pass, the test story 𝑀 can be applied to 

a rule set 𝑁 as a set of test cases. This represents the selection operation that chooses 

those rules {𝑏1, 𝑏2, … , 𝑏𝑚} → 𝑐 from test story 𝑀 that are applicable to the rule set 𝑁. 

Combining tests is a strong means to extend test stories up to the limit as needed. 

Combinatory Algebra (Engeler, 1995) is the mathematical theory of choice for automat-

ically extending test cases from a simpler, restricted system, to test stories that fully 

cover a larger, expanded system. The extension works only if software testing not only 

is automated but measured. Metrics must be independent from current implementa-

tion and from actual system boundaries. 

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose 

computational power is Turing-complete, i.e., all programs that are executable by 

computers can be modeled. This guarantees the best achievable test coverage. With 

combinatory algebra, test cases extend from real-time tests, covering a base system, to 

the actual, expanded system. 

The definition (1-4) looks somewhat counter-intuitive. To apply one test case to an-

other, it is required that the result of application contains all the full test cases provid-

ing the response sought.  

A more intuitive approach would only require arrow terms providing such a response 

meeting the required controls. The existential quantifier would then guarantee that 
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there is a test case yielding such response. When accepting the axiom of choice in its 

traditional form, that does not look like a problem. However, it is left to the interested 

reader to prove that this seemingly more intuitive approach would immediately lead 

to a contradiction to Turing’s halting problem (Turing, 1937). 

Since we are computer scientists and not traditional mathematicians, we require the 

intuitionistic, or constructive, variant of the axiom of choice. The existential quantifier 

requires not only the existence as such, but construction instructions for the existence 

of arrow terms. It means for test cases, that it is not enough to know the existence of 

tests, but you need to know how to construct them. This is the reason why our formal 

system for automated testing requires at least level 1 – arrow terms for applying one 

test set to another – and this is possibly also the reason why test automation has 

proven to be so hard. 

And for those who consider such reasoning too theoretical, let’s provide a rather prac-

tical argument: programmers who want to set up test concatenation 𝑀 • 𝑁 for auto-

matic testing, need access to the test cases in 𝑁 that provide the responses needed 

for 𝑀. Otherwise combining tests is unsafe or cannot be automated. Thus, with the 

combinatory algebra of arrow terms, mathematical logic meets intuitionism and prac-

tical programming. 

1-2.4 ARROW TERM NOTATION 

To avoid the many set-theoretical parenthesis, the following notations are applied: 

• 𝑎𝑖 for a finite set of arrow terms, 𝑖 denoting some finite indexing function for 

arrow terms; 

• 𝑎1 for a singleton set of arrow terms; i.e. 𝑎1 = {𝑎} where 𝑎 is an arrow term; 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎; 

• (𝑎) for an (potentially) infinite set of arrow terms, where 𝑎 is an arrow term. 

The indexing function cascades, thus 𝑎𝑖,𝑗 denotes the union of a finite number of 𝑚 

arrow term sets 

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑗 ∪ …∪ 𝑎𝑖,𝑚 (1-5) 

With these writing conventions, (𝑥𝑖 → 𝑦)𝑗 denotes a rule set; i.e., a finite set of arrow 

terms having at least one arrow. Thus, they are level 1 or higher. 

With this notation, the application rule for 𝑀 and 𝑁 now reads 

 𝑀 • 𝑁 = {𝑐|∃𝑏𝑖 → 𝑐 ∈ 𝑀; 𝑏𝑖 ⊂ 𝑁} (1-6) 
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Or, in an abbreviated notation: 

 𝑀 • 𝑁 = (𝑏𝑖 → 𝑐) • (𝑏𝑖) (1-7) 

Arrow terms are not only useful for representing test cases. Quality Function Deploy-

ment (QFD) is a well-known method for customer-oriented product development (ISO 

16355-1:2015, 2015). Each element 𝑥𝑖 → 𝑦 of (𝑥𝑖 → 𝑦)𝑗 denotes one Ishikawa diagram 

(Akao, 1990), which is a cause/effect constituent of a QFD deployment and stands at 

the origins of QFD in Japan. The matrix (𝑥𝑖 → 𝑦)𝑗 represents the QFD deployment. 

This matrix obviously is a rule set within 𝒢(ℒ). The union of all possible QFD matrices 

is infinite and therefore a knowledge base in 𝒢(ℒ). 

Six Sigma Transfer Functions are constructively defined functions 𝑨 used in the form 

𝒚 =  𝑨𝒙, where 𝒚 is the observable response, and 𝒙 is the vector of unknown causes. 

For a short primer on transfer functions see section 2-3. Each set of arrow terms rep-

resents a constructively defined Six Sigma Transfer Function. This was originally de-

scribed by Ishikawa (Ishikawa, 1990).  

The Ishikawa Diagram (Ishikawa, 1990) describes the cause-effect relations between 

topics and are considered the initial form of QFD matrices, and thus of linear transfer 

functions. Converting a series of Ishikawa diagrams into a transfer function is straight-

forward, see Figure 1-1 below. Rules correspond to the cause/effect correlations. 

Figure 1-1. Representing Transfer Functions as Rule Sets 
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Each element 𝑥𝑖 → 𝑦 of (𝑥𝑖 → 𝑦)𝑗 denotes one Ishikawa diagram (Akao, 1990), which 

is a cause/effect constituent of a transfer function. The matrix (𝑥𝑖 → 𝑦)𝑗 represents the 

full transfer function. Transfer functions obviously are rule sets within 𝒢(ℒ). The set 

of all linear transfer functions is infinite and therefore a knowledge base in 𝒢(ℒ). 

Other elements of 𝒢(ℒ) do not resemble linear transfer functions, such as 

 ((𝑥𝑖 → 𝑦)𝑗 → 𝑧)
𝑘
 (1-8) 
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This is a finite set of arrow terms whose left hands consist of finite rule sets. Another 

such example is 𝑥𝑖 → (𝑦𝑗 → 𝑧). This is a cascade of rules. The association for arrow 

terms is to the right: 

 𝑥𝑖 → 𝑦𝑗 → 𝑧 = 𝑥𝑖 → (𝑦𝑗 → 𝑧) (1-9) 

1-2.5 TEST AUTOMATION 

Tools used for implementing such an approach are test stories and test cases that use 

a formal language to be machine-readable. The language is implemented as Arrow 

Terms, see Engeler (Engeler, 1995), a model of combinatory algebra describing the gen-

eral Six Sigma approach, listing controls for observable responses of a system. Re-

sponses can be multi-dimensional, resulting in a Response Profile that is measurable 

and thus can be compared to the expected response.  

For the mathematical structures of Six Sigma Transfer Functions, see Fehlmann & 

Kranich (Fehlmann & Kranich, 2011) and Fehlmann (Fehlmann, 2016)). Transfer func-

tions are used to uncover search response controls, for instance in Google search re-

quests, or technical solution that meet customer’s needs. In testing, transfer functions 

indicate whether the goal of testing is achieved. The degree of achievement is called 

Test Coverage. Test coverage can control automated generation of meaningful test cases 

in a chosen context. Automatically generated test cases are selected only if they con-

tribute to the testing goal.  

1-2.6 EXECUTING TESTS  

Since arrow terms define test data up to an assertion, in ordered domains such as 

numbers, test data may be defined only up to some range. Thus, when executing the 

test, there is a choice which data exactly to select. If the range is limited, it is straight-

forward to select the limit, or possibly to explore the numerical precision of the limit. 

Thus, the code implementing the test case may need more than one execution when 

running the test case. However, we count the test case only once even if its execution 

requires multiple runs. 

1-3 REPRESENTING UNLIMITED KNOWLEDGE 

Rule sets represent things that organizes themselves such as cars that drive automati-

cally, flying drones that find the way to its target, smart homes that save energy. These 

things typically acquire knowledge while they are in operations. Predicting their 
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behavior is ultimately impossible without representing the knowledge acquisition 

during operations. 

Interestingly, agile software development works the same way: exact specifications 

are unknown at the beginning. While software is developed together with the stake-

holders, more and more the ultimate result becomes apparent. Combinatory Logic 

thus looks interesting as a framework for better understanding and modeling agile 

software development.  

1-3.1 PARALLEL COMPUTING 

Rule sets are of unlimited size but well structured. Moreover, if the base set represent 

transfer functions, they carry associated metrics, namely the Convergence Gap. Success-

ful software testing relies on measurable cause-effect relationship.  

There are various measures that can be applied: functional size, security, safety, cost, 

non-functional metrics such as ease-of-use. The IoT consists of things made intelligent 

by software, connected by software, and acting autonomously by software. This is 

called an IoT Concert. Organizing an IoT concert is called IoT Concertation. In IoT con-

cert is a valid paradigm for today’s software-intense systems. Its main characteristics 

are it always grows, never being finished. Based on software metrics, two arrow terms 

describing software can be compared with respect to size, to defect density and com-

pared with respect to behavior towards the same goal. 

Behavior of an IoT concert changes when the environment changes – adding or re-

moving things might change, or even create totally new behavior. Totally unexpected 

situations might emerge on streets driven by autonomous cars. The rule set is not com-

pletely known at any time; however, directed by metrics, a sufficiently good approxi-

mation can be built just when needed. 

Implementing a rule set is by constructing an automaton that eventually produces all 

its elements. The arrow term notation (1-1) describes the algorithm needed for the 

automaton. The automaton produces arrow terms in parallel and in any order, with-

out knowing much from each other. To make them useful, the automaton needs guid-

ance through metrics-based heuristics.  

1-3.2 THE RULE SET RADIUS AND VARIANCE 

The trick is combining the strict and well-known structure of a rule set with the con-

vergence gap. The rule set can be constructed by an automaton that produces each 

element eventually after some time. If that automaton can be directed to produce the 

arrow terms closing the convergence gap, it is possible to do this in predictable time 
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(Fehlmann, 1981). The arrow terms arise from asking the components of an IoT concert 

how they behave in some given circumstances. Asking the right question will do: 

 {(𝑎𝑖 → 𝑏)𝑗|‖𝑏𝑗 − 𝝉𝒚‖ < 𝜀} (1-10) 

where 𝝉𝒚 is the Goal Profile, representing the target for the circumstances under in-

vestigation, and ‖…‖  represents the Euclidian Norm for vectors. For instance, 𝝉𝒚 

might represent the condition that the autonomous car avoids crash. Then, equation 

(1-10) represents all crash-free conditions reachable by the autonomous car.  

The controls to consider depend from the goal. It must be known what the goal of the 

behavior is: doing no harm or minimizing it for autonomous cars, minimizing energy 

consumption in intelligent homes, avoid crashing for flying drones. On the other 

hand, testing aims at finding fault conditions. 

Rule sets consist of solution topics vectors. The convergence gap against the goal re-

sponse vector can be computed, based on the achieved responses. This convergence 

gap controls the automaton by producing the rule set that focuses on the goal profile 

vector. Figure 1-2 demonstrates convergence gaps for three dimensions. Higher di-

mensions are more difficult to visualize but equally simple to calculate. 

Let Δ1, Δ2, … , Δ𝑛 be these differences, namely the convergence gaps between eigen-

vector and the solution topic vectors in the rule set. Then the formula resembles the 

standard deviation 𝜎 known from statistics: 

 

𝑅𝑢𝑙𝑒 𝑆𝑒𝑡 𝑅𝑎𝑑𝑖𝑢𝑠 = Max𝑗=1..𝑛(Δj) 

𝑅𝑢𝑙𝑒 𝑆𝑒𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = √
∑ Δ𝑖

2
j=1..𝑛

𝑛 − 1
 

(1-11) 

Figure 1-2. Small and Large Rule Set Radius and Variance for Three Dimensions 

Small

Rule Set Radius

Goal Profile Vector
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Rule Set Radius

Goal Profile Vector
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The Rule Set Radius is the maximum of all the convergence gaps in a rule set, thus 

acting as an envelope around them, serving as an indicator for total variations within 

a rule set.  

The rule set radius has a strange similarity with the Schurr Radius, used for assessing 

consistency in AHP, see Schurr (Schurr, 2011) and Fehlmann (Fehlmann, 2016). What 

it means, is yet an open question. Maybe the rule set radius is an indication for the 

inconsistency of the test cases within a rule set? 

1-4 AUTONOMOUS REAL-TIME TESTING 

Testing becomes autonomous if test cases are no longer prepared a priori, but auto-

matically generated while the system extends by connecting with new components or 

learning new things. This happens during normal operation. With the IoT, for in-

stance, when adding some new IoT component. If a car meets another car of different 

making, or when different software releases meet, the system changes as well. Auton-

omous Real-time Testing (ART) means that new test cases are generated, and tests are 

executed, all in real-time, before allowing the new components to join, or to have im-

pact. The time limit is needed for practical purposes. Systems supported by ART be-

have intelligent in the sense that they can anticipate the effects of actions even in pre-

viously unknown circumstances. 

The base elements for autonomous testing are test stories, containing test cases, that 

cover the initial base system. A set of test metrics is needed for assessing the test in-

tensity and defect density of the base system. According ISO/IEC 14143 (ISO/IEC 

14143-1:2007, 2007), software metrics are independent from actual software imple-

mentations. Metrics must carry over from base tests to expanded automated tests cov-

ering the expanded system.  

The main problem with testing the expanded system is how to generate new test sto-

ries that keep the focus on the relevant testing goals. Time and resources are limited. 

Sometimes, only a few seconds are available for generating and conducting real-time 

test runs. Measuring test intensity and predicting remaining defect density for the ex-

panded system is necessary to understand the effect of actions taken by the expanded 

system. This compares the reliability of the expanded system with the original base 

system. 

Another major problem is computational speed. Test execution includes searching 

suitable new test cases, executing them by asking the involved object, what they 

would do in such a case, and calculating results. The generation of test cases for the 

expanded system must deliver results in real-time. Autonomous real-time software 

testing is impossible without suitable, implementation-independent test metrics. 
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The rich structure of arrow terms on top of TTCN-3 is the ideal framework for auton-

omous testing. Test rules are potentially infinite sets of test cases that can be exploited 

for determining test cases suitable for enhancement. Autonomous testing always 

starts with a normal test; thus, with a finite subset of test rules belonging to a test story. 

Test cases can be added to such a test story, increasing test coverage and the capability 

to detect defects. Or, two groups of test cases can be combined based on equation (1-3) 

provided they belong to the same test story, i.e., they test the same business goal. 

Setting up test rules for a software-intense system is now just the first step towards 

continuous testing. The test rules can be made permanently available to users for the 

entire life cycle of a product such that users can always verify that the product still 

behaves as initially convened. This is autonomous testing by users who are not testers. 

They can run the original test again and again. While this has some value already, it 

is not yet ART. The problem is that software is subject to the condition of the real 

world. In particular, the real world is changing over time quite a bit. Each software 

update that is downloaded has the capability to affect the behavior of the system. This 

is especially important for IoT concerts, where adding or removing a component can 

change the behavior, especially exposure to privacy intrusions or safety risks. But also, 

cars that talk to the smartphone are affected; and even more, systems that communi-

cate with each other for instance to exchange traffic information. Since threats also 

change, new test cases are needed to detect new threats. 

If new defects are detected, the result of the autonomous real-time test is shared with 

the software supplier for removal of the defect. Moreover, any such detection is shared 

with other users of the product. Testing is no longer an isolated activity of some group 

of testers that wait for a product to be ready for test; it becomes a community-based 

activity and closely linked to support and marketing of software-intense products. 

1-4.1 TESTING SOFTWARE-INTENSE SYSTEMS 

Obviously, the complexity that users can handle when performing tests is limited. The 

limit is closely related to the users’ needs when using a product. While technical per-

formance or other quality aspects are usually important when buying the product, 

during normal and intended use, other needs become dominant. Continuous availa-

bility of the functionality purchased is expected, and often the user perceives lack of 

functionality immediately. However, missing functionality related to communication 

and traceability is typically seen too late.  

Defects that consumers affect but are hard to detect are most often related to missing 

privacy protection, or safety issues. Both, privacy protection and safety risk assess-

ments have become controversial and find today public attention. The fact that today 

all physical movements are traceable by the smartphones’ build-in GPS, or the 
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navigation instruments in cars, or soon by public transportation, seems only a weak 

violation of privacy compared to all the spying of what we look at, read or talk. It 

seems that if it does not touch property, or money, we are inclined to weight the ben-

efits of all these chatty assistants higher than concern for privacy. 

However, things change if one of these helpful service providers suddenly suffer a 

data leak, as happens from time to time indeed. Then it turns out to be quite hard to 

find out if own private data has been affected. Often, after a leak, it takes weeks if not 

months to find out what data was compromised. 

ART in turn is something that can be immediately triggered in case some service pro-

vider experiences a hack. That would allow consumers to get immediately notified 

whether they need to take some action. Obviously, testing is not restricted to the local 

components of some system; this is sort of unit testing anyway. Testing a software-

intense system today almost always involves testing services, typically located in the 

cloud. ART can check whether such services still behave as expected or start exhibiting 

strange behavior such as scanning the private device for passwords or opening new 

backdoors. 

Similar it is for safety. Often, safe behavior is easily detectable and distinguishable 

from unsafe behavior. Continuous safe behavior even after software updates or 

changes in the related cloud services is testable and consumers are interested in such 

tests. Full security testing includes hardware and is not addressed in this book. 

Sure, privacy and safety are not the only test-worthy characteristics of software-in-

tense systems, but they address the major concerns of most consumers. And indeed, 

having privacy tests performed after each major software update even for a 

smartphone would even now be a welcomed gadget. Or does anyone know for sure 

what privacy risks all those glossy games and racy apps entail? 

1-4.2 CONSUMER METRICS 

Testing is not for free, and when it does not add value to the product, it possibly 

should not be done. However, whether safety and security testing – among others – 

add value to a product, is out of question. On the other hand, whatever adds value, 

can be used as a discriminator in the market. 

It is therefore paramount that tested software becomes visible to the consumer, and 

the amount of testing becomes a metric communicated to consumers. Consumer 

might have a choice between an extensive, well-tested product and a less tested, but 

cheaper product. This works up to the point where liability issues force the product 

supplier to perform extensive testing just to stay in the market. 
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For all this IoT-kind of products with extensible software, especially for AI, it is incon-

ceivable how suppliers should cope with liability if they do not have the possibility to 

do ART during their products’ lifetime. The risk, that consumers add features or func-

tions to an IoT concert causing harm to safety or privacy of the product is significant. 

1-4.3 IMPACT ON SOCIETY 

Autonomous Real-time Testing (ART) will make an impact on product liability issues of 

software-intense systems. Suppliers can reduce their liability risks when providing 

sufficiently good and actual test rules for their products during the full life cycle. Oth-

erwise, owning or using an autonomous car – if they ever hit streets – will probably 

become quite costly, at least in Europe. Otherwise, autonomous vehicles apart from 

closed motorways face too many challenges; for instance, traffic in cities or villages 

becomes safer at less cost by reducing speed. Communication between vehicles is a 

big asset and could improve traffic flow even in urban areas; however, this means not 

necessarily autonomous driving. 

In any case, autonomous vehicles, vehicles that rely on intercommunication and even 

driving assistance systems become socially more acceptable if they adapt their capa-

bilities over time to changed environments and prove this to the responsible owner. 

The adoption of the Internet of Things (IoT) is far below expectations not only because 

users wait for the faster and more performant 5G telecom network, but even more 

because the target users cannot assess and manage their privacy risk. Connecting an 

additional device to their existing IoT concert might result in an unnoticed privacy 

break. Only experts may give it a try. 

Lessening the liability burden to suppliers of software-intense products clearly speeds 

digitalization up and make it more acceptable. Furthermore, since many of the new 

software-intense products use Artificial Intelligence (AI), such products change behav-

ior during their life cycle and you cannot use AI in products without at least basic 

ART, at least for safety-critical issues. Deep learning is also accompanied with forget-

fulness and even human neural disorder (van Gerven, 2017). Consequently, visual 

recognition systems need constant testing for making sure they keep their initial ca-

pabilities. Neural networks that have previously proven to be capable of successful 

learning suffer from strange effects (Szegedy, et al., 2014). Small alterations in images 

or video, even when invisible to the human eye, can strongly impact their capabilities. 
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1-5 OUTLOOK 

From this introduction, many open questions arise. First, how shall tests be measured 

such that they can be assessed for intensity and defect density? Next, how to identify 

relevant tests from the huge test rules set generated by combinatory algebra? While 

having all tests at disposition in a structure helps, how to extract those tests that are 

relevant for privacy and safety – or any other goal?  

Testing works only if the goal of testing is known. What suitable means exist to define 

goals of testing? What are the goals of security testing? 

How exactly shall AI be used to generate new test cases when testing AI? When is 

testing AI successful, what means “pass” for AI? Can we test AI by AI? How exactly 

can we use Combinatory Logic for testing AI?  

How does ART fit into DevOps? Who shall prepare test cases and how shall test re-

sults be communicated to the user of software-intense systems? 
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CHAPTER 2: TEST METRICS 
Today’s software testing body of knowledge focuses on testing code. While 

testing code is important, testing the full system’s functionality matters much 

more for the digital society. Code metrics, mostly captured by automated test-

ing tools, are unfit for functionality tests for software-intense systems. Code 

is often unavailable for e.g., cloud services. Moreover, systems often use only 

parts of the total implemented functionality of some service . Then, testing the 

unused part does not matter.  

Test metrics should refer to functionality, not code. This means that lines of 

code cannot be the reference for testing intensity; it must be functional size. 

For functional size, models exist that allow determining size at defined gran-

ularity for any service in use. The models also work for services that are only 

partially used. In the past, functional size models were used to predict cost of 

software projects and thus were not in the focus of the testing community. 

Testers were referring to code. Now, when testers face the challenge of digital-

ization, they have to learn metrics for testing that are independent from code. 

2-1 INTRODUCTION 

Today’s practices in software and system testing are quite strange. People count en-

tries in bug inventories and mistake this count for the number of defects. Test cases 

refer sometimes to code and sometimes to the behavior of some unidentified piece of 

software. It remains unclear to what piece of software a bug report refers to.  

Common testing techniques, metrics and tools refer to code – notwithstanding that 

code is often not available when testing software, and systems often rely on cloud 

services. Moreover, code is subject to the programming language, programming en-

vironment, and sometimes not even open. It is not possible to define any reasonable 

software metrics based on general code characteristics; you need always to be specific 

about what kind of code you want to measure for testing. How to test cloud services? 

When consulting the ISO/IEC/IEEE 29119 testing standard (ISO/IEC/IEEE 29119-4, 

2015), it astonishes that part 4 identifies 23 different so-called Test Coverage Items. This 

is already a step away from testing code. But tests primarily address software func-

tionality. It is unnecessary to define extra “Items” to undergo testing. 

Functional models are available and are used since the past 40 years for sizing soft-

ware. Why shall test coverage items be something else than its model elements? Func-

tionality of software can easily be assessed and modeled. While the availability of code 
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is helpful because functional models can be generated automatically (Soubra, et al., 

2014), in general Functional User Requirements (FUR) are enough. The only thing you 

need to know for testing software-based systems is what they are supposed to do. 

Since functional requirements exist not only for code written on purpose – e.g., user 

stories – for cloud services, or any standard software with proprietary code, they exist 

as well. 

While Non-Functional Requirements (NFR) also exist and are testable as well, such tests 

cannot be automated and are not considered in Automated Real-time Testing (ART). 

2-2 MODELING SOFTWARE 

Any software can be modeled by its functional requirements. The ISO/IEC 14143 

(ISO/IEC 14143-1:2007, 2007) defines what FUR exactly are and how to model them. 

They key statement is that model elements must cover everything that is needed to 

implement some FUR; thus, the ISO/IEC 14143 standard defines granularity. The 

level of granularity is defined by the user view represented in the FUR. Sometimes, 

general service considerations at the level of microservices are good enough; some-

times, code-level granularity is required, depending upon the “U” (User) in FUR. 

The “U” in FUR is important: whatever functionality is modeled; it is important to 

identify its user. A user can be a human, another application service, or another layer 

in the system’s architecture. Some lines of code might implement multiple FUR for 

different users; it is obvious that such a line of code can implement one or more FUR 

imperfectly, or completely faulty, while other FUR behave correct. This consideration 

alone demonstrates how misleading it is to link defects to code. To call today’s prac-

tices in software and system testing strange, is probably not appropriate. With today’s 

testing practice, it is a miracle that not more software fails than does today. The mira-

cle is because software developers are perhaps the most responsible workers found 

today. Testers in turn often enough fail to help them effectively.  

The lack of proper testing is a threat to ICT as a profession as well as all the economic 

churn put expectantly on ICT, digitalization for example. 

2-2.1 METRICS FOR SOFTWARE 

Before presenting the ways how to model software, let us introduce a related topic 

that somehow seems half-forgotten in the metrics community. Metrics is nothing new; 

since the beginning of civilization metrics have been indispensable for distributing 

goods, resources, wealth, and organizing welfare and warfare. Most people know the 

story how Eratosthenes calculated the size of the earth. 
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Citing Wikipedia: “Eratosthenes calculated the Earth's circumference without leaving 

Egypt. He knew that at local noon on the summer solstice in Syene (modern Aswan, 

Egypt), the sun was directly overhead. Syene is at latitude 24°05′ North, near to the 

Tropic of Cancer, which was 23°42′ North in 100 BC. He knew this because the shadow 

of someone looking down a deep well at that time in Syene blocked the reflection of 

the Sun on the water. He then measured the Sun's angle of elevation at noon in Alex-

andria… From these measurements, he calculated the angle of the sun's rays. This 

turned out to be about 7°, or 1/50th, the circumference of a circle. Taking the Earth as 

spherical, and knowing both the distance and direction of Syene, he concluded that 

the Earth's circumference was fifty times that distance.” 

Eratosthenes built a model that was not perfectly accurate but good enough for the 

purpose. He used a few simplifications, modeling the Earth as a perfect sphere, the 

sun rays as parallel, putting Alexandria due north of Syene. Then he could perform 

all necessary calculations on his model. 

But how did Eratosthenes know the true distance between Alexandria and Syene? 

Pharaonic bookkeepers measured the distance between Syene and Alexandria regu-

larly; an achievement that no civilization on Earth was able to repeat before France in 

the 18th century (Russo, 2004).  

However, you cannot measure such a distance by foot or – at the time – by camel only 

in one go; you need to be able to measure parts of the distance and combine measure-

ments correctly, using trigonometrical adjustments because the straight line is blocked 

sometimes. 

This knowledge about the nature of metrics is the essence of the VIM and the GUM: 

• The VIM: ISO/IEC Guide 99:2007, 2007. International Vocabulary of Metrology 

(ISO/IEC Guide 99:2007, 2007) – Basic and general concepts and associated 

terms (VIM); 

• The GUM: ISO/IEC CD Guide 98-3, 2015. Evaluation of measurement data 

(ISO/IEC CD Guide 98-3, 2015) - Part 3: Guide to Uncertainty in Measurement 

(GUM). 

Metrics must comply with the VIM and the GUM. Counting does not necessarily es-

tablish metrics. Counting points does not measure anything, unless the points mark 

units on a measurement scale. 

2-2.2 MODELS FOR FUNCTIONAL SIZING 

We observed that testing should not be against code alone but against functionality. 

For testing complex systems such as those powering autonomous vehicles, code is 

only partially available, and safety-impacting functionality depends as much from 
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functions hosted in the cloud than from the local controls powered by embedded soft-

ware.  

For measuring tests, it is therefore straightforward to size tests based on models for 

the functionality of software. The size can be determined by counting model elements. 

Sizing tests against code is inappropriate. For describing functionality, FUR according 

ISO/IEC 14143 are the preferred kind of reference. Currently, four ISO standards exist 

that conform to the concepts of ISO/IEC 14143. From those, the ISO/IEC 20926 

(ISO/IEC 20926:2009, 2009), for long years maintained by the International Function 

Point Users Group (IFPUG), is older and more widely used than all others.  

2-2.3 THE IFPUG MODEL OF SOFTWARE  

The IFPUG model (IFPUG Counting Practice Committee, 2010) defines a count for 

functional size by counting model elements that are conceptually familiar to tradi-

tional mainframe software: Data Functions and Elementary Transactions.  

Figure 2-1: IFPUG Model – Three Transactions: EI, EO, EQ; Two Data Functions ILF, EIF 

Software Boundary

ILF

User

EIF

EI EO EQ

 

The IFPUG model identifies five elementary types of data functions or transaction, 

categorizing each model element as either low, medium, or high complexity, each 

with a fixed size number associated. These categories depend from the amount of data 

handled by each element, and the number of data references. Consequently, the cate-

gories define a jumping count.  

Thus, with IFPUG, adding data elements can let the complexity assessment jump from 

one level into another. Or, in contrary, adding new elements to the model sometimes 

is not reflected in the count. Nevertheless, the IFPUG model can also be used to count 

Test Points, a test effort counting method for predicting test effort, proposed by Tom 

Cagley (Cagley, 2018).  

For knowing how to count model elements in ISO/IEC 20926, it is necessary to know 

the boundary for the complete system. The reason is that the total number of Files 

Types Referenced (FTR) impact the size of the transaction-type model elements. Without 

knowing the whole system, parts cannot be counted, if following the rules exactly.  



 

- 21 - 

Consequently, the IFPUG count is not a metric; it does not conform to the VIM and 

the GUM. While it seems possible to adapt the IFPUG rules by allowing intermediate 

results instead of the jumps, and it is arguable that for practical purposes the FTR 

number is known well enough, namely from the transaction alone without regard to 

the whole system, such an enhancement of the IFPUG count towards a metric is not 

yet on the agenda of the IFPUG counting committee. This makes the IFPUG counting 

method unattractive both for agile software development that needs to measure the 

functional size of sprints, and for test metrics. 

2-2.4 TRANSACTION MAPS 

The following Figure 2-2 explains how to combine the model elements shown in Fig-

ure 2-1 to create a Transaction Map. Transaction maps are a way to visualize the IFPUG 

model for a software system. Depending upon the architecture, more than one trans-

action map might be needed. Then, typically one transaction map describes an appli-

cation that manages an ILF, while others refer to the same elementary data element as 

an EIF. This in turn induces double counting for such elementary data functions that 

makes adding size for different applications unreliable 

Figure 2-2: Transaction Map for the Navigator Piece of Software 
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The Navigator application shown in Figure 2-2 is a piece of software using micro-

services such as GPS tracks, GIS maps, weather forecast and real-time traffic infor-

mation to propose routes for a car; it is a simplified navigation system. The user can 

enter destination and the system proposes one or more possible routes to take, de-

pending upon weather and traffic conditions. Favorite routes taken previously are not 
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taken into consideration; routes are not attributable to car users. A session key is used 

to separate authentication from identification of the user.  

Despite their failure to comply with the VIM and the GUM, transaction maps are ide-

ally suited for use with agile teams, for visualizing which elements of software are 

touched in each sprint. The model elements are easily recognizable by businesspeople, 

somewhat less by developers, but can be used for communicating work done in 

sprints, at the same time providing its functional size. 

Because of the said missing compliance to the VIM and the GUM, the sum of func-

tional sizes delivered in sprints is significantly higher than the total functional size; 

however, this does not matter too much in practice. Counting functional size with 

IFPUG is the better predictor for performance of an agile team that any other agile 

metrics, including story points. Anyhow, agile teams need be conscious about distin-

guishing new functionality from reused or enhanced existing functionality, to avoid 

unnecessary double counting in sprints. 

Nevertheless, the transaction maps like in Figure 2-2 serve many more purposes than 

just sizing functionality. Maps help to orientate and localize software elements. For 

tests, a map should be useful to localize test cases by identifying the model elements 

touched when running the test case. But with IFPUG, this is difficult. Test cases are 

not easily identifiable within a transaction map. It is unclear what role the FTR have, 

whether they belong to a test case or not. The missing compliance to the VIM and the 

GUM create quite practical problems making it difficult to define test metrics based in 

the IFPUG method. Consequently, test size compares not directly to functional size.  

2-2.5 THE COSMIC MODEL OF SOFTWARE  

In contrary to the IFPUG count, the COSMIC standard (ISO/IEC 19761:2019, 2019) 

complies to the VIM and the GUM. With COSMIC, you can measure parts, and from 

the parts one can construct the size of the compose. System boundaries are also de-

fined in the standard but do not affect the count.  

The COSMIC standard identifies layers. The layers’ boundaries detect the flow of data 

moving from one object into another; however, the total count does not depend from 

how boundaries are drawn. Communication between functional processes require 

typically an Entry and an eXit, with a device in between that connects the two pro-

cesses. Fortunately, devices and other applications yield the same count, regardless 

whether data movements cross an application boundary or not.  

A Read or a Write moves data between functional processes and persistent data stores. 

Every data movement transports a Data Group, identifying the data moved from one 
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object to another. Obviously, the content of those data groups matters for privacy pro-

tection; however, it also can affect safety up to some degree. 

A data movement moves a Data Group. Data groups hold the information needed to 

assess privacy protection needs, or safety risk exposure, of data. Two data movements 

moving the same data group are considered only one model element.  

Figure 2-3: The COSMIC Model, with Six Data Movements Entry, eXit, Write and Read 
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The constituent element of the COSMIC model is a Functional Process. A functional 

process is an object together with a set of data movements, representing an elementary 

part of the Functional User Requirements (FUR) for the software being measured, that 

is unique within these FUR and that can be defined independently of any other func-

tional process in these FUR (COSMIC Measurement Practices Committee, 2017, p. 42). 

Modeling software takes two distinct steps: 

• Creating a model for the software is based on analyzing data movements and 

identifying the relevant objects of interest that are the origins and targets of such 

data movements. This step is called Mapping and results in uncovering the rele-

vant functional processes.  

• Creating just enough model elements to explain how to implement all FUR. Cre-

ate data movements only once per data group moved per functional process, 

notwithstanding how many times they are being executed. 

Now you can count the size of software by counting the number of data movements. 

This is the way ISO/IEC 19761 COSMIC measures functional size. 

In COSMIC, one data movement with a unique data group yields one Function Point. 

Two or more data movements moving the same data group between the same objects 

do not add to functional size.  
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There are four kind of data movements: An Entry to some functional process; an eXit 

to some device or other application; Reading from and Writing into a permanent store. 

Counting the number of data movements yields the Functional Size. 

2-2.6 DATA MOVEMENT MAPS 

Data Movement Maps are a way to model a piece of software by connecting objects of 

interest, representing functionality, persistent stores, devices and other applications. 

The connectors are called Data Movements. They have some resemblance to UML Se-

quence Diagrams (Bell, D., 2004) but with less detail, and sequencing is not prescribed. 

Figure 2-4: Sample Data Movement Map 

2 Entry (E) + 2 eXit (X) + 1 Read (R) + 1 Write (W) = 6 CFP

Functional

Processes
Persistent

Data Store
Device Other Application

1.// Data Movement moving a Data Group

Trigger

2.// Write Data into Store

3.// Start Other Application

4.// Get Results from Other Application

5.// Read Data from Store

6.// Display FInal Result

 

Data Movements always move a Data Group, which can be thought as a data record. 

Its uniqueness is indicated by color-filled trapezes. Another move of same data group 

between the same objects within a COSMIC functional process lets the trapeze blank. 

2-2.7 OBJECTS OF INTEREST 

For data movement maps, we distinguish four types of Objects of Interest: 

• Functional Processes: Objects that perform functional processes in the COSMIC 

sense. One such object can perform several functional processes. Thus, such an 

object represents for instance one Virtual Machine (VM), or Electronic Control Unit 

(ECU) performing different calculations rather than a single functional process 

in the sense of the COSMIC manual (COSMIC Measurement Practices 

Committee, 2017, p. 42); 

• Persistent Store: Objects that persistently hold data. Contrary to the COSMIC 

definition, they provide data services to several different functional processes; 

• Devices: a device can be a system user or anything providing data; 
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• Other Applications: other applications use functional processes the same way 

as devices do; however, they typically represent other software or systems that 

can be modeled the same way using data movement maps. 

Triggers usually indicate the starting data movement of one COSMIC functional pro-

cess. Thus, one functional process object can have several triggers. 
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2-2.8 THE NAVIGATOR APPLICATION AS COSMIC MODEL 

Figure 2-5 models the Navigator application as a data movement map: 

Figure 2-5: Data Movement Map for the Navigator Application 

12 Entry (E) + 17 eXit (X) + 4 Read (R) + 3 Write (W) = 36 CFP

Car User GPS Tracks Routes Navigation Users GIS Maps Weather Service Traffic Service

1.// Request credentials

Session

2.// Get credentials

3.// Record session key

4.// Confirm session

5.// Session rejected

6.// Switch on

Locate

7.// Get session key

8.// Request GPS tracks

9.// Return GPS tracks

10.// Request map

11.// Get map

12.// Show map

13.// Show position

14.// Switch off

15.// Revoke session key

16.// Enter destination

Get Route

17.// Search route

18.// Ask for route

19.// Return possible routes

20.// Ask for weather forecast

21.// Return weather forecast

22.// Ask for traffic density

23.// Return traffic density

24.// Show routes

25.// Show travel time

26.// Select route

Set Route

27.// Record route

28.// Confirm route

29.// Request GPS tracks

30.// Return GPS tracks

31.// Monitor route

32.// Routing directions

33.// Destination reached

34.// Incident

Alert

35.// Get route

36.// Alert

 

Data movement maps serve as graphical visualization of COSMIC models. The maps 

have lifelines just like UML sequence diagrams. The objects in a data movement map 
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represent either functional processes, persistent store, devices, or other applications. 

The difference to Figure 2-3 is that a lifeline belonging to a functional object can host 

more than one COSMIC functional process. Triggers are needed according COSMIC 

rules to initiate each functional process. As shown in Figure 2-5, more than one trigger 

can exist in a data movement map pointing to the lifeline of a specific object of interest 

representing functional processes. Thus, triggers pointing to an object of interest iden-

tify functional processes within this object.  

Triggers also connect functional processes to user stories. A user story specifies a user 

triggering some functionality. This corresponds often to one COSMIC functional pro-

cess; however, a user story might need more than one functional process to get com-

pletely implemented. 

The Navigator application shown in Figure 2-5 consists of a mapping service, con-

nected to routing and positioning, usually by the Global Positioning System GPS. Such 

an instrument is standard in today’s cars, although we use a simplified model. It has 

the same functionality as the transaction map in Figure 2-2; however, the data move-

ment map shows more details how the application technically works. 

A route once chosen is used to tell the driver where to turn right, left, or around after 

missing the way completely. The Navigator relies on four external service applications: 

GPS, maps, weather, and traffic service. One functional object is enough; it uses two 

permanent stores, one for recording routes, the other one for recording users and their 

credentials. The relation between these two stores is critical for the ability of the Nav-

igator to keep routes taken as private, in the ownership of the car user. 

There are six different functional processes, all hosted by the Navigator functional ob-

ject. The first functional process authenticates the user and creates a session, identifi-

able by a session key. The second uses that session key to locate the car on a map. The 

third functional process proposes routes to a destination chosen by the car user, based 

on weather and traffic conditions. The fourth functional process consists of selecting 

among different routes, if available, and storing the chosen route for further pro-

cessing by the Navigator application, in case the Traffic Service application issues a traf-

fic alert, or weather conditions change the expected travel time. This process continues 

with giving directions to the car user until the destination is reached. The fifth func-

tional process informs the car user in case of a traffic incident that might cause choos-

ing another route. The car user then must try to get another route. 

There is no functionality provided here that for instance uses recorded routes to iden-

tify user preferences, avoiding privacy issues that arise from collecting routes chosen. 

Counting the data movement yields 36 CFP since each data movement moves a dif-

ferent data group. 
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2-2.9 AUTOMATICALLY CREATING DATA MOVEMENT MAPS 

The code given, creating automatically a model for functionality is easy for the COS-

MIC model, for most programming languages. All one must do is identifying the ob-

jects of interest. In most programming languages, these are declared as objects. The 

only difficulty is to decide whether such an object is visible to the user and thus could 

correspond to a FUR. Then, once the objects are known, the data movements between 

the objects are easily identifiable. The effort is comparable to building a compiler.  

Moreover, if different functional users can be identified, the same code may exhibit 

more than one data movement model. This is typical for a layered architecture, where 

the front-end functional user requires different data movements from different objects 

located in the middle layers or data layers, compared to what the end user requires 

from the front-end. 

Sometimes, automatically creating a data movement map is without any effort. With 

today’s Microservice architecture, constructing the model is directly possible from a 

Kubernetes network builder (The Kubernetes Authors, 2018). Kubernetes is a portable, 

extensible open-source container-orchestration platform for automating deployment, 

scaling and management of containerized applications. Kubernetes connects micro-

services by message pipes; for the respective granular view, this defines uniquely the 

functional size of a microservice architecture.  

While IFPUG describes software functionality from a static viewpoint, COSMIC ad-

dresses dynamic aspects. Since testing also is dynamic, COSMIC might be better 

suited for sizing tests than IFPUG also from that perspective. 

2-2.10 STRENGTHS AND WEAKNESSES OF SOFTWARE METRICS 

Counting Requirements. Software metrics count Functional User Requirements (FUR). 

This makes them independent from implementation details and allows comparing 

different solutions. Moreover, one does not need a finished product for counting its 

functional size. If functional size controls development cost, a functional count can be 

used to predict development cost. Also, it allows managing the scope of a project, e.g., 

for dealing with deadlines, and controlling budget.  

Today’s agile software development process has no clearly defined final set of require-

ments. Requirements are likely to change. However, as soon as there is a backlog, this 

is easy to count. You can track agile development by counting the backlog in sprints. 

Repeatability. Software metrics should be independent from the actual counter. 

Counters are properly educated and certified for the method. A user community 

maintains a counting practice manual, and provides examination for certified profes-

sionals, making it easy to decide whether a count is correct or not. 
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The problem with that approach is that automatic counting is in principle not possible. 

Nevertheless, automatic counting methods exist but are approximations to the origi-

nal manual count. 

Independent from Implementation. Software metrics do not model implementation 

details. Functional size is the same for a single-user, closed application as for a mobile 

app using cloud services if the same is being calculated.  

The concept of counting data movements in COSMIC matches the way modern soft-

ware is build. Connecting Docker container service (Steve Singh et.al., 2018) can be 

modeled as a sequence of data movements between containers.  

Independent from Algorithmic Complexity. Functional size models do not model 

mathematical algorithms, if they are not covered by the granularity of the FUR. Thus, 

if the FUR says, use some very complicated and computing-intensive algorithm that 

you can find maybe in a mathematical library, or you must implement manually. 

Without stating all the details of the algorithm, its complexity does not impact func-

tional size. 

Independent from Non-Functional Requirements (NFR). Functionality does not de-

pend neither from performance, nor from how much parallelism is implemented for 

load balancing. Nevertheless, such NFR might in turn require additional functionality, 

by turning into FUR on the respective granularity level. Performance improvements 

might require cache, and the functional cache user sees FUR and related functional 

size; load balancing also requires a load balancing functional process when looking at 

it from some internal layer. Functional size is indeed dependent from the viewpoint. 

This is the essence of the ISO/IEC 14143 international standard (ISO/IEC 14143-

1:2007, 2007). 

2-3 A SHORT PRIMER ON SIX SIGMA TRANSFER FUNCTIONS 

Readers of the previous book by the author (Fehlmann, 2016) can skip this section, or 

quickly read through it as a refresher. 

2-3.1 UNCOVERING HIDDEN CONTROLS  

For decennials, Quality Function Deployment (QFD) is the discipline to uncover hidden 

customer needs for creating successful products (ISO 16355-1:2015, 2015). The main 

task is to capture the Voice of the Customer (VoC). Many proven methods and tools exist 

to understand the VoC and turn it into a prioritization profile.  

QFD uses the concept of linear Transfer Functions in the form 𝒚 =  𝑭𝒙, where 𝒚 is the 

vector representing qualitative or quantitative user needs, and 𝒙  the vector of 
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quantitative parameters related to the technical solution. Since 𝑭 is linear, it can be 

represented as a matrix (Fehlmann, 2003). It has many similarities to Six Sigma root 

cause analysis, where 𝒚 is the observable response and 𝑭 the matrix of measure-

ments that correlate each vector dimension of 𝒙 with each vector dimension of 𝒚. For 

measuring these correlations in Six Sigma, the Design of Experiments technique (Myers, 

et al., 2009) provides guidance how to get a sufficiently well-defined transfer function 

matrix for identifying main causes for an observed effect. 

In both QFD and Six Sigma for manufacturing, finding the right controls for the vector 

𝒙 is the difficult part. Because of the non-decidability of first-order logic, there is no 

automated method possible to devise the “correct” instances of 𝒙, not even its dimen-

sions – otherwise we would have a general problem solver and could let computers 

develop new technologies and new products. The main difference between Six Sigma 

in manufacturing and QFD is that, in QFD, proper measurements are often not possi-

ble. Classical QFD for product design replaces measurements by team consensus; 

thus, measuring expert judgment rather than physical evidence.  

Measuring the response 𝒚 in QFD involves techniques to understand the VoC that 

often rely on social science or involve not only mathematics but also psychology (such 

as AHP). Methods and techniques for the acquisition of the voice of the customer 

make up about two third of the ISO 16355 series of standards. 

Since finding the transfer function and assessing the right topics and dimension of 

𝒙 is a challenge with mutual dependencies, QFD is a very creative but disciplined pro-

cess. As for any transfer function, it is possible to validate any pair of 𝑭 and 𝒙 by ap-

plying 𝑭 to 𝒙. The result, 𝑭𝒙 is a vector with the dimensions of the original response 

𝒚, in QFD the voice of the customer, and because of the measurement errors and the 

uncertainty of expert judgements, it will not be the same.  

The vector difference between 𝑭𝒙 and 𝒚 is called the Convergence Gap. This is an in-

dication how well 𝑭  and 𝒙  together explain the response  𝒚 , or in other words, 

whether a product or technology based on the quantitative parameters 𝒙 and provid-

ing the transfer function 𝑭 are capable to deliver the qualitative requested user needs 

𝒚, thus validating the approach but not able to exclude the existence of other ap-

proaches. 

Let 𝒙 be the vector 𝒙 = 〈𝑥1, 𝑥2, … , 𝑥𝑛〉, 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑚〉 and 𝑭 = (𝑓𝑖𝑗) the transfer 

function as a matrix, then the convergence gap is defined as the Euclidian distance 

between the 𝑚-dimensional vectors 𝒚 and 𝑭𝒙 = 〈∑𝑓𝑖1𝑥𝑖 , ∑𝑓𝑖2𝑥𝑖 , … ,∑ 𝑓𝑖𝑚𝑥𝑖 〉: 

 ‖𝒚 − 𝑭𝒙‖ = √∑(𝑦𝑗 −∑𝑓𝑖𝑗𝑥𝑖 )
2

 (2-1) 
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The convergence gap can be used to optimize controls by iteration, using domain ex-

pertise, or by any other numerical optimization method. In fact, in Six Sigma the pre-

ferred method is the Eigenvector method because it settles and flattens variations that 

originate from measurement errors or opinion blur, as observed by Saaty, and used 

for the Analytic Hierarchy Process (AHP) (Saaty, 2003). 

2-3.2 THE HOUSE OF QUALITY 

For decades, QFD has been identified with, and partially misunderstood as, the so-

called House of Quality (HoQ). In the HoQ, the vector 𝒚 is the profile of customer 

needs, as found by some suitable voice of the customer process, and 𝒙 is the profile 

of the qualities required for the technical solution. Thus, QFD allows selecting opti-

mum solutions, avoiding unnecessary gadgets that only add cost to the new product. 

For this, the HoQ is still ideal; however, the HoQ is only a small portion out of the 

QFD method. Nevertheless, it is the best-known part of the method, and popular 

among Six Sigma Black Belts and Marketing managers alike. 

2-3.3 THE HELP DESK IMPROVEMENT EXAMPLE 

For a HoQ example, assume, a Help Desk operator wants to improve its service. The 

help desk is a traditional one, with humans answering questions and helping custom-

ers who are not yet able to help themselves with the tools provided through the Inter-

net. Humans sometimes can improve doing their jobs by receiving training, while ma-

chines undergo deep learning. 

A simple pairwise comparison – a basic AHP session – identified the following prior-

ity profile 𝒚 for a typical Help Desk customer:  

Figure 2-6: Pairwise Comparison for the Help Desk House of Quality 
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Profiles and weight follow the definitions used for AHP (Saaty & Alexander, 1989): 

the sum of the percentages is 100% while the profile represents a three-dimensional 

normalized vector of length 1, i.e., the sum of the squares of the coefficients yields 1, 

the unit vector length. From Saaty (Saaty, 1990) it is known that the solution profile 𝒚 

of an AHP square matrix 𝑨 is its Principal Eigenvector; thus, 𝑨𝒚 = 𝒚 holds up to some 

limit of exactitude caused by the numerical algorithm. The eigenvector balances the 
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inconsistencies out caused by human judgements in pairwise comparisons. Geomet-

rically, an eigenvector points in a direction that is stretched by the transformation.  

Profiles and weight percentages always transpose into each other. This is only a matter 

of convention. However, it is well known that you cannot add or subtract weight per-

centages, because this will no longer yield percentages, and even when recalibrating 

the result of addition, if the weights are out of balance, the resulting bias can become 

substantial. For comparing results from AHP, you must use profiles. Because of their 

nature as vectors, they allow addition and subtraction, and can be compared to each 

other, if they represent directions in a vector space only. The sum of two profiles yield 

another profile, as soon as normalized to length one. 

Figure 2-7: The Priority Profile 𝒚 for Customer Needs 

Customer's Needs Topics Attributes Weight Profile

  y1 Friendliness Remains cool Always friendly 41% 0.69

y2 Responsiveness Understands the problem Finds a way to solve 33% 0.56

  y3 Accuracy Complete information Compelling 26% 0.451.7

AHP Priorities

 

We investigate the following pair of quantitative parameters 𝒙 and transfer function 

𝑭 for improving the Help Desk service: 

A team of experts might now come up with the following House of Quality (HoQ): 

Figure 2-8: The Transfer Function 𝑭 (HoQ) 
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y1 Friendliness 0.69 9 2 0.67

y2 Responsiveness 0.56 7 6 0.58

y3 Accuracy 0.45 1 6 3 0.46

Solution Profile for Critical To Quality: 0.65 0.41 0.41 0.49 Convergence Gap

0.7 0.4 0.4 0.5 0.03

34 Total Effort Points

0.20 Convergence Range   

0.20 Convergence Limit

Critical To Quality
Deployment Combinator

Customer's Needs

 

The matrix correlates customer needs with effects originating from Critical to Quality 

controls. Solving the transfer function with the Eigenvector method explained below 

(2-3.4) for the controls 𝒙 yields an Achieved Profile 𝑭𝒙 near enough to Goal Profile 𝒚. 
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For transforming the profile into percentages, consult Figure 2-9. Here the bottom pro-

file of Figure 2-8 is turned by 90° to display horizontally. 

Figure 2-9: The Technical Solution Profile 𝒙 – Critical to Quality 

Critical To Quality Topics Attributes Weight Profile

  x1 Training Behavioral Training With Stress Test Must make fun 33% 0.65

x2 ICT Infrastructure Customer Identification High Performance High Reliability 21% 0.41

x3 Salary & Bonus NPS related Predictable 21% 0.41

x4 Work Place Ergonomic Individual High Performance 25% 0.49

Priority

 

This means that the following distribution will provide best value for money: by in-

vesting 33% of the total budget into x1: Training, 21% into x2: ICT Infrastructure, 21% 

into x3: Salary & Bonus, and 25% into x4: Work Place. The percentages indicate how the 

budget for improving the Help Desk services is allocated best. 

Tradition restricted the cell values adopted in QFD transfer function matrices to 0, 1, 

3, 9; with 9 as the highest correlation value. This was found suitable for expert team 

judgement; however, from a mathematical viewpoint any scale is permitted if the scale 

is a Ratio Scale; i.e., 9 = 3 × 3. 

2-3.4 SOLVING A TRANSFER FUNCTION BY THE EIGENVECTOR METHOD 

There are various mathematical or empirical methods available to solve 𝐲 = 𝑭𝐱, given 

the vector dimension of 𝐱 and some matrix 𝑭. A cute way of solving is by using the 

AHP Eigenvector method which has the advantage to flatten out measurement errors. 

Such errors are unavoidable especially if a team of experts is setting up the transfer 

function matrix. For this, we tilt the 𝑚 × 𝑛 matrix 𝑭 over its diagonal into its 𝑛 ×𝑚 

transpose 𝑭⊺ and multiply 𝑭 with  𝑭⊺; this yields a 𝑚 ×𝑚 positive-definite square 

matrix that has 𝑚 Eigenvectors. 

Figure 2-10: Solving the 𝒚 = 𝑭𝒙 problem with Eigenvectors 

F : F
T

: FF
T

:

9 0 2 0 9 0 1 85 0 21

0 7 0 6 0 7 0 0 85 18

1 0 6 3 2 0 6 21 18 46

0 6 3

Jacobi Iterative Method 

for Finding Eigenvalues: Eigenvectors: y : t : Diff:
99 0 0  0.67 -0.65 -0.35 0.69  0.67  0.02

0 85 0  0.58  0.76 -0.30 0.56  0.58 -0.02

0 0 32  0.46 -0.00  0.89 0.45  0.46 -0.01

99 85 32 TRUE FALSE FALSE Convergence Gap: 0.03  

The solution relies on the theorem of Perron-Frobenius, saying that positive determined 

square matrices have a principal Eigenvector 𝜏 which is all positive. For a short proof 



 

- 34 - 

of this theorem, see e.g., Cairns (Cairns, 2014). The Eigenvectors are calculated using 

the Jacobi Iterative Method (Volpi & Team, 2007), or any other suitable solution method. 

Then, setting 𝒙 = 𝑭⊺𝜏 solves 𝑭𝒙 = 𝑭(𝑭⊺𝜏 ) = 𝑭𝑭⊺𝜏 = 𝜏, because 𝜏 is an Eigenvector. If 

it happens that 𝐲 ≅ 𝜏, i.e., the goal vector 𝐲 is near enough to an Eigenvector, the so-

lution 𝐲 is an approximative solution to the problem 𝐲 = 𝑭𝐱, up to convergence gap. 

2-4 MEASURING TESTS  

A Test is a finite collection of test stories. Test Stories are finite collections of test cases, 

characterized by some common business value delivered. Test stories are often related 

to user stories but typically not the same. Test stories can address more than just one 

user story.  

Test cases are represented as arrow terms, starting with a set of preconditions (test 

data) and yielding some response. In a data movement map, it is straightforward to 

identify those data movements that are executed if running a test case. The initial data 

movements are those whose data group last meets the assertions made on test data; 

the last data movement first meets the response assertion. Moreover, objects of interest 

can be expected to provide test stubs; this means that such objects can provide test 

data without executing all the data creation functionality that under normal opera-

tional conditions is needed. If there is some hardware in the loop, test stubs are needed 

anyway to simulate the sensors’ or actuators’ data supplied into the test. 

2-4.1 TEST SIZE 

Test Size thus is the minimal number of data movements needed to execute some test 

case to produce the test response. As with COSMIC in general, moving the same data 

group is counted only once for size. However, since a test story consists of many test 

cases, a specific data movement is executing many times within a test, typically with 

different test data. All test cases within a test story must be different from each other. 

Attributes contained within test cases must specify test data all different, otherwise 

the test cases are considered equal. 

Test Intensity in turn is an average number characterizing how many times on average 

a data movement becomes part of test case. Since high test intensity does not rule out 

that not all data movements are executed at least once in a test, Test Coverage remains 

an important indicator, specifying the percentage of data movements not covered with 

one test case in some test story; see Figure 2-29: Test Status Summary.  

The total size of a test story is the sum of all size of the test cases executed within a test 

story, thus increasing test size when executing more test cases.  

https://en.wikipedia.org/wiki/Jacobi_method
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In statistics, test distribution indicates the degree to which test intensity differs within 

one test story, or within the full test. For practical purposes, such a metric seems not 

very telling, since it does not replace test coverage. It is rather expected that high busi-

ness value increases test intensity while data movements moving irrelevant data are 

well tested with a few test cases only. Thus, test intensity depends from business value 

and is not and is not normally distributed. Therefore, test distribution is not a mean-

ingful indicator. 

2-4.2 TEST WALK 

The data movement maps can be used to visualize tests cases. You can walk the tests, 

similar, but less in detail, to walk through code. Such visualization might help in 

crowd testing for identifying bugs found. The tester sees selected sequences in the 

data movement map; he can “walk” the data movements when planning or executing 

tests. This makes functionality visible to the development team, localizes defects that 

impact functionality, and supports communication between testers, users, and devel-

opers. Figure 2-11 shows how Data Walker walks four data movements of a test case 

and detects a bug at the fourth data movement. 

Figure 2-11: Test Walk on Data Movement Maps; one Bug Found in Forth Walk 
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A Bug is defined the traditional way for testing: a test case that returns an unexpected 

response. Because our Data Walker can detect only one bug at a time, we are able to 

count defects unambiguously and thus define what defect density is. We count a max-

imum of one defect per data movement executed within a specific test story. The 
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maximum number of defects per test case is its test size. However, if the Data Walker 

detects bugs for different test stories in the same data movement, he can only count 

one defect per test story.  

2-4.3 DEFECT DENSITY 

What is a defect? A defect relates to requirements, specifications or expectation re-

garding the behavior of a system. If test cases are available, a defect means that the 

response does not meet the assertion of the response in the respective arrow term. It 

is therefore obvious that a defect relates to a test story. It refers to some data movement 

that exhibits the defect. Counting defects for each failed test case makes no sense if it 

refers to the same data movement. 

Thus, counting defects become a limited task. You can count a maximum of one defect 

per data movement per test story. Defect Density is therefore a percentage of the total 

of defect opportunities. This definition opens the possibility to apply the usual Six 

Sigma techniques to defect density and defect distribution. Traditional defect counts 

obtained from counting the number of entries in a bug repository are not suitable for 

applying Six Sigma. 

2-4.4 TEST COVERAGE 

The key point for test metrics is Test Coverage. The problem with test coverage is that 

it has to do with users’, or customers’, values. It is useless to test pieces of software 

that deliver nothing visible to the user, or nothing that has any value. Test coverage 

has to do with FUR, with functionality, and nothing with code. Code implements 

functionality, and tests cover functionality, not code. Functionality can origin from 

anywhere, the cloud, other services. Code might provide other things that functional-

ity. 

For defining test coverage, functionality needs evaluation in view of customer values. 

It is obvious that just counting whether any given piece of functionality is covered by 

tests does not yield and useful metric, because users see value in respective function-

ality differently. 

2-4.5 CREATING A CUSTOMER NEEDS PROFILE 

The usual way of valuating functionality is by prioritizing user stories. Agile team set 

priorities when selecting user stories for a sprint; however, the methods used for set-

ting priorities are not standardized. Since product owner is the most difficult role in 

agile development, especially with Scrum (Schwaber & Beedle, 2002), it is helpful to 

use a method dedicated to developing a product towards customer needs. The method 
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is taken from Quality Function Deployment (QFD) (Fehlmann, 2016, p. 16). The Naviga-

tor Application explains it. 

The methods of choice is the Analytical Hierarchy Process (AHP), proposed by Saaty 

(Saaty, 2003) and used in Fehlmann (Fehlmann, 2016, p. 21), based on calculating Ei-

genvector solutions. Our preferred alternative, combined with AHP, is the Net Pro-

moter® Score (NPS) approach (Fehlmann & Kranich, 2014-2). The applicable ISO stand-

ard (ISO 16355-1:2015, 2015) lists many more excellent alternatives, e.g., (Mazur, 2014) 

and (Mazur & Bylund, 2009). Net promoter is a method of evaluating surveys, avoid-

ing large questionnaires by focusing on the Ultimate Question only (Reichheld, 2007). 

The ultimate question is how likely it is you would recommend a product or service 

to closely related persons. The second, related, question is why. Then, it is possible to 

evaluate the responses by classifying answers into candidate business drivers – or cus-

tomer needs – and calculating importance and satisfaction using transfer functions. 

The transfer functions try to uncover the customers’ values for importance of, and 

satisfaction with, the candidate business drivers by trying to explain the observed NPS 

score with the solutions of the respective transfer functions. That will not always work 

but if it does, it is much more reliable than directly asking customers. 

2-4.6 EFFECTIVENESS OF THE IMPLEMENTED SYSTEM 

With customer needs established, user stories can easily be prioritized with a transfer 

function that maps user stories onto customers’ needs. The transfer function uses the 

frequency of data movements needed for implementing the user stories. The resulting 

profile for the user stories can be used in agile development for prioritization. 

In turn, mapping test stories onto user stories, again using the frequency of data move-

ments used in test cases, defines Test Coverage. The matrix looks familiar; tester use it 

to assess coverage of code by tests. But usually they are not aware of the convergence 

gap. If the test cases in a series of test stories cover the user stories, and the transfer 

functions yields a satisfactory convergence gap, this shows how well the test stories 

cover customer needs. 

The test coverage matrix represents a transfer function providing assurance that the 

test stories verify the correct implementation of the user stories. The convergence gap 

is the metric that tells how well correctness can be proved by these tests. 

Obviously, these tests do not prove anything else than the requirements expressed in 

the user stories have been correctly implemented. Adding user stories requires adding 

test stories. And as ever with transfer functions, there is no way of proving that the 

selected test stories are the only selection that works, not even the minimal one. The 

selected test stories work sufficiently well if the convergence gap closes. But that is 

enough for test automation, eliminating test stories that are not needed. 
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2-5 TEST METRICS FOR THE NAVIGATOR APPLICATION 

Before continuing with theoretical statements, we look at a practical example: the nav-

igation device application already encountered in Section 2-2.8: The Navigator Applica-

tion as COSMIC Model.  

2-5.1 CUSTOMER NEEDS, THE CAR USERS’ VALUES 

Customer needs are in our case rather the values of the car user, because it is unclear 

whether the car user is the same as the car owner and, even if so, if this is the direct 

customer of whoever offers the navigation device service. Also, car users are not nec-

essarily car drivers; the car could drive autonomously. 

We use two approaches: 

• The Analytical Hierarchy Process (AHP) 

• A Net Promotor Survey (NPS) 

and combine the resulting profiles for the car users’ values. 

2-5.2 THE ANALYTIC HIERARCHY PROCESS 

The AHP consist of pairwise comparisons between the following five potential values: 

Figure 2-12: Car Users’ Values 

Customer's Needs Topics Attributes Weight Profile

  y1 Find a Route Fast Secure No jams 17% 0.37

y2 Know Arrival Time Reliable Flexible 23% 0.51

y3 Avoid Jams Minimum traffic Fast Predictability 14% 0.31

y4 Avoid Blockers Incidents Events Bad weather 17% 0.36

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 28% 0.612.2

AHP Priorities

 

The navigation device cannot slow down a car if needed; that would be part of auton-

omous driving, or of an Advanced Driving Assistance System (ADAS) connected to the 

Navigator. 

The AHP in Figure 2-13 puts the value y5: Drive Safe highest by assigning equal value 

as for y1: Find a Route but double the pairwise comparison weights against the other 

three proposed weights in the AHP matrix. The second in ranking is y2: Know Arrival 

Time which is obviously closely linked to value y5. However, this is difficult to find 

out by asking the user directly. The car user will rather pretend y1, y3 and y4, finding 

the fastest route and avoiding jams and other blocking obstacles have highest priority. 
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Only pairwise comparison detects the true needs. 

Figure 2-13: Analytic Hierarchy Process for Five Potential Car Users’ Values 
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2-5.3 NET PROMOTER® SCORE 

Reichheld, Bain & Company, and Satmetrix Systems, Inc. have introduced and trade-

marked Net Promoter® Score (NPS) as a measurement method for customer loyalty 

(Reichheld, 2007). Because such considerations look somewhat odd, it is appropriate 

to ask the users of a car by means of a survey. Avoiding the useless direct question, 

we rather rely on the NPS methodology asking the car user whether he or she recom-

mends our Navigator application, yielding the NPS score, and why she or he probably 

give this score – named the Verbatim.  

The result looks as follows: 

Figure 2-14: Response to NPS Survey by Three Segments of Car Users 

25%

Attributes NPS Profile NPS

NPS1 Business People Meeting Time Pressure Planned 0.61 29%

NPS2 Professionals Appointments Predictable 0.72 33%

NPS3 Leisure Shopping Sightseeing Likes driving 0.33 15%0.5

Customer Segments

Survey Results Overall NPS:

 

A total NPS of 25% is nice but does not necessarily guarantee product success. For 

more detail on NPS, see (Reichheld, 2007), and for the methodology how to interpret 

it for VoC, see (Fehlmann, 2016, p. 104) and (Fehlmann & Kranich, 2012). 

The verbatim responses were categorized into references to the five values listed in 

Figure 2-12. Counting the frequency of mention yields the importance given to these 

values; also considering the positive or negative value of the mention yields the satis-

faction. Satisfaction can be used as a corrective to importance; however, since satisfac-

tion be negative, namely dissatisfaction, it not always gives clear guidance on the rel-

ative importance of the five values. 

The method is a typical application of Artificial Intelligence (AI) techniques. It combines 

classification with counting. Classification means to cluster words into notions de-

scribed with these words, omitting subtle differences, and counting means simply to 

count how many times they appear in verbatims.  
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It should be noted that the term AI does not imply any of the concepts related to mind-

fulness, reasoning and understanding that other languages – such as German – con-

nect to the terms derived from the Latin “intellegere”. The Latin origin intellegere means 

read, or infer, between the lines, or other objects. Intelligence, in English, has a slightly 

other meaning. It is used to describe the activity of collecting data and turn it into 

knowledge by counting similarities found in such data. Secret Intelligence Service is 

exactly that. Artificial intelligence does not aim for reason, not even inducing appro-

priate behavior. But transfer functions can reveal the possible causes, even the most 

likely causes if used with due domain expertise.  

We got the following two transfer function matrices: 

Figure 2-15: Importance Transfer Function Figure 2-16: Satisfaction Transfer 
Function 
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Car Users' Values
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The value y5: Drive Safe wins again; however, the second rank is not so clear. Obvi-

ously, satisfaction is high with the ability of our Navigator to avoid jams. 

Combining importance and satisfaction transfer function profiles for the car users’ 

values yields: 

Figure 2-17: Combining Importance and Satisfaction from the NPS Survey 
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Attributes 5 1   S  Weight Profile -0.21

  y1 Find a Route Fast Secure No jams 2.23 0.60 2.83 22% 0.48 0.60 0.57 0.23

y2 Know Arrival Time Reliable Flexible 2.30 0.63 2.93 22% 0.49 0.63 0.60 0.21

y3 Avoid Jams Minimum traffic Fast Predictability 1.89 0.29 2.18 17% 0.37 0.29 0.28 0.53

y4 Avoid Blockers Incidents Events Bad weather 1.56 0.34 1.89 15% 0.32 0.34 0.32 0.47

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 2.95 0.22 3.18 24% 0.54 0.22 0.21 0.64
6 2.2 2.44 0.95 0.64

Car Users' Values

NPS Priority
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The Satisfaction Gap is useful as a corrective. The satisfaction gap weights negative 

statements exponentially; it thus stretches the importance profile in case of dissatis-

faction. If customers are dissatisfied with an unimportant topic, the satisfaction gap 

remains nevertheless small and does not affect the profile (Fehlmann, 2016, p. 117). 

In our case, the ranking is almost the same as with the AHP. Since satisfaction has not 

been very reliable, looking at the convergence gap, it is considered as a corrective only, 

with weights five (5) against one (1), in favor of the importance profile and ranking 

(Figure 2-17). 

2-5.4 VOICE OF THE CUSTOMER 

There exist many more methods to measure the Voice of the Customer (VoC). Among 

these are such simple things as voting. We can also draw a vote amongst car users’ 

what matters to them most, and a possible result could be as shown in Figure 2-18: 

Figure 2-18: Sample Vote of Car Users on their Values 
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Car Users' Values Topics Attributes Weight Profile

  y1 Find a Route Fast Secure No jams 111  16% 0.32

y2 Know Arrival Time Reliable Flexible 274  40% 0.79

y3 Avoid Jams Minimum traffic Fast Predictability 149  22% 0.43

y4 Avoid Blockers Incidents Events Bad weather 74  11% 0.21

y5 Drive Safe Road conditions Avoid road works Avoid populated areas 75  11% 0.22347.4 2.0  

Combining AHP, NPS, and VoC car users’ profiles yields: 

Figure 2-19: Combined Profile from AHP, NPS, and VoC for Car Users’ Values 
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y2 Target 2 Attribute 2.1 0.82 1.50 0.79 3.11 43% 0.78

Y.b Target Group B y3 Target 3 Attribute 3.1 Attribute 3.2 0.47 1.07 0.45 1.99 28% 0.50
y4 Target 4 Attribute 4.1 Attribute 4.2 Attribute 4.3 0.23 0.43 0.23 0.89 12% 0.221.0 1.0 1.0 4.0 1.8

Targets

 

Here, in Figure 2-19, the NPS survey has been given double the weight than the AHP 

and the VoC, because NPS did ask more people at once than AHP or the VoC survey. 
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2-5.5 THE USER STORY PROFILE – FUNCTIONAL EFFECTIVENESS 

With help of the car users’ profile, the user stories can easily be prioritized by help of 

a transfer function. The transfer function for Functional Effectiveness originates from 

the data movement map. Do the data movements cover all needs of the customer, as 

expressed by the FUR, or user stories?  

Functional effectiveness is easily measurable; it simply means assessing which data 

movements contribute to what goal target, and then compute the convergence gap. A 

software is functionally complete and effective, if the convergence gap closes. 

Functional effectiveness has practical value. While missing functionality hints at 

missed business values, sometimes functionality is required that does not contribute 

to some of the values; maybe other reasons call for it. Then the convergence gap closes 

only if those other requirements are part of the value profile.  

Figure 2-20: User Stories for the Navigator Application 

User Stories Topics As a … I want to … [get something done] such that …[quality characteristic] so that … [value or benefit]

1) Q001 Authentication Car User authenticate myself I can use the Navigator I remain anonymous for the Navigator

2) Q002 Get Route Car User get the fastest route I arrive at the predicted time I can make arrangements for work and leisure

3) Q003 Safe Route Car User arrive safely the predicted driving time remains valid I arrive at the predicted time

4) Q004 Avoid Jams Car User use a route around traffic jams I arrive at the predicted time I can make arrangements for work and leisure

5) Q005 Avoid Storms Car User avoid bad weather conditions I arrive at the predicted time I can make arrangements for work and leisure

6) Q006 Use Routes Car User know my Driving Assistant where to go I can use it without hesitation the Driving Assistant knows where to go

7) Q007 Locate Car User know my position I know where I am the Navigator can calculate travel time

8) Q008 Set route Car User decide which route to take I can exhibit my preferences the car takes my preferred route

9) Q009 Navigate Car User know which direction to go I can rely on my Navigator I reach the destination directly 
 

Thus, the question is interesting in both cases: why some software is functionally ef-

fective or not. In practice, checking for functional effectiveness is a means to detect 

both missing functionality and excess functionality; consequently, it is a metric of high 

interest for Lean Six Sigma practitioners. 

To assess functional effectiveness, it suffices to count how many data movements sup-

port some specific car users’ value. However, such an assessment is not straightfor-

ward; sometimes it can be disputed whether a data movement carries specific im-

portance for one of the car users’ values. Since we use that information later for test 

coverage, the importance should be derived from the criticality of proper functioning 

of such data movement.  
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Figure 2-21: Get Route supporting y1: Find a Route 

Car User Navigation GIS Maps

16.// Ask for a route

18.// Ask for route

19.// Return possible routes

24.// Show routes

25.// Show travel time
 

The technique used for identifying such data movements is extracting the user stories 

from the data movement map. E.g., from the Navigator map in Figure 2-5, the Q002: 

Get Route user story supports the y1: Find a Route value for the car user with the fol-

lowing five data movements shown in Figure 2-21. 

Doing that for all combinations of user stories and car users’ values yields the Func-

tional Effectiveness transfer function that again has a convergence gap of 0.05 indicating 

that the Navigator application is indeed a valuable implementation of the car users’ 

need for a valid navigation device.  

Figure 2-22: Functional Effectiveness for the Navigator Application 
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y4 Avoid Blockers 0.41 3 6 4 5 4 4 0.38
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The cells in the functional effectiveness transfer function (Figure 2-22) count the num-

ber of data movements supporting each of the car users’ values. Since the application 

has 36 CFP only but the total count – called Effort Points – is 157, it is obvious that 

many data movements support more than just one of the five car users’ values. This 

is a sort of classification we need for later applying AI to automate testing. 
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Functional effectiveness proves that the software is meeting exactly customer needs 

and expectations; however, it is not always possible to close the convergence gap. 

However, if not, there is a risk of not providing enough functionality, or excess func-

tionality that is expensive to test but has no value for the customer. 

2-5.6 TEST COVERAGE FOR THE NAVIGATOR APPLICATION 

Creating test stories covering the user stories for the Navigator application is rather 

straightforward, based on the few user stories selected to fit into a book. 

Figure 2-23: Thirteen Test Stories for the Navigator Application 

Test Story Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A Identity A.1 Session Key A.1.1 {User in good standing, User known} Session key issued A.1.2 {User didn't pay, User known} Session key denied

A.2 Session Ends A.2.1 {Session key valid} Session key revoked A.2.2 {Session Timeout} Session key revoked

A.3 User Identity A.3.1 {Match session key with user data} No match A.3.2 {Login user twice} Session Key issued

B Routing B.1 Destination B.1.1 {Valid destination} Route proposed B.1.2 {Invalid destination} Destination rejected

B.3 Shortest B.3.1 {No obstacles, route is free, weather fair} Shortest route proposed B.3.2 {Traffic jam detected} Bypass proposed

B.4 Safest B.4.1 {No obstacles, route is free, weather fair} Avoids populated areas B.4.2 {Bypass proposed} Avoids populated areas

B.5 Obstacle B.5.1 {Build-up of traffic jam} Alert! B.5.2 {Storm detected} Alert!

B.6 Alternate B.6.1 {Alternate route recommended} Alternative proposed B.6.2 {No alternative available} Inform

B.7 Incident B.7.1 {Sudden traffic obstacle} Alert! B.7.2 {Incidence ahead} Ask destination

B.8 Select B.8.1 {Proposed routes, travel times, alerts} Ordered proposals B.8.2 {Select route} Show chosen travel time

C Navigate C.1 Direction C.1.1 {Arriving at crossing} Show direction C.1.2 {Traffic jam detected} Alert!

C.2 Track C.2.1 {On map} Show position C.2.2 {Lost GPS} Alert!

Test Cases

 

Figure 2-24: Thirteen Test Stories for the Navigator Application (cont.) 

Test Story

A Identity A.1 Session Key

A.2 Session Ends

A.3 User Identity

B Routing B.1 Destination

B.3 Shortest

B.4 Safest

B.5 Obstacle

B.6 Alternate

B.7 Incident

B.8 Select

C Navigate C.1 Direction

C.2 Track

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {User unknown} User redirected A.1.4 {Switch on} Show map & position

A.2.3 {Try credentials more than 3 times} Session key denied A.2.4 {Switch off} Route deleted

A.3.3 {Exchange session key} Session ends A.3.4 {2nd session} Both continue A.3.5 {User credentials, Get Location} blocked

B.1.3 {Match List, Completed Entry} Valid destination B.1.4 {Session expired} Get new session key

B.3.3 {Storm detected} Bypass proposed

B.4.3 {User preference} According preferences

B.7.3 {Incident, Request driving track} Activity track

B.8.3 {Select route} Show on map

C.1.3 {Destination not set} Show map only

C.2.3 {User track} No user found C.2.4 {Switch off} Revoke session key

 

For instance, the four test cases for test story B.1: Destination are:  

• B.1.1: {Valid destination} → Route proposed 

• B.1.2: {Invalid destination} → Destination rejected 

• B.1.3: {Match List, Completed Entry} → Valid destination 
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• B.1.4: {Session expired} → Get new session key 

The third case refers to an entry completed by matching destinations from a list. The 

corresponding data movement maps are: 

Figure 2-25: Test Case B.1.1: {Valid destination} → Route proposed 

Car User Navigation Users GIS Maps Weather Service Traffic Service

7.// Get session key

16.// Enter destination

18.// Ask for route

19.// Return possible routes

20.// Ask for weather forecast

21.// Return weather forecast

22.// Ask for traffic density

23.// Return traffic density

24.// Show routes

25.// Show travel time

 

Figure 2-26: Test Case B.1.2 Figure 2-27: Test Case B.1.3  

Car User Navigation GIS Maps

16.// Enter destination

18.// Ask for route

24.// Show routes

 

Car User Navigation GIS Maps

16.// Enter destination

19.// Return possible routes
 

We visualize test flow by letting a Data Walker walk data movements, for instance in  

Figure 2-25, and count how many bugs he encounters; he’s allowed to count only one 

bug per data movement and test story. Thus, he classifies data movements into those 

executing a test story correct, and those moving faulty data. This rule limits the total 

number of defects within an application that can be found by testing. 

The two smaller test cases use only a part of the data movements needed to propose a 

route. The last one (B.1.3) tests a part of the process of entering a destination. Entering 

a destination shall be made easy by completing partial entries of a destination’s name. 

For instance, you can enter the two or three initial characters of a valid destination and 

press the Enter key – or close entering data by any means suitable for the input device 

used – and the system will select the unique match from a list of valid destinations 

known to the GIS Maps application or, for more than one match, propose selecting 
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from all valid matches. This ease-of-use functionality is considered part of “all that is 

needed to complete the ‘16) Enter destination’ data movement”. Our data walker on 

Figure 2-25 has just left this data movements, after checking with 7) Get session key, 

continuing on 18) Ask for route searching for defects. 

Consequently, it is possible to count all data movements that belong to test story B.1: 

Destination. The total count is 50 – the sum of its column in Figure 2-28; however, only 

14 of these data movements aim at user story Q002: Get Route. These 14 data move-

ments are those shown in Figure 2-25 except 7) Get session key. 

The resulting test coverage matrix in Figure 2-28 has a favorable convergence gap of 

0.12.  

Figure 2-28: Test Coverage Transfer Function Showing Good Test Coverage 
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Q001 Authentication 0.19 11 12 30 6 4 4 3 0.14

Q002 Get Route 0.31 1 15 7 9 6 9 1 11 4 1 0.22

Q003 Safe Route 0.42 1 3 4 13 13 10 16 12 11 19 17 7 0.45

Q004 Avoid Jams 0.42 3 4 6 8 14 11 11 11 15 14 18 8 0.42

Q005 Avoid Storms 0.32 3 4 6 8 12 11 10 7 11 12 13 8 0.35

Q006 Use Routes 0.25 1 8 8 9 7 9 8 11 9 3 0.26

Q007 Locate 0.42 8 6 16 8 10 15 4 8 8 17 12 11 0.38

Q008 Set route 0.21 1 5 8 9 7 9 8 10 9 3 0.25

Q009 Navigate 0.36 3 7 6 17 6 19 9 25 9 0.38

Ideal Profile for Test Stories: 0.08 0.10 0.19 0.26 0.31 0.31 0.31 0.27 0.34 0.40 0.44 0.21 Convergence Gap

0.09 0.11 0.21 0.27 0.31 0.32 0.31 0.27 0.33 0.41 0.43 0.2 0.12

854 Total Test Size

0.15 Convergence Range            

0.25 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

 

Again, the cells of the matrix contain the frequency of executing data movements by 

the test stories. We use the knowledge from Functional Effectiveness for assigning data 

movements to user stories in the row of the matrix. 

Thus, the test coverage matrix results from the selected test cases automatically; no 

further assessment of data movements is needed. 

Real-world test coverage matrices have the dimensions of the number of user stories: 

a few hundred up to thousands, and test stories typically even more than user stories. 
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Automatically generated test coverage matrices, measured with the convergence gap, 

are indeed indispensable for making the approach feasible and attractive. 

Real-world applications also have a few hundreds to several thousand CFP functional 

size; thus, without machine-collectable data, and automated testing, test metrics re-

main theoretical stuff. 

The test statistics for our Navigator application looks as follows: 

Figure 2-29: Test Status Summary for Navigator 

Total CFP: 36 Test Size in CFP: 854

Test Intensity: 23.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  

2-5.7 KEY FIGURES FOR TESTING 

The total Test Size depends from the number of test stories in place, as typically every 

data movement is tested several times in view of other FUR, or user stories. It counts 

how many data movements are executed by test cases, in total. 

The Test Intensity tells how many times in average. This is test size divided by func-

tional size; its dimension is the ration between functional size, in CFP, and test size, 

also in CFP. Thus, it is dimensionless. 

The percentage of data movements covered by tests is what used to be called Test 

Coverage; however, test coverage is a matrix, not a key figure. The key figure that mat-

ters indicates Data Movements Covered; it is in memory of the traditional Code Lines 

Covered by tests that is still in use with testers, although it is not a metric and mean-

ingless for cloud services.  

In any case, Defect Density should be zero for safety-critical software, or near to zero 

in all other cases. Real-world applications are likely not to remain without defects; 

nevertheless, users would dearly like to know how many. Statistical methods exist to 

predict the residual defect density after the testing process; nevertheless, predictions 

are not actual measurements. The important point with defect density measured by 

COSMIC according ISO/IEC 19651 is, that the total number of possible defects is 

known, considering that defects count only once per data movement and per test 

story. 

Consequently, it is well known when a software is so buggy that every data movement 

is faulty; also, if it passed all tests without a single bug detected. However, even in this 

favorable case, adding more test stories might result in detecting previously unde-

tected bugs. Because of the test coverage transfer function, this is likely to cause more 

user stories to appear; that is, new functionality added to a software causes new 
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defects to appear, even in well-tested code. This is the reality developers experience; 

users and customers rather find it difficult to understand why their need for such 

functionality has not been detected much earlier. 

However, key figures are not here to express feelings, or frustration. They shall reflect 

the reality, and for this reason we need to say goodbye to the familiar pseudo-metrics 

used in software testing, still declared as best practices nowadays, see (ISTQB, 2011) 

& (ISTQB, 2014). 

2-5.8 DEMING CHAIN OVERVIEW FOR TESTING 

The most important precondition for automated testing is to know the goals of testing. 

Without the goals there is no way to help a robot or algorithm to decide whether it 

does the right kind of testing.  

The following Deming Chain might serve as graphical overview for the method used: 

Figure 2-30: Deming for Tests 

CN → VoC

Voice of the 
Customer (VoC)

Decision

User Stories 
(USt)

TSt→ USt

Realization

Customer Needs 
(CN)

USt → CN

#CFP

#NPS, #AHP

Functional Effectiveness Test Coverage

Test Stories 

(TSt)

#CFP

 

2-5.9 AUTONOMOUS REAL-TIME TESTING FOR THE NAVIGATOR? 

There is not much interaction of the navigator with the real world. GPS delivers the 

location on a map, but the map is not maintained by the Navigator application. The 

map changes over time; also, road construction sites impose new obstacles, but all this 

is not done within the navigation device. Therefore, there is little to test after release, 

and nothing that cannot be tested when releasing updates. 
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Safety by a navigation device is not a big concern. Privacy is somewhat more chal-

lenged: while tracking cars is important for the Traffic Services application for predict-

ing jams and detecting obstacles, such tracks should remain anonymous. Identifying 

car users might be useful for personalized advertisement based on the geographical 

location; however, for this navigation services is less useful than other devices such as 

a smartphone that can point its user immediately to shops and attractions. It is there-

fore safe to assume that privacy violations by navigation devices is rather limited and 

not subject to change over time. 

Nevertheless, privacy checks during the operating lifetime of a navigation system may 

at least prove the validity of such an assumption. 

2-6 CONCLUSION 

Test metrics are of low interest for consumers that do not care for any risk connected 

to software. The Navigator is an example of an interconnected software-intense system 

that has no immediate need for more testing after released to the public. Even real-

world larger-size systems with more than just skeleton functionality do not pose 

threats to safety, and rather few for privacy. Sharing routes taken, after all, is what 

most people gladly do without hesitation. 

Nevertheless, under certain special conditions people do not like to share location and 

routing to everyone. In this case, privacy protection might become essential even for 

a simple navigation service. 

The need for consumers to understand how well their privacy is protected exists even 

for such harmless services, and if consumers do not care, then it is because they fail to 

understand the impact of big data and the ability of AI-driven software to steal their 

privacy. 

The fourth chapter exhibits a general proposal how privacy protect, and safety risk 

exposer, shall be made visible to the public. However, before that we look at the Inter-

net of Things (IoT) requiring ART. 
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CHAPTER 3: TESTING THE 

INTERNET OF THINGS 
The Internet of Things (IoT) has become very famous recently and a break-

through is expected when the new 5G standards in mobile internet coverage 

become widespread. Testing the IoT meets the challenge that the system under 

test is unstable; simply, because it is extensible. You can always add another 

intelligent thing to the IoT concert and expand the system.  

How do you test expandable software systems? 

3-1 INTRODUCTION 

Combinatory Algebra (Engeler (Engeler, 1995)) is the mathematical theory of choice for 

automatically extending test cases from a simpler, restricted system, to test stories that 

fully cover a larger, expanded system. The extension works only if software testing 

not only is automated but measured. Metrics must be independent from current im-

plementation and from actual system boundaries. 

Metrics for testing are based on the international standard ISO/IEC 19761 COSMIC. 

3-1.1 METHODOLOGY 

Figure 3-1 shows a Data Movement Map (Fehlmann, 2016) for a simple data retrieval 

application, with a total functional size of 5 CFP according ISO/IEC 19761 COSMIC 

(ISO/IEC 19761:2019, 2019).  

Figure 3-1. A Data Movement Map for Data Retrieval 

User Search Process Database

1.// Search Criteria

Trigger

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message
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The map identifies objects of interest – here a user device, a functional process for 

search, and a persistent data object – and the data movements (or UML messages) 

between them. The data movements’ count represents the functional size of an appli-

cation. The number of data movements moving a unique data group determines func-

tional size in COSMIC Function Points (CFP). The exact conditions when and how to 

count data movements according ISO/IEC 19761 is documented in the COSMIC 

measurement manual (COSMIC Measurement Practices Committee, 2017). 

3-1.2 REAL-TIME TESTING 

Real-time testing is the process of testing real-time systems and its software (Ebner 

(Ebner, 2004)). Real-time does not mean anytime, but it means in limited time within 

a freely selectable and adjustable time frame. 

The theory of Combinatory Logic postulates the existence of Combinatory Algebras whose 

computational power is Turing-complete, i.e., all programs that are executable by 

computers can be modeled. This guarantees the best achievable test coverage. 

With combinatory algebra, test cases extend from real-time tests, covering a base sys-

tem, to the actual, expanded system. 

3-1.3 AUTONOMOUS TESTING 

Autonomous testing is automated testing; however, without the need of simultaneous 

presence of a responsible test manager, or tester. The system executes tests autono-

mously, by connecting to some test case database, downloading the test cases as 

needed, executing the tests, and recording responses. 

This requires the software be equipped with test stubs capable of accessing the test 

case database, and able to supply test data instead of a user device, or another appli-

cation that accesses the system under test. 

Test stubs can be present in any object; however, most test stubs reside in device and 

application objects. Such a system of test stubs replacing actual sensors, actuators and 

other hardware-in-the-loop are called Digital Twins. A Digital twin refers to a digital 

replica of potential and actual physical assets (physical twin), processes, people, 

places, systems and devices that can be used for various purposes. For a recent dis-

cussion of digital twin’s technology, see El Saddik (El Saddik, 2018). 
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3-2 TESTING THE INTERNET OF THINGS (IOT) 

The Internet of Things is a collection of sensors, actuators, and services that connect 

these hardware elements to software that reacts on events or collects data for further 

analysis. Such services are often hosted in some cloud, and the term Web of Things 

commonly refers to this. The IoT impacts the physical world over actuators, such as 

motors, locks, braking and steering controls.  

The IoT changes scope and behavior with every sensor added or removed. Autono-

mous cars are a relatively simple example of an IoT since within a container; as soon 

as they start talking to each other, for instance to find out where the other approaching 

car is heading to, the scope of the IoT is changing. Smart homes are intrinsically more 

complex since they are subject to external controls such as power plants optimizing 

the power supply over time. 

Most IoT components remain small and tiny and have no great complexity by them-

selves. A temperature sensor reports actual temperatures on a continuous but limited 

scale; an actuator might lock doors or continuously dim light as needed. Their state is 

relatively easy to describe by terms over the physical world, called Assertions. Asser-

tions describe test cases and test responses. This is an immediate application of com-

binatory logic. 

Test cases have the structure of arrow terms. The arrow terms represent tests; in 𝑎𝑖 →

𝑏, the 𝑎𝑖 describe the test data and 𝑏 the test response. Responses can be as simple as 

the amount of impact on the actuators in an IoT orchestra.  

The necessity for test cases produced automatically in IoT is apparent. There are no 

testers present when users connect a new sensor to their smart home network, or two 

autonomous cars meet each other for the first time. Behavior of the newly connected 

system still must remain safe. 

3-2.1 A SIMPLE IOT TESTING CASE 

The mechanism in place are shown with a simplified IoT network. Consider a simple 

data retrieval application. The application meets two functional (FUR) and two non-

functional (NFR) requirements with the following goal profile. The requirements and 

their profile represent Customer Needs, found by suitable Voice of the Customer tech-

niques, see Figure 3-3. For our sample IoT application, we call them IoT Needs. 
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Figure 3-2: Analytic Hierarchy Process for IoT Needs 
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For an explanation of the Analytic Hierarchy Process (AHP) and the tool used here to 

calculate, see (Fehlmann, 2016) or the original literature, e.g. (Saaty, 2003) 

Figure 3-3: IoT Needs Priority Profile 

IoT Needs Topics Attributes Weight Profile

FUR  y1 Extensible Easy to extend IoT Device independent Flexible 28% 0.53

y2 Open Open Source Open Interfaces 24% 0.45

NFR  y3 Reliable Always correct Always secure Safe 36% 0.68

y4 Fast No waiting 12% 0.221.9

AHP Priorities

 

Only three user stories are needed to cover these requirements: 

Figure 3-4: User Stories covering IoT Needs 

User Stories Topics As a … [functional user] I want to … [get something done] such that …[quality characteristic] so that … [value or benefit]

1) Q001 Search Data Search Data App User find data matching my search criteria It's attractive I know when data exists

2) Q002 Answer Questions Search Data App User know whether some data exists answers are correct I know when data doesn't exist

3) Q003 Keep Data Safe Search Data App User make sure my data is safe it cannot be deleted I can retrieve it if necessary
 

For user stories, we use the four-tailored Fagg & Rule form, see (Fehlmann, 2016, p. 

158). The data movement map in Figure 3-1 with five data movements implements 

these three user stories.  

This yields the following priorities for user stories, see Figure 3-5: 

Figure 3-5: User Stories’ Priority Profile for Simple Data Retrieval  

User Stories Topics

1) Q001 Search Data

2) Q002 Answer Questions

3) Q003 Keep Data Safe
 

Weight Profile

32% 0.55

40% 0.68

29% 0.49

Priority

 

This profile is found at the bottom of the following transfer function (Figure 3-6) that 

computes functional effectiveness with these five data movements yields: 
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Figure 3-6. IoT Needs Coverage by Data Movements 
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The priority profile reflects the number of data movements needed in the software to 

cope with the user requirements expressed in user stories.  

The user stories priority profile is a consequence of the customer needs profile in Fig-

ure 3-3. The total functional size according ISO/IEC 19761 COSMIC is 5 CFP, i.e., six 

data movements only; thus, this is a very small and simple application. The user sto-

ries’ profile reflects IoT Needs as shown in Figure 3-3 by transfer functions (see section 

2-3: A Short Primer on Six Sigma Transfer Functions). User stories’ priority profile is 

calculated by counting the number of data movements needed per user story to meet 

the IoT Needs’ priority profile. 

The test stories in turn are simple. Basically, the tests verify that data is kept safe and 

not altered when reading. Moreover, an invalid search string – whatever that means 

– is rejected and not used for searching the database. Missing data is shown as not 

available in the database, and repeatedly entering the same equation returns identical 

answers. 

Figure 3-7: Test Stories with first Test Cases 

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Case 1 Test Data Expected Response

A.1.1 {Search String; Valid} Return (known) answer

A.2.1 {Search String; Valid; No Search Result} No response available

B.1.1 {Search String; Valid} Correct responses

B.2.1 {Query; Repeated} Return identical Answer

 

Instead of full test case assertions we use an abbreviated form that just indicated what 

test data should be specified here. Data can be specified as anything that matches a 

predicate such as 𝑥 < 𝑏, or 𝑎 < 𝑥 < 𝑏. In view of section 1-2.2: A Representation for the 
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World of Tests care must be taken that in order to execute any such test, a mechanism 

must exist that selects an appropriate test data sample 𝑥; once more explaining why 

computer scientists must master intuitionistic mathematics, not traditional analysis. 

Every programmer knows how much can go wrong with such test data predicates 

that do not exactly specify how to pick an appropriate sample for executing the test. 

The remaining test cases, for two of the test stories are shown in Figure 3-8 

Figure 3-8: Test Stories with remaining three Test Cases 

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched

Case 2 Test Data Expected Response Case 3 Test Data Expected Response

A.1.2 {Combined Query; Valid} Return (new) answer A.1.3 {Combined Query; Invalid} No response available

B.1.2 {Search String; Invalid} Invalid search string

 

The data movements executed for the first test case of the first test story A.1.1 

A. 1.1: {Search String;  Valid} → Return (known) answer 

consists of the first three data movements: 

Figure 3-9: Test Case A.1.1 

User Search Process Database

1.// Search Criteria

2.// Get Result

3.// Show Result
 

Thus, its test size is three. Moreover, the User device needs test stubs allowing him to 

get pairs of combined queries and known answers to execute this test case. 

In general, every device object in a data movement map needs the ability to access test 

data and expected responses for executing tests. Some functional and data processes 

might need this as well, depending upon which test stories are defined. This is an 

additional task that developers must accomplish when making their software fit for 

ART. 

Completing the count for test sizes across all seven test cases yields the test coverage 

matrix (Figure 3-10): 



 

- 57 - 

Figure 3-10. Test Coverage for Simple Data Retrieval Application 
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The test coverage transfer function in Figure 3-10 is defined by the number of data 

movements in a test story delivering user stories. Coverage is fine with a convergence 

gap of 0.13 in this transfer function, the total number of tested data movements per 

cell never exceeds seven. Total test size is 46, for a functional size of 5. Better conver-

gence gaps are difficult to reach because of the small numbers. 

3-2.2 CONNECTING IOT DEVICES TO THE DATABASE  

Connecting IoT devices to a simple data retrieval application adds not only a contin-

uous flow of searchable data but also considerable complexity. By adding one type of 

sensor and one type of actuator, the functional size almost triples and becomes 21 CFP. 

Security and safety risks increase with every data movement added to the IoT concert, 

as they can be misused or hacked, or cause unwanted and unsafe behavior. 
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Figure 3-11: IoT Concert After Adding a Sensor and an Actuator 

User Search Process Database Sensor Data Collection Actuator Response

1.// Search Criteria

Search

2.// Get Result

3.// Show Result

4.// Nothing Found

5.// Show Error Message

6.// Enable Sensors

Sensors

7.// Switch Sensor on

8.// Sensor Data

9.// Data Recording

10.// Sensor Statistics

11.// Dashboard

12.// Enable Actuators

Actuators

13.// Switch Actuators on

14.// Read Sensor Data

15.// Calculate Response

16.// Acknowledge Task

17.// Error Message

18.// Record Task

19.// Task Statistics

20.// Dashboard

21.// Error Messages

 

3-2.2.1 ADDING MORE DATA MOVEMENTS  

In practice, adding an IoT device goes with little or no programming. The additional 

devices come with software already prepared and use standard interfaces to connect 

with the database in our simple search module. 

Nevertheless, there are a couple of new objects that require test stubs, making it obvi-

ous that ART is not something already there yet. Software suppliers need to cooperate 

to prepare their pieces for ART. In Figure 3-11, both the Sensor and the Actuator need 

such test stubs. 

For the purpose of demonstrating ART, we keep the number of user stories and con-

sequently of test stories, thus concentrating still on the same requirements while ig-

noring any additional requirements that could govern the use of sensors and actua-

tors. Consequently, actuators and sensors will not be tested, as is probably realistic 
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since we buy products ready for plug-in. If the application domain is rather safety-

critical, such an assumption is potentially dangerous. 

Functional effectiveness for the IoT concert is now expected to change (Figure 3-12), 

while the user stories and their profile remain. There are now many more data move-

ments that impact user stories. Basically, these are the Read and Writes to the Database 

from both the functional processes that manage the sensor and the actuator. Note that 

the Actuator also records the tasks it performs, adding more data than just sensor data 

to the database. 

Figure 3-12: Functional Effectiveness after Adding an IoT Concert 
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Since the user stories remain unchanged, the only interest is in verifying extensibility, 

openness, reliability, and access speed of the data already existing, or stored by the 

new sensor and the new actuator in the data base. 

The IoT Needs deployment combinator for the full IoT data retrieval concert now takes 

more data movements into consideration, and consequently the user stories’ profile 

changes (Figure 3-13). 

The goal profile for IoT Needs remains the same – not necessarily in all cases; however, 

no additional IoT Needs arise in this context with the full IoT concert, because it still 

does data retrieval, see Figure 3-13:  

Figure 3-13. User Stories’ Priority Profile for Full IoT Concert 

User Stories Topics

1) Q001 Search Data

2) Q002 Answer Questions

3) Q003 Keep Data Safe

Weight Profile

28% 0.48

37% 0.63

35% 0.60
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3-2.2.2 EXTENDING TEST CASES 

Functional size increases from 5 CFP (Figure 3-1) to 21 CFP (Figure 3-11) because of 

the added sensor and actuator and their respective functional processes for sensor 

data collection and for creating a response through the actuator. Also, user stories re-

main the same, although data now refers not to static but to dynamic data and the 

priority profile now changes towards higher importance for Q003: Keep Data Safe. Test 

stories too remain the same but must cover many more data movements between de-

vices, database, sensors, and actuators. Consequently, the IoT Needs profile (Figure 

3-3) remains valid while the user stories’ priority profile (Figure 3-5) changes after 

connecting the database to the IoT concert. Figure 3-5 transforms into Figure 3-13 with 

more focus on Q003: Keep Data Safe. 

Figure 3-14: Extended Test Cases for the Full IoT Concert 

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched
 

Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A.1.1 {Enter valid Search String} Return (known) answer A.1.2 {Combined Query; Valid} Return (new) answer

A.2.1 {Search String; Valid; No Search Result} No response available A.2.2 {Sensor Off} No data available

B.1.1 {Search String; Valid} Correct responses B.1.2 {Search String; Invalid} Invalid search string

B.2.1 {Query; Repeated} Return identical Answer B.2.2 {Transmission Interference} Data Rejected

 

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {Combined Query; Invalid} No response available A.1.4 {Sensor Readings} Retrieved in Database A.1.5 {Transmission Error} No Data available

A.2.3 {Sensor Off} Dashboard Indication A.2.4 {Actuator Off} Dashboard Indication A.2.5 {Invalid Actuator Data} No Action

B.1.3 {Actuator Set} Actuator does it

B.2.3 {Transmission Interference} Dashboard Indication B.2.4 {Actuator Off} Dashboard Indication

 

Case 6 Test Data Expected Response Case 7 Test Data Expected Response Case 8 Test Data Expected Response

A.1.6 {Actuator Enabled} Dashboard Indication A.1.7 {Actuator Off} No Action A.1.8 {Actuator Response} Stored in Database

A.2.6 {Invalid Actuator Data} Dashboard indication

 

Consequently, test cases increase in number. For instance, to keep data safe (Q003: 

Keep Data Safe), data transmissions to sensors and actuators must be tested against loss 

of data, or data transmission interference, e.g., by hackers. This increases test size but 

not the number of test stories. 

Because of adding sensor and actuator, the number of test cases increases by all the 

new combinations of reading and writing into the database. Additional test cases be-

come necessary to test these assertions, such as test case A.1.4: 

A. 1.4: {Sensor Readings} → Retrieved in Database 

The corresponding test case uses the following data movements: 
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Figure 3-15: Test Case A.1.4 

User Database Sensor Data Collection

6.// Enable Sensors

7.// Switch Sensor on

8.// Sensor Data

9.// Data Recording

10.// Sensor Statistics

11.// Dashboard
 

The resulting test coverage (Figure 3-16) remains like Figure 3-10 although test size 

increases considerably. This means that many more data movements are now under 

test; however, with the same test stories. The knowledge for testing the IoT is inherited 

from the original tests for the simple data retrieval test scenario. 

Figure 3-16. Test Coverage for Full IoT Concert 
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Clearly, both transfer functions for both test coverages remain within a safe Rule Set 

Radius. Adding more types of IoT devices causes the cell counts grown in the test cov-

erage matrix while the convergence gap remains within the rule set radius limits 

thanks to additional test cases. This is what combinatory logic predicts. Thus, the orig-

inal data retrieval application test serves as a model for the full IoT test. Only one rule 

set has been applied so far: (𝑥3 → 𝑦)3, representing the transfer function for test cov-

erage (Figure 3-16).  

If the IoT concert covers more user stories, say  , then this becomes (𝑥3 → 𝑦)𝑗; what in 

turn most likely requires 𝑖 more test stories: (𝑥𝑖 → 𝑦)𝑗. The importance of the original 

three test stories changes between the data retrieval application and the full IoT con-

cert, like seen in Figure 3-5 and Figure 3-13.  
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Table 3-17. Test Priority Change when Adding Full IoT Concert 

 Data Retrieval Full IoT Concert 

Test Story

A Prepare A.1 Retrieve Responses

A.2 Detect Missing Data

B Response B.1 Validate Responses

B.2 Data Stays Untouched
 

Weight Profile

44% 0.79

11% 0.20

21% 0.39

24% 0.43
1.81  

Weight Profile

49% 0.85

22% 0.37

12% 0.21

17% 0.30
1.73  

Main focus remained on A.1: Retrieve Responses but secondary changed from B.2: Data 

Stays Untouched to A.2: Detect Missing Data. This reflects the addition of tests that de-

tects the failure of writing data from sensor or actuator into the database. This reflects 

the additional effort that is required to protect data movements between sensors and 

database from interferences, e.g., data loss or even privacy violations, reflecting the 

higher focus on Q003: Keep Data Safe, 

The following table (Table 3-18) shows a comparison of test sizes between the original 

data retrieval application test, and the full IoT concert test. 

Table 3-18. Data Retrieval Test Size vs. IoT Test Size 

Data Retrieval Full IoT Concert 

Test Size in CFP: 46

Test Intensity: 9.2

Defect Density: 40.0%

Data Movements Covered: 100%  

Test Size in CFP: 217

Test Intensity: 10.3

Defect Density: 19.0%

Data Movements Covered: 100%  

The key indicator for tests is the Test Intensity, the ratio between Test Size and Func-

tional Size. Defect Size in turn is the percentage of defective data movements in the 

software. Size measurements follow the international standard ISO/IEC 19761 COS-

MIC (ISO/IEC 19761:2019, 2019). There are no limits for neither functional size nor 

test size. 

3-2.3 AUTOMATED TEST CASE GENERATION 

Thanks to the test priority goal profile, derived from the original IoT Needs and car-

ried through user stories to test stories, it is possible to generate test cases automati-

cally. The convergences gap serves as the heuristics which test cases to add to the test. 

The principle behind artificial intelligence are heuristics; i.e., metrics telling which 

search branches to follow and which to avoid.  

Because of the heuristics, artificial intelligence adds only test cases that pertain to the 

functionality of the implemented user stories, notwithstanding whether the IoT con-

cert now features additional but untested functionality. The data retrieval approach 

does not cover additional requirements that might come with the IoT concert, such as 

in a smart house, whether window stores close when the sun is shining strong, or 
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when it is necessary to avoid car collisions. The model extends, for instance, from the 

simple, well-controllable and well-tested application to something more sophisticated 

such as a smart home, or autonomous cars. Then, combinatory logic extends the test 

suite from the original model to the full-blown system. 

3-3 CONCLUSIONS AND NEXT STEPS 

Automated testing is a must for IoT systems, especially for autonomous cars. But au-

tomation is not enough. Autonomous testing means that new test cases are generated 

when software is updated or cloud services change. This requires a sound theory how 

to generate test cases and intelligence for selecting the relevant test cases for test exe-

cution. 

The time for actual testing can be very small. For instance, in case of an encounter with 

another car from a different manufacturer that wants to connect and whose behavior 

is hardly predictable, testing time allowance might be reduced to a few milliseconds.  

We demonstrated with an example how testing scenarios carry over from simple ap-

plications to complex IoT concerts, using the original test cases as testing patterns for 

automatically extending the test to the full IoT application. Using combinatory logic, 

testing scenarios designed for the original model carry over to its extended IoT imple-

mentation, and this is already an important saving, enabling safe IoT concertation.  

Combinatory logic paves the way to testing complex IoT concerts and networked sys-

tems, based on the solid ground of existing testing experiences. The quality of testing 

can be maintained even after moving to automated testing. For testing the IoT, this 

approach offers significant savings; however, the full potential of combinatory logic 

in organizing knowledge is significantly greater.  

Adding more “things” to that system requires additional testing that prove safety and 

security, other qualities, and functionalities of the expanded system. Such systems, 

serving as proof of concept, seem within easy reach for the currently available tools 

and can be used to study the legal basis for future, even more intelligent and autono-

mous things. 
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CHAPTER 4: TESTING PRIVACY 

PROTECTION AND SAFETY RISKS 
Privacy protection has become a major concern since we noticed that Google 

always knows where we are – because of the location services switched on in 

our Smartphones. And because we find it so attractive to know where we are, 

to see which restaurants are open around us, what they offer, and investiga te 

the shops’ offers already before visiting them.  

Maybe all this loss of privacy is not indispensable but who cares? On social 

media, we give even more insights in all aspects of our private life, and we 

know that a dozen characteristics are enough to match a person’s identity even 

without the consent of people to disclose their names.  

Unfortunately, privacy protection has more than just luxury. If softwar e-

intense products become popular, it is easy to use them for stealing relevant 

information, concerning money, property, or simply turn such products into a 

threat for your health or even life.  

Privacy protection and safety risk assessment by Autonomous Real-time 

Testing (ART) is much more than just luxury. It is the foundation of digitali-

zation. Or, what do you think will happen after the first incidence of the sort 

that your smartphone threatens you with causing an accident by misguiding 

your car? Unless you pay immediately some ransom fee? By bitcoin? Unfortu-

nately, you downloaded a new, cool, app that tells your car’s Advanced Driv-

ing Assistance System (ADAS) where to go…according your preferences, they 

said… 

4-1 INTRODUCTION 

While test intensity certainly is important, it is not a consumer metrics by itself. Con-

sumers value more to know the degree of protection against perceived dangers. 

Among them, physical safety matters most when sitting in an autonomous vehicle, 

but privacy is another major concern. Not only is it sometimes not convenient if the 

public knows where the car was directed, but other aspects of privacy might be 

equally important. For instance, who overhears private conversations in a car? Who 

has access to the credit card used to refuel the car, or reload batteries? Some might be 

worried of hackers that might gain control over the car (Andy Greenberg, 2015). 
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Privacy protection is not a new requirement. For centuries, privacy was easy to protect 

but hard to break because you had to personally overhear talking, not targeted at the 

public, or steal physical things such as letters or notepads. Nowadays, Alexa can over-

hear you while you think you privately chat to friends and family, listening to music, 

or laptops can use their cameras watching you, and anyway, whatever you like, com-

ment or disgust in newspapers and other social media is immediately known to almost 

everybody, be it the Russian secret service, the FBI, or Amazon and Google. 

Nevertheless, you own the data that you produce and most of your listeners require 

permission to track you. Some services track you but anonymously; for instance, car 

drivers are traced and monitored by whatever map service they are using, not only 

for placing advertisement nearest to their location, but also to learn about traffic inter-

ruptions and jams.  

While location is not so much a concern for most people, some people feel less at ease 

with the continual location tracking, be it when conducting secret visits for business 

talks or personal affairs, or simply when robbing a family home. Switching off your 

smartphone is a means of protecting your privacy; however, then 

you cannot use any of the features offered and since we all depend 

from our smartphones, you don’t do it easily. 

More serious is that hackers use personal data such as credit card 

numbers or passwords or both for stealing more tangible things 

such as money. Or they block entry into your well-protected IoT-

controlled family home, asking you for ransom money before un-

locking, eventually. Similar things can easily happen to your car, 

for instance by taking control over your Advanced Driving Assis-

tance System (ADAS). If ever the dream of Autonomous Driving 

would come true, it could turn into a nightmare if the protection of 

privacy were insufficient. 

4-2 CONSUMER METRICS 

The EU has set a good example in the European Union energy label; see the Directive 

2010/30/EU (European Commission, 2010) and Figure 4-1. A graphical representation 

is certainly better than presenting pure numbers. Thus, consumers can easily orient 

themselves. 

If you want to get consumers to do tests, then you must think of something about how 

to present the results of such tests. James Watt had to explain how to compare the 

output of steam engines with the power of draft horses. The “Horsepower” is a unit 

of measurement of power – the rate at which work is done. It was later expanded to 

Figure 4-1: Sample 

EU Energy Label 
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include the output power of other types of piston engines, as well as turbines, electric 

motors and other machinery.  

The “Horsepower” unit of measurement became very popular, later, and still is, alt-

hough it is at odds to the metric system. 

We propose a graphical representation that uses similar colors and resembles the fa-

miliar FMEA diagram used in automotive, using two dimensions; see Figure 4-2: 

• Privacy Needs – the level of protection needed, the worthiness of protection; 

• Privacy Protection – the means used to protect data against theft or sniff. 

Both dimensions use a zero-to-five scale, indicating the need for privacy protection 

and the means used to protect. While the privacy protection scale might be stable over 

time, the adopted means of privacy protection clearly are not and need consensus for 

acceptance. New protection schemes are easily fit into the zero-to-five scale. 

The bubble marks where the system is placed in the grid in terms of privacy needs 

and privacy protection. The privacy index is the distance from the upper right corner 

– the worst case – to the bubble. Bubbles placed on the circles have the same index. 

The grid is skewed for accommodating bubbles that represent maximum protection 

even though they do not need it.  

Figure 4-2: Proposal how to Assess Privacy Issues for Technical Systems

Privacy Needs

Value = 0: No privacy. It’s public.

Value = 1: Disclosure is inconvenient

Value = 2: Disclosure can be harmful

Value = 3: Disclosure costs money

Value = 4: Disclosure makes guilty

Value = 5: Disclosure sets life at peril

Privacy Protection

Value = 0: No protection. It’s public.

Value = 1: Weak protection

Value = 2: Strong protection

Value = 3: Two-way protection

Value = 4: Blockchain protection

Value = 5: Container-internal data
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More than one bubble can be placed on the grid. This is useful if parts of the systems 

exhibit a different privacy behavior than others. The size of the bubble can then be 

used to indicate which one is predominant. If so, it is recommended to label the dif-

ferent bubbles indicating for what they stand for. 
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Privacy protection can be excellent if no privacy is needed because data is public. Pub-

lic data does not need protection. It depends from the context. Container-protected 

data remains within a virtual machine and is not exposed to the environment. In view 

of the possibility of attacks to hardware – for instance Spectre and Meltdown – even 

container-internal data in containers that share one kernel is not entirely safe (Graz 

University of Technology, 2018). For consumer metrics, this limitation is acceptable. 

Measuring privacy is basically the product of privacy value for the user times the de-

gree of public exposure. If one of them is near zero, there is no privacy, or no privacy 

needed. Highest privacy protection is if there is data worth protecting, and protection 

is effective. 

The formula for the privacy index is given in (4-1) where Needs and Protection are the 

distances in the grid from the worst-case point, and thus must be counted inverse for 

the Needs. It is simply the Euclidian distance, somewhat distorted by allowing for the 

green bottom row. 

Much more elaborate schemes exist for characterizing privacy protection, distinguish-

ing up to seven dimensions of protection, and for safety risk assessments, see e.g., 

Tilghman (Tilghman, et al., 2014) for warfare applications. While such specialized 

high-tech applications doubtless would benefit from autonomous real-time software 

testing, seven dimensions of protection indices seems far away from a privacy protec-

tion index representation acceptable to the general public. 

Consumer metrics do not replace sound technical assessments but help engineers 

identify weak points – at least those that impact consumers’ perception. For a sound 

privacy protection and safety risk assessment, the traditional methods are still 

presumed; they remain indispensable. Moreover, some of the consumers’ assessment 

criteria cannot be answered without knowing the technical background. For instance, 

container protection depends from the implementation details and is not replaceable 

by consumer metrics.  

We recommend limiting the number of bubbles shown to consumers. For instance, the 

many bubbles in Figure 4-6 are not helpful. One, or two, plus the maximum risk 

bubble are enough. The tools support limiting the number of bubbles. However, a 

general recommendation cannot yet be given. 

4-2.1 ACCEPTABILITY OF CONSUMER METRIC FOR SAFETY & PRIVACY 

There is obviously a need to provide these representations also for handicapped, e.g., 

color-blind people; however, this is a standard task today and is not covered in this 

paper. Black-and white versions are provided for the print version of this paper; colors 

are used for the online version. 
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There are important obstacles to overcome for such consumer metrics. The first one is, 

that suppliers of autonomous vehicles are not very eager of getting measured by any-

one, and if doing measurements, to keep results under disclosure. Another one is that 

customer organizations, forget lawmakers, have not yet fully understood the impact 

of digitalization and, of autonomous vehicles on the society.  

Nevertheless, users of laptops and smartphones would already today welcome such 

indicators after downloading new apps or an operating system update, or after new 

attacks on their privacy have been publicly communicated. Whoever comes first pro-

posing such consumer metrics might gain a significant competitive advantage, forcing 

the automotive industry to follow up. 

An open question remains whether assessing privacy and safety on data movements 

alone is good enough for all domains. While this choice has merits for cloud systems, 

the Internet of Things (IoT) (Fehlmann & Kranich, 2017), and embedded software in 

autonomous vehicles, it is unclear whether it also suffices for mobile applications, or 

traditional web applications and stand-alone software.  

4-2.2 THE PROPOSED MEASUREMENT PROCESS 

More difficult obstacle is that the proposed measurement process uses models for 

large and complex software systems that are far from widespread practice. While the 

IFPUG model is popular for early cost estimation, and the COSMIC model is used for 

estimation of memory load prediction in automotive (Soubra, et al., 2015), it is gener-

ally difficult to get an accurate model after completion of the software, or for any soft-

ware in operation.  

For institutionalizing consumer metrics for software, the software deployment pro-

cess – aka DevOps toolchain – needs being enhanced to provide such models. Luckily, 

at least for the ISO/IEC 19761 COSMIC model, automated model creation, suitable for 

model-based testing as well as for consumer metrics, are in the making (Soubra, et al., 

2014). However, although net analyzers exist, for cloud service it is still unclear how 

to automatically create valid software models. If automated measurement tools are 

not yet available, models can still be created manually, as for predicting cost; however, 

this is costly, and getting updated models for new releases are even more challenging. 

4-2.3 PRIVACY PROTECTION  

When is privacy protection good enough? Privacy protection can be excellent if no 

privacy is needed because data is public. Public data does not need protection. It de-

pends from the context. 
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Privacy is basically the product of privacy needs for the user times the degree of public 

exposure. If one of them is near zero, there is no privacy, or no privacy needed. High-

est privacy protection is if there is data worth protecting, and protection is effective. 

The sample ADAS service we use to demonstrate the principles is a simple Car Driving 

Function starting a visual recognition system (Camera driven by a Sensor Bus) and a 

Neural Network Engine interpreting images. A Lidar – a device that measures distances 

with a pulsed laser light – delivers distances and allows the neural network engine to 

assess the safety risks that originate from the object on the image analyzed. Sequences 

of images serve for determining the objects movements and direction. 

The Car Driving Function asks the Recommender for advice and Acts in accordance with 

the selected route that the navigation system stored in the Remember Routes persistent 

database. This is a simplified ADAS for instructional purpose only; it possibly can 

power a model car. But it is a model car equipped with camera, Lidar, and sensors for 

slippery roads. And it uses a Navigator service to find a route. However, we out-

sourced both the recommender and the Visual Recognition System (VRS) which do most 

of the work. Both services are likely implemented as neural network engines. Never-

theless, for a real-world ADAS, there is a lack of redundancy. 

Figure 4-3: Look & Act in ADAS 

Car User Recommender
Car Driving

Function
Visual Recognition Sensor Bus Camera App Lidar

Car Steering

Devices
Remember Routes

1.// Trigger Sensor

Look

2.// Start Cameras

3.// Supply Images

4.// Request Distance

5.// Lidar Distance

6.// Analysis Request

7.// Analysis Result

Act

8.// Chosen Route

9.// Ask for Actions

10.// Recommended Action

11.// Act

12.// Inform

 

Privacy is best measured by looking at the data movements between objects, under 

the assumption that the application objects do no other data movements than those 

listed in the model. Compliance to the ISO/IEC standard 14143 ensures exactly this 

(ISO/IEC 14143-1:2007, 2007). Then privacy protection is measurable by the protection 

level of the data movements between those objects.  
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Figure 4-4. Privacy Needs vs. Privacy Protection for Look & Act 
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These data movements can be open to the public, encrypted, or secured by two-way 

authentication scheme, by blockchain, or be transported on physically isolated and 

protected cables. Data groups moved within a container, or processor, are among the 

latter. Data protection within containers cannot be taken for granted but can be as-

sured with reasonable effort. For the technology behind such protection, see e.g., 

Staimer (Staimer, 2015). 

Protection methods in turn are implementation dependent – and the labels chosen 

arbitrary. Protection technology will change, and encryption might be appropriate in 

many cases to protect data movements when transporting data through Internet, but 

there exist many industrial bus systems that require different categories with different 

labels. Also, encryption is not the only way protecting data against hackers. Encryp-

tion is best against man-in-the-middle attacks, but many more attack vectors exist and 

many other effective protection schemas. Again, only the level matters. 

Table 4-5: Privacy Assessment Categories 

Privacy Needs Privacy Protection 

Value = 0:  No privacy. It’s public. 

Value = 1:  Disclosure is inconvenient 

Value = 2:  Disclosure can be harmful 

Value = 3:  Disclosure costs money 

Value = 4:  Disclosure makes guilty 

Value = 5:  Disclosure puts life at peril 

Value = 0:  No protection. It’s public. 

Value = 1:  Weak encryption 

Value = 2:  Strong encryption 

Value = 3:  Two-way encryption 

Value = 4:  Blockchain protected 

Value = 5:  Container-internal data 

These categories can be used in a table for recording the assessment. 
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The Table 4-5 above shows five categories of privacy needs on the left and five degrees 

of privacy protection methods on the right. Privacy needs can be directly assigned to 

data groups in COSMIC; this is a model property. The labels chosen are unimportant, 

the level matters.  

For a graphical representation, we propose a square representation. This also explains 

why we consider two dimensions only; for consumer metrics, this is already 

challenging.   

Distance of the bubbles in the grid (Figure 4-4) is measured from the starting point 

(0,0). The Privacy Index is in range 0 – 5. Five (5) is the index for maximum privacy; 

Zero (0) privacy means public data; no privacy granted, or no privacy needed.  

The Privacy Index should provide equal length for equal protection; thus, Euclidean 

distance yields the following, square root of sum of squares, formula: 

 𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑀𝑎𝑥(√((5 − 𝑁𝑒𝑒𝑑𝑠) ∗ 5 5⁄ )
2

+ (𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 6 5⁄ )
2

, 5) (4-1) 

The 𝑁𝑒𝑒𝑑𝑠 coefficient must be inversed by 5 because the bubble distances are calcu-

lated from the upper right edge of the graph area. The maximum function in equation 

(4-1) ensures that the index is bounded by a maximum of five. The size of the bubbles 

indicated how many data movements yield that index. The minimum privacy – here 

0 – is highlighted 

Stretching the 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 by 6 5⁄  has the effect that if no privacy is required, the pri-

vacy index remains high (upper left square in Figure 4-4).  

The size of the bubbles represents the number of data movements that lie within this 

privacy index range. The graphical representation in Figure 4-4 is intuitive because 

distance from the upper right square conforms to the level of privacy, which is best 

at the down-right square. It has some resemblance to the FMEA Criticality Matrix of 

the German Verband der Automobilindustrie (VDA) (VDA, 2008, p. 64) and thus is 

also acceptable to automotive security engineers.  

4-2.4 SAFETY RISK 

Safety risks are less difficult to represent. According classical risk management theory 

(ISO 31000:2018, 2018), risks can be assessed by 

• Identifying the risk catalogue 

• Classify impact, usually on a scale 0 – 5  

• Assigning the probability of risk incurrence  
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For identifying safety risks in road vehicles, the series of international standards ISO 

26262, see (ISO 26262-1, 2011), provide guidance. recently, the new SOTIF1 version of 

the ISO/IEC 26262 has been released. These standards can be used for assessing risks 

of critical parts; not only mechanical, but also data movements moving critical data 

groups. 

Since we avoid fake assessment precision, we use the same scale 0…5 for probability 

as well, thus only allowing for 0%, 20%, 40% risk probability. Moreover, probability 

is something difficult to find in software; we use frequency instead, namely the fre-

quency of executing a certain data movement. Frequency is an implementation char-

acteristic and cannot be assessed uniquely in the model. The risk of Safety Impact on 

the other hand depends from the content of the data group and is a model property, 

like the privacy needs in privacy protection assessment. 

The safety risk graphical representation for consumers looks as follows: 

Figure 4-6. Safety Risk Exposure for Look & Act 
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The Safety Index is calculated as follows: 

 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 

𝑀𝑖𝑛(√((5 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ 5 5⁄ )
2

+ ((5 − 𝐼𝑚𝑝𝑎𝑐𝑡) ∗ 6 5⁄ )
2

, 5) 

 

(4-2) 

For the graphical representation, we propose the formula (4-2), which looks similar to 

(4-1), also using Euclidian length, for the positioning of the bubbles. Because distance 

 
1 SOTIF = Safety of the Intended Functionality 
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in the risk grid is measured starting from the 〈5,5〉–Point, both grid indices will be 

mirrored at the grid size value 5, and colors should remain the same for the consumer. 

Table 4-7: Safety Assessment Categories 

Incurrence Frequency Safety Impact 

Value = 0 (0%):  No risk. It’s safe. 

Value = 1 (20%):  Seldom  

Value = 2 (40%):  Sometimes 

Value = 3 (60%):  Medium 

Value = 4 (80%):  Often 

Value = 5 (100%):  Very frequent 

Value = 0:  None 

Value = 1:  Low 

Value = 2:  Little 

Value = 3:  Medium 

Value = 4:  Quite 

Value = 5:  High 

The safety risk graph yields different information, showing that the various data 

groups in Look & Act move data of unequal impact on safety. The most impact (Maxi-

mum Risk Index 2.8) originates from data movement 10) Analysis Result; by lack of re-

dundancy – or lack of check by another “intelligent” module – its frequency is 1: Sel-

dom and its impact 4: Quite. Reducing impact to 2: Little could be achieved with adding 

a cross-check against serious impact, or using two independent Recommenders that 

agree on actions.  

4-2.5 PERFORMING THE ASSESSMENTS FOR PRIVACY & SAFETY  

The assessment is part of the COSMIC model and can be recorded directly in the table 

for data movements. Privacy Needs are represented by the effects of privacy disclosure. 

Figure 4-8: Assessment of Look & Act Data Movements 

Name Label Data Movement Sub-Process Description

1) E002 Trigger Sensor Tell the sensor who is ready for capturing data

2) X001 Start Cameras If necessary, activate the sensor

3) E001 Supply Images Supply sensor data, e.g., images

4) W001 Save Images Keep mages for further references

5) X015 Request Distance Request distance measurement against a selected object

6) E015 Lidar Distance Returns distance against selected object

7) W002 Lidar Captures Save Lidar captures for future references

8) R001 Collect Images Collect images and Lidar captures pertaining to some selected object

9) X006 Analysis Request Request analysis by Visual Recognition System

10) E003 Analysis Result Result of analysis

11) R005 Chosen Route The actual route chosen for driving

12) X003 Ask for Actions Trigger the Recommender, supplying sensor information

13) E004 Recommended Action Based on its intelligence, recommend action

14) X004 Act Execute recommended action

15) X005 Inform Inform the Car User
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 4: Makes guilty 4: Blockchain 4.1  2: Sometimes 4: Quite 2.3  

 4: Makes guilty 4: Blockchain 4.1  4: Often 3: Medium 2.8  

 2: Harmful 4: Blockchain 4.7  3: Medium 3: Medium 2.4  

 4: Makes guilty 4: Blockchain 4.1  0: Very rare 3: Medium 0.4  

4.7 1.9

4.1 2.8

Safety Index:

Minimum Privacy: Maximum Risk:

Privacy Index:
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Figure 4-4 and Figure 4-6 have enough similarities to help consumers understanding 

the meaning of both indices, such that they can look at both representations together 

and get a correct impression.  

The question is how the Privacy Index (4-1) and the Safety Index (4-2) should combine 

for all data movements assessed. We prefer the Median against Average because the 

median is less subject to the effect of outliers. However, one outlier is always import, 

namely minimum privacy and maximum risk. They mark the weakest points in the 

system, and consequently the likeliest violation locations. Nevertheless, outliers are 

bad representative for the whole system. 

4-3 ART FOR ADAS 

The full ADAS application for our model car consists of four more parts:  

• Find Route, e.g. by help of a navigation system, or according car user’s preference; 

• Locate, compare current location with actual route; 

• Check Route, used to compare different possible routes in terms of traffic, 

weather, any other obstacles or fitting car user’s preferences; 

• Amend Route, after conditions changed under way it can become necessary to 

propose another route.  

4-3.1 ADAS FUNCTIONALITY 

Finding a route is usually based on some Navigator service (see section 2-2.7) that can 

propose a route between current location and some known destinations. 

Figure 4-9: Find Route using Navigator and GPS Services 

Car User Recommender Routing Remember Routes Navigator GPS Service

1.// Enter Destination

Navigation

2.// Get Location

3.// Request Route

4.// Recommend Route

5.// Record Route

6.// Set Route

7.// Propose Route

 

Thus, it is necessary to keep the car user informed in case no route is selected.  
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Location service is used to show the user where the car is driving: 

Figure 4-10: Location using GPS 

Car User Recommender
Car Driving

Function
Routing Remember Routes GPS Service

1.// Update Location

Locate

2.// Compare with Actual Route

3.// Update Location

4.// Recalculate Route

5.// Adapt Route

6.// Inform

 

Checking the route involves rejecting a proposed route and selecting another one – or 

none if none is left. If none is left, the ADAS eventually cannot continue and manual 

driving is necessary. Because the Look & Act part requires knowing where to go, the 

ADAS is significantly less useful without a route selected. The complete ADAS is 

shown in Figure 4-13; results of joining Figure 4-3 with Figure 4-9, Figure 4-10, Figure 

4-11, and Figure 4-12.  

The car driver may want to select another route, or the Navigator offers a selection of 

possible routes: 

Figure 4-11: Approve or Modify Route 

Car User Routing Remember Routes Approve Route

1.// Check Route

Check

2.// Get Route

3.// Show Route

4.// Approve Route

5.// Modify Route

6.// Change Route

7.// Changed Route

8.// Inform

 

If a problem occurs with the selected route while driving, it can become necessary to 

amend the chosen route. We assume the Navigator service to be capable of alerting in 

case of any change on the chosen route – which includes that the Navigator knows 

about the chosen route, eventually violating privacy of location. 
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The car driver is still entitled to choose yet another route, using Figure 4-11. The Alert 

proposes another route or amend at least the driving time prediction. 

Figure 4-12: Alert on Chosen Route 

Car User Routing Remember Routes Navigator

1.// Routing Alert

Alert

2.// Recall Route

3.// Recalculate Route

4.// Change Route

5.// Propose Route Change

 

The full data movement map in Figure 4-13 is the concatenation of these five parts. 

4-3.2 TESTING THE ADAS 

Now, in order to test all these services with regard to the assessed privacy protection 

and presumed safety risk exposure, one has to provide an Automated Real-time Testing 

(ART) application providing the necessary tests, such as verifying the encryption level 

per data movement as stipulated, and data group content according the assumption 

done in Figure 4-8. Note that the Navigator app provides not only routes but also driv-

ing conditions; part of the data group moved by the data movement Routing Alert. 

This piece of software first prepares the setting – collecting car specifics, test cases, 

extending them – then executes testing first the neural network engine, then the rec-

ommender, finally the Lidar and the camera. 

The testing software resides local, on the car, but the test data originate from a repos-

itory called Testing Cloud common to all cars undergoing the same tests. Test cases 

originate there, and the Testing AI engine also works on this cloud service. The ADAS 

of the car could upload images taken for adding those to the testing cloud; however, 

this is neither reflected in the part of the ADAS shown before, nor in Figure 4-14. Only 

test results are recorded in the testing cloud, upon approval by the car user, the owner 

of the test results. 

On the following page, Figure 4-14 shows the data movement map for Automated Real-

time Testing (ART) for some Model of an Advanced Driving Assistant System (ADAS).
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Figure 4-13: The Complete ADAS Model 

Car User Recommender
Car Driving

Function
Visual Recognition Sensor Bus Camera App Lidar

Car Steering

Devices
Routing Remember Routes Approve Route Navigator GPS Service

1.// Trigger Sensor

Look

2.// Start Cameras

3.// Supply Images

4.// Request Distance

5.// Lidar Distance

6.// Analysis Request

7.// Analysis Result

Act

8.// Chosen Route

9.// Ask for Actions

10.// Recommended Action

11.// Act

12.// Inform

13.// Enter Destination

Navigation

14.// Get Location

15.// Request Route

16.// Recommend Route

17.// Record Route

18.// Set Route

19.// Propose Route

20.// Routing Alert

Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

25.// Update Location

Locate

26.// Compare with Actual Route

27.// Update Location

28.// Recalculate Route

29.// Adapt Route

30.// Inform

31.// Check Route

Check

32.// Get Route

33.// Show Route

34.// Approve Route

35.// Modify Route

36.// Confirm

37.// Change Route

38.// Changed Route

39.// Inform
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Figure 4-14: Automated Real-time Testing (ART) for some Model of an Advanced Driving Assistant System (ADAS) 

Recommender Recommender Test Visual Recognition
Visual Recognition

Test
Camera App Lidar Sensor Test Test Timer Car Specifics

Autonomous

Testing
Test Cases Test Updater Testing Cloud User

1.// New Test Case

Expand

2.// Add Test Case

3.// Collect Car Specifics

4.// Collect Car Specifics

5.// Collect Car Specifics

6.// Record Car Specifics

7.// Get Test Cases

8.// Get Car Specifics

9.// Extend Test

10.// Scan for Test Case

11.// Upload Test Case

12.// Car Ready?

13.// Car Ready

14.// Alert

15.// Start Testing

VRS Test

16.// Execute Tests

17.// Load Tests

18.// Yield Result

19.// Store Result

20.// Results Ready

21.// Start Testing

Reco Test

22.// Execute Tests

23.// Load Tests

24.// Yield Result

25.// Store Result

26.// Results Ready

27.// Start Testing

Sensor Test

28.// Execute Tests

29.// Load Tests

30.// Yield Results

31.// Load Tests

32.// Yield Result

33.// Store Result

34.// Results Ready

35.// Test Results Ready

Results

36.// Collect Responses

37.// Record Responses

38.// Display Test Results

39.// Acknowledge Test Results

40.// Record Test Results

41.// Scan forTest Results

42.// Upload Test Results
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Figure 4-14 consists of test preparation, execution of tests for the Neural Network, the 

Recommender, and the Visual Recognition Systems including the Lidar, plus a test result 

recording and test result presentation for the tester testing the ADAS. It represents an 

application by itself, with user stories and the need for testing. However, since the 

main concern is getting the right kind of test cases that can be executed automatically, 

we keep the focus on testing ADAS (Figure 4-13). 

4-3.3 THE CAR USERS’ NEEDS 

Using the AHP, we identify the following major values for users of the ADAS: 

Figure 4-15: Car Users’ Needs 

Car User Needs Topics Attributes Weight Profile

Y.a Drive Fast y1 Agile Driving Arrive safe Do not block other traffic Have fun 16% 0.36

y2 Smooth Driving Drive predictibly Do not break unnecessarily 15% 0.32

y3 Arrive in Time Arrive predictibly Avoid obstacles 23% 0.50

Y.b Drive Safe y4 Avoid Incidences Drive foresightful Know what's ahead Know my way 27% 0.58

y5 No Surprises Communicate Never surprise anybody Give signs 19% 0.422.2

AHP Priorities

 

The AHP process is used to analyze these needs and produce a profile for its relative 

importance. The profile for the car users’ needs is based on the following pairwise 

comparison, shown in Figure 4-16. This is again a basic AHP: 

Figure 4-16: AHP for ADAS 
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y3 Arrive in Time 1 2 1 2 1/2 23% 2 0.50

y4 Avoid Incidences 2 2 1/2 1 3 27% 1 0.58
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The needs of human drivers in today’s traffic might be individually quite different; 

however, in view of an ADAS, characteristics linked to safety and avoidance of dis-

turbance are dominant. You use an ADAS because you need something that helps 

through dense urban traffic, avoids jams and incidences, and makes driving experi-

ence smoother.  

An ADAS is less suited for people who drive cars just for fun. They eventually turn it 

off. Their needs are not investigated by that AHP; an AHP for such people likely 

would produce a different car users’ needs profile. 
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The data movements are those of the joint ADAS data movement map Figure 4-13. 

The user stories for ADAS are summarized in Table 4-17: 

Table 4-17: ADAS User Stories 

Label As a … I want to … Such that … So that … 

Populated 
Area 

Car 
User 

let my car reduce speed my car can 
safely stop 

my car is not causing 
delays by an incidence 

Obstacle Car 
User 

let my car avoid obstacles my car can 
drive around 

my car is not stopping 
unnecessarily 

Know my 
Way 

Car 
User 

let my car take appropriate 
routes 

my car avoids 
blocked routes 
and traffic jams 

I know when I'll arrive 

Amend 
my Way 

Car 
User 

optimize my route when 
needed 

no incidence 
blocks my way 

I still can predict when 
I'll arrive 

Check my 
Way 

Car 
User 

approve or disapprove the 
car's choice for routing 

I can take my 
preferred route 

I feel in control 

Able to 
Stop 

Car 
User 

have my car break soon 
enough 

it can avoid 
dangerous 
situations 

It recognizes obstacles 
ahead 

Check my 

Way 

Car 

User 

approve or disapprove the 

car's choice for routing 

I can take my 

preferred route 
I feel in control 

The user stories remain on a high epic level without specifying the details how the 

ADAS should behave in specific cases. With these user stories, the functional effec-

tiveness matrix yields a satisfying rationale for the user stories (Figure 4-18): 

Figure 4-18: Functional Effectiveness for ADAS 
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y2 Smooth Driving 0.32 4 3 5 5 2 0.34

y3 Arrive in Time 0.50 7 3 4 7 1 6 0.52

y4 Avoid Incidences 0.58 6 4 3 6 6 8 0.58

y5 No Surprises 0.42 1 3 3 8 9 0.41

Solution Profile for User Stories: 0.46 0.30 0.33 0.54 0.33 0.43 Convergence Gap

0.46 0.30 0.33 0.54 0.33 0.43 0.04

123 Total Effort Points

0.10 Convergence Range   

0.20 Convergence Limit

Car User Needs
Deployment Combinator

Car User Needs
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It means that the data movement map implements the user stories completely and 

without any wrong focus.  

As before, the functional effectiveness transfer function maps the user stories onto the 

car users’ needs by counting how many data movements contribute to the user stories. 

This yields the cause-effect relation between functionality and requirements; also, it 

assigns data movements to at least one user story. 

4-3.4 THE TEST STORIES 

The test stories tell more about the details how to implement ADAS functionality; see 

the following Table 4-19:  

Table 4-19: Test Cases for ADAS 

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Test Story Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A People Around A.1 People around A.1.1 {Playball; Populated Area} Get ready to break A.1.2 {Person; Moving; Towards street} Stop before collision!

B Obstacle B.1 Obstacle ahead B.1.1 {Obstacle ahead!} Stop before collision! B.1.2 {Obstacle; At roadside} Drive around

C Know my way C.1 Get route C.1.1 {Valid destination} Select best route C.1.2 {Invalid destination} Select route home

C.2 Change route C.2.1 {Alert; Alternative available} Propose new route C.2.2 {Alert; No alternative available} No better route available

C.3 Update position C.3.1 {Current position} Recalcuate arrival time C.3.2 {Route; Change} Recalcuate arrival time

D Choose way D.1 Approval D.1.1 {Route; Approval} Confirm this route D.1.2 {Route; Reject} Propose another one

E Arrival E.1 Arrival time E.1.1 { } Show expected arrival time E.1.2 {New conditions ≠ Route conditions} Change expected arrival time

E.2 Learnings E.2.1 {Route; Fast} Prefer them E.2.2 {Route; Slow} Avoid them

F Stop F.1 Keep under control F.1.1 { } Car can stop within sensor's reach F.1.2 {Route conditions = bad!} Lower speed

F.2 Brake action F.2.1 {Dry road condition} Short braking distance F.2.2 {Route conditions = wet} Medium braking distance 

F.3 Avoid stops F.3.1 {Under all conditions} Listen to actual road condition F.3.2 {Route; Traffic jam} Try another route

 

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Case 3 Test Data Expected Response Case 4 Test Data Expected Response Case 5 Test Data Expected Response

A.1.3 {Person; Looking; At traffic} Lower speed A.1.4 {Person; Motionless} Go ahead

B.1.3 {Obstacle; Light} Drive around B.1.4 {Route; Obstacle} Change route

C.1.3 {Location = Home} "Destination reached" C.1.4 {Route} Show risks C.1.5 {Location} Show position

C.2.3 {Route; Modification} Show risks

C.3.3 {Null GPS} Continue current route C.3.4 {Route; Changed; Approved} Change current route C.3.5 {Location} Show position

D.1.3 { } Choose proposed route D.1.4 {Route; No alternatives} Choose proposed route

E.1.3 {Changed route} New arrival time E.1.4 {Route; New  alert} New arrival time

E.2.3 {Route conditions} Adapt speed

F.1.3 {Route weather = bad!} Reduce speed F.1.4 {Route; Rain} Reduce speed

F.2.3 {Slippery road} Long braking distance F.2.4 {Speed = low} Short braking distance F.2.5 {Speed = medium} Medium braking distance

F.3.3 {Red light ahead} Lower speed F.3.4 {Route; modification} Show risks

 etc. 

Read these test cases in Table 4-19 with an arrow → between test data and expected 

response. There are three more test cases for test story 10) F.2: Brake action: 

• F.2.6: {Speed = high} → Long braking distance 

• F.2.7: {Must brake; curve} → Normal braking distance 

• F.2.8: {Must brake; Descent} → Normal braking distance 
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Thus, for test story 10) F.2: Brake action we have a maximum of eight test cases, where 

the other test stories only have five test cases or less, according Table 4-19. 

This yields the following test coverage: 

Figure 4-20: Initial Test Coverage 
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11
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F
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Q001 Populated Area 0.46 25 22 9 7 11 9 10 8 12 14 0.42

Q002 Obstacle 0.30 10 15 13 5 15 7 11 9 13 16 10 0.36

Q003 Know my Way 0.33 2 5 17 6 15 12 9 6 7 9 9 0.27

Q004 Amend my Way 0.54 24 19 14 19 21 9 25 9 17 15 21 0.59

Q005 Check my Way 0.33 16 13 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 26 25 5 2 10 4 6 8 10 8 13 0.39

Ideal Profile for Test Stories: 0.44 0.41 0.25 0.20 0.32 0.24 0.32 0.19 0.25 0.20 0.36 Convergence Gap

0.45 0.42 0.25 0.19 0.32 0.24 0.31 0.19 0.25 0.19 0.4 0.11

768 Total Test Size

0.15 Convergence Range            

0.20 Convergence Limit

Test Coverage
Deployment Combinator

User Stories

 

With a convergence gap of 0.11 we are within convergence range – set a bit wider than 

in usual transfer functions. 

4-3.5 EXTENDING TEST CASES 

Extending test cases within the same test stories yields more reliable results, and a 

higher test intensity; see Figure 4-23. In this example, extension works in two stages: 

• Adding test cases that refer to bad weather forecast. If the Navigator reports rain 

on the route, driving speed and arrival forecast must be adapted; 

• Even more test cases are added after the Navigator reports stormy weather caus-

ing eventually a change to the chosen route. 

ART detects these new test cases because the data group received from the Navigator 

contains a weather forecast, as part of the route description; see Figure 4-12. New test 

cases are created starting from the existing ones, by variation of test data, considering 

other all data received from data movements. Obviously, weather forecast changes 

the driving time prediction. Among the many test cases that can be created, ART keeps 

the convergence gap within limits, using this as selection process.  
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The following matrices (Figure 4-21 & Figure 4-22) show the results after each of the 

two steps outlined above: 

Figure 4-21: After Adding Bad Weather Forecast Test Cases 
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Q005 Check my Way 0.33 24 19 6 5 7 23 12 8 20 0.35

Q006 Able to Stop 0.43 40 32 5 2 10 4 6 8 10 8 13 0.44

Ideal Profile for Test Stories: 0.59 0.47 0.20 0.16 0.26 0.20 0.26 0.16 0.21 0.16 0.30 Convergence Gap
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859 Total Test Size
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Figure 4-22: After Changing Routing due to Stormy Weather 
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Total test size is growing, and convergence gap is stable, or shrinking. The additional 

test cases improve reliability and accuracy. ART finds such extensions by scanning 

data groups of the data movements involved. Since the chosen route is not fix but 

changes on receiving an Alert from the Navigator, the VRS learns that conditions such 

as rainy and stormy weather can exist. 

ART detects these new test cases because the data group received from the Navigator 

contains a weather forecast, as part of the route description. New test cases are created 

starting from the existing ones, by variation of test data, considering other all data 

received from data movements. Obviously, weather forecast changes the driving time 

prediction. Among the many test cases that can be created, ART keeps the conver-

gence gap within limits, using this as selection process. Total test size is growing, and 

convergence gap is stable, or shrinking. 

4-3.6 HOW CAME THE WEATHER FORECAST INTO ART? 

The additional test cases improve reliability and accuracy. ART finds such extensions 

by scanning data groups of the data movements involved. Since the chosen route is 

not fix but changes on receiving an Alert from the Navigator (Figure 4-12), ART learns 

that conditions such as rainy and stormy weather can exist and generates suitable test 

cases. 

The data group moved by the data movement Routing Alert from Navigator application 

to the Routing functional process contains all sort of alerts, including traffic jams and 

bad weather conditions. The ART mechanism extending test cases considers weather 

as a reason to change driving. Thus, when replacing other reasons for choosing a 

route, the Chosen Route data movement in Look & Act (Figure 4-3) tells the Car Driving 

Function about the changed weather conditions. This attribute is now selectable by 

ART for generating new test cases, also for the Visual Recognition System (VRS). Thus, 

it will be added as another test case for VRS, sooner or later. And because the new test 

case fits well with the car users’ needs, rather sooner than later. 

ART thus must find images showing people, or other vehicles, in the rain, or in a 

storm, to produce the same results in the test stories A.1: People around; B.1: Obstacle 

ahead; C.1: Get route; and C.2: Change route. 

Weather is one thing that can be considered. But there is much more before autono-

mous cars can hit the road. For instance, a tendency, or the need in certain social en-

vironments, to use bikes for transporting bags, affects safety and must impact behav-

ior of the ADAS. ART tests such behavioral change, dynamically, adapting to change. 
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4-3.7 SUMMARY VIEW 

The summary view on the original and the two extended test suites reveals, as ex-

pected, that test size and intensity increased. 

Figure 4-23: Initial Test Suite, and two Extensions 

Total CFP: 39 Test Size in CFP: 768

Test Intensity: 19.7

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  

Total CFP: 39 Test Size in CFP: 859

Test Intensity: 22.0

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  

Total CFP: 39 Test Size in CFP: 954

Test Intensity: 24.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%  

Functional size remained stable: CFP 39, while increasing test size also increased test 

intensity. Contrary to the IoT case, the functional size of the model ADAS remains the 

same. 

Thus, improving testing is always possible by simply extending the test cases by sim-

ilar ones, provided test coverage keeps the convergence gap narrow enough. ART 

provides value without increasing functional size. In this example, it was enough to 

trace back data movements that could contribute data to tests. Thus, the data move-

ment map is paramount for automatic test case generation. 

For testers, it is enough to provide an initial test suite (Table 4-19: Test Cases for ADAS). 

The rest is left to automatisms. You can increase test intensity as much as you like. 

More tests certainly increase opportunities for detecting defects that can be removed. 

Thanks to the test coverage transfer function and its convergence gap, those additional 

tests remain relevant. Moreover, since tests are generated randomly, there is no bias 

blocking certain test cases, although extending test cases along some application cases 

such as weather or route change might allow for targeted test extensions. 

4-4 CONCLUSION 

Testing Privacy and Safety is an ongoing task, that not only needs continual repeat 

but also extension in scope. What once was appropriate is within short time obsolete. 

Consumers have the right and the duty of keeping themselves informed about the 

actual status, and ART is delivering such updated and actual notification. 
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In the next chapter, we take a deeper look in how ART generate new relevant test cases 

within given test stories. In the end, ART uses methods from AI, and uses them to test 

AI. In some sense, ART applies the design ideas behind AI to the field of software 

testing.  
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CHAPTER 5: ARTIFICIAL 

INTELLIGENCE FOR TESTING 
Artificial Intelligence for Testing provides test cases for extending test 

suites. The intelligence relies on finding variations of given test cases for a 

test story and selecting the right ones from these variations.  

Using the data movement maps as a guide, generating new test cases can be 

accomplished by extending existing test cases by similar ones. The data group 

yields the relevant information in which direction to extend. 

Such a process can be conducted with no limit. Nevertheless, for Autono-

mous Real-time Testing (ART), we also have the term “Real-time”, and this 

means that we must be able to make selection small enough to fit into some 

available time allowance. This requires having some limiting function telling 

the AI robot when it is done. 

AI for testing is expected to look at the software and to add test cases that 

prove the software’s ability to achieve certain goals. To do this, goals of test-

ing must be known, and the AI robot must be able to judge whether a test 

response is correct or not. The latter can be achieved by learning but also re-

quires some understanding for the domain addressed by the software. For ex-

ample, if the software drives a vehicle, a model must exist that allows the 

robot to decide whether an action proposed by the software under test is ap-

propriate to achieve its goals. 

5-1 WHAT IS THE GOAL OF TESTING? 

As we have already seen, there is no automated testing without knowing the goals of 

testing. The goals must be available as a profile, clarifying priorities among the func-

tionalities defined by user stories, or other means of expressing Functional User Re-

quirements (FUR). The normalized form of a profile is a 𝑛-dimensional vector of length 

one; the 𝑛 vector coefficients indicating the direction of the vector in the 𝑛-dimen-

sional vector space of topics. 

The primary topic is something characterizing customer needs, or business driver, that 

the software under test shall deliver. From this, a profile for the user stories can be 

derived using a transfer function. This derived profile is the goal of testing. 
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Let 𝒚 =  〈𝑦1, 𝑦2, … , 𝑦𝑛〉 be a vector in the 𝑛-dimensional vector space of topics. A topic 

can be anything that is in use when talking about software, especially user require-

ments, or business values, or customer needs.  

The vector 𝒚 is a Profile, if the equation (5-1) holds: 

 ‖𝐲‖ =∑yj
2

𝑛

𝑗=0

= 1 (5-1) 

As before, the double-bar ‖…‖ indicates the Euklidian Norm for vectors. Any vector 

𝒙 ≠ 𝟎 can become a profile by dividing it through its length 𝒙 ‖𝒙‖⁄ . 

The advantage of profiles is they can be compared. Also, profiles can be added or 

subtracted; however, then they lose the property of having length one unless you re-

calibrate the resulting vector on length one.  

Assume two profiles 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑛〉 and 𝒛 =  ⟨𝑧1, 𝑧2, … , 𝑧𝑛⟩, then its difference is: 

 𝒚 − 𝒛 =  〈𝑦1 − 𝑧1, 𝑦2 − 𝑧2, … , 𝑦𝑛 − 𝑧𝑛〉 (5-2) 

The difference is not a profile; however, equation (5-3) makes another profile out of 

the difference, provided the difference is not equal to zero. This profile points into the 

same direction as the difference vector but with a length of one: 

 
𝒚 − 𝒛

‖𝒚 − 𝒛‖
=  

〈𝑦1 − 𝑧1, 𝑦2 − 𝑧2, … , 𝑦𝑛 − 𝑧𝑛〉

∑ (𝑦𝑗 − 𝑧𝑗)
2𝑛

𝑗=0

 (5-3) 

The ability to compare profiles is the key to automated testing. Provided you have a 

goal profile, you can compare this goal to what you are planning to test. This compar-

ison allows selecting test cases such that test effort remains limited, but the goal of 

testing is reached within acceptable limits. 

5-1.1 TRANSFER FUNCTIONS FOR TEST COVERAGE 

The transfer function that defines the test stories needed to test a certain user story 

profile is called Test Coverage. Test coverage has a convergence gap that tell how well 

coverage is with regards to user stories. Since real-world user stories for software 

count for a few hundred rather than the half dozen shown with this book, test stories 

have similar dimensions.  

However, since transfer functions can be computed quite effectively nowadays, this is 

not so much a concern. The test coverage matrix is automatically filled as soon as the 

functional effectiveness transfer function is established. The functional effectiveness 
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matrix links data movements to certain requirements. However, since functional ef-

fectiveness has a convergence gap, the data movements’ assessment can be validated. 

5-1.2 WHAT MEANS TEST COVERAGE? 

Test stories and user stories complement each other. While the user stories explain 

what must be achieved, test stories often specify how this must be achieved. Thus, the 

test coverage matrix is a classical QFD matrix, matching the “how” to the “what” as 

explained in the respective ISO/IEC standard (ISO 16355-1:2015, 2015). If the conver-

gence gap is small, it means that the test stories “implement” the user stories good 

enough. Or, in other words, the test stories test what the user stories require but noth-

ing more. 

It also means that nothing else than the user stories can be taken for granted. Proper-

ties not mentioned in user stories might hold or not; they remain untested. 

The transfer function constitutes of the test sizes per user story. Each cell in the matrix 

contains the number of data movements executed by some test case in a test story that 

pertains to some user story. The functional effectiveness matrix is decisive for that. 

Because the assignment of data movements to user stories is sort of arbitrary, test cov-

erage depends from which data movements are considered important or supportive 

for certain user stories. 

5-2 GENERATING NEW TEST CASES 

Artificial Intelligence (AI) is not a well-defined notion. According TechTarget, AI is the 

simulation of human intelligence processes by machines, especially computer sys-

tems. These processes include learning (the acquisition of information and rules for 

using the information), reasoning (using rules to reach approximate or definite con-

clusions) and self-correction (Rouse, et al., 2018). While AI is around for decennials, 

recently it has gained attention and is commercially exploited for all kind of “intelli-

gent” services. It has become a buzzword that obscures reality. 

Intelligence has to do with data acquisition and the ability to interpret it; critical rea-

soning is not required. How test cases shall be generated without reasoning seems 

rather incomprehensible. 

However, AI in testing can do what AI always does: collect and exploit data, classify 

it and interpret it in view of known pattern. AI does not replace skilled testers, it is not 

capable of finding new insights or cool new ways of validating software, but AI can 

industriously generate and compare test cases where people fail because of the hard-

ship. Generating test cases needs the additional help of combinatory algebra. 
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5-2.1 TESTING BLOCKCHAINS 

We have seen in Chapter 1: Why Autonomous Real-time Testing? how test cases can be 

represented by the combinatory algebra of arrow terms. We left there with the general 

statement that arrow terms (1-1) represent test cases, provided the base language ℒ 

consists of assertive statements about test cases. The basic arrow terms have an arbi-

trary but finite number of test data left and a test response on the right. Arrow term 

can be combined (1-4), quite similar as test cases also can be combined. 

For test automation, it is best to use arrow terms as a combination of elementary arrow 

terms, each representing one data movement only, and combine them for each object 

of interest that is touched by some specific test case. Thus, instead of applying equa-

tion (1-4), we use a sequence of arrow terms that, when combined, together yield the 

test case within a test story. Such a sequence of arrow terms is called Testing Chain. If 

all objects of interests touched by the test case are considered separately in an arrow 

chain, none ignored, the chain is called Testing Blockchain. Because, as a matter of fact, 

this represents a blockchain (Wikipedia, 2018); only, it links data groups – blocks – 

within a test case instead of encryption keys. A testing blockchain is sort of white-box 

test: if you execute a test case and trace it with the objects as debugging points, you 

get the testing blockchain. 

Remember the definition of arrow term application in section 1-2.4: Arrow Term Nota-

tion. The testing blockchain is – after application – the left-hand side of the original 

arrow term. Thus, a testing blockchain contain more information than the resulting 

arrow term, or test case, after concatenation using equation (1-6). It contains the trace 

of the test case. 

5-2.2 MEASURING TEST SIZE 

Arrow terms represent test cases, and test cases can be combined. It is straightforward 

to represent testing blockchains as a sequence of arrow terms of level one; each block 

contains one data movement within a test case. The total test size of the test case there-

fore is equal to the number of blocks within its testing blockchain. 

The size of an arrow term is defined such that it still reflects test size. For this, it is not 

useful to count recursive elements, but only those elements that relate to the base pred-

icate elements, and thus represent executable, testable terms.  

As before, let ℒ be the base language consisting of assertive statements about test 

cases. 
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|𝑎| = |{𝛿1, … , 𝛿𝑛} → 𝜌|, if 𝑎 =  {𝛿1, … , 𝛿𝑛} → 𝜌,where 𝜌, 𝛿𝑖 ∈ ℒ 

| 𝑏𝑖 → 𝑎| = ∑| 𝑏𝑖|

𝑖

+ |𝑎|, for all 𝑎, 𝑏𝑖 ∈ 𝒢(ℒ) 

|( 𝑏𝑖 → 𝑎)𝑗| = ∑| 𝑏𝑖 → 𝑎|𝑗
𝑗

 

(5-4) 

The size of a test does not increase with the level. It describes the executable size.  

Data movements that appear in more than one test case are multiple counted. Test size 

depends from the number of test stories, the number of test cases per story, and thus 

is much larger than the software’s functional size. The ratio between test size and func-

tional size is the Test Intensity; see section 2-5: Test Metrics for the Navigator Application. 

Increasing test size is the best way of finding additional defects; however, it does not 

guarantee it. If there is no customer need, or compliant user story, that let us classify 

a feature of the software as unwanted, as a “defect”, no test will eventually recognize 

it. Defect Density in turn is not affected by increasing test size, because defect density 

is the number of defects divided by functional size, not test size. 

5-2.3 DATA MOVEMENT MAPS AND TESTING BLOCKCHAINS 

Let 𝑎1, 𝑎2, … , 𝑎𝑛  be a testing blockchain and let 𝑎1• 𝑎2• … • 𝑎𝑛 = 𝑎  be its combina-

tion. Then, 𝑎 is an arrow term that represents a test case of size 𝑛. This is an immedi-

ate consequence of equation (5-4). Testing blockchains thus are something like the 

“natural” representation of the test case, also encoding the objects of interest that the 

test case needs to execute in the data movement map. 

For instance, assume a test case for the ADAS example has the form (Figure 5-1): 

Figure 5-1: Test Case for Testing Route Alert 

Car User Routing Remember Routes Navigator

20.// Routing Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

 

Test cases can split and join in the data movement map. Nevertheless, a test case is 

closely linked to its data movements and therefore also to the data groups and objects 

of interest. Test cases can be uniquely traced in a data movement map when executed. 
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Since ISO/IEC 19651 defines the same measurement rules for functionality as for test, 

we have the necessary metrics framework for test automation. 

The relevant test assumptions for the whole test case are the three arrow terms (5-5): 

 

{𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐽𝑎𝑚} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒 

{𝐼𝑐𝑦 𝑅𝑜𝑎𝑑} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒 

{ 𝐻𝑒𝑎𝑣𝑦 𝑅𝑎𝑖𝑛} → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒 

(5-5) 

Then the corresponding testing blockchain consists of all test assumptions that can be 

made for the data movements needed to execute these tests (Figure 5-2): 

Figure 5-2: Testing Blockchain for the Alert Test Case 

Car UserNavigator Remember Routes Navigator Remember RoutesRouting

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐽𝑎𝑚 →  𝑙𝑒𝑟𝑡
𝐼𝑐𝑦 𝑅𝑜𝑎𝑑 →  𝑙𝑒𝑟𝑡

𝐻𝑒𝑎𝑣𝑦 𝑅𝑎𝑖𝑛 →  𝑙𝑒𝑟𝑡

𝑆𝑡𝑜𝑟𝑒𝑑 𝑅𝑜𝑢𝑡𝑒,  𝑙𝑒𝑟𝑡 →  𝑐𝑡𝑢𝑎𝑙 𝑅𝑜𝑢𝑡𝑒

 𝑢𝑟𝑎𝑡𝑖𝑜𝑛   𝑎𝑛 𝑒,  𝑙𝑒𝑟𝑡 →   𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒
 𝑦𝑝𝑎𝑠𝑠  𝑏𝑠𝑡𝑎𝑐𝑙𝑒,  𝑙𝑒𝑟𝑡 →   𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

  𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒 → 𝑆𝑡𝑜𝑟𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

  𝑎𝑛 𝑒𝑑 𝑅𝑜𝑢𝑡𝑒, 𝑙𝑒𝑟𝑡 → 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑅𝑜𝑢𝑡𝑒

20.// Routing Alert

21.// Recall Route

22.// Recalculate Route

23.// Change Route

24.// Proposed Route Change

 

It can easily be verified that the concatenation of elements from these five groups of 

blockchain arrow terms yields the original three test cases. However, you can combine 

them in different ways and thus get either traffic jam alerts causing a changed route, 

or weather conditions doing the same. Response might become different depending 

upon the cause of the alert. 

5-2.4 USING DATA MOVEMENTS MAPS TO GENERATE NEW TEST CASES 

Testing blockchains have a unique relationship to some path through the data move-

ment map. This makes it possible to use the data movement map for searching varia-

tions of existing test cases. Variations can be made as follows: 
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A-1 Replacing existing test data by a variation of that test data; thus, exploring limits 

for the controls; 

A-2 Tracing back data movements that contribute to some of the data groups ad-

dressed in the arrow term; thus, replacing fixed test data by calculated data; add-

ing additional controls, or replacing existing controls. 

In both cases it is unclear whether the response of the test case changes as well; exe-

cuting the test case possibly yields another response. The testing system must learn 

whether this response is acceptable or not.  

For learning, the system has various choices: 

B-1 One is by simulating the physical impact the response has. If the response is 

speed, acceleration or breaking, the simulation can predict the possible impact 

against obstacles; 

B-2 Another is using a risk function. If the risk increases above a threshold level, the 

response is inacceptable; 

B-3 Yet another is asking a human tester. Since generation and evaluation of new 

test cases happens under supervision, not autonomous, humans can decide 

about the response. 

Learning requires that a testing system has a model of the domain under test that al-

lows to judge about the suitability of a response. Such models are sometimes available 

– e.g., for car driving, accelerating and braking – but sometimes they require human 

expertise. A car driving in mixed traffic depends not only from its own controlled 

actions, but also from the perception other road users get. Today, pedestrians look car 

drivers in the eye to see if they have been noticed. With autonomous cars, this is im-

practical; car users sitting in the car and playing games or texting have no immediate 

impact at what the car does next. The best way of learning is to train a neural network 

for situations, where the car should lower speed at an early stage to make it clear that 

it grants the right of way, against other situations where denying it is safer. A horn 

signal would then be more appropriate as a response. 

However, with training a neural network we run into another problem of testing: the 

neural network changes its behavior while learning. If it learns “on the road”, it can 

unlearn as well. Without continuous testing, the autonomous car, or the ADAS, might 

unexpectedly fail on challenges that it used to master, initially. 

Combining the points A-1 and A-2 with the variety of responses as outlined in B-1 to 

B-3, yields the following framework for automatic new test case generation, see Table 

5-3. The controls are the test data; the response is the test result.  

There are infinitely many test cases that can be generated using Table 5-3; thus, we 

need a mechanism to limit and guide growth of the test suite. 
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Table 5-3: Automatically Generation of Additional Test Cases 

C-1  Level 1: Parametrization of same 
controls 𝑥1, 𝑥2 , … , 𝑥𝑛; same response 𝑦 

Existing test cases without changing logic, 
changing test data only 

C-2  Level 2: New controls 
𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, same response 𝑦 

New controls with new test data but 
response as before 

C-3  Level 3: Same controls 𝑥1, 𝑥2, … , 𝑥𝑛, 
new response 𝑦′ 

Same controls with new test data generate 
new response 

C-4  Level 4: New controls 

𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, new response 𝑦′ 

Same controls with new test data generate 

new response 

5-2.5 MONITORING THE TEST COVERAGE MATRIX 

The mechanism to limit and guide growth of the test suite is monitoring the conver-

gence gap on the test coverage matrix.  

Whatever new test case is selected, it is entered in the test coverage matrix and affects 

the convergence gap. This is the laborious part of the learning: adding a test case alone 

almost certainly open the gap, while adding two or more test cases at different cells 

might well improve the gap.  

Thus, there is nothing than try and error, except if some sensitivity analysis for the test 

matrix exists that allows predicting where to look for additional test cases. However, 

since we have enough time to improve our test suite, we will try and select new test 

cases as needed to improve the convergence gap. Since the content of all cells are data 

movement counts, the more cells a matrix has, the more finely the convergence gap 

can be adjusted. 

However, this is only true if the test stories and the user stories are not linearly de-

pendent. If the functional efficiency matrix does not provide enough distinction for 

the data movements, the test coverage matrix might contain linearly dependent row 

vectors, or column vectors, and thus not be able to close any gap. Such situations are 

detectable with linear algebra. Since all matrix cells contain positive integers only, the 

matrices usually meet the conditions for the Perron-Frobenius theorem and the princi-

pal eigenvector exists.  

5-3 THE TEST CASE GENERATOR 

Remember that test cases are arrow terms containing testing blockchains in their left-

hand side. Thus, the Test Case Generator has access to the full testing blockchain, and 

it needs that information. The following data movement (Figure 5-5) map designs a 

test case generator. We comment on the six functional processes. 
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Figure 5-4: Start Creating a New Test Case 

Tester
Generate New

Test Case
Test Cases Testing Blockchain

Data Movement

Map
Data Groups Validator

Select New

Test Case

Functional

Effectiveness

1.// Start

Start

2.// Existing Test Cases

3.// Request DM

4.// Data Movements

5.// Data Group

6.// Use Blockchain

7.// Request User Story

8.// Return User Story

9.// Try new Test Data

10.// Valid Response

11.// TC Matrix

12.// Create Test Case

13.// Show Test Case
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Figure 5-5: The Test Case Generator as a Data Movement Map 

Tester
Generate New

Test Case
Test Cases Identity Blockchain Testing Blockchain

Data Movement

Map
Data Groups Validator
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Test Case
Test Coverage

Functional
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Test Case Selector Rejected Test

Cases
ART Cloud ART
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Start
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3.// Request DM

4.// Data Movements

5.// Data Group

6.// Use Blockchain

7.// Request User Story

8.// Return User Story

9.// Try new Test Data

10.// Valid Response

11.// TC Matrix

12.// Create Test Case

13.// Show Test Case

14.// Request Test Case

Blockchain

15.// Read Test Case

16.// Run Test Case

17.// Identify DMs

18.// Create Blockchain

19.// Confirm Blockchain

20.// Add Test Case

Get CG

21.// TC Matrix

22.// Get Impact of  DM

23.// Impact of DM

24.// Convergence Gap

25.// Convergence Gap

26.// Show Convergence Gap
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30.// Selected TC

31.// Updated TC

32.// Reject!
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35.// Improved Convergence Gap
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Search

37.// Get Suitable DM
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39.// Use Blockchain

40.// Try new Test Data

41.// Valid Response

42.// TC Matrix

43.// New Test Case

44.// Publish

Publish
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49.// Publish
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5-3.1 START GENERATING A NEW TEST CASE 

The first step (Figure 5-4) is by using the testing blockchain to create a new test case. 

First, get the existing test cases for all test stories involved. Next, collect the data move-

ments executed by that test case. This yields the candidate data movements for the TC 

matrix. 

The data groups are needed to build the testing blockchain. By recombining the arrow 

terms inside the testing blockchain, several new test cases can be generated. However, 

their response is not given; it must be asserted by some validation application that 

might involve human judgement. As a result, the test case has now a valid response; 

otherwise it is rejected. The functional process ends with announcing new test cases 

to the device that selects those test cases which have the potential to lower the conver-

gence gap in the respective TC matrix. 

This functional process uses information from Functional Effectiveness as heuristics 

which test cases to generate. This allows to generate test cases that support certain 

user stories; for instance, those that lack support in the TC matrix. Such a functionality 

speeds up the test case generator but also can block finding useful other test cases that 

are not obvious. A random generator must ensure the necessary fuzziness. 

5-3.2 CALCULATE THE CONVERGENCE GAP 

Calculate the convergence gap for an updated test suite, creating the TC matrix and 

using equation (2-1). 

Figure 5-6: Calculate Convergence Gap 

Tester Test Cases
Select New

Test Case
Test Coverage

Functional

Effectiveness

1.// Add Test Case

Get CG

2.// TC Matrix

3.// Get Impact of  DM

4.// Impact of DM

5.// Convergence Gap

6.// Convergence Gap

7.// Show Convergence Gap

 

Calculating the convergence gap is straightforward. As before, calculation considers 

functional effectiveness for counting the impact of each cell in the TC matrix. A TC 
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matrix is represented by selecting relevant test cases within the test stories. Many can-

didate TC matrices will be needed for the selection step (5-3.3), coming next. 

5-3.3 SELECT THE NEW TEST CASE FOR INCLUSION INTO TEST COVERAGE 

Select the new test case for inclusion in the TC matrix, based on the convergence gap 

of the TC matrix. This step selects or rejects test cases for inclusion into the test suite, 

and consequently the TC matrix. The decision depends from the convergence gap, 

computed before. The Tester remains informed.  

Figure 5-7: Select a New Test Case for Inclusion into Test Coverage Matrix 

Tester Test Cases
Select New

Test Case
Test Coverage Test Case Selector Rejected Test

Cases

1.// Select?

Select?

2.// Select!

3.// Reject!

4.// Selected TC

5.// Updated TC

6.// Reject!

7.// Reconsider

8.// Updated CG

9.// Improved Convergence Gap

 

The device Select New Test Case is an information exchange bus, triggering the neces-

sary steps to create and select a new test case, and decide whether to include it into 

the TC matrix and thus the test suite. 

5-3.4 SEARCH FOR A NEW TEST CASE 

The TC matrix might not be satisfactory. Sometimes, it is necessary to search for a new 

test case that adds impact to specific test stories or user stories, based on specific data 

movements that add weight to some weakly supported user story. This functional 

process is called when needed. 
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Figure 5-8: Create New Test Case Executing Specific Data Movement 

Generate New

Test Case
Testing Blockchain

Data Movement

Map
Data Groups Validator

Select New

Test Case

1.// Request Specific TC

Search

2.// Get Suitable DM

3.// Get Suitable DG

4.// Use Blockchain

5.// Try new Test Data

6.// Valid Response

7.// TC Matrix

8.// New Test Case

 

As before, the Validator application is needed to validate the response in the test case. 

The device Select New Test Case remains in control for the enhancement of the TC ma-

trix, and thus the total amount of test cases per test story. 

5-3.5 PUBLISH TEST SUITE 

If the tester is satisfied with the result, she or he publishes the new test suite to the 

cloud for use by all connected ART clients.  

ART users can now download the test suite, execute the tests and upload the test re-

sults. These results might be consulted in case of failure or incident, to assess respon-

sibilities of software suppliers, or at least to learn how to make the software better. 

Control is given back to the (human) Tester. 

Figure 5-9: Publish Test Suite to the Cloud 

Tester Test Cases ART Cloud ART

1.// Publish

Publish

2.// Convergence Gap

3.// Show TC Matrix with CG

4.// Approve?

5.// Approve!

6.// Publish

7.// Confirm Publication
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5-4 THREE STANDARD TESTS 

In preparing Autonomous Real-time Testing (ART), three standard tests are used to pro-

tect a software-intense product against privacy violations and the consequential safety 

risks: 

• The Data Walker Test (DWT) consists of visiting all objects, listing their published 

methods and assessing their privacy protection status. Data groups, retrieved 

from the model, are used to detect hidden interfaces, by checking whether those 

data groups appear in other objects. If they are not, there must be data move-

ments that are not listed in the model. 

• Each data movement is assessed in view of its privacy protection needs whether 

it is effectively protected. This yields the privacy protection index and is called 

the Data Movement Test (DMT). 

• The Sniffer Dog Test (SDT) is one layer below the application and watches data 

communication traffic. Each data package must be assignable to some data 

group of the model. 

5-4.1 THE DATA WALKER TEST 

The DWT is basically a static test, if source code is available. Interface specifications 

are good enough. If not available, the DWT walks the data movement map model, 

trying to visit each identified object of interest. If the software supplier provided for 

such testability, a list of public methods is offered that can be used to execute the visit. 

If not, effective DWT testing depends on the ability of the tester to model the function-

ality with a suitable data movement map, plus how well those objects of interest ef-

fectively can be visited. For the visit, they need to exhibit some programmable inter-

face. Else the DWT is difficult and eventually the privacy index cannot be determined. 

However, in those times of open source computing, the DWT test can quite often be 

executed, and it should be a normal requirement for an Original Equipment Manufac-

turer (OEM) that he needs to provide equipment that is DWT-testable. 

The test runs as follows: 

1) Identify all Data Movements that go out or into the object; 

2) Determine the Data Groups  

3) Compare with the Privacy Needs for these data groups 

4) Compare with the Safety Impact for these data groups 

The privacy needs and the safety impact are attributes to the COSMIC model as ex-

plained already in section 4-2 and 4-2. In short, the left-hand part of the privacy as-

sessment and the right-hand side of the safety risk assessment. The test detects typical 
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failures such as data movements moving data groups without privacy needs attribute, 

or without safety impact attributes.  

To some extent, the DWT is a model validation test. However, analyzing the code or 

the behavior of the object of interest does also detect data movements that are not part 

of the model; for instance, for technical reasons. Some data movements remain invis-

ible to the functional user. They are not required by a FUR. Thus, not all findings of 

the DWT are automatically data leaks, but they should be investigated whether they 

have such potential. 

Obviously, it is also possible that the model is not complete, or not all functional users 

have been taken in due consideration. In both cases, the results of the DWT might 

cause rework and fixes, be it to code, to the embedding container, or to the model 

itself. 

5-4.2 THE DATA MOVEMENT TEST 

The DMT is the logical continuation of the DWT: all data movements found by the 

DWT are tested against effective protection. This is a dynamic test. Usually it is ex-

pected that data is encrypted according some one-way or two-way protection scheme. 

Although this could be a static test, if code is available, normally such a test must be 

executed dynamically, looking at the data moved whether it is readable without en-

cryption key or not, and where the key originates. 

The most efficient way to execute a DMT is by executing the software in some stand-

ard environment and tracing each data movement executed. The frequency of execu-

tion is also measurable; thus, it serves as well for assessing Incurrence Frequency. From 

its results, both the Privacy Index and the Safety Risk Index can be calculated. 

The DMT does not validate the model but its implementation. 

5-4.3 THE SNIFFER DOG TEST 

The SDT is a black box test looking at the dynamic execution of the software. It moni-

tors all communication channels that are used by the software. It expects each data 

communication matching one or more data groups identified in the model. If some 

data communication does not fit into the model, it might indicate an illegitimate data 

movement, or a shortcoming of the model. 

The SDT needs access to keys used for encryption and therefore can be executed in 

combination with the DWT, and thus complements model validation. 
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5-5 THE DEVOPS PARADIGM AND SOFTWARE TESTING 

The DevOps paradigm requires that software development interacts with operations, 

and it is not called DevTstOps. Testing is part of product development or not done at 

all. That the tendency is for “not done at all” is more than obvious. Untested software 

publishes today’s newspaper, runs train systems, and delivers organizational sched-

ules, making every aspect of our life more and more adventurous.  

Thus, modern software testing must become part of the operation of software, not 

only part of software development. This means, software must be able to test itself at 

any time and occasion. Automated tests must be built into the software, and available 

for execution to both consumer and supplier. 

Agile software development had developed a branch called Test-Driven Development 

(TDD) that creates unit tests before delivering any functionality. Unfortunately, and 

unnecessarily, these unit tests usually become not part of the delivered code, possibly 

for fear of decreasing performance. But performance is not a major issue nowadays 

and is only affected when the software starts testing itself while it should be available 

for performing its primary purpose. Obviously, a software-based system can cope 

with such a constraint. 

Test stories and test cases can be stored in any software and can be executed at any 

time that the workload permits. Hence testing must be fully automated. This is still 

difficult but state-of-the-art. And if performance still matters, missing computing 

power can be borrowed from cloud systems.  

5-6 THREE INNOVATIONS NEEDED 

The current art of testing is outdated. As already stated, the ISO/IEC/IEEE 29119 test-

ing standard (ISO/IEC/IEEE 29119-4, 2015), part 4, identifies 23 different so-called 

Test Coverage Items, but not software functionality. As if software functionality were 

not items in software that can be well distinguished and handled. 

While non-functional software characteristics exist that can be tested, dynamic test is 

per se functional; otherwise it would be static testing. While static testing, e.g., code 

analysis, is highly important for technical debt and for safety and security assess-

ments, static testing never suffices to ensure proper functioning of mission-critical 

software. 

But dynamic testing of complex systems inclusion artificial intelligence requires three 

innovations. 
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5-6.1 FIRST INNOVATION – TEST AUTOMATION 

The first innovation needed refers to Test Automation. Traditionally, tests were suc-

cessful when they produced reproducible responses. Reproducible responses cannot 

be the goal of testing in learning systems. We therefore propose a new method of spec-

ifying test cases using Combinatory Logic. This is a system that maps preconditions to 

postconditions expressed by formulas. It classifies similar test cases. A test is passed 

when the response formula is found to be true. Determining whether a response is 

valid or not might be delayed until running the test. 

For autonomous cars, such test conditions and test responses fit well. Things like 

speed limit, speed range, acceleration and breaking effectiveness can be better ex-

pressed with formulas, referring to some thresholds, rather than by fixed test data, 

referring to known, expected and correct responses. Varying road conditions or truck 

load loads can influence the correct answer in a way that is hard to predict. 

For test automation, we refer to Data Movement Maps that describe a software in terms 

of data groups being moved from one object of interest to another. These objects, be it 

functional process, device, other application, or persistent store, all need being 

equipped with Test Stubs. Test stubs are the pieces of code that emulate a device, or 

other application, in a physical environment. Persistent stores and functional pro-

cesses also need test stubs; in cases where some fixed behavior is expected in the test 

case. In case of hardware in the loop, we effectively call for a Digital Twin (El Saddik, 

2018). 

Simply speaking, test automation means programming test stubs such that they exe-

cute certain test cases. This is what makes ART possible, at the end.  

5-6.2 SECOND INNOVATION – TEST METRICS  

The second innovation needed refers to Test Metrics. Test metrics must be independent 

from implementation, especially from code, as code for certain services needed by the 

system under test are often not available, and code size is irrelevant. Test metrics like 

test size, test intensity, test coverage and defect density must compare with functional 

size. It is the functionality that’s being tested, not code. Moreover, test metrics must 

be understandable by consumers using a software-intense system, like ecolabels for 

today’s products.  

Consequently, test metrics must refer to functionality in use, and not to obsolete re-

quirements or specifications. Test metrics cannot refer to code, as code is usually not 

available for measurement, be it that functionality originates from cloud services or 

proprietary code.  
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Moreover, certain code today is self-correcting and usually not responsible for func-

tional failures. Code is not the object of testing; it is the systems functionality. 

Test metrics must use the same measurement method as functional size metrics. We 

can use the same data movement maps for representing pieces of functionality as we 

use for tests. 

5-6.3 THIRD INNOVATION – ART 

More challenging is adapting test stories and test cases continuously, by new experi-

ences made by the software, changing the behavior of the complex system. The soft-

ware might modify itself, or modify data that controls its behavior, or the system 

might encounter new situations in changed environments. For instance, an autono-

mous car that encounters new traffic situations and learns from them might cause the 

controlling software to behave differently than before. Test cases, and even test stories, 

must adapt. An automated test repository is needed that grows with the changes to 

the software, and with additions to the system. This is the essence of Autonomous Real-

time Testing (ART). 

This is the major innovation that we propose to software testing. To make it work 

requires even more innovations. Future software contains its own testbed that users 

can run anytime when needed and see the result. Moreover, the software can run the 

tests autonomously, for instance when encountering new situations with an autono-

mous car, or when adding or removing system components such as an IoT device, or 

when adding a new truck member to a truck platoon, or when commissioning a new 

software-intense train system. Even when establishing communication with another 

car or road user, a short test might be appropriate to establish trust into the new rela-

tionship and the communication means. ART also regularly checks existing software 

for newly introduced software faults, vulnerabilities, changed features, or hardware 

wear such as breaking effectiveness.  
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CHAPTER 6: TESTING HIGHLY 

COMPLEX TECHNICAL SYSTEMS 
The problem with complex technical systems is testing. Testing is utterly 

complex and sometimes not feasible because of the many subsystems involved. 

People cannot devise enough test cases because they cannot test everything 

against anything.  

Moreover, if your functional size exceeds, say, a million – this is easy for 

airplanes or spacecraft or even for autonomous vehicles or trains – you need a 

test size of ten to hundred million for achieving a reasonable test intensity. 

Men cannot deliver that. We need machines to do this. 

6-1 TESTING DIGITAL TWINS  

Whenever testing software-intense systems, testing with hardware-in-the-loop can be 

quite demanding. The hardware needs to put in a state that produces the wanted test 

data. In many cases, this is impossible or very costly to keep the hardware in the loop 

while testing large, complex systems. 

As already explained, we rather test Digital Twins, where hardware components, sen-

sors, and actuators are emulated rather than tested in the loop. Digital twins today are 

available for all kind of hardware component build into software-intense systems. 

6-1.1 THE DOUBLE-TIDDLEMUTZZ EXAMPLE 

The Double-Decker Tilting Long-Distance Multiple Unit Trainset (D2TLDMUTS) serves as 

an example to explain the new concepts. D2TLDMUTS is pronounced “Double-Tiddle-

mutzz”, with a sharp “zz” hiss at the end. It refers to a large Intercity multiple unit 

trainset, able to run on international railway traffic as a double-decker with restaurant, 

with children’s corner, offering space for people with disabilities, featuring roll com-

pensation for faster driving around a curve, comfortable enough for three to six hours 

of daytime train riding.  

It has been ordered by a European railway operator, originally targeted for 2013 but 

now, in spring 2019, finally being commissioned. Commissioning started in February 

2018 and will last well into 2020. Normally, commissioning a train takes three to six 

months; assuming, it is a commuter train with mostly standard components. But this 

train is utterly complex. After the first year of commissioning, the number of bugs 
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found, and problems encountered, piled higher than ever. Suppliers and train service 

operator realized that they are only half-way through before letting the D2TLDMUTS 

run operational services. Such kind of failure is common not only with train operators; 

several similar cases occurred in the last few years in aircraft industry as well and is 

likely to happen with autonomous cars. 

The problems encountered with the D2TLDMUTS are basic: it is virtually impossible 

for humans to create complete test suites for such a complex, software-intense system. 

Consequently, commissioning such a train set takes very long, much longer than ever 

planned. Defects touching across the various systems are detected in this trial period 

only. This is very late, because every modification of train software requires an extra 

re-certification and a new admission procedure.  

6-1.2 COMMISSIONING REPLACES TESTING 

Key of testing complex systems is understanding the needs (or values) of the train 

operator, in our case, or the needs of the customer, in general. The needs of the train 

operator are the key means for distinguishing relevant test cases from unnecessary 

tests, allowing test case automation and finally Autonomous Real-time Testing (ART).  

Commissioning such a software-intense system takes an unpredictable amount of 

time. Not only due to the difficulties of designing such a multi-purposed system – 

even if the supplier did an excellent engineering job – but far more in the commission-

ing of its software. Either instrumentation and control fail, or the door control stops 

working, or you cannot connect to the European Train Control System ETCS (Wikipedia, 

2019). If the software somewhere fails, the only remedy is to switch everything off and 

then reboot the train. This takes ten to twenty minutes. In rail networks like in Swit-

zerland, the Netherlands or Japan, after such a reboot, the timetable is out of control; 

nationwide. A software breakdown during train operation must never happen; this 

constraint is absolute. 

It is unknown how big the software is; probably, even the supplier does not know. 

Today, publishing software size seems nothing aimed at the public, and train manu-

facturers still do not behave as a software house, although they are.  

However, if we assume 500’000 CFP, we might still underestimate the complexity of 

a D2TLDMUTS, with instrumentation and control, with information and ticketing ser-

vices for the public riders, incorporating services needed to control and minimize en-

ergy consumption, comfort services controlling all the technical installations on board, 

including heat control and air circulation, and all the recording needed for the big 

amount of data. It is not a simple commuter train, or a locomotive hauling trailers, the 

D2TLDMUTS is a multiple unit railcar with restaurant, children playing area and 

space accommodating a thousand passengers, including people with disabilities.  
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It is impossible to let testers set up enough test cases, manually. Too many systems 

interact. It is a typical case for Combinatory Logic. Test cases must be created automat-

ically, combined from test stories with basic test cases. Such tests can run, searching 

for weaknesses and bugs, before commissioning the train, or put the system into ser-

vice. 

Testing such a system involves several steps. Note that we do not need textual speci-

fications. Although in theory specifications would be helpful to set up test stories and 

the related test cases; in practice, specifications are meddling up the important with 

the marginal and thus of limited value. In any case, specifications without priority 

profiles are near to useless. No written document can describe adequately the com-

plexity of our D2TLDMUTS train system in full. 

6-2 THE FUNDAMENTALS OF TESTING COMPLEX SYSTEMS 

Traditionally, the customer needs are what matters and defines the goals of testing. 

However, when buying train sets, the customers are not primarily the train riders but 

the train operators. It is the train operators’ interest that the trains run on schedule 

and its riders come back again, remaining loyal customers of the train operator. While 

train riders and operators might share common values, in some other respects they 

differ. Train riders do not care much about the costs of running the trains reliably; in 

turn, operators do. Operational cost must remain below older trains. 

Figure 6-1 shows The Complete Analytic Hierarchy Process for the D2TLDMUTS. The lists 

the Operator’s Needs regarding the new D2TLDMUTS is hierarchically grouped and 

analyzed using the Analytic Hierarchy Process (AHP). This time AHP in full, with one 

level of hierarchy. The hierarchy reflects those subsystems of the D2TLDMUTS that 

we intend to test. For testing, each group will need its Operator’s Needs for defining the 

goals of tests. All group tests combine for the full D2TLDMUTS tests, letting ART fill-

ing the test gaps in between groups.   
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Figure 6-1: The Complete Analytic Hierarchy Process for the D2TLDMUTS 
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With a few more textual attributes to explain what is intended by the Operators’ 

Needs for the D2TLDMUTS (Figure 6-2): 

Figure 6-2: Operators’ Needs for the D2TLDMUTS 

Operators' Needs Attributes

A ETCS A01 ETCS Reliability Safety for humans Safety for instrumentation

A02 Human Interface Communicate clearly With operators and pssengers

A03 ETCS Redundancy All ETCS equipment is redundant If results differ, alert!

A04 ETCS Stability Unambiguous status Consistent

A05 ETCS Independence Each subsystem is autonomous Can close or fail 

B Instrumentation B01 Sensor Robustness Legibility Completeness

B02 Sensor Independence Save energy Use energy wisely

B03 Sensor Redundancy Have two sensors where applicable Compare sensor data

C Traction C01 Needs Prediction for Traction Predict knowing train load Predict knowing weather conditions

C02 Efficient Traction Optimize acceleration Minimize energy consumption

C03 Safe Traction Safety for humans Safety for instrumentation

D Electricity D01 Electricity Sensing Sensing the power supply Adaption traction

D02 Power Management Distribution of power in train Laptop plug supply

D03 Energy Saving Extract relevant data Keep data for analysis

E Comfort E01 Heat Level Convenient for passengers Both women and men

E02 Moisture Level Convenient for passengers Enough dry

E03 Cabin Acceleration Convenient for passengers

E04 Accessibility Entrances Toilets

F Doors F01 Door Sensing Door knows who's inside

F02 Anti-Trap Sensing Doors must not close by force Avoid dangerous conditions

F03 Door Closure Safety Each subsystem is autonomous Can close or fail 

G Terminology G01 Audio Clarity Understandable Also for the hearing impaired

G02 Visual Clarity Legibility Completeness

G03 Data Interpretation Doors must reopen when needed People mst never get trapped

G04 Consistency Consistent Messages Adaptive terminology

H Maintenance H01 Predictive Maintenance Alert well in time Before failure

H02 Wear Sensors Put sensors near wearing equipment Have sensors for all wear & tear

H03 Alarming Timely alarms Alert in case of uncertainty

H04 Maintenance Controlling Make sure maintenance is effective Also check efficiency  

6-2.1 THE HIERARCHY OF OPERATOR’S NEEDS FOR THE D2TLDMUTS 

Each new, complex, system requires training, adaptation of operational processes and 

new standard procedures for operations and maintenance. For instance, older electric 

traction gear only needed a switch being turned off for putting them out of service, 

while modern equipment has many functional processes that need being shut down 

in an orderly manner. A train software feeding a data base might cause database cor-

ruption when turned off unexpectedly; restarting software plus database might take 

a long time because the database needs being repaired. Locomotive engineers might 

not be used to such thinking; thus, they need training and instruction to understand 

new technologies. On the other hand, software engineers that program instrumenta-

tion and control are probably not aware of the operational conditions and constraints. 

Thus, they take things for granted that are not. The standard approach to such a prob-

lem is addressed by Quality Function Deployment (QFD). 

The method of choice to find priorities is the Analytic Hierarchy Process (AHP). It makes 

sense to do the pairwise comparison once per needs’ group and combine their profiles. 

The result is quite surprising. While H02: Wear Sensors, F02: Anti-Trap Sensing for 
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doors, and H03: Alarming clearly dominate other needs; the need for unambiguous 

communication G04: Consistency wins over all. This is a clear indication where the 

software problems arise: lack of consistent communication between the many elec-

tronic and software components in the train sets.  

For a train set that assembles components of various suppliers with software devel-

oped during different ages, consistent communication is not something for free, but 

something that requires decent consideration and dedicated work. The components 

of the D2TLDMUTS originate from different ages and suppliers; regulations have 

changed over time and with regulation terminology, the meaning of terms. 

6-2.2 TERMINOLOGY MANAGEMENT 

These requirements are relatively new. However, since a few years the discipline of 

Terminology Management has evolved responding to the needs of the European Union. 

This suggests developing a Terminology Broker that not only controls, but also consoli-

dates and levels out the different messages obtained from instrumentation and con-

trols with those from the signaling system and from traction. Such a terminology bro-

ker also enables testing and has a few more advantages (Cabré Castellví, et al., 2017). 

Setting up a learning system that learns how to interpret the thousands of messages 

coming in from the various components is probably the simplest way to create a ter-

minology broker for such a complex software intense system. 

For many readers, it might not be clear what a terminology broker is. Basically, it is a 

message broker that “understands” messages and can translate a term from one envi-

ronment into the correct term in a different environment, translating the meaning un-

ambiguously. Terminology Management is a relatively new language science (Fathi, 

2017) aiming at providing a platform for technical and societal communication among 

members of different communities such as within the European Union. Terminolo-

gists establish the terms specific to a field of activity, define them, and then find equiv-

alents in another language. They also define the terms in use for businesses, databases, 

glossaries, dictionaries and lexicons for the purposes of standardization. 

6-2.3 THE ANALYTIC HIERARCHY PROCESS 

The effect of this AHP (Figure 6-1) is stunning; it is an eye-opener. While everybody 

probably would agree, without hesitation, to the principle that AI could help with 

complex technical systems, the idea that AI could provide a terminology broker func-

tionality is a somewhat surprising consequence from the 29 different operators’ needs. 

While these needs look complicated enough to handle, this sample size still is quite 
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below reality and we do not try to make it more detailed; otherwise, it would not fit 

into this book’s format.  

On the other hand, while quality or marketing managers are tempted to concentrate 

on the 7 ± 2 most relevant needs (Gigerenzer, 2007), technical people must concede 

that needs not carried forward into programming probably will also not be tested. 

Thus, complex software-intense systems clearly require other teaching methods than 

examples in a traditional book. 

For people not familiar with the Analytic Hierarchy Process (AHP) we give a short ex-

planation how to read Figure 6-1. The basic principle of AHP is pairwise comparison 

among comparable criteria. Therefore, the evaluator must compare each criterion with 

each other. However, to reliably compare 29 criteria with each other is difficult if not 

impossible. 

Saaty therefore introduced the AHP. The AHP uses Euclidian vector space metrics – 

the direction of unit vectors that we call Profiles – to compare two evaluations. This 

allows splitting these comparisons into smaller groups according a hierarchy. Because 

the result of comparisons are profiles rather than linear weights, you can combine such 

profiles simply by multiplication. Profiles, as already explained in section 2-3, define 

a direction within an event, or in this case a decision room and combining directions 

is possible without introducing a bias for some of them. The Hierarchy Comparison 

AHP matrix defines by its solution profile how to combine the priorities of the indi-

vidual part pairwise comparisons for the full AHP. The components of this profile are 

used as weights when combining the various part solution profiles from the part pair-

wise comparisons.  

More on AHP can be found from its inventor (Saaty, 1990), or in the precedent book 

of the author (Fehlmann, 2016, p. 33ff). 

6-2.4 THE SOFTWARE UNDER TEST 

It is not possible to include data movement maps for the full D2TLDMUTS in this book. 

However, we have construed the AHP hierarchy in such a way that it maps the part 

software applications of the D2TLDMUTS. This is obviously always possible, and we 

can set up user stories and test stories for each of the eight parts; although, we are still 

oversimplifying. User stories and test stories yield test coverage matrices for each part 

application. Each part application has its own data movement map, although these 

applications do talk to each other; thus, have data movements connecting them. The 

initial test coverage matrix for the D2TLDMUTS is then simply the combination of all 

nine test coverage matrices, weighted by the profile of the pairwise comparison AHP 

matrix that governs the hierarchy combination. Multiplying matrices by a linear pro-

file component is a standard operation in linear algebra and yields a linear 
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combination of the other nine test coverage matrices. The combined response profile 

then matches the profile of the 29 operators’ needs, up to some convergence gap. 

However, for testing, leaving all the interactions out that occur between the nine soft-

ware applications would introduce an unbearable safety risk. The gaps can be filed in 

manually, but better this is addressed by ART. ART does not work on the nine soft-

ware applications alone but on the whole system; thus, filling up the empty space. 

This means for instance that ART adds test cases to test stories that for instance refer 

to door closure, connecting it to ETCS status. Exactly such dependencies have hit the 

actual D2TLDMUTS’ commissioning. Thanks to ART, such tests can be done before 

the train operator is involved; and, what is even better, they are generated by a struc-

tured, almost “intelligent” algorithm. It does happen according the test generator 

rules when some data movement exists that connects ETCS information – e.g., free 

track ahead – with door closure control software. 

The details when the D2TLDMUTS can depart or let passengers disembark are mod-

elled in the Door Control part application but this application depends in many re-

spects from other part applications – such as Traction and ETCS. Testing Door Control 

is not complete without taking these interferences into account. But things become 

complicated with that many interrelated systems; setting up test stories and finding 

relevant test cases becomes a tedious task. 

Below we show two of the part applications – Door Control in Figure 6-3 and Terminol-

ogy in Figure 6-4. The Combination application has data movements that connect al-

most all the part applications with each other. This can be used to generate testing 

blockchains for ART, connecting all different parts of the D2TLDMUTS system to ex-

tend test coverage. The Combination application is already too large to fit on a book 

page. Readers interested in these details can study all related data in the shared cloud 

data accompanying this book (Fehlmann, 2019).  

However, the extract shown in Figure 6-5 is enough to demonstrate the mechanisms 

of ART with complex technical systems. By data movements, the Combination applica-

tion connects all other part applications to collect a comprehensive status of the 

D2TLDMUTS. This part is shown. For constructing the testing blockchains needed to 

test status, these are the essential data movements. 
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Figure 6-3: The D2TLDMUTS door control application – opening, closing and locking doors 

Train Engineer Door Opening
Door Opening
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Door Closing

Actuators
Antitrap Door Status Door Analytics Door Block Door Repair Door Status

1.// Unlock doors

Open

2.// AC ready?
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Figure 6-4: The D2TLDMUTS Terminology Application - Test Case Generator as a Data Movement Map 
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Figure 6-5: Extract from the Combination Application Combining Other Part Applications of the D2TLDMUTS 
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6-3 AHP FOR TESTING 

It has already been noted that testing is not very effective without reference to the 

goals of testing, the needs of the customer, or user. The AHP is the method of choice 

to analyze and prioritize needs of the customer. However, when used in its full, hier-

archical form, AHP is even more helpful. The hierarchy typically addresses system 

parts; parts can be tested independently, and their test coverage matrices combined 

the same way as the part AHP. This is quite straightforward but allows managing 

large test coverage matrices, when combined with ART. 

6-3.1 USING THE AHP HIERARCHY FOR SETTING UP TEST STORIES 

Let 𝑨1, 𝑨2, … , 𝑨𝑘 be a sequence of AHP pairwise decision matrices with solution pro-

files y1, y2, …, yk  respectively; k∈N; k>0. Thus, up to some numerical imprecision, 

𝑨 𝒚 ≅ 𝒚𝑰, for 𝑖 = 1, … , 𝑘. because there are no algebraic solutions for Eigenvectors. 

Let 𝑨̅ be the Hierarchy Comparison with the solution profile 𝒚̅. 𝑨̅̅ is a 𝑘 × 𝑘 square ma-

trix; thus 𝐲̅ = 〈𝑦̅1, 𝑦̅2, … , 𝑦̅𝑘 , 〉 is the solution profile for 𝑨̅.  

The combined solution profile for the full AHP is shown in equation (6-1): 

 

𝒗 =∑y̅i𝐲i

k

i=1

, 𝑖 = 1,… , 𝑘; k ∈ N; k > 0  

𝐹𝑢𝑙𝑙  𝐻𝑃 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 =
𝒗 

‖𝒗‖
 

(6-1) 

Note that equation (6-1) denotes a sum of profile vectors, divided by its Euclidian 

length; thus, making the result 𝒗 ‖𝒗‖⁄  yet another profile. 

According Saaty, this is the mechanism how a hierarchy of decisions should be han-

dled. The key point is using vectors of normalized length that can be added, sub-

tracted, and multiplied by scalars. Intuitively, this represents the direction to take in 

the decision space, and that is what AHP is all about. 

6-3.2 TESTING THE PARTS 

Now, each of the 𝑨  pairwise decision matrices describe the needs of the customer 

with respect to its part, be it ETCS, door control, communications. It is easy to describe 

the functionality required to fulfil these needs by data movement maps, and verify 

effectiveness of the implementation by the Functional Effectiveness transfer function 𝑬𝑖. 

𝑬𝑖 maps the user stories onto customer’s needs, by counting data movements needed 
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to implement certain user stories, and thus assigns data movements to user stories. 

These transfer functions are described by matrices that are not square; typically, many 

more user stories are needed to implement needs of the customer, than needs itself. 

For the user stories, a profile results that describes the importance of the functionality 

described by the user story to the customer in view of the stated needs 𝒚𝑖. Let 𝒖I de-

scribe this profile. Its dimension is the number of user stories needed to implement 

the topics decided with 𝑨 . 

For each of these sets of user stories with profile  𝑢𝐼 , an initial set of test stories is 

needed to cover the user stories with tests, together with an initial sample starting set 

of test cases. The resulting test coverage matrices 𝑭𝑖 map test stories onto user stories, 

again based on the data movements executed in the respective test cases. In turn, its 

solution profile we denote by 𝒔 . By definition, 𝑭𝑖𝒔𝑖 ≅ 𝒖𝑖 holds up to the convergence 

gap. This nearly equality ensures test coverage for each of the 𝑖 hierarchical part ap-

plications, referring to the AI pairwise decision matrices for the initial needs of the 

customer per part application, for 𝑖 = 1,… , 𝑘. 

6-3.3 DOOR CONTROL 

The creative task is inventing such test stories and test cases that effectively test the 

implemented functionality. The initial needs of the customer help managing the com-

plex system and its setup. 

Figure 6-6: Pairwise Comparison for Door Control 
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Figure 6-7: User Stories for Door Controls 

As a … 

[functional user]

I want to … [get 

something done]

such that …[quality 

characteristic]

so that … [value or 

benefit]

1) Q001 Stop Train Operator open all doors passengers can leave the 
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2) Q002 Start Train Operator close all doors no passengers are 
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3) Q003 Safety Train Operator get an alert for any door 
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I can block defect doors 

when stopping
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door that are out of 

operation 

4) Q004 Pressure Train Operator lower the air condition 

pressure

doors do not produce air 

blow when opened
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These four user stories explain the basic functionality of door controls and implement 

the Door Control operators’ needs effectively, as shown in Figure 6-8: 

Figure 6-8: Functional Effectiveness for Door Controls 
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With functional effectiveness, we know which data movement is assigned to which 

user story and therefore we can calculate test coverage, give a suitable set of test sto-

ries, just by looking at the data movements executed by the test cases defined per test 

story: 

Figure 6-9: Initial Test Coverage for Door Control 
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Figure 6-9 explains how to test door controls (the data movement map shown in Fig-

ure 6-3). For the details of the initial test cases for the eight test stories addressing door 

control functionality, we refer again to the shared cloud data accompanying this book 

(Fehlmann, 2019).  
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6-3.4 TERMINOLOGY 

Note that locking doors has another meaning when looking at door control from the 

traction or ETCS standpoint than from door control itself. Locking doors – and some-

times even side-specific door locking – is a precondition for the train departing. Unlocking 

when stopping at stations is necessary for letting passengers disembark.  

Thus, terminology plays a role when door control talks to ETCS or traction, and this is why we 

chose the Terminology Application as next part of the D2TLDMUTS software; see Figure 

6-4 for the data movement map. 

Figure 6-10: Pairwise Comparison for Terminology 
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Six user stories are needed for implementing the Terminology priorities: 

Figure 6-11: User Stories for Terminology 
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Functional Effectiveness is calculated the way same as before. Note the strong focus 

on G04: Consistency: 
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Figure 6-12: Functional Effectiveness for Terminology 
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With 13 test stories, we can cover the six user stories for Terminology: 

Figure 6-13: Initial Test Coverage for Terminology 
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Again, the details are left to the reader using the cloud data accompanying this book 

(Fehlmann, 2019). 
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6-3.5 THE HIERARCHY COMPARISON 

The hierarchy comparison not only serves for connecting part comparisons but relies 

itself on software connecting the part solutions. It therefore has a data movement map 

describing functionality of its own that in turn must be effectively implement how 

parts interact. The data movements also play a role when extending initial test cases 

with ART; the test assertions travel along the data movements to extend test cases 

within existing test stories. 

The pairwise comparison for the hierarchy comparison defines another operators’ 

needs profile that serves as the goal profile for user stories describing the functionality 

of combining all the various D2TLDMUTS services into one train steering and control 

functional working place. Thus, we can again analyze and test this piece of software 

using the other applications as services – assuming already tested services. 

The hierarchy comparison AHP is shown in Figure 6-14: 

Figure 6-14: Pairwise Comparison for the Hierarchy  
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The following user stories (Figure 6-15) implement these operators’ needs:  

Figure 6-15: Functional Effectiveness for Combining the Hierarchy 

As a … 

[functional user]

I want to … [get 

something done]

such that …[quality 

characteristic]

so that … [value or 

benefit]

1) Q001 Traction Train Operator have the train running 

smoothly

all systems work together energy consumption is 

minimized

2) Q002 Comfort Train Operator to ensure convenient 

conditions for 

passengers

comfort is maintained passengers feel well in 

the Tiddlemutzz

3) Q003 Stop Train Operator make passengers exit 

and enter the 

Tiddlemutzz

exchange is fast train stops can be kept 

short

4) Q004 Monitor Train Operator know the wear & tear 

status of all components

failures can be prevented maintenenace can be 

scheduled as needed

User Stories 

Topics

 

This is a typical case of combining services. Many services are needed to fulfil basic 

functional needs. 
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Figure 6-16: Functional Effectiveness for Combining the Hierarchy 
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Test coverage is calculated the same way as before (Figure 6-17): 

Figure 6-17: Initial Test Coverage for Combining the Hierarchy 
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Combining the previous test coverage matrices yields an initial test coverage matrix 

for the complete D2TLDMUTS (Figure 6-18):
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Figure 6-18: The D2TLDMUTS Initial Test Coverage Matrix, with the Combination App and the first two Part Apps – for Terminology and Door Control 
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6-3.6 THE FULL TEST COVERAGE MATRIX 

To build the full test coverage matrix 𝑭, it is not good enough to add the sequence of 

test coverage matrices 𝑭𝑖, because the parts are of unequal importance for the cus-

tomer. However, when multiplying each of the matrices  𝑬𝑖 and  𝑭𝑖 by the respective 

component of the solution profile y̅i for the hierarchy comparison, the profiles remain 

the same and adding these matrices together yields a transfer function from all test 

stories into all user stories, thus the full coverage matrix. Additionally, its convergence 

gap remains small because the convergence gaps of the part matrices were already 

small. 

 𝑭 =∑y̅i𝑭i

k

I=1

, 𝑖 = 1,… , 𝑘; k ∈ N; k > 0  (6-2) 

The matrix 𝑭 is sparsely filled: no test cases exist outside of the diagonal part matri-

ces 𝑭𝑖. This means that no test cases cover the interactions between different part ap-

plications required by the 𝑨1. However, such interactions exist and are essential for 

proper functioning of the whole complex system. Also, the initial set of test cases con-

tains enough test stories that suggest test cases linking different part applications. In 

the D2TLDMUTS case, suitable test cases use the Combination application and even-

tually the Terminology application to move data across the other part applications. 

Finding the relevant test cases for these test stories seems not difficult at all; except 

that there are quite a few. The real D2TLDMUTS has not only eight hierarchy levels 

but many more, and its part applications contain much more than just a few dozen 

functional size units. Consequently, the matrix becomes quite unhandy – for humans. 

6-3.7 EXTEND THE TEST CASES 

Not so for ART. Automatically extend the test cases in the white space requires noth-

ing else than the application of the testing blockchain algorithm. The terminology ap-

plication is paramount for combining test cases from various applications. Combining 

test cases from different parts of the diagonal also does the job, using combinatory 

logic.  

The essence is that when selecting relevant test cases, the convergence gap must stay 

small while test intensity increases. The selection process depends from the effects on 

the convergence gap, just as with any other instance of ART.  

This process of generating test cases and selecting those that keep the convergence 

gap small is not limited except by practical considerations how many tests eventually 

can be executed. 
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6-3.8 DO THE TESTS 

Because the next step is executing the tests. If tests fail, fix defects found and re-execute 

the tests again with more test cases. These tests run on digital twins, if possible. It is 

not necessary to use a physical D2TLDMUTS; although a mockup would be helpful to 

test the wiring technology – which might be less that state of the art – and sometimes 

the networking technology is stone-age in real train systems. 

Tests executed in the mockup can take as much time as needed; the ‘real-time’ adjec-

tive is optional now. Nevertheless, given that time is always precious, setting a time 

limit to extensive testing as still a valid idea. Testing can stop if no defects can be found 

anymore. There exist techniques that allow predicting the number defects not found 

yet; e.g., by using the exponentially weighted moving average as a sort of dynamically 

calculated control chart, proposed by Fehlmann & Kranich (Fehlmann & Kranich, 

2014-1). Moreover, testing intensity – the average number of times a data movement 

is executed for testing – is another metric that allows determining when to stop testing. 

6-3.9 PUT THESE COMPLEX SYSTEMS IN SERVICE 

Now it is time to build these wonderful new railway cars – this needs a considerable 

amount of time, anyway – and try the complex new software-intense systems in the 

real world. There will be problems still, especially if the design was not excellent; how-

ever, these will rather not be software problems. There is reasonably good hope that 

ART already uncovered such problems and developers had time to fix it before the 

D2TLDMUTS goes into commissioning with the train operator. 

6-4 OPEN QUESTIONS 

One of the things that would be of highest interest is knowing which cell values must 

be increased to close a convergence gap. Such a sensitivity analysis seems not impos-

sible since the coefficients are linear and thus increments as well. However, the prob-

lem lies in the Eigenvector. It is well known that this kind of solutions have jumps; the 

primary eigenvector jumps from one position into the other. While small increments 

still might behave linearly, the jump from one principal eigenvector to another can 

happen anytime and is difficult to predict. The solution profile also has jumps and 

does not behave smoothly. We have no solution yet for this problem. For this reason, 

trying to identify the behavior of a certain cell is probably as hard as calculating the 

whole matrix. 
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6-5 CONCLUSION 

Extending tests by artificial intelligence becomes surprisingly simple once the under-

lying combinatory algebra is considered. 

Note that these techniques can be applied even if little is known about how the part 

applications have been programmed. All that is really needed is a good investigation 

into what are the needs of the customer, e.g., the train operator.  

Is this technique possibly useful for testing Artificial Intelligence (AI) itself? Remember, 

AI is basically a program whose algorithmic design is unknown; part of the training 

that the SVM received instead of the traditional programming. 
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CHAPTER 7: TESTING ARTIFICIAL 

INTELLIGENCE 
Autonomous cars rely on visual recognition systems that use Artificial In-

telligence (AI) for recognizing objects; for instance, an ADAS. They can be 

trained but they can also unlearn.  

Testing image recognition systems requires creating new test images that 

can be used for Autonomous Real-time Testing (ART) of Advanced Driving As-

sistance Systems (ADAS) and autonomous vehicles. This is achieved with a 

data movement map according ISO/IEC 19761, serving as a model for image 

recognition. 

7-1 INTRODUCTION 

The death of Elaine Herzberg (August 2, 1968 – March 18, 2018) was the first recorded 

case of a pedestrian fatality involving an autonomous car, following a collision that 

occurred at around 10 PM Mountain Standard Time (UTC -7) in the evening of Sun-

day, March 18, 2018 (The National Transportation Safety Board, 2018). The following 

narrative is extracted from the said source.  

Herzberg was pushing a bicycle across a four-lane road in Tempe, Arizona, United 

States, when she was struck by Volvo XC90 taxi outfitted with a sensor system, oper-

ated under test conditions by Uber. Since 2015, Uber conducted tests with various lev-

els of automation in Arizona. The car was operating in self-drive mode with a human 

safety backup driver sitting in the driving seat. Following the collision, Herzberg was 

taken to the hospital where she died of her injuries.  

According Uber, the accident was largely caused by the software that decides how the 

car should react to objects it detects. The car’s sensors detected the pedestrian, who 

was crossing the street with a bicycle. Uber’s software first registered Elaine Herzberg 

on lidar six seconds before the crash — at the speed it was traveling, that puts first 

contact at about 115 m away. As the vehicle and pedestrian paths converged, the self-

driving system software classified the pedestrian first as an unknown object, then as 

a vehicle, and then as a bicycle with varying expectations of future travel path. The 

software decided it did not need to react right away. Like other autonomous vehicle 

systems, Uber’s software can ignore “false positives,” or objects in its path that are not 

an obstacle for the vehicle, such as a plastic bag floating over a road. 
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Then, 1.3 seconds before impact, which is to say about 24 m away, the self-driving 

system determined that an emergency braking maneuver was needed to mitigate a 

collision. According to Uber, emergency braking maneuvers are not enabled while the 

vehicle is under computer control, to reduce the potential for erratic vehicle behavior. 

The vehicle operator is relied on to intervene and act. The system is not designed to 

alert the operator. The Volvo model’s built-in safety systems — collision avoidance 

and emergency braking, among other things —were also disabled while in autono-

mous testing mode. 

The self-driving system data showed that the vehicle operator intervened less than a 

second before impact by engaging the steering wheel. The vehicle speed at impact was 

62 km/h. The operator began braking less than a second after the impact. The data 

also showed that all aspects of the self-driving system were operating normally at the 

time of the crash, and that there were no faults or diagnostic messages. 

The dead of Elaine Herzberg raises one major question: Why were the visual recog-

nition systems tested in real life situations, instead of under labor conditions? 

7-2 HOW TO TEST ARTIFICIAL INTELLIGENCE 

Computer Vision and Artificial Intelligence (AI) overlap. AI is different from ordinary 

software by its capability to learn. This means, AI can adapt to new environments, 

data, images and videos. While AI can be used for other tasks, computer vision is con-

cerned with the theory behind artificial systems, extracting information from images. 

Areas of AI deal with autonomous planning or deliberation for robotical systems to 

navigate through an environment. A detailed understanding of these environments is 

required to navigate through them. Information about the environment could be pro-

vided by a computer vision system, acting as a vision sensor and providing high-level 

information about the environment and the robot.  

AI and computer vision share other topics such as pattern recognition and learning 

techniques. Consequently, computer vision is sometimes seen as a part of the AI field. 

Testing AI in computer vision obviously is not so straightforward; mainly, because it 

is not possible to predict what is the correct outcome. The test case might produce 

different responses, and all are correct at a given state of experience collection. 

Recall that AI basically is sorting data into categories based on previous learning, or 

sample sets. The Uber car did exactly that when its Lidar, and ten visual cameras, 

recognized the object moving towards the car’s driveway (The National 

Transportation Safety Board, 2018). The difficulty was to find the right category. Hu-

mans encounter the same difficulty, when a biker enters the road from the pedestrian 

sidewalk. Expecting a pedestrian, they rapidly must adapt categories to a bicycle that 
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moves differently and follows different traffic rules than a pedestrian. Things become 

even more complicated if suddenly the pedestrian conjures up a skateboard, or a 

scooter. Traffic rules for the latter two conveyances are unknown, or do not exist. Hu-

mans are disturbed, and so are visual recognition systems. 

Since the important contribution of the visual recognition system is categorization, it 

should be tested whether categories detected by the visual recognition system remain 

the same over its lifetime. But that is not enough. Behavior on certain sample image 

sequences should also remain stable – except if new learnings tell it otherwise. Obvi-

ously, tests must adapt to learnings. On the other hand, learning systems can become 

neurotically disturbed – sick, like humans (van Gerven & Bothe, 2018). Thus, this is a 

case for Autonomous Real-time Testing (ART). For using AI in safety-critical environ-

ments, testing AI is required anytime, autonomous, without human intervention. 

7-2.1 BASELINING 

You start testing AI as any other software 

• Identify the software under test 

• Identify the goals of testing 

• Draw a data movement map that explains the user’s view on its functionality 

• Calculate functional effectiveness to make sure it does what users expect 

• Adjust scope of testing until goal and functional effectiveness converge 

• Prepare the test stories: 

o Identify new test stories 

o Fill test stories by test cases 

o Calculate test coverage 

• Repeat above three steps until test coverage converges 

• For each test story, generate more test cases: 

o Apply the test case variation rules defined in Table 5-3 

o Thus, generating even more test cases  

• Repeat generating more test cases per test story until test coverage converges 

Perform the tests and validate test stories and test cases. Identify defects and remove 

them, or mitigate them, until your system is defect-free. 

7-2.2 EXTENDING TEST CASES 

Use the algorithm explained in section 5-2: Generating New Test Cases to expand the 

test suite. Consider the AI domain when expanding the testing blockchain. For 
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instance, for traffic vehicles, use video sequences form traffic scenes to add to new test 

cases. Use video sequences that have been used for deep learning and other who were 

not. You must manually classify the videos for the category of traffic it represents; it 

is therefore the same kind of work for testing as for learning.  

As always with ART, you keep the test stories from the initial test suite stable while 

adding more test cases to improve test intensity and to detect more defects. For visual 

systems, the primary source for new test cases are new images and videos. 

Keeping test coverage good enough is somewhat easier than in other ART instances, 

since you only exchange test data. You do not change the aim of testing; not even 

incrementally. 

7-2.3 INTERPRETING TEST RESULTS 

In fact, it does not matter if you take all learning videos for testing or not. It is unlikely 

that you get a higher degree of trust in your AI system whether you show him only 

all tests in advance. Unlike humans, who might remember learning videos but need 

extra effort to verify their learning, machine intelligence always can recall what they 

once have seen before; but the question is whether they still put those videos in the 

same categories as in the beginning.  

The aim of AI testing is to verify stable behavior in categorization as previously 

learned. This is different from human learning where humans should be able to inter-

fere correct evaluations from their skills. As already mentioned, there is nothing intel-

ligent with AI. Testing machine intelligence means verifying that the software keeps 

identifying the same categories and does not change them. Testing AI remains simple 

while no new categories are added. 

If something else is being tested than categorization, interpreting test results can be-

come quite difficult. Remember that test results should be known in advance. AI be-

havior is not known before. 

Evaluating test results is therefore a manual task, supported by AI but delegating re-

sponsibility back to the humanin case the response of the test case is something else 

than one of AI’s established categories. 

Adding another category to AI is connected to re-learning from scratch. You must 

supply all given evidence again and accept that the category borders move. In such 

cases, testing AI also starts from the beginning with establishing a new baseline. 
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7-2.4 NEVER STOP TESTING – REPEAT TESTING FOREVER  

Not only learning data changes, categories themselves are not except from change. 

Certain categories such as legal behavior in traffic are also subject to change and must 

be adapted to new environments and facts. Testing AI will detect such changes. 

Therefore, for the lifetime of the AI system, testing must repeat. AI systems consist not 

of stable, always repeatable software but depend from their environment. If the AI 

system fails to reproduce correct answers, it might indicate a shift in the learning data 

and probably learning must restart from the beginning. Such restarts are typically re-

quired, for instance in traffic, if new conveyors appear, such as scooters, electro-scoot-

ers, electro-bikes, and if rules change, for instance if fast electro-bikes are no longer 

admitted on cycle paths. 

Testing AI happens typically if the AI system is idle. Only in rare cases a test that 

interrupts and competes with actual operations might be useful, for instance when 

encountering unexpectantly a new environment. If a car unexpectedly meets local traf-

fic that is typical for urban areas, and the car believes it is overland, then it might 

indicate the need for retesting the map services used. When map service problems can 

be excluded, the car might run through a newly developed housing area - or a squatter 

habitation – and inform its map services about this. The map service can then decide 

from this and similar notifications whether it needs adjourning the map. 

7-2.5 LOCALIZATION 

There are also other geographical factors. For instance, in certain countries a pedes-

trian moving towards a pedestrian crossing causes car traffic to stop. Pedestrians have 

priority. In certain other countries, if you stop your car to let a pedestrian strip, you 

risk a rear-end collision. Other road users would be surprised. Such differences in the 

practices adopted in road traffic can exist despite quite similar road traffic regulations. 

This makes ART not simpler. To use the same test suite for different locations involves 

the risk that such local practices are not reflected. In such cases, an autonomous car 

that “learned” driving in one country is not easily acceptable on other roads.  

7-2.6 WHEN TO TEST ARTIFICIAL INTELLIGENCE? 

We already mentioned that AI must be testable “anytime”. Nevertheless, no system is 

anytime available for testing. The typical times a system does ART are when idle. 

Since idling can be stopped anytime, running tests too must be able to stop immedi-

ately. This is possibly not so easy if sensors and actuators are involved that first need 

being reset before use. 
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Users of AI systems therefore must be able to see when their system is running tests. 

It is also recommendable that users see results of tests. Section 1-4.2: Consumer Metrics 

proposes a standard how to represent test results for consumers. It is obvious that 

such representations are complimentary to the full test suite records that are probably 

of more interest to the system supplier than to the consumer. 

7-3 A DEEP LEARNING APPLICATION AS A SAMPLE 

We take our first example from Chapter 4: Testing Privacy Protection and Safety Risks and 

use it now to demonstrate how to test the Look & Act in ADAS as shown in Figure 4-3.  

7-3.1 XAI – EXPLAINABLE ARTIFICIAL INTELLIGENCE  

However, we must go deeper into the details without really knowing how the Visual 

Recognition System (VRS) works. Interestingly, we do not need to know how the VRS 

was implemented. It does not matter whether the VRS uses programmed algorithms 

or whether a neural network has learned to behave correctly.  

An automatic generation of the data movement map is not possible without code. But 

we can draw a data movement map that delivers what we want, using our under-

standing of the VRS. The ISO/IEC 19761 standard and the data movements maps en-

able software measurements without code. 

Explainable AI addresses this problem – how can you understand and comprehend 

decisions of an AI-enabled device that probably used deep learning to learn correct 

decisions? Such devices are now omnipresent and gradually replacing older decision 

algorithms that proved considerably less reliable but have code that can be assessed 

and eventually understood. Nevertheless, regulators ask for explanations.  

Theodorou provides a robust definition of transparency as a mechanism to expose the 

decision making of a robot (Theodorou, et al., 2017). The Defense Advanced Research 

Projects Agency (DARPA) conducts since 2017 a project providing explainable deci-

sion models and enable humans to understand, appropriately trust, and effectively 

manage the emerging generation of artificially intelligent partners (Gunning, 2017). 

A data movement map explains any AI device consistently and effectively, the con-

vergence gap of the test coverage transfers function guarantees relevance. Regulators 

would better ask for test coverage than whatever an AI device may produce as “ex-

planation”. Remember that it is quite easy for an AI system to learn what kind of ex-

planations humans accept. Whether those explanations guarantee correct decisions is 

not part of the question asked. 
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7-3.2 THE GOAL OF TESTING 

As before, we need the goal profile to do testing. These goals are not the same as the 

car users’ needs for ADAS, and obviously we need dedicated user stories. First, the 

user of the visual recognition system is not the car user, but the car itself, represented 

by the car’s ADAS. Second, we focus on the visual recognition system and how it vis-

ually understands and interprets the environment using its cameras and Lidar. For 

modeling this different viewpoint on testing (or explaining) the VRS, we clearly need 

more data movements and thus we need to look deeper into the VRS app in Figure 

4-3: Look & Act in ADAS. 

Although this is an arbitrary viewpoint, we expect that three levels of decisions are 

taken, and monitored, when executing the VRS app: 

• A top-level decision: Is the object hard, soft, or possible a blur only? Sometimes, 

fogs look like a cat, empty plastic bags simply fly around. 

• The next level is whether the object moves actively, or passive, or not at all. This 

requires sensing wind, rain and other weather events. 

• The third level is assigning it a traffic category such as pedestrian, bike, other 

car, or fixed installations such as a signal, a post, or curbstone. 

With our preferred method for prioritization, the pairwise comparison or simple AHP, 

we get the following profile (Figure 7-1): 

Figure 7-1: The Visual Needs 

Visual Needs Topics Attributes Weight Profile

  y1 Recognize Objects Distinguish from background Movable Rolling or not 13% 0.32

y2 Impact Category Hard Soft 18% 0.46

 y3 Reaction Category Active Passive None at all 13% 0.32

y4 Traffic Category Cars Bikes Pedestrians 10% 0.25

y5 Movement Direction Speed Variability 22% 0.57

y6 Blur Resilience Minimum outline Fog Snow or rain 8% 0.19

y8 Distance Lidar measurements 16% 0.402.5

AHP Priorities

 

The decisions originate from the following AHP (Figure 7-2): 

Figure 7-2: The Visual Needs Priority AHP 
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It is not surprising that y5: Movement and y2: Impact Category are highest in ranking. 

These are the most important visual needs for driving a car. On the other hand, y6: 

Blur Resilience, the ability to recognize objects even in fog or precipitation, is a precon-

dition for the others, but by itself it is not dominant. Consequently, this strengthens 

the point that an ADAS needs a Lidar; otherwise, recognizing objects and thus move-

ments and impact category is difficult to achieve if cameras only rely on signals in the 

visible range. As usual, already the AHP points at some relevant technical challenges. 

7-3.3 USER STORIES FOR THE VRS 

The application modeled in Figure 7-4: Data Movement Map for the Visual Recognition 

System (VRS) implements the following eight user stories (Table 7-3): 

Table 7-3: Visual Recognition User Stories 

Label As a … I want to … Such that … So that … 

Identify 
Objects 

Car 
ADAS 

understand objects 
around me 

I do not hit any of 
them 

I can have a 
smooth drive 

Identify 
Movements 

Car 
ADAS 

understand which objects 
move and where they 
move 

I can calculate my 
free way 

I can have a 
smooth drive 

Identify 
Dangers 

Car 
ADAS 

distinguish objects from 
background environment 

I get no false 
alarms 

I do not stop 
unnecessarily 

Predict 
Reactions 

Car 
ADAS 

understand whether an 
object moves actively or 
passively 

I can predict 
where it's moving 

I can adapt my 
route 

Identify 
Traffic 

Car 
ADAS 

identify traffic 
participants 

I can predict their 
speed 

I can adapt my 
route 

Collect 
Images 

Car 
ADAS 

extract relevant 
information from images 

I understand my 
environment 

I can use 
experiences for 
later learning 

Blur 
Independence 

Car 
ADAS 

have vision despite fog 
and precipitation 

I can drive 
despite limited 
visibility 

Bad weather does 
not stop me 

Plausibility Car 
ADAS 

be sure the VRS returns a 
valid object catalog 

I can rely on its 
findings 

I won't get 
disturbed 

The data movement map in Figure 7-4 on the following page implements these user 

stories.
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Figure 7-4: Data Movement Map for the Visual Recognition System (VRS) 

Look&Act Device Decision Organizer Decision Bus Previous Decisions Top Layer Top Categories Middle Layer Middle Categories Bottom Layer Bottom Categories Movement Detector Images & Distances
Plausibility

Check
3D Model

1.// Provide Images

Images

2.// Record Images

3.// Remember Images

4.// Call Top Layer

5.// Start Top Layer

Objects

6.// Compare Top

7.// Record Top Category

8.// Selected Top Category

9.// Continue?

10.// Call Middle Layer

11.// Start Middle Layer

Group

12.// Compare Middle

13.// Get Distance

14.// Get 3D-Model

15.// Record Middle Category

16.// Selected Middle Category

17.// Continue?

18.// Call Bottom Layer

19.// Start Bottom Layer

Identify

20.// Compare Bottom

21.// Get Distance

22.// Get 3D-Model

23.// Record Bottom Category

24.// Selected Bottom Category

25.// Continue?

26.// Moving Objects?

27.// Does it move?

Moving?

28.// Compare

29.// Moving Objects

30.// Moving Objects

31.// Object Catalog

32.// Plausible Objects?

33.// Check Plausibility

Plausible?

34.// Compare 3D

35.// Get Top Decisions

36.// Get Middle Decisions

37.// Get Bottom Decisions

38.// Compare

39.// Create 3D-Model

40.// Valid Objects

41.// Save Valid Objects

42.// Valid Objects

43.// Image Analysis

44.// Save Image Analysis
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Deploying the user stories against the visual needs yields the transfer function shown 

below in Figure 7-6. Not surprisingly, Q004: Predict Reactions is the most important of 

our eight short user stories. 

Figure 7-5: User Story Priority 

User Stories Topics

1) Q001 Identify Objects

2) Q002 Identify Movements

3) Q003 Identify Dangers

4) Q004 Predict Reactions

5) Q005 Identify Traffic

6) Q006 Collect Images

7) Q007 Blur Independence

8) Q008 Plausibility
 

Weight Profile

8% 0.23

11% 0.30

14% 0.38

19% 0.52

14% 0.37

10% 0.26

8% 0.21

16% 0.45

Priority

 

Remember that we had no clue how our VRS determines the list of valid objects that 

it recognizes. Possibly a Support Vector Machine (SVM) is used; see Gunn (Gunn, 1998), 

and more recently Pupale (Pupale, 2018). However, we use our data movement map 

model from Figure 7-4 to assess functional effectiveness with the later goal of testing. 

Figure 7-6: Functional Efficiency – User Story Deployment based on Figure 7-4 
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y1 Recognize Objects 0.32 4 2 6 5 6 7 4 0.34

y2 Impact Category 0.46 4 6 8 6 6 8 6 7 0.48

y3 Reaction Category 0.32 4 4 6 12 0.29

y4 Traffic Category 0.25 4 3 6 6 6 0.28

y5 Movement 0.57 6 6 12 8 6 6 9 0.55

y6 Blur Resilience 0.19 2 3 6 8 3 0.18

y8 Distance 0.40 6 6 2 6 6 11 0.39

Solution Profile for User Stories: 0.23 0.30 0.38 0.52 0.37 0.26 0.21 0.45 Convergence Gap

0.23 0.31 0.38 0.52 0.36 0.26 0.21 0.44 0.05

248 Total Effort Points

0.10 Convergence Range   

0.20 Convergence Limit

Visual Needs
Deployment Combinator

Visual Needs

 

There is a clear focus on predicting reactions and check distances for plausibility in 

the data movement map. This is what we expect from a VRS but do not know how it 

is implemented by the SVM or any other neural network. The functional effectiveness 

matrix identifies the data movements that implement a specific user story.  
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Test Coverage is calculated from the following fourteen test stories: 

Figure 7-7: Test Stories with two Test Cases 

Test Story

1) A Objects A.1 Object Contour

2) A.2 Object Move

3) B Prediction B.1 Predict Move

4) B.2 Predict Collision

5) B.3 Predict Reaction

6) C Identification C.1 Identify People

7) C.2 Identify Child

8) C.3 Identify Car

9) C.4 Identify Truck

10) C.5 Identify Bike

11) C.6 Identify Blur

12) C.7 Identify Position

13) D 3D-Model D.1 Use 3D-Model

14) D.2 Verify 3D-Model
 

Case 1 Test Data Expected Response Case 2 Test Data Expected Response

A.1.1 {Object; Background} Contour exact A.1.2 {Object; Fog; Background} Contour somehow

A.2.1 {Object; Move active} Move Vector A.2.2 {Object; Move passive} Move Vector

B.1.1 {Object; Move; Identity} Move Vector B.1.2 {Object; Move; Unknown} Move Range

B.2.1 {Object; Move Vector; Identity} Collision Point B.2.2 {Object; Move Vector; Unknown} Collision Range

B.3.1 {Identity} Move Vector B.3.2 {Object; Move Vector; Unknown} Action Range

C.1.1 {Pedestrian; Walking} Move Vector C.1.2 {Pedestrian; Stagnant} Action Range

C.2.1 {Child; Playing} Collision Range C.2.2 {Child; Watching} Action Range

C.3.1 {Car; Move Vector} Collision Range C.3.2 {Car; Braking slow} Collision Range

C.4.1 {Truck, Move Vector} Collision Range C.4.2 {Truck; Braking slow} Collision Range

C.5.1 {Bike; Move Vector} Collision Range C.5.2 {Bike; Stopping} Collision Range

C.6.1 {Object; Blur; Move Vector} Identify C.6.2 {Blur; no object} Identify

C.7.1 {Objects; Identified; Move Vectors} Move Model C.7.2 {Objects; Identified; Stagnant} Position Model

D.1.1 {3D Position, Identified, Move Vector} Move Model D.1.2 {3D-Model; Identified; Stagnant} Position Model

D.2.1 {Move Model, Move Vector} 3D-Position D.2.2 {Objects, Stagnant} Position Model

 

There are many more than two test cases per test story; however, not shown here. 

Based on this, we get the following test coverage (Figure 7-8): 

Figure 7-8: Baseline Test Coverage 
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Q004 Predict Reactions 0.52 47 33 29 27 44 36 46 34 31 33 24 24 84 39 0.52

Q005 Identify Traffic 0.37 9 22 18 21 42 38 46 26 18 23 12 14 72 32 0.41

Q006 Collect Images 0.26 11 16 14 20 25 19 26 18 18 19 29 20 31 19 0.27

Q007 Blur Independence 0.21 7 14 16 11 28 22 22 20 13 20 28 20 40 20 0.27
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Ideal Profile for Test Stories: 0.24 0.22 0.18 0.19 0.32 0.26 0.31 0.23 0.21 0.23 0.22 0.19 0.51 0.26 Convergence Gap
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The main test focus receives Q004: Predict Reactions; as expected. This can be seen 

when enhancing the highest frequency cell by color, or bold type, display. Also, user 

story Q008: Plausibility receives support by all tests; this is because results always flow 

into the decision repository fueling later plausibility checks. 
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The need for the test stories D.1: Use 3D-Model and D.2: Verify 3D-Model became ap-

parent after it proved impossible to reach a convergence gap below 0.10 (10%) with 

only the twelve test stories directly addressing ADAS functionality. Thus, the assump-

tion of the tester, that the VRS uses a kind of three-dimensional model to take in-

formed decisions, is supported by the ART testing algorithm. Whether the “intelli-

gence” inside the VRS does it this way, or another way, remains open but is irrelevant. 

The total test size statistics looks as follows: 

Figure 7-9: Baseline Test Status Summary 

Total CFP: 44 Test Size in CFP: 2838

Test Intensity: 64.5

Defects Found in Total: 0 Defect Density: 0.0%

Defects Pending for Removal: 0 Data Movements Covered: 100%
 

An initial test intensity of 64.5 is not bad; it looks we have mapped enough data move-

ments to reach the necessary granularity that allows explaining and testing the ex-

pected qualities of the VRS, including plausibility checks and categorization of the 

various traffic participants.  

At least, we have an idea how to test a VRS before it hits the roads. 

7-4 NEXT STEPS, AND A PRELIMINARY CONCLUSION 

Clearly, a visual system needs more tests than those shown in this chapter. We use 

ART to generate more test cases out of the fourteen test stories to increase test inten-

sity. However, at the current stage of research, we have no clue what test intensity is 

enough for a VRS in an autonomous car. 

Applying ART means adding more test cases, more image sequences, always with 

respect to the convergence gap, aiming at improving it towards less than 0.1. The con-

vergence gap of less than 0.1 indicates that the current test suite misses the goal profile 

by less than 10% (Fehlmann, 2016, pp. 13,31). This limits combinatorial explosion, as 

it allows selecting relevant test cases only. 

The basic idea how to deal with “untestable” neuronal networks and deep learning 

SVMs is to create a model. This model describes what we think how it should work, 

and then we use API Test Automation (Reichert, 2015) to ask the right questions to the 

intelligent device, as indicated in the test cases. Obviously, this requires the ability of 

the device to answer more questions that those primarily intended. 
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7-5 A SIDE NOTE 

SVM, Perceptron, Combinatory Logic are all inventions of the first and second third 

of the 20th century. The original SVM had been described by Vladimir Vapnik at times, 

where he possible never had the opportunity to touch a computer except huge main-

frames without nominal computing power. The original combinatory logic algorithm 

for generating new test cases – or formulas about tests – has been implemented in 1980 

on a DEC-10 at the Center for Interactive Computing of the ETH Zurich, by the author 

(Fehlmann, 1981). 

There is nothing new about AI; it had been rediscovered and put to work because 

finally computing power is available almost for free. And again, there is nothing in-

telligent about AI. It is all about searching big data, and classifying vectors describing 

objects of the real world. 

Preparing the reference vectors for deep learning is hard work by intelligent, insight-

ful people. The same is true when preparing test stories and initial test cases for testing 

AI. The rest of the work is ephemeral: big calculations with much data elaborating on 

the rationale of skilled humans. 

However, the real beauty of all these stories is: all the ingredients are here, only need-

ing rediscovery. We only had to put old threads in a new way together. 
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CHAPTER 8: AGILE TESTING WITH 

THE BUGLIONE-TRUDEL MATRIX 
While functional effectiveness is enough to calculate test coverage automat-

ically, focusing in development on functional effectiveness alone does not 

guarantee developing a product continuously towards increased customer sat-

isfaction. Customers might have other requirements than functionality alone. 

Developers thus need to keep an eye on both, functional effectiveness and on-

functional customer needs. 

This chapter describes modern software development that harvests on the 

teams’ experience and expertise to continuously provide world-class customer 

experience using the Buglione-Trudel Matrix introduced in the “Managing 

Complexity” book of 2016 (Fehlmann, 2016). 

Autonomous real-time testing is also useful for continuously observing and 

measuring customer experience. 

8-1 INTRODUCTION 

Readers of the previous book (Fehlmann, 2016, p. 200ff) remember how the Buglione-

Trudel (BT) Matrix helps agile teams to organize themselves, elicit requirements and 

adapt easily to changed goals in product development. The crucial point is to use the 

value seen by customers also in a transfer function that is possibly not equal to the 

functional effectiveness. The BT matrix complements functional effectiveness by tak-

ing non-functional requirements into account and develop work along the lines of 

value perceived by the customer. The customer and its values are typically repre-

sented by the Product Owner. The BT matrix is basically an interactive story board for 

agile teams where the story cards are valuated against the customer’s needs. The Story 

Cards represent those parts of a user story that is selected within a given sprint. Often, 

a user story splits into a functional story card, implementing functionality, and one to 

several non-functional story cards, implementing quality characteristics that also need 

time and effort.  

For this, we distinguish the Sundeck and the Cellar of the BT matrix. Both are transfer 

functions, mapping user stories, respectively its story cards, to customer needs. How-

ever, the sundeck is interactively designed by the development team, while the cellar 

remains much more stable. The functional requirements in general are more stable 

and less influenced by the development team than the quality, or non-functional, 
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requirements. However, all is subject to new learnings and change of environment; 

the transfer functions adapt themselves and possible need rework to keep the conver-

gence gap low. 

Figure 8-1: Deming Chain for Agile Software Development and Software Testing 

CN → VoC

Voice of the 
Customer (VoC)

Decision

User Stories 
(USt)

TSt→ USt

Story Cards
(StC)

Realization

Customer Needs 
(CN)

USt → CNStC → CN

#CFP

#NPS, #AHP

Customer Needs Coverage Test Coverage

#Business Impact

Test Stories 

(TSt)

#CFP

Functional Effectiveness

 

Formally, the Customer Needs Coverage and the Functional Effectiveness transfer function 

look similar, since both rely on user stories. However, since the first uses the valua-

tions of the customer and the second the functional size for the matrix cells, its results 

can diverge, and most often they do.  

Since automatic testing is possible for functionality only, we can rely on the functional 

effectiveness for assessing test coverage, while some of the quality aspects – if not 

linked to any functionality – cannot be tested automatically. Whether some output 

screen is readable and convenient to users, looking attractive, only users can tell, un-

less we can test its layout against certain ergonomic rules and regulations. 

On the other hand, development must follow the customer’s priorities and provide 

value. Such value can be other than functionality; for instance, does adherence to cor-

porate identity rules provide high value but no functionality. 
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8-2 STORY CARDS WITH TEST STORIES 

To deal with these constraints and requirements, we use functional and non-func-

tional story cards, plus a mix of both. Story cards can have functionality to implement, 

or simply call for adding value by adding quality features that affect things such as 

ease-of-use, or appearance, or information presentation to humans; even to machine 

users. 

Thus, a story card describes one of the tasks needed to implement a user story, refer-

ences the functionality affected by such work, ideally as a data movement map, and 

identifies the business value of this task. Thus, it might be that the business value does 

not so much originate from the functionality but from other aspects such as establish-

ing credibility and trust among users of a software. 

We use the ADAS example from section 4-3 and distribute its user stories on four 

sprints. This yields a story card table as shown in Figure 8-2:  

Figure 8-2: Story Table for ADAS 

Responsible Scheduled for Effort Size

Card ID Label Description ID Developer Sprint StP CFP
1) Q001-01Q Look Operate the Sensors Q001 Populated Area 1 Susi #01 - Overture 8 6

2) Q001-02Q Analyze Ask for Recommended Actions Q001 Populated Area 2 Heidi #01 - Overture 13 4

3) Q001-03Q Understand Build 3D-model for Actual Environment Q001 Populated Area 3 Paul #02 - Allegretto 8

4) Q002-01Q Act on Obstacle Act on Obstacle Ahead Q002 Obstacle 1 Paul #01 - Overture 13 4

5) Q002-02Q Test Recommender Write Test Cases for Recommender Q002 Obstacle 2 Olly #01 - Overture 8 1

6) Q002-03Q Inform Car User Design Car User interface Q002 Obstacle 3 Heidi #02 - Allegretto 5 1

7) Q002-04Q Test Actuator Write Test Cases for Actuator Q002 Obstacle 4 Olly #02 - Allegretto 8

8) Q002-05Q Obstacle Recognition Teach Recommender how to Distinguish Obstacles on the Q002 Obstacle 5 Olly #04 - Finale 13 2

9) Q003-01Q Locate Inform about Actual Position Q003 Know my Way 1 Susi #02 - Allegretto 5 6

10) Q003-02Q Navigate Connect to Map Services Q003 Know my Way 2 Heidi #02 - Allegretto 8 6

11) Q003-03Q Inform Car User Design Car User Interface Q003 Know my Way 3 Fritz #01 - Overture 8 2

12) Q003-04Q Test Navigation Write Test Cases for Navigation and Location Services Q003 Know my Way 4 Olly #03 - Scherzo 13

13) Q004-01Q Change Route On Alert, Propose Another Route Q004 Amend my Way 1 Susi #03 - Scherzo 8 5

14) Q004-02Q Test Routing Write Test Cases for Routing Decisions Q004 Amend my Way 2 Olly #04 - Finale 13

15) Q005-01Q Approve Change Let the Car User Decide which Route to Take Q005 Check my Way 1 Heidi #03 - Scherzo 8 9

16) Q005-02F Learn from Past Compare with Previous Experiances Q005 Check my Way 2 Paul #03 - Scherzo 8 3

17) Q006-01Q Adjust Speed Connect Route Information to Recommender Q006 Able to Stop 1 Fritz #02 - Allegretto 13 5

18) Q006-02Q Inform Car User Show Car User the Car Driving Strategy Decisions Q006 Able to Stop 2 Fritz #03 - Scherzo 8 5

19) Q006-03Q Arrival Time Keep the Arrival Time Updated Q006 Able to Stop 3 Fritz #04 - Finale 8

176 59

StP for FUR: 126

Story Cards Requirement

Total  Story Points (StP) / Function Points (CFP):

User Stories

Add Card Hide Card Unhide PublishClear
 

For instance, the user story Q001: Populated Area is implemented with three story 

cards, spanning over two sprints:  

• Q001-01Q Look Operate the Sensors (StP: 8; CFP: 6) 

• Q001-02Q Analyze Ask for Recommended Actions (StP: 13; CFP: 4) 

• Q001-03Q Understand Build 3D model for Actual Environment (StP: 8; no CFP) 
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Looking at the three story cards that implement user story Q001: Populated Area, we 

see one (Figure 8-3) that implements main functionality by accessing the sensors and 

collecting data from them. The next story card (Figure 8-4) analyzes the situation and 

provides recommendations for the ADAS. This story card has highest business value 

as this is what the car user expects from the ADAS. The third story card is about how 

the functional process F001: Car Driving Function asks for action. To do this, it creates 

a 3D model of the actual road situation, with predictions what the other vehicles and 

people on the road are likely to do next, that it can submit to the A003: Recommender. 

Figure 8-3: Q001-01Q: Look - Operate the Sensors 

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved

Func-
tional

Q001-01Q: Look
6

Name:8

#01 - Overture

Business Impact:

Functional Size:

Story Points:

Operate the Sensors

Sprint:

Susi

y4: 3y2: 2y1: 2

As a Car User, I want to let my car reduce speed, such that my car can 

safely stop, so that my car is not causing delays by an incidence
Car User Recommender

Car Driving
Function

Visual
Recognition

Sensor Bus Camera App Lidar Routing
Remember

Routes
GPS Service

1.// Trigger Sensor

2.// Start Cameras

3.// Supply Images

5.// Request Distance

6.// Lidar Distance

9.// Analysis Request

28.// Update Location

29.// Compare with Actual Route

30.// Update Location

31.// Recalculate Route

32.// Adapt Route

33.// Inform

 

Figure 8-4: Q001-02Q: Analyze - Ask for Recommended Actions 

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved
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tional

Q001-02Q: Analyze
4

Name:13

#01 - Overture

Business Impact:

Functional Size:

Story Points:

Ask for Recommended Actions

Sprint:

Heidi

y4: 6y1: 3

As a Car User, I want to let my car reduce speed, such that my car can 

safely stop, so that my car is not causing delays by an incidence

Recommender
Car Driving

Function
Visual Recognition Remember Routes

10.// Analysis Result

11.// Chosen Route

12.// Ask for Actions

13.// Recommended Action

 

The third story card has no extra functionality, since constructing the 3D model is 

contained in the functional process F001: Car Driving Function. It does not require extra 

data movements – except if we change focus and granularity and ask how the various 

functional users in the functional process F001: Car Driving Function perceive the steps 

needed for car driving.  

Thus, the last story card shown in Error! Not a valid bookmark self-reference. pro-

vides no new functionality in terms of data movements but implements the algorithm 
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needed to let the VRS make a recommendation. It is left open whether the mentioned 

3D model is built by an algorithm or learned by an SVM or neural network. Most 

likely, according today’s technology, it is the latter. In any case, the external applica-

tion A001: Visual Recognition (VRS) provides a suitable 3D model that can be used to 

make recommendations for steering and acting by the ADAS. The actual recommen-

dation originates from another external application A003: Recommender. 

Figure 8-5: Q001-03Q: Understand - Build 3D model for Actual Environment 

Story Card for Q001: Populated Area
Test is
Ready

Draft is
Ready

Review
Done

Final-
ized

Appro-
ved
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tional

Q001-03Q: Understand
0

Name:8

#02 - Allegretto

Business Impact:

Functional Size:

Story Points:

Build 3D-model for Actual Environment

Sprint:

Paul

y4: 3y1: 2

As a Car User, I want to let my car reduce speed, such that my car can 

safely stop, so that my car is not causing delays by an incidence

 

8-3 SELECTING TEST STORIES FOR STORY CARDS 

He back of the story cards contains the applicable test stories. Since the user story 

Q001: Populated Area is quite prominent for ADAS functionality, ten of the eleven test 

stories (see section 4-3: ART for ADAS) are listed. Thus, the developers know against 

which test stories their functionality will be tested. Test stories clarify requirements. 

However, the aim is two ways: the developers are encouraged to write additional test 

cases that they think relevant. 

The selection of test stories on the back of story cards is automatic: all test stories that 

contain a test case testing one of the data movements occurring in the user story are 

listed. Thus, the story card Q001-03Q: Understand - Build 3D model for Actual Environ-

ment also features all ten test stories that affect user story Q001: Populated Area even if 

the story card is not referring directly to any data movement. Nevertheless, it might 

make sense since testing any of the non-functional quality characteristics involves 

some functionality – otherwise, it would not be a test, rather a static assessment. 

As you always need functionality to implement non-functional characteristics, you 

always need functional tests for testing quality characteristics. 
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8-4 CREATING TEST STORIES BY THE DEVELOPMENT TEAM 

Since our cards use “intelligent paper” – i.e., they are distributed and available elec-

tronically – adding test cases is a matter of harvesting developers intelligence for cre-

ating relevant tests. Thus, the test suite grows while the product evolves. 

Obviously, tests run as soon as enough functionality is available. This is the same kind 

of automated test runs that is usually in place for unit tests delivering the “green bar” 

needed for the daily build. 

Harvesting skills and intelligence of the development team – this is the reason why 

we institutionalize collection of test stories and test cases while developers look at the 

details of implementing user stories.  

The back of the story cards is not immutable but is used to collect test stories and test 

cases. Initially, when development starts, the test stories might even be missing, and 

it is up to the development team to propose them. If every developer proposes tests, 

it needs a Test Manager who collects these proposals, identifies when the same test 

story is proposed twice, or a test case is assigned to the wrong test story. The test 

manager arranges the back of the story cards. 

8-5 TEST MANAGEMENT 

Test management is probably the most important task in ART. That testing starts at 

the beginning of any product development, is already clear. Most agile software de-

velopment uses Test-Driven Development (TDD) (Poppendieck & Poppendieck, 2007), 

as already mentioned. ART extends TDD based on existing test cases and can be used 

to increase test intensity already while developing the product.  

Setting up the test stories goes in parallel with the user stories and controlling evolu-

tion of knowledge all through the development stages and sprints by functional effec-

tiveness and test coverage transfer functions starts at the very beginning of product 

development. Especially, if the product is complex or safety critical. 

8-6 CONCLUSIONS 

Thanks to the ongoing controlling of convergence gaps in all transfer functions in-

volved, developing software even for safety critical application such as automatic 

driving, for artificial intelligence, or for complex software-intense systems becomes 

feasible. 
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Technology advances cannot become successful without developing suitable control 

mechanisms as institutionalized with software testing. The dream of autonomous ve-

hicles seems nowadays, by mid-2019, remaining a dream. Whether ART alone can put 

the dream into reality is not sure. ART detects defects and avoids fatal failures but 

does not solve the problem how to drive through Naples or Delhi. There human-to-

human communication between car drivers is much more important than sensors and 

car-to-car communication. 

Nevertheless, the future is with software-intense systems; but the future still lacks 

ART. Developing tools for ART is probably right now the most urgent task for the ICT 

community.  

While it is not sure whether ART helps avoiding catastrophic failures, ART creates an 

open space, the combinatory algebra of arrow terms, where unthinkable test cases 

have a well-defined place. While AI, as already stated, is not intelligent, AI can help 

people to think much farther than ever and anticipate consequences of their new tech-

nology that they are going to develop and impose on society. 
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